京浜臨海部での燃料電池フォークリフト導入とクリーン水素活用モデル構築実証

The project intends to carry out a demonstration of the supply chain through the storage and delivery of low-carbon hydrogen produced at the Yokohama Wind Power Plant (Hama Wing) to power fuel cell forklifts, thereby contributing to future regional development and global warming countermeasures.

プロジェクト概要

プロジェクト名

環境省と地域連携・低炭素水素技術実証事業
「京浜臨海部での燃料電池フォークリフト導入とクリーン水素活用モデル構築実証」

実施予定年度

平成27年度～平成30年度(4か年事業)

取組内容

再生可能エネルギーを活用した「低炭素な水素」の製造に加え、その「貯蔵・配送」利用を含めた水素サプライチェーン構築を実証し、事業化の可能性を検証します。

氷水活用における簡単な統合システムを実証し、将来的地域展開と地球温暖化対策への貢献を目指します。

構想図

The feasibility of achieving efficient process control and sustainable production will be assessed through demonstration efforts across multiple industries, government, and academic sectors.

Project Overview

Project name

Planned implementation period

FY 2015 – FY 2018 (four fiscal years)

Details

In addition to the production of low-carbon hydrogen using renewable energy, a hydrogen supply chain that encompasses storage, transport, and utilization will be created and evaluated to assess the feasibility of commercialization.

The project aims to achieve a simple, integrated system that uses hydrogen and contributes to future regional development and global warming countermeasures.

Diagram

The feasibility of achieving efficient process control and sustainable production will be assessed through demonstration efforts across multiple industries, government, and academic sectors.
ハマウイング（横浜市風力発電所）
Hama Wing (Yokohama Wind Power Plant)

地域の再生可能エネルギーである風力発電電力を
有効に活用して地球温暖化対策に役立てます。
Will be used for the effective utilization of wind power generation, a local renewable energy source, and as a global warming countermeasure

■ ハマウイング概要
● ハマウイングは、市民、事業者、行政の3者の協働により設置・運営しています。
● 横浜市の再生可能エネルギーのシンボル的存在として、多くの市民の目に触れる横浜港（港嶋ふ頭）、風を受けて発電しています。

■ Overview of Hama Wing
● Hama Wing is a collaborative project installed and operated by municipal residents, businesses, and local government.
● As a showcase of renewable energy in Yokohama City, which attracts the attention of many city residents, Hama Wing generates electricity from the wind that blows through the Mizuho Futo district of Yokohama Port.

■ 発電状況の表示
● 市民の思いのほど造成された風力パーキングには、啓発展示盤が設置されており、いつでもハマウイングの発電状況を確かめることができます。
● 風力発電は、CO2を排出しないクリーンな再生可能エネルギーであり、その活用が期待されています。

■ Power generation display board
● An educational display board is installed in Rinko Park, a place of relaxation for the city’s residents, allowing visitors to check the status of power generated at Hama Wing at any time.
● Wind power is clean, renewable energy that does not produce carbon dioxide, and expectations are high for its continued use.

■ 見学
● 市民、学校、企業、国、自治体、海外等から様々な人が、風力発電所の見学に来ます。平成28年度までの累計で13,500人以上の人々が訪れています。
● 実際にハマウイングの大きさを間近で実感することができます。

■ Observation
● Many people from the city, schools, companies, the national government, local governments, and overseas come to observe the wind power facility.
● In fiscal 2016, the total number exceeded 13,500 persons. Visitors can get a true sense of the actual size and scope of the Hama Wing.
水素製造安定化システム (蓄電池システム)
Hydrogen production stabilization system (Energy storage system)

蓄電池システムを活用することにより変動電力を安定化し、
風が弱くハマウィングが発電をしていない場合でも安定的に水素を製造を行います。

Variations in electric power are stabilized through the use of an energy storage system. Hydrogen can be stably produced even when the wind is weak and Hama Wing cannot generate electricity.

■ 留電池システム
● プリックスのリユース電池180個（これは車両180台分です）を使用しています。
● ハイブリッド自動車の使用済み電池を再利用することで環境への配慮をしています。

■ Storage battery system
● Operates on 180 secondhand fuel cell packs. (from 180 Prius vehicles)
● Environmental consideration through the re-use of end-of-life Prius batteries.

<table>
<thead>
<tr>
<th>仕 様</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>電池種類</td>
<td>Battery type</td>
</tr>
<tr>
<td>リチウム水素</td>
<td>Water-metallic hydrogen</td>
</tr>
<tr>
<td>電池個数</td>
<td>Number of cells</td>
</tr>
<tr>
<td>180個</td>
<td>180</td>
</tr>
<tr>
<td>電力</td>
<td>Output</td>
</tr>
<tr>
<td>15kWh</td>
<td>15kWh</td>
</tr>
</tbody>
</table>
水電解装置（水素製造装置）
Water electrolysis system (Hydrogen manufacturing system)

ハマウングの電力で水（H₂O）を電気分解することで水素（H₂）を製造しています。装置の動力もこの電力を活用することで、CO₂排出ゼロを実現します。

Hydrogen (H₂) is manufactured by using electric power from Hama Wing to breakdown water (H₂O) through electrolysis. By using electricity to operate this equipment too, CO₂ is not emitted.

■水素製造の仕組み
Hydrogen Manufacture Mechanism

■水電解装置
The system enables flexible hydrogen production according to variable wind power generation.

<table>
<thead>
<tr>
<th>方式</th>
<th>固体高分子型 Solid polymer type</th>
</tr>
</thead>
<tbody>
<tr>
<td>水素ガス発生量 Hydrogen gas production capacity</td>
<td>10Nm³/h (定格時) 10 Nm³/h (when operating at rated capacity)</td>
</tr>
<tr>
<td>部分負荷運転 Partial load operation</td>
<td>0～100%</td>
</tr>
<tr>
<td>水素ガス純度 Hydrogen gas purity</td>
<td>99.97%以上 At least 99.97%</td>
</tr>
<tr>
<td>供給圧力 Supply pressure</td>
<td>最大0.82MPa 0.82 MPa max.</td>
</tr>
<tr>
<td>寸法 Size</td>
<td>D6.0×W2.4×H2.9(m)</td>
</tr>
</tbody>
</table>
水素貯蔵・圧縮システム
Hydrogen storage and pressurization system

水素を安定供給するため2日分の水素を貯蔵し、充填車に対して圧縮機で加圧して積み込みます。

To ensure stable supplies, two days’ worth of hydrogen is accumulated and pressurized using a compressor for storage in a fueling truck.

■ 水素貯蔵タンク
- 水素貯蔵量: 800Nm³（有効貯蔵量: 400Nm³）
- 容量: 100m³
- 貯蔵圧力: 0.4〜0.8MPa
- 燃料電池フォークリフト12台に2日分供給できる水素を貯蔵できます。

■ 水素圧縮機
- 压縮能力: 50Nm³/h、4段圧縮
- 入口圧力-最高充填圧力: 0.4MPa→45MPa
- 燃料電池フォークリフトを満充填するために45MPaまで水素を昇圧します。
- 2軸駆動でコンパクト設計になっています。

■ Hydrogen storage tank
- Hydrogen storage capacity: 800 Nm³ (effective storage capacity: 400 Nm³)
- Volume: 100 m³
- Storage pressure: 0.4 MPa ~ 0.82 MPa
- Can store two days’ worth of hydrogen for 12 fuel cell forklifts.

■ Hydrogen compressor
- Pressurization capacity: 50 Nm³/h, 4-stage compression
- Inlet pressure → Maximum fueling pressure: 0.4 MPa → 45 MPa
- Can raise pressure up to 45 MPa to fully fuel fuel cell forklifts.
- Has a compact, two-shaft vertical design.
簡易型水素充填車

Hydrogen fueling truck

燃料電池フォークリフト用の小型の水素充填車を日本で初導入しました。45MPaに圧縮した水素をインフラのないフォークリフトユーザーまで運び、現地で水素充填を実施します。

Japan's first compact hydrogen fueling truck for fueling fuel cell forklifts. Can transport hydrogen pressurized to 45 MPa to forklift operators at sites that lack infrastructure and perform on-site fueling.

■ 簡易型水素充填車
●水素搭載量270Nm³、蓄圧器容量300L×45MPa×2基
●燃料電池フォークリフト6台に充填可能。
●蓄圧容器は複層複合容器を採用しています。
●環境に配慮したハイブリッド車を利用しています。

■ 运用管理
●車載コントローラで充填車の位置と圧力を常時計測し、監視しています。
●運用管理システムと連携して各フォークリフトの水素残量も把握し、最適配達でユーザー要望に応えます。

■ Hydrogen fueling truck
●Hydrogen loading capacity: 270 Nm³
 Accumulator capacity: 300 L × 45 MPa × 2 units
●Can fuel six fuel cell forklifts.
●Uses lightweight composite vessels for pressurized storage.
●Environmentally friendly hybrid vehicle.

■ Operations Management
●An onboard controller continuously measures and monitors the location and pressure of the fueling vehicle.
●Working in collaboration with the operations management system, the remaining hydrogen fuel of each forklift is calculated, and user requests are fulfilled through optimal transport.
Fuel cell forklifts

By introducing fuel cell forklifts to warehouses and markets, zero CO₂ emissions during use can be achieved.

- **Environmental Product**
 - [Image of fuel cell forklift]
 - Water 1,000-2,000 times more water than conventional forklifts can be supplied for 15 minutes.

- **Operational Efficiency**
 - Charging time: 3 minutes
 - Same as a lead battery

- **Functioning Environment**
 - Charging area: Not needed
 - Battery storage area: Not needed

Fuel Cell System Specifications

- Uses the same fuel cells as the Mirai, in addition to a fuel cell system designed for exclusive use with forklifts with high electricity generating efficiency.

Introduction targets

- Demonstration trials are being carried out at multiple locations and businesses under various use conditions.

Location of demonstration targets

<table>
<thead>
<tr>
<th>Location</th>
<th>Target</th>
<th>Demonstration objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo</td>
<td>Mirai</td>
<td>Introduction Target</td>
</tr>
<tr>
<td>Osaka</td>
<td>Mirai</td>
<td>Main demonstration objectives</td>
</tr>
<tr>
<td>Saitama</td>
<td>Mirai</td>
<td>Introduction Target</td>
</tr>
<tr>
<td>Kawasaki</td>
<td>Mirai</td>
<td>Main demonstration objectives</td>
</tr>
</tbody>
</table>