水産動植物の被害防止に係る農薬登録保留基準として 環境大臣が定める基準の設定に関する資料

チオジカルブ

. 評価対象農薬の概要

1.物質概要

化学名	(3 <i>E Z</i> , 12 <i>E Z</i>) - 3 , 7 , 9 , 13 - テトラメチル - 5 , 11 - ジオキサ - 2 , 8 , 14 - トリチア - 4 , 7 , 9 , 12 - テトラアザペンタデカ - 3 , 12 - ジエン - 6 , 10 - ジオン						
分子式	C ₁₀ H ₁₈ N ₄ O ₄ S ₃	C ₁₀ H ₁₈ N ₄ O ₄ S ₃ 分子量 354.5 CAS NO. 59669-26-0					
構造式	$H_3C-S-C=N-O-C-N-S-N-C-O-N=C-S-CH_3$ CH_3 CH_3 CH_3 CH_3						

2.作用機構等

チオジカルブは、カーバメート系の殺虫剤であり、その作用機構は神経伝達系のアセチルコリンエステラーゼの活性阻害である。

本邦での初回登録は1988年である。

製剤は粒剤及び水和剤が、適用農作物等は果樹、野菜、いも、豆、花き、樹木、芝 等がある。

原体の輸入量は 9.3t (平成 22 年度)、8.8t (平成 23 年度)、21.5t (平成 24 年度)であった。

年度は農薬年度(前年10月~当該年9月)、出典:農薬要覧-2013-((社)日本植物防疫協会)

3. 各種物性

外観・臭気	白色粉末、弱い刺激臭 (20)	土壌吸着係数	試験中に分解することより測定不能
融点	172.6	オクタノール / 水分配係数	logPow = 1.62 (25)
沸点	184.7 で分解のため測定 不能	生物濃縮性	-
蒸気圧	2.7 × 10 ⁻³ Pa (25)	密度	1.5 g/cm³ (20)
加水分解性	半減期 78.4日(pH5、25) 31.6日(pH7、25) 0.48日(pH9、25)	水溶解度	2.22×10 ⁴ μg/L(25)

	半減期
	7.639 日(東京春季太陽光換算 10.4 日)
	(緩衝液、pH6、25 、7.918 - 174.829W/m²、 > 290nm の自然光)
水中光分解性	1.87 日(東京春季太陽光換算 13.5 日)
	(滅菌自然水、pH7.89、25 、500W/m²、290 - 800nm)
	4.2 日(東京春季太陽光換算 19.8 日)
	(自然水、pH7.8、25 、395W/m²、300 - 800nm)

. 水産動植物への毒性

1.魚類

(1)魚類急性毒性試験[](コイ)

コイを用いた魚類急性毒性試験が実施され、 $96hLC_{50}$ = $4,440~\mu$ g/L であった。

表 1 魚類急性毒性試験結果

被験物質	原体					
供試生物	コイ (Cyprinus carpio) 10尾/群					
暴露方法	止水式					
暴露期間	96h					
設定濃度(μg/L)	0	903	1,810	3,610	7,220	14,400
(有効成分換算値)						
実測濃度(μg/L)	0	570	1,160	2,570	4,850	12,500
(幾何平均値)						
(有効成分換算値)						
死亡数/供試生物数	0/10	0/10	0/10	1/10	5/10	10/10
(96hr後;尾)						
助剤	なし					
LC ₅₀ (μg/L)	4,440(95%信頼限界2,390-10,100)(実測濃度(有効成分換算値)					
	に基づく)				

2. 甲殼類等

(1)ミジンコ類急性毒性試験[](オオミジンコ)

オオミジンコを用いたミジンコ類急性毒性試験が実施され、遊泳阻害に関する $48hEC_{50}$ = 27 μ g/L であった。

表 2 ミジンコ類急性毒性試験結果

被験物質	原体					
供試生物	オオミジン	オオミジンコ (Daphnia magna) 40 頭/群				
暴露方法	流水式					
暴露期間	48h	48h				
設定濃度(μg/L)	0	2.8	5.7	12	24	47
(有効成分換算値)						
実測濃度(μg/L)	0	2.4	4.6	8.1	19	38
(算術平均値)						
(有効成分換算値)						
遊泳阻害数/供試生	0/40	0/40	0/40	0/40	0/40	40/40
物数 (48hr 後;頭)						
助剤	DMF 0.05mL/L					
EC ₅₀ (μg/L)	27(95%信頼限界19-38)(実測濃度(有効成分換算値)に基づく)					

3.藻類

(1)藻類生長阻害試験[]

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、 $73.5hErC_{50} > 7,000~\mu\,g/L$ であった。

表 3 藻類生長阻害試験結果

被験物質	原体				
供試生物	P. subcapitata 初期生物量 0.9×10⁴cells/mL				
暴露方法	振とう培養	Ž.			
暴露期間	93.5 h				
設定濃度(µg/L)	0	100	320	1,000	3,200
	5,600	10,000	18,000		
実測濃度(µg/L)	0	37	120	410	1,200
(0-93.5h 幾何平均值)					
(有効成分換算値)	2,100	3,900	7,000		
73.5hr 後生物量	89.2	109	104	96.7	87.2
(×10⁴cells/mL) (濃度区は事務局算出値)	81.6	77.8	54.3		
0-73.5hr 生長阻害率		-3.9	-2.0	-0.17	3.0
(%)	4.5	10	12		
助剤	なし				
ErC ₅₀ (μg/L)	> 7,000(実測濃度(有効成分換算値)に基づく)				
NOECr(µg/L)	410(実測濃度(有効成分換算値)に基づく)				

. 水動植物被害予測濃度(水産 PEC)

1.製剤の種類及び適用農作物等

本農薬は製剤として粒剤及び水和剤があり、果樹、野菜、いも、豆、花き、樹木、 芝等に適用がある。

2 . 水産 PEC の算出

(1) 非水田使用時の PEC

非水田使用農薬として、PEC が最も高くなる使用方法について、下表のパラメーターを用いて第1段階のPECを算出する。

表 4 PEC 算出に関する使用方法及びパラメーター (非水田使用第1段階:河川ドリフト)

PEC 算出に関する使用方法 各パラメーターの値 /: 単回の農薬散布量(有効成分 g/ha) 型 剤 75%水和剤 5,250 D_{river}:河川ドリフト率(%) 農薬散布液量 700L/10a 3.4 希釈倍数 1,000倍 Z_{river}: 1日河川ドリフト面積(ha/day) 0.12 地上防除/航空防除 地 2 N_{drift}:ドリフト寄与日数 (day) 適用農作物等 R,:畑地からの農薬流出率(%) 果 樹 A_u:農薬散布面積(ha) 施用法 散 布 f_u:施用法による農薬流出係数(-)

これらのパラメーターより非水田使用時の PEC は以下のとおりとなる

非水田 PEC _{Tier1} による算出結果	0.083 μg/L

(2) 水産 PEC 算出結果

(1)より、水産 PEC は 0.083 μ g/L となる。

.総 合 評 価

(1)水産動植物の被害防止に係る登録保留基準値

各生物種の LC_{50} 、 EC_{50} は以下のとおりであった。

魚類 [] (コイ急性毒性) 96hL C_{50} = 4,440 μ g/L 甲殻類等 [] (オオミジンコ急性遊泳阻害) 48hE C_{50} = 27 μ g/L 藻類 [] (P. subcapi tata 生長阻害) 73.5hEr C_{50} > 7,000 μ g/L

魚類急性影響濃度 (AECf) については、魚類 []の LC_{50} (4,440 μ g/L) を採用し、不確実係数 10 で除した 444 μ g/L とした。

甲殻類等急性影響濃度 (AECd) については、甲殻類等 []の EC_{50} (27 μ g/L)を採用し、不確実係数 10 で除した 2.7 μ g/L とした。

藻類急性影響濃度 (AECa) については、藻類 []の ErC_{50} (> 7,000 μ g/L)を採用し、> 7,000 μ g/L とした。

これらのうち最小の AECd より、登録保留基準値は 2.7 µg/L とする。

(2)リスク評価

水産 PEC は $0.083 \mu g/L$ であり、登録保留基準値 $2.7 \mu g/L$ を超えていないことを確認した。

<検討経緯>

平成 26 年 9 月 24 日 平成 26 年度水產動植物登録保留基準設定検討会(第 3 回) 平成 26 年 10 月 28 日 中央環境審議会土壌農薬部会農薬小委員会(第 42 回)