3.2 外熱式乾留炉 + 二次燃焼炉における実験結果

(1)概況

前節の直接溶融ロータリーキルン施設にて開封した農薬のうち、DDT、BHC、エンドリンの3種について先に当処理施設に搬入し、混合したものを処理対象物として実験した。なお、上記3種の農薬の構成比は、なるべく別施設にて処理した農薬構成と同等になるようには配慮したが、全ての農薬を開封するまで、当施設分の農薬の調製を待つ時間がなかったので、一致はしていない。

農薬のみを当入した場合には、排ガス中の HCl が地元自治体の規制水準を超える可能性があるため、地元自治体と協議の上で、通常、当施設にて処理している排水処理汚泥を混合材として用いた。

実証施設にて処理試験を行う前に、ラボにて加熱秤量試験を行った。

対象	物質	分析結果	環境管理指針值	評価
排ガス	BHC	0.00099, 0.0086	0.0003 (大気中)	BHCが一般大気中指針
$(mg/m^3N$	DDT	0.0001,0.0002	0.0017(同上)	値の最大 29 倍*となる以
)	エンドリン	N.D.	0.0001(同上)	外は、排ガス濃度が大気
		(< 0.00001)		指針値を満足している。
処理後残	BHC	N.D.	0.025	管理型最終処分場の受入
さ		(< 0.0005)		指針値を満足している。
(mg/L)	DDT	N.D.	0.125	
		(< 0.0005)		
	エンドリン	N.D.	0.005	
		(<0.0005)		
飛灰	BHC	N.D.	0.025	管理型最終処分場の受入
(mg/L)		(< 0.0005)		指針値を満足している。
	DDT	N.D.	0.125	
		(< 0.0005)		
	エンドリン	N.D.	0.005	
		(< 0.0005)		

表 3-29 POPs 農薬に係る評価

^{*:}煙突による希釈効果は29倍以上と考えられ、排ガスによる環境影響は無視できる水準にある。

分析結果	ダイ特法の基準値	評価
0.084, 0.22	5(焼却能力 2t / 時	基準を満足している。
	未満)	
0.019, 0.039	3	管理型最終処分場受入基
		準を満足
0.76、5.4*	3	同上
	0.084, 0.22	0.084、0.225(焼却能力 2t / 時未満)0.019、0.0393

表 3-30 DXNs に係る評価

^{*}本試験実施以前からの灰と混合されている可能性がある

(2)処理対象物

1) 排水処理汚泥と POPs 農薬

投入した POPs 農薬等と配合汚泥の量は以下のとおりである。

POPs 等農薬 (水銀を含まないもの): 10kg/時×約 6.5 h/日 = 約 65kg/日 排水処理汚泥: 75kg/時×約 12h = 3120kg/日

表 3.31 投入農薬の内訳

農薬名	品名	袋数	供給量(kg)
エンドリン	エンドリン粉剤 2	21	63
DDT	DDT 粉剤、キルソン	13	13
ВНС	キングブラビー	15	45

(3)運転条件

1) 運転条件

(ア)運転温度(輻射式温度計による測定)

・外熱式ロータリーキルン内部:460

・二次燃焼炉出口温度: 850

(イ)運転中の滞留時間

・外熱式ロータリーキルン: 45分

・二次燃焼炉: 2 秒

2) 農薬等の投入方法・条件

(ア)投入方法

設備投入口より、作業員によるマニュアル投入とした。

(イ)農薬投入間隔

400g/袋 x 25 袋/時 = 10kg/時

(ウ)投入条件

事前にビニル袋に詰めて、400g の投入物を調製しておく。調製前に3種の農薬を十分に混合してから試料調製を行った。

3) 排ガス処理

(ア)基本フロー

二次燃焼炉 + バグフィルター(石灰を噴霧)

(イ)石灰噴霧量

投入物の塩素含有量分析結果に基づき、排ガス中の塩化水素目標値達成のための必要量を算定する。

(4)測定分析結果

- 1) 投入物
- (ア) POPs 農薬の分析結果
- (i) POPs 農薬成分の含有量

投入農薬として調製した POPs 農薬についての分析を行った結果は表 3.32 に示すとおりである。これらのうち、(イ)のラベルからの推定値というのは、各農薬のラベルに表示されている有効成分量から推計したものである。また、別途、投入農薬の主要製品について分析した結果から、各農薬量を乗じて算出したのが(ウ)の農薬分析結果からの推定値である。

なお、混合試料の分析に当たっては、混合試料をアセトン/n-ヘキサン混合液(1:1)100mLで約 15 分間超音波抽出して、GC/MS にかけて分析した。

	(ア)混合農	(イ)ラベルか	(ウ)混合農薬の				
	薬試料の分	らの推定値*	各分析結果からの				
	析結果		推定值**				
-BHC	30,000		47,432				
-BHC	6,700		5,962				
-BHC	9,100	11,300	11,721				
-BHC	3,500	-	3,200				
BHC(Total)	49,300	11,300 +	68,315				
o,p'-DDE	<20		0				
p,p'-DDE	<20		31				
o,p'-DDD	22		0				
p,p'-DDD	<20		0				
o,p'-DDT	900	5,500	46				
p,p'-DDT	3,100		2,013				
DDT(Total)	4,022	5,500 +	2,090				
アルドリン	<20		61				
エンドリン	6,200	10,300	6,066				
ディルドリン	<20		107				
Trans- /ነበ ት፣ ን	<20		0				
Cis-クロルデン	<20		0				
クロルテ゛ン(Total)	<20		0				
^プタクロル	<20		0				
ヘフ゜タクロルエホ゜キシト゛	<20						
ላጋ° タクロル (Total)	<20		0				
HCB	<20						
Total	59,522+						
典本のニベルに台		ナールナルコノ	₹Æ . . <u> </u>				

表 3.32 POPs 農薬の農薬成分含有量(µg/g)

混合試料の分析結果とラベルの成分表示を比べてみると、ラベルに表示されている成分

^{*)} 農薬のラベルに記してある成分表の数値から算出した

^{**)} 別途分析した3つの農薬の各成分分析結果に、3 農薬の混合比を乗じて推計した

については、 -BHC、DDT、エンドリンともにラベルよりも、今回の分析値が少ない結果となっている。これは、使用した農薬が地中に 20 年以上埋設保管されていた事を考慮すると、埋設中に農薬成分が劣化したためと考えられる。その劣化の程度は、 -BHC、DDTが約2割減で、エンドリンが4割減となっている。

次に、使用した農薬3製品の別途分析した結果に基づいて、混合試料の成分含有量を推定した結果と混合試料の分析結果を比較すると、BHCについては推定値の方が高く、エンドリンについてはほぼ同等であるのに対し、DDTは推定値が低目の値を示す結果となった。混合試料については混合前の各農薬成分の分析値による推定値よりも混合試料からの採取試料の分析結果の信頼性が高いと考えられる。そこで、以下の検討に当たっては、実際の混合試料の分析結果を投入物の性状を示す値として用いる。

(ii) DXNs 含有量 (実質ベース)

投入農薬に含まれる POPs 農薬成分の含有量は表 3.33 に示す通りである。

表 3.33 POPs 農薬の DXNs 成分含有量(pg/g) (有効数字 2 桁)

55 I OI s 辰架の DANs		· (□ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	混合農薬試料の	構成比(%)
	分析結果	
TeCDDs	460*	0.5
PeCDDs	700**	0.7
HxCDDs	430*	0.4
HpCDDs	420	0.4
OCDD	380	0.4
Total PCDDs	2,400	2.4
TeCDFs	34,000*	33.3
PeCDFs	5,300	5.2
HxCDFs	570	0.6
HpCDFs	110	0.1
OCDF	9.4	0.0
Total PCDFs	40,000	39.2
Total PCDD/Fs	42,400	41.6
Co-PCB(Non o-)		
Co-PCB(mono o-)		
Total Co-PCB	60,000	58.8
DXNs	102,000	

^{*:} クロマトグラム上に試料由来の妨害成分があり、ピークに一部影響がみられる。

:計算に使用している各農薬の DXNs 量の数値を有効数字 2 桁としている ため、PCDDs、PCDFs、Co-PCB の計は各成分量の合計と一致しない。

(iii) 農薬中の DXNs 毒性等量

農薬中の DXNs の毒性等量を分析した結果は表 3.34 に示す通りである。

^{**:}妨害成分による影響が最も強い。

表 3.34POPs 農薬の DXNs 成分毒性等量(pg-TEQ/g) (有効数字 2 桁)

混合農薬試料の分 析結果 2,3,7,8-TeCDD	5.54POPS 辰楽の DANS 成为		
2,3,7,8-TeCDD 6.7* 0.8 1,2,3,7,8-PeCDD 7.4 0.8 1,2,3,4,7,8-HxCDD 1.6 0.2 1,2,3,6,7,8-HxCDD 0.33 0.0 1,2,3,7,8,9-HxCDD 0.49 0.1 1,2,3,4,6,7,8-HpCDD 1.2 0.1 0CDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HxCDF 0.17 0.0 1,2,3,4,6,7,8-HxCDF 0.067 0.0 2,3,4,6,7,8-HxCDF 0.067 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 0CF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDFs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014			構成比(%)
1,2,3,7,8-PeCDD 7.4 0.8 1,2,3,4,7,8-HxCDD 1.6 0.2 1,2,3,6,7,8-HxCDD 0.33 0.0 1,2,3,7,8,9-HxCDD 0.49 0.1 1,2,3,4,6,7,8-HpCDD 1.2 0.1 0CDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HyCDF 0.17 0.0 1,2,3,4,7,8,9-HyCDF 0.067 0.0 0CDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4',5-FeCB(#126) 800 90.9 3,3',4,4',5-FeCB(#123) 0.015* 0.0 2,3',4,4',5-PeCB(#118) <td></td> <td></td> <td></td>			
1,2,3,4,7,8-HxCDD 1.6 0.2 1,2,3,6,7,8-HxCDD 0.33 0.0 1,2,3,7,8,9-HxCDD 0.49 0.1 1,2,3,4,6,7,8-HpCDD 1.2 0.1 0CDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HyCDF 1.6 0.2 1,2,3,4,6,7,8-HyCDF 0.17 0.0 1,2,3,4,7,8,9-HyCDF 0.067 0.0 0CDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#126) 800 90.9 3,3',4,4',5-FeCB(#126) 800 90.9 3,3',4,4',5-FeCB(#123) 0.015* 0.0 Co-PCB(Non o-)	2,3,7,8-TeCDD	6.7*	0.8
1,2,3,6,7,8-HxCDD 0.33 0.0 1,2,3,7,8,9-HxCDD 0.49 0.1 1,2,3,4,6,7,8-HpCDD 1.2 0.1 0CDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HyCDF 0.17 0.0 1,2,3,4,7,8,9-HyCDF 0.067 0.0 0CDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4',5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-5-PeC	1,2,3,7,8-PeCDD	7.4	0.8
1,2,3,7,8,9-HxCDD 0.49 0.1 1,2,3,4,6,7,8-HpCDD 1.2 0.1 OCDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HyCDF 0.17 0.0 1,2,3,4,6,7,8-HyCDF 0.067 0.0 0CDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#126) 800 90.9 3,3',4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4',5-PeCB(#105) 0.57 0.1 2,3,3',4,4'-S-PeCB(#114) 0.070 0.0 2,3',4	1,2,3,4,7,8-HxCDD	1.6	0.2
1,2,3,4,6,7,8-HpCDD 1.2 0.1 OCDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 OCDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o·) 804 91.4 2',3,4,4',5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-5-PeCB(#105) 0.57 0.1	1,2,3,6,7,8-HxCDD	0.33	0.0
OCDD 0.038 0.0 Total PCDDs 17.8 (10.6) 2.0 2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HxCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 0CDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o·) 804 91.4 2',3,4,4',5-PeCB(#118) 0.87 0.1 2,3',4,4'5,5'-PeCB(#118) 0.87 0.1 2,3,3',4,4'-5-PeCB(#167) 0.0081 0.0 2,3',4,4',5-FacB(#167) 0.0081 0.0 <td>1,2,3,7,8,9-HxCDD</td> <td>0.49</td> <td>0.1</td>	1,2,3,7,8,9-HxCDD	0.49	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,4,6,7,8-HpCDD	1.2	0.1
2,3,7,8-TeCDF 1.2 0.1 1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 OCDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#17) 2.0 0.2 3,3',4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o·) 804 91.4 2',3,4,4',5-PeCB(#118) 0.87 0.1 2,3,3',4,4',5-PeCB(#114) 0.070 0.0 2,3,'4,4',5-PeCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5	OCDD	0.038	0.0
1,2,3,7,8-PeCDF 27 3.1 2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 OCDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#77) 2.0 0.2 3,3',4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,3',4,4',5-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5-'HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HxCB(#157) 0.21 0.0 <td>Total PCDDs</td> <td>17.8 (10.6)</td> <td>2.0</td>	Total PCDDs	17.8 (10.6)	2.0
2,3,4,7,8-PeCDF 19 2.2 1,2,3,4,7,8-HxCDF 3.2 0.4 1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.067 0.0 OCDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#77) 2.0 0.2 3,3'4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5-PeCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4',5-PeCB(#167) 0.0081 0.0 2,3',4,4',5-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5,5'-HxCB(#157) 0.	2,3,7,8-TeCDF	1.2	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,7,8-PeCDF	27	3.1
1,2,3,6,7,8-HxCDF 0.81 0.1 1,2,3,7,8,9-HxCDF 0 0.0 2,3,4,6,7,8-HxCDF 1.6 0.2 1,2,3,4,6,7,8-HpCDF 0.17 0.0 1,2,3,4,7,8,9-HpCDF 0.0067 0.0 OCDF 0.0009 0.0 Total PCDFs 53.0 (51.8)** 6.0 Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#77) 2.0 0.2 3,3',4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#118) 0.87 0.1 2,3',4,4'-5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-5-PeCB(#114) 0.070 0.0 2,3,3',4,4',5-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	2,3,4,7,8-PeCDF	19	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,4,7,8-HxCDF	3.2	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3,6,7,8-HxCDF	0.81	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,7,8,9-HxCDF	0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3,4,6,7,8-HxCDF	1.6	0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,4,6,7,8-HpCDF	0.17	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,4,7,8,9-HpCDF	0.067	0.0
Total PCDD/Fs 70.8 (62.4)** 8.0 3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#77) 2.0 0.2 3,3'4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	OCDF	0.0009	0.0
3,4,4',5-TeCB(#81) 0.014 0.0 3,3',4,4'-TeCB(#77) 2.0 0.2 3,3'4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	Total PCDFs	53.0 (51.8)**	6.0
3,3',4,4'-TeCB(#77) 2.0 0.2 3,3'4,4',5-PeCB(#126) 800 90.9 3,3',4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	Total PCDD/Fs	70.8 (62.4)**	8.0
3,3'4,4',5-PeCB(#126) 800 90.9 3,3'4,4',5,5'-HxCB(#169) 2.0 0.2 Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	3,4,4',5-TeCB(#81)	0.014	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3',4,4'-TeCB(#77)	2.0	0.2
Co-PCB(Non o-) 804 91.4 2',3,4,4',5-PeCB(#123) 0.015* 0.0 2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	3,3'4,4',5-PeCB(#126)	800	90.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3',4,4',5,5'-HxCB(#169)	2.0	0.2
2,3',4,4'5,5-PeCB(#118) 0.87 0.1 2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	Co-PCB(Non o-)	804	91.4
2,3,3',4,4'-PeCB(#105) 0.57 0.1 2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	2',3,4,4',5-PeCB(#123)	0.015*	0.0
2,3,4,4',5-PeCB(#114) 0.070 0.0 2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18 0.65 0.1	2,3',4,4'5,5-PeCB(#118)	0.87	0.1
2,3',4,4',5,5'-HxCB(#167) 0.0081 0.0 2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18) 0.65 0.1	2,3,3',4,4'-PeCB(#105)	0.57	0.1
2,3,3',4,4',5-HxCB(#156) 4.7 0.5 2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18) 0.65 0.1	2,3,4,4',5-PeCB(#114)	0.070	0.0
2,3,3',4,4',5'-HxCB(#157) 0.21 0.0 2,3,3',4,4',5,5'-HpCB(#18) 0.65 0.1	2,3',4,4',5,5'-HxCB(#167)	0.0081	0.0
2,3,3',4,4',5,5'-HpCB(#18 0.65 <i>0.1</i>	2,3,3',4,4',5-HxCB(#156)	4.7	0.5
		0.21	0.0
[9)	2,3,3',4,4',5,5'-HpCB(#18	$0.\overline{65}$	0.1
	9)		
Co-PCB(mono o-) 7.09 0.7	Co-PCB(mono o-)		0.7
Total Co-PCB 811 (806)** 92.0	Total Co-PCB	811 (806)**	92.0
DXNs 880 (870)**	DXNs	880 (870)**	

^{*:} クロマトグラム上に試料由来の妨害成分があり、ピークに一部影響がみられる。

DXNsの毒性等量は880pg-TEQ/gであり、その大部分をCo-PCBが占めている。中でも、Non o- 体の3,3'4,4',5-PeCB(#126)が高い濃度となっている。これは別途行った実証試験で

^{**:} 括弧内の数値は妨害成分による影響を受けた数値を除いた合計値である。 : 計算に使用している各農薬の DXNs 量の数値を有効数字 2 桁としている ため、PCDDs、PCDFs、Co-PCB の計は各成分量の合計と一致しない。

用いた農薬と同じ傾向である。

(イ)助燃材

排水汚泥ならびに LPG については、POPs 農薬成分や DXNs は含まれないものと想定した。

(ウ)投入農薬中の成分量

今回、実験にて投入した農薬中の POPs 農薬及び DXNs の総量を、表 $3.32 \sim 34$ に基づいて算出すると、表 $3.35 \sim 37$ のとおりである。

したがって、本実験で投入された農薬に由来する POPs 農薬成分及び DXNs の総量は次のようになる。

POPs 農薬: 7,202g DXNs: 12mg 110μg-TEQ

表 3.35 投入農薬中の POPs 農薬成分含有量

我 0.00 我八辰未干切 1 0 1 5 辰未成力 百 日里					
投入農薬*中の	構成比(%)				
POPs農薬成分含有					
量(g)					
3,630	50.40%				
811	11.26%				
1,101	15.29%				
424	5.89%				
5,965	82.82%				
N.D.	-				
N.D.	-				
3.0	0.04%				
N.D.	-				
109	1.51%				
375	5.21%				
487	6.76%				
N.D.	-				
750	10.41%				
N.D.	-				
N.D.	-				
N.D.	-				
0	0.00%				
N.D.	-				
N.D.	-				
0	0.00%				
-	-				
7,202					
	投入農薬*中のPOPs農薬成分含有量(g) 3,630 811 1,101 424 5,965 N.D. N.D. 3.0 N.D. 109 375 487 N.D. 750 N.D. 750 N.D. N.D. N.D. N.D. N.D. 0 N.D. 0				

^{*}総計 121kg。POPs 農薬の農薬成分含有量は混合農薬試料分析結果(表 3.32)を使用。

表 3.36 投入農薬中の DXNs 成分含有量(µg)(有効数字 2 桁)

	投入農薬*中のDXNs成分	構成比(%)
	含有量(µg)	
TeCDDs	56**	0.47%
PeCDDs	85***	0.71%
HxCDDs	52**	0.43%
HpCDDs	51	0.43%
OCDD	46	0.38%
Total PCDDs	290	2.4%
TeCDFs	4,100**	34.%
PeCDFs	640	5.3%
HxCDFs	69	0.58%
HpCDFs	13	0.11%
OCDF	1.0	0.0083%
Total PCDFs	4,800	40%
Total PCDD/Fs	5,100	43%
Co-PCB(Non o-)		
Co-PCB(mono o-)		
Total Co-PCB	7,300	61%
DXNs	12,000	

^{*:} 総計 121kg。POPs 農薬の DXNs 成分含有量は混合農薬試料分析結果(表 3.33) を使用。

^{**:}クロマトグラム上に試料由来の妨害成分があり、ピークに一部影響がみられる。

^{***:}妨害成分による影響が最も強い。

[:]計算に使用している各農薬の DXNs 量の数値を有効数字 2 桁としている ため、PCDDs、PCDFs、Co-PCB の計は各成分量の合計と一致しない。

表 3.37 投入農薬中の DXNs 成分毒性等量(μg-TEQ) (有効数字 2 桁)

	投入農薬***中のDXNs	構成比(%)
	成分毒性等量(µg-TEQ)	11317200 (70)
2,3,7,8-TeCDD	0.81*	0.74%
1,2,3,7,8-PeCDD	0.90	0.82%
1,2,3,4,7,8-HxCDD	0.19	0.17%
1,2,3,6,7,8-HxCDD	0.040	0.036%
1,2,3,7,8,9-HxCDD	0.059	0.054%
1,2,3,4,6,7,8-HpCDD	0.15	0.14%
OCDD	0.0046	0.0042%
Total PCDDs	2.2(1.3)**	2.0%
2,3,7,8-TeCDF	0.15	0.14%
1,2,3,7,8-PeCDF	3.3	3.0%
2,3,4,7,8-PeCDF	2.3	2.1%
1,2,3,4,7,8-HxCDF	0.39	0.35%
1,2,3,6,7,8-HxCDF	0.098	0.089%
1,2,3,7,8,9-HxCDF	0	0
2,3,4,6,7,8-HxCDF	0.19	0.17%
1,2,3,4,6,7,8-HpCDF	0.021	0.019%
1,2,3,4,7,8,9-HpCDF	0.0081	0.0074%
OCDF	0.00011	0.00010%
Total PCDFs	6.4(6.3)**	5.8%
Total PCDD/Fs	8.6(7.6)**	7.8%
3,4,4',5-TeCB(#81)	0.0017	0.0015%
3,3',4,4'-TeCB(#77)	0.24	0.22%
3,3'4,4',5-PeCB(#126)	97	88%
3,3',4,4',5,5'-HxCB(#169)	0.24	0.22%
Co-PCB(Non o-)	97	88%
2',3,4,4',5-PeCB(#123)	0.0018*	0.0016%
2,3',4,4'5,5-PeCB(#118)	0.11	0.10%
2,3,3',4,4'-PeCB(#105)	0.069	0.063%
2,3,4,4',5-PeCB(#114)	0.0085	0.0077%
2,3',4,4',5,5'-HxCB(#167)	0.00098	0.00089%
2,3,3',4,4',5-HxCB(#156)	0.57	0.52%
2,3,3',4,4',5'-HxCB(#157)	0.025	0.023%
2,3,3',4,4',5,5'-HpCB(#189)	0.079	0.072%
Co-PCB(mono o-)	0.8643	0.78%
Total Co-PCB	98(98)**	89%
DXNs	110(110)**	

^{*:} クロマトグラム上に試料由来の妨害成分があり、ピークに一部影響がみられる。

:計算に使用している各農薬の DXNs 量の数値が有効数字 2 桁としている ため、PCDDs、PCDFs、Co-PCB の計は各成分量の合計と一致しない。

^{**:}括弧内の数値は妨害成分による影響を受けた数値を除いた合計値である。 ***: 総計 121kg。POPs 農薬の DXNs 成分含有量は混合農薬試料分析結果 (表 3.34)を使用。

2) 排ガス処理プロセス

BF*の前後とキルン出口の3点におけるガス組成分析結果をまとめると次のようになる。この間の平均流量と運転時間は、途中で停止・運転条件の変更があったので、次の通りである。

Run1: 燃焼排ガス 1880 m³N/時(冷却空気吸い込み後) 6 時間 20 分(農薬投入)

煙突: 5510m³N/時

Run2: 燃焼排ガス 2030 m³N/時(冷却空気吸い込み後) 6 時間 35 分(農薬投入)

煙突: 5510 m³N/時

(i) POPs 農薬成分

排ガス処理プロセスにおける POPs 農薬成分の挙動については、表 3.38 及び表 3.39 に示すとおりである。

表 3.38 各排ガス処理プロセスにおけるPOPs農薬成分とDXNs ($\mu g/m^3_N$)

7, 0.00 1,1	キルン出 燃焼排ガス(BF前) 煙突(BF後)					
		口 編流による影響あり				
	Run2	Run1	Run 2	Run1	Run 2	
-BHC	760,000	21	4.2	0.22	8.1	
-BHC	55,000	< 0.02	< 0.01	0.18	< 0.01	
-BHC	100,000	1.2	0.49	0.33	0.51	
-BHC	84,000	0.34	< 0.01	0.26	< 0.01	
BHC(Total)	999,000	22.5	4.69	0.99	8.61	
o,p'-DDE	2,400	0.03	< 0.01	0.26	0.04	
p,p'-DDE	2,600	< 0.02	< 0.01	< 0.01	< 0.01	
o,p'-DDD	970	< 0.02	< 0.01	< 0.01	< 0.01	
p,p'-DDD	6,500	0.09	< 0.01	0.26	0.03	
o,p'-DDT	<12	< 0.02	< 0.01	< 0.01	< 0.01	
p,p'-DDT	400	< 0.02	< 0.01	< 0.01	0.13	
DDT(Total)	12,870	0.12	0	0.10	0.20	
アルト゛リン						
エンドリン	<12	0.34	< 0.01		< 0.01	
ディルドリン						
Trans - クロルデン						
Cis - クロルデン						
ሳ በሁ ታ ነ(Total)						
ヘフ゜タクロル						
ヘフ゜タクロルエホ゜キシト						
ላፓ°						
НСВ						
POPs 農薬	1012000	22.9	4.69	1.51	8.81	
PCDDs		0.0013	0.0056	0.00054	0.00015	
PCDFs		0.0015	0.054	0.0015	0.00043	
Co-PCBs		0.00052	0.0036	0.00034	0.00004	
DXNs		0.0032	0.0632	0.00238	0.00062	

キルン出口における観測値が Run2 のみであるが、高濃度の POPs 農薬成分がガス中に見られる。しかし、2 次燃焼炉からの排ガス中には少量の POPs 農薬成分しか見られず、Run2 で比較すると、濃度は 2 次燃焼過程で 0.0005%まで低下しているが、BF 後に若干上昇している。なお、Run1 では、燃焼ガス中に -BHC が Run2 よりも高い濃度で残っていたが、BF 後には低濃度となっており、Run2 とは異なった挙動を示している。これは、2 次燃焼炉出口濃度測定口に偏流があるためと考えられる。

また、ガス中には -BHC と BHC が残っているが、Run2 においてその比はキルン出口で [-BHC]/[-BHC]が 7.6 であるのに対し、燃焼ガス中で 8.6、BF 後で 15.9 となっており、 -BHC は -BHC に比べて分解・除去し難い傾向が見られる。ちなみに、投入農薬中では、[-BHC]/[-BHC]は 3.3 である。

(ii) DXNs 濃度 (質量ベース)

排ガス処理プロセスにおける DXNs の挙動については、表 3.38 に示すとおりである。 分析結果からみて、Run1 では排ガスプロセス中の BF の前後において DXNs 濃度が増加しているのに対し、Run2 では減少するといった異なる挙動を示している。

(iii) DXNs 濃度(毒性等量ベース)

排ガス処理プロセスにおける DXNs(毒性等量ベース)の挙動については、表 3.39 に示すとおりである。

分析結果からみて、Run1 では排ガスプロセスの中のBFの前後において、DXNsの毒性 等量が若干上昇している。また、Run2 では、BFの後で大幅に減少し、BFの前後でDXNs の毒性等量が約 50 分の 1 になっている。なお、 $O_212\%$ 換算値でみると、Run2 の 2 次燃 焼炉排ガスが高いものの、いずれも小型焼却炉の排ガス基準値 5 ng-TEQ/m 3 Nを下回っている。

	燃焼排ガス(冷却前)		燃焼排ガス(BF前)		煙突(BF後)	
	Run 1	Run2	Run1	Run 2	Run1	Run 2
PCDDs(ng-TEQ/ m ³ N)	-	-	0.0032	0.066	0.00031	0.00021
PCDFs(ng-TEQ/ m ³ N)	-	-	0.019	0.37	0.025	0.0092
Co-PCBs(ng-TEQ/ m ³ _N)	-	-	0.0033	0.066	0.0020	0.0000026
DXNs(ng-TEQ/ m ³ N)	-	-	0.026	0.5	0.027	0.0094
(実測濃度)						
DXNs(ng-TEQ/ m ³ N)	-	-	0.086	1.6	0.22	0.084
(O ₂ 12%換算)						
CO(ppm)		-	3	1	1	0
$O_2(\%)$	13.6	14.4	18.4	18.4	20.0	20.0

表 3.39 各排ガス処理プロセスにおけるCO、 O_2 濃度

注)燃焼排ガス(冷却前)と燃焼排ガス(BF 前)についてはサンプリング座での煤塵の 偏流の影響が考えられる。

(iv) 重金属等

排ガス処理プロセスにおけるばいじん量及び重金属類の挙動については、表 3.40 に示すとおりである。

表 3.40 各排ガス処理プロセスにおけるばいじん量及び重金属類 (mg/m^3N)

	BF	前	煙突(BF後)	
	Run 1	Run2	Run 1	Run2
SPM(g/m ³ _N)	0.095	< 0.001	< 0.001	<0.001
Cu(SPM)	< 0.05	< 0.05	< 0.05	< 0.05
Cu(Gas)	< 0.05	< 0.05	< 0.05	< 0.05
As (SPM)	0.014	0.005	< 0.005	<0.005
As (Gas)	< 0.005	< 0.005	< 0.005	<0.005
Hg(SPM)	<10	<10	<10	<10
Hg(Gas)	28	<10	<10	<10

注)BF前については、編流による影響の可能性がある。

(v) 排ガス経由での系外への排出総量

排ガス総量と排ガス中の POPs 農薬成分及び DXNs 濃度(質量ベース、毒性等量ベース) から、本実験において排ガス処理系を通じて施設外へ排出された対象物質の総量を計算すると、表 3.41 のとおりである。

表 3.41 POPs 農薬成分、DXNs の排出量

	単位	1日目(Run1)	2日目(Run2)
運転時間(農薬投入時間)	Hr	6.333	6.583
		(6時間20分)	6 時間 35 分
ガス流量(煙突)	m³ _N /hr	5510	5510
POPs 濃度	${ m mg/m^3_N}$	0.00109	0.00881
DXNs 濃度(実測質量)	ng/m³ _N	2.341	0.62
DXNs 濃度(実測毒性等量)	$ m ng ext{-}TEQ/m^3N$	0.027	0.0094
DXNs 濃度($\mathrm{O}_212\%$ 換算毒性等量)	ng-TEQ/m³ _N	0.22	0.084
POPs 総量	Mg	38	320

3) 処理残さ(処理後残さと BF 灰)

この処理システムにおいては、系外に排出されるものとして処理後残さと BF 灰の 2 つが発生する。排出される処理後残さと BF 灰の量は、時間当たり発生量から計算すると、それぞれ次のようになった。

Run1: 処理後残さ64.0kgBF 灰22.2kgRun2: 処理後残さ73.6 kgBF 灰19.0kg

(i) 残さ中の POPs 農薬成分

処理残さ中の POPs 農薬成分の濃度は、表 3.42 に示すとおりである。

処理後残さ Bag Filter灰 Run1 Run2 平均 Run1 Run2 平均 -BHC 0.010 0.4123 90 -BHC 0.0015 0.099 2.4 11 -BHC 0.0753.5 0.001214 -BHC 0.0008 0.067 0.882.3BHC(Total) 0.0135 0.6510.3322 29.78 117.3 73.5 0.030 o,p'-DDT $0.0005 \mid < 0.0005$ 0.0015p,p'-DDT 0.00290.087 < 0.0005 0.0009o,p'-DDD < 0.0005 0.0019 0.0190.021 p,p'-DDD 0.0017 0.0990.120.17o,p'-DDE 0.00060.00640.0750.097p,p'-DDE < 0.0005 0.00420.0220.024DDT(Total) 0.0023 0.0330.01770.29040.3790.3347 アルト・リン* エンドリン < 0.0005 | < 0.0005 < 0.0005 < 0.0005 0.031 0.0155 ディルドリン* Trans - クロルデン* Cis - クロルデン* ------------------クロルテ・ン(Total) * ------------------ヘフ゜タクロル* ------------------ヘフ゜タクロルエホ゜キシト* ------------------------------------HCB** ------------------Total 0.0158 0.684 0.35030.1 118 74.4

表 3.42 処理残さ中の農薬成分含有量(mg/kg dry)

*:定性分析で検出されなかったので、定量分析していない。

**:分析していない。

今回の分析結果からみて、処理後残さ中には処理後残さにはほとんど POPs 農薬が残留 しないのに対して、BF 灰では $30 \sim 120$ ng/g となっており、外熱式加熱プロセスにおいて POPs 農薬の大部分がガス化していると考えられる。

しかしながら、Run1 と Run2 とで大きく結果が異なっているので、さらに安定した運

転条件での処理試験が望まれる。なお、実施企業によれば Run1 ではサイクロン灰を運転期間中定期的に取り出さずに運転処理していたため、BF 灰中の DXNs 濃度が高くなったと説明している。Run2 では、適宜、サイクロン灰取りだしを行った。

() 処理残さ中の DXNs

処理残さ中の DXNs の濃度は、表 3.43、表 3.44 に示すとおりである。

表 3.43 処理残さ中の POPs 農薬成分と DXNs (質量ベース)

	処理後残さ			BF灰		
	Run1	Run2	平均	Run1	Run2	平均
POPs(mg/kg)	0.0158	0.684	0.352	30.1	118	74.1
PCDDs(ng/g)	0.160	0.520		60	17	
PCDFs(ng/g)	1.200	2.100		180	32	
Co-PCBs(ng/g)	0.150	0.440		16	3.70	
DXNs(ng/g)	1.50	3.10	2.30	260	53	160

注)RUN1 BF 灰、サイクロン灰取り出しを行わなかった

表 3.44 処理残さ中の DXNs 含有量 (毒性等量ベース) (ng-TEQ/g)

	処理後残さ			I	Bag Filter な	<u></u>
	Run1	Run2	平均	Run1	Run2	平均
PCDDs	0.0038	0.0131			0.175	
PCDFs	0.0132	0.0216			0.545	
Co-PCBs	0.0015	0.0038			0.036	
DXNs	0.019	0.039	0.029		0.76	

注)RUN 1 BF 灰、サイクロン灰取り出しを行わなかった。

()残さ経由での系外への排出総量

処理残渣として、系外へ排出される POPs 農薬成分と DXNs の総量を算出すると、表 3.45 のとおりである。

表 3.45 POPs 農薬成分、DXNs の排出総量

	単位	処理後残さ		BF 灰	
		Run1	Run2	Run1	Run2
運転時間	hr	6.333	6.583	6.333	6.583
(農薬投入時間)					
発生量	kg/hr	10.1	11.2	3.5	3.4
水分量	%	1.19	1.13	2.3	2.04
POPs 濃度	mg/kg-dry	0.0158	0.684	30.1	118
DXNs 濃度	n g/kg-dry	1,500	3,100		53,000
(実測質量)					
DXNs 濃度	ng-TEQ/kg-	19	39		760
(毒性等量)	dry				
POPs 総量	mg	1	50	650	2587

注)RUN 1,サイクロン灰取り出しを行わなかったため除外した。

4)実験における物質収支

以上の結果から、投入農薬に由来する POPs 農薬成分の物質収支を整理すると表 3.46 のとおりである。

表 3.46(1) POPs 農薬成分物質収支 < Run1 >

- 10 01 10 (1) 1 01 b /kg	
	POPs 農薬成分総量
単位	mg
投入農薬	$3,601 \times 10^3$
排ガス	38
処理残さ(処理後残さ)	1.0
処理残さ(BF 灰)	650
処理残さ(合計)	651
排ガス + 残さ	689 (分解率>99.98%)

注)サイクロン灰取り出しを行わなかった。

Run1 においては、処理後残さ中に POPs 農薬成分はほとんど残っていないが、BF 灰として排出されている。

表 3.46(2) POPs 農薬成分の物質収支 < Run2 >

	77 77 77 77 77 77 77 77 77 77 77 77 77
	POPs 農薬成分総量
単位	mg
投入農薬	$3,601 \times 10^3$
排ガス	320
処理残さ(処理後残さ)	50
処理残さ(BF灰)	2587
処理残さ(合計)	2637
排ガス+残さ	2957
	(分解率>99.91%)

5) 結果のとりまとめ

本施設の実証試験結果をまとめると次のようになる。

周辺環境に影響を生じないようにして、POPs農薬を炭化・焼却処理できた。

外熱キルン内は 500 と比較的低い温度で維持されていたが、処理後残さに BF 灰よりも低い濃度の POPs 農薬しか残っておらず、処理対象物からの POPs 農薬成分のガス化はこの温度で十分に進む事が確認できた。しかしながら、BF 灰に若干量の POPs 農薬成分が残存していることから、ガス化した後の二次燃焼過程においてより効率的な分解反応を実現できる可能性がある。

物質収支をみると、POPs農薬は大部分が分解されるが、BF灰中に微量ながら残る。

DXNsについては、2日間の試験のうち1日目はサイクロン灰の取出しを行っておらず、異なった結果となっており、今後、さらにデータを取るとともにより長期的な運転・処理を通じた評価が必要と考えられる。

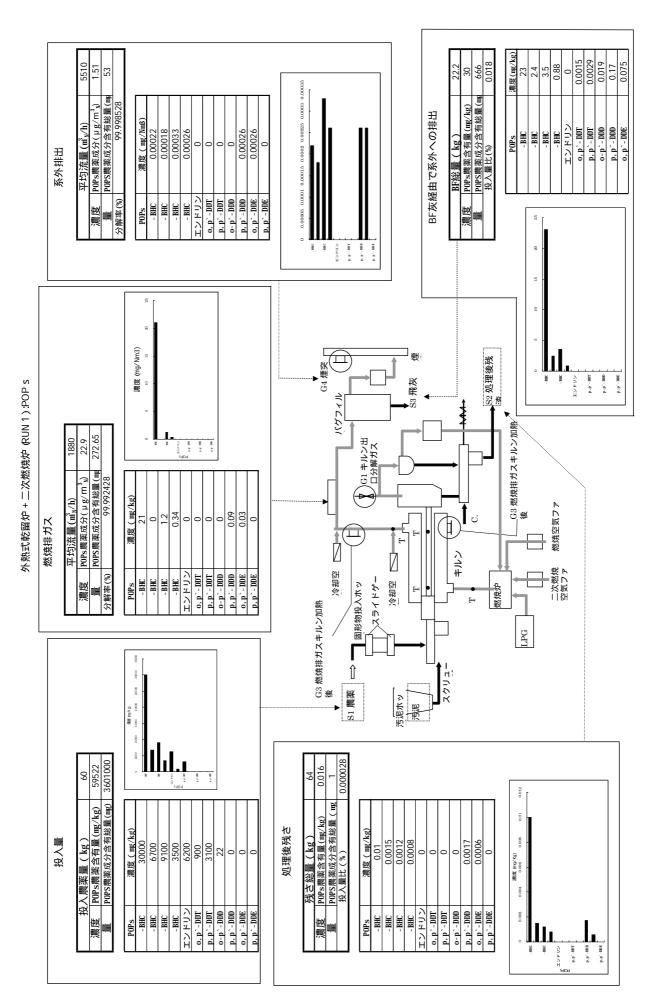
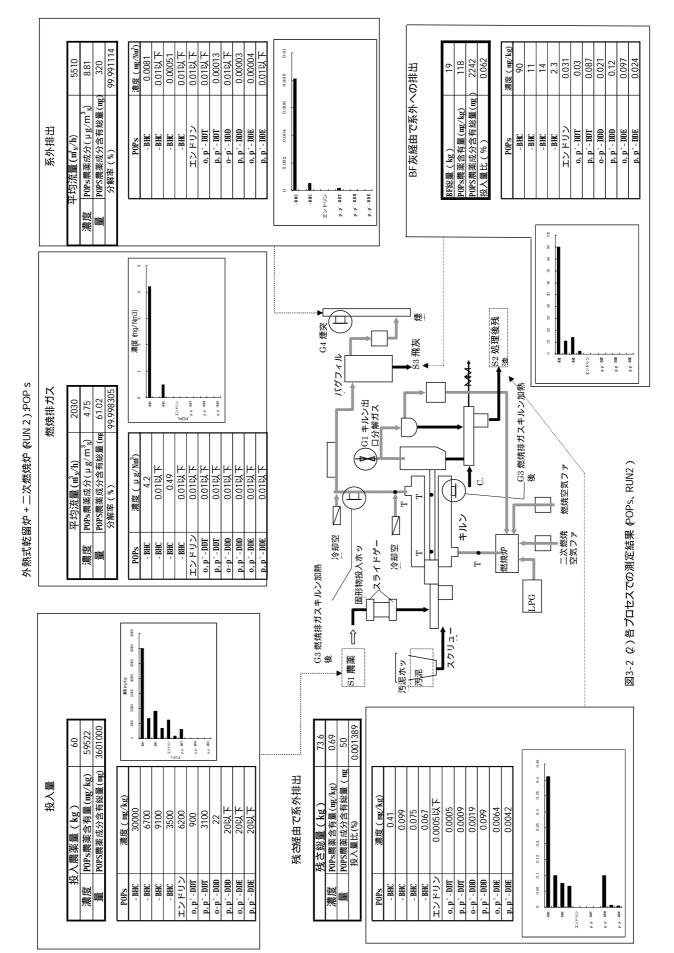



図3-2 (1)各プロセスでの測定結果 (POPs, RUN1)

