廃棄物系バイオマス利活用 導入マニュアル(詳細版)(案)

平成 27 年 3 月

環境省大臣官房廃棄物・ リサイクル対策部廃棄物対策課

目 次

は	じめに		1
1	本マニ	- ュアルの構成と利用方法	3
	1. 1	本マニュアルの目的	3
	(1)	対象バイオマス	3
	(2)	バイオガス化システムの概要と導入のメリット	3
	(3)	バイオマス利活用の検討の視点	4
	(4)	本マニュアルの目的	6
	1. 2	本マニュアルの構成	8
	1. 3	本マニュアルの利用方法	.11
	1. 4	用語の定義	12
2	計画条		.14
	2. 1	対象自治体の設定	.14
	2. 2	都市規模によるバイオガス化の方向性	15
	2. 3	他の社会インフラ施設との連携	17
	(1)	社会インフラ施設の抽出	. 17
	(2)	連携の目的	. 17
	(3)	インフラ施設との連携の要件	. 18
	(4)	インフラ施設との連携の評価	. 18
	2. 4	災害廃棄物処理、防災拠点としての整備	20
	(1)	災害廃棄物処理量の検討	20
	(2)	防災拠点の要件	. 20
3	. 現状把	『握(地域特性の分析)	24
	3. 1	廃棄物系バイオマスの賦存量、利用量等の整理	24
		賦存量(一般廃棄物)の算定	
		賦存量(産業廃棄物)の算定	
		利用量の算定	
	(4)	利活用可能量の算定	. 30
	3. 2	廃棄物処理体系の整理	31
		分別収集区分	
		一般廃棄物量、廃棄物の質の把握	
	(3)	中間処理方法	
	(4)	最終処分	
	3. 3	資源化物等の需要量の把握	
	(1)	電力	
	(2)	熱	. 37

(3)	気体燃料	38
(4)	固体燃料	38
(5)	肥料(堆肥、液肥)	39
4. 利活用	月案の設定	41
4. 1	廃棄物系バイオマスの利活用目的の設定	41
4. 2	バイオガス発生量、生成物量の見通し	43
(1)	バイオガス発生量	43
(2)	発酵残渣、消化液量	45
(3)	発電電力量	46
(4)	熱量	46
4. 3	資源化物等の需給バランスの検討	47
(1)	需給バランスの算定方法	47
4. 4	対象バイオマス、対象地域、生成物利用等の決定	48
(1)	対象バイオマス、生成物利用の決定	48
(2)	広域化を考慮した検討	49
4. 5	バイオマス利活用目標の設定	54
5. 利活用	システムの検討	55
5. 1	バイオガス化施設の検討	55
(1)	バイオガス化施設の構成	55
(2)	物質収支、エネルギー収支	60
(3)	処理目的に応じた設備の組み合わせ	68
(4)	環境対策	70
(5)	防災拠点等の機能	71
5. 2	バイオマス分別収集、選別施設の検討	72
(1)	分別収集方法の検討	72
(2)	選別施設の検討	78
5. 3	生成物の利用、処理方法の検討	82
(1)	生成物の利用方法の検討	82
(2)	排水処理、残渣処理の検討	92
5. 4	利活用事業化手法の検討	98
(1)	事業化方法の選択肢	98
(2)	DBO のメリット、デメリット (DBO と PFI の違い)	100
(3)	PPP/PFI の取組推進上の課題及び留意点	103
(4)	財政的な支援制度	106
(5)	資金調達方法	107
6. 利活用	月案の評価と計画決定	110
6 1	利活用事業の評価(環境負荷、事業効果の分析)	110

	(1)	評価方法	.110
	(2)	循環型社会の形成に関する指標	.110
	(3)	地球温暖化防止に関する指標	.113
	(4)	バイオマス活用に関する指標	.115
	(5)	事業コストに関する指標	.115
	(6)	地域への波及効果	120
	(6)	評価指標による総合的な評価	122
6.	2	バイオマス利活用計画の策定	.123
	(1)	計画策定における各主体の役割と対応	123
	(2)	法規制等への対応した実施体制	125
	(3)	基礎調査から事業実施までのスケジュール	125

資料編

平成 26 年度廃棄物系バイオマス次世代利活用推進事業 検討会 委員名簿

参考資料1.一般廃棄物を対象としたバイオガス化施設の稼動状況

参考資料 2. 廃棄物系バイオマス利活用事業の事例集

参考資料3. 関連する法律と支援制度の概要

参考資料4. FIT の認定手続きについて

参考資料 5. 液肥の利用方法について

はじめに

バイオマスとは「化石燃料を除く、動植物に由来する有機物である資源」であり、生命と太陽 エネルギーがある限り、再生可能エネルギーとしても製品としても活用可能な持続的に再生可能 な資源である。

バイオマスを製品やエネルギーとして総合的に最大限活用する持続可能な社会「バイオマス・ニッポン」を早期に実現するため、2002 年 12 月にバイオマス・ニッポン総合戦略が閣議決定され、その後 2006 年 3 月に改定された。その後、2009 年 6 月にはバイオマス活用推進基本法が制定され、2010 年 12 月には同法に基づきバイオマス活用の将来像や目標等を示したバイオマス活用推進計画が閣議決定された。その後 2011 年のバイオマスタウン構想の実施状況の点検を含めた総務省の勧告を経て、地方自治体におけるバイオマス活用推進計画の手引きが作成され、地域での計画策定が加速化されたところである。

バイオマスの利活用方法のうちマテリアル利用は、わが国が目指す循環型社会の構築に大いに 貢献すると期待されている。すなわち、廃棄物系バイオマスや未利用バイオマスを用いた堆肥化 や飼料化等により、化学肥料の使用や国外からの飼料の輸入を抑えて、国内において炭素や窒素 を循環利用することができ、また化学肥料による窒素の過剰蓄積や農地における地力の回復など、農業活動におけるメリットも大きい。一方、バイオマスの燃焼によって発生する二酸化炭素は、バイオマスの成長過程で大気中から取り込まれた二酸化炭素であることから、大気中の二酸化炭素量を増加させない、いわゆるカーボンニュートラルの特性を持つ。このことから、バイオマスのエネルギー利用は地球温暖化防止に貢献するとともに、国産のエネルギーとしてエネルギー自 給率を高め、いわゆるエネルギー安全保障に貢献するものである。さらに、バイオマス活用推進基本法では、バイオマスを活用する新たな産業の発展及び国際競争力の強化、農山漁村の活性化等の効果も期待されているところである。

環境省では廃棄物系バイオマスの上記のようなバイオマスとしての利点を生かすために、平成20年度から22年度まで廃棄物系バイオマス次世代利活用推進事業、平成23年度から24年度まで廃棄物系バイオマス利用推進事業を実施し、地方自治体の地域特性に応じた利活用の方向性を明らかにしてきた。この間、東日本大震災を契機とした再生可能エネルギーによる電力の固定買取価格制度(FIT制度)の創設などがあり、廃棄物系バイオマスのエネルギー利用としてのバイオガス化が有利との判断から、主としてバイオガス化(メタン化)を中心に検討が行われてきた。そしてこれらの調査の結果として、地方自治体の地域特性に応じた廃棄物系バイオマスの利用目標と施設整備の方針を定めたロードマップを作成した。

廃棄物の循環利用については、循環型社会推進基本法における原則、「再使用、再生利用、熱回収、処分という順の優先度」があり、食品系バイオマスの堆肥化、飼料化、紙系バイオマスの再生紙への利用を優先させることは第一に考慮すべきである。しかし、一般廃棄物のように厨芥類やちり紙などは混合して排出されるためマテリアル利用が非常に難しく、分別のために費用がかかるのが実情である。そのため、これらの利用しにくいバイオマスを中心としてバイオガス化することを目的とするものである。

バイオガス化の対象とできる廃棄物系バイオマスは、バイオマス全体の中でも8割程度(バイオマス活用推進計画(平成22年12月公表)に示されたバイオマスのうち食品廃棄物、紙、下水汚泥、家畜排泄物の発生量の割合)を占めており、地域のバイオマスの賦存量、利活用などの現状の特徴を生かした利活用を積極的に進めていく必要がある。また廃棄物処理施設としての整備においては、安定的、継続的な運転が可能なように整備することはもちろん、他の廃棄物処理施設との整合を図ることや、災害時の対応などの配慮も必要である。さらに、今後の長期的な廃棄物処理の傾向は、人口減少等に伴う影響からその処理施設の稼働率が低下することも想定され、施設を効率的に整備するためには複数自治体を対象とした広域的な対応についても考慮しておく必要がある。

さらに、これらの施設の整備を行うにあたって、その財政出動を加速化させるために、他の社会インフラ施設との連携やバイオガス化施設での災害時のエネルギー供給といった防災拠点としての役割などについても、考慮しておく必要がある。

これらのことを考慮して本マニュアルでは廃棄物系バイオマス利活用において、廃棄物処理・資源化施設としての整備を前提に、地方自治体の廃棄物処理・資源化担当者が対象地域と対象とする廃棄物系バイオマスを選定し、その効率的な施設整備を計画立案できることを意図して作成されたものである。

本マニュアルが地方自治体の担当者の円滑な業務実施の一助になれば幸いである。

1 本マニュアルの構成と利用方法

1. 1 本マニュアルの目的

本マニュアルは廃棄物系バイオマス利活用において、主としてバイオガス化(メタン化)を中心とした廃棄物処理・資源化施設としての整備を前提に、地方自治体の廃棄物処理・資源化担当者が対象とする廃棄物系バイオマスを選定し、その効率的な施設整備を計画立案できることを目的とする。

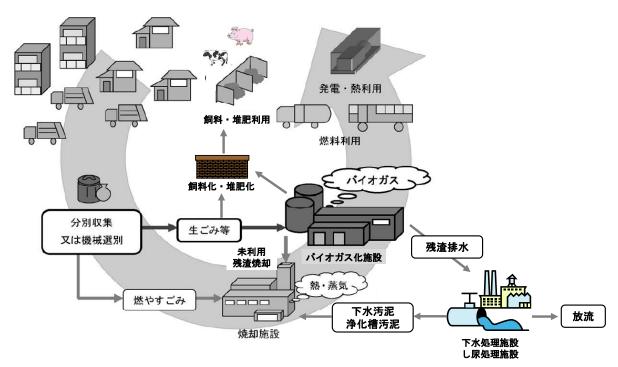
【解説】

(1)対象バイオマス

本マニュアルで対象とする廃棄物系バイオマスを表 1-1 に示す。本マニュアルでは、バイオガス化を利活用の中心手段としており、対象とする廃棄物系バイオマスは、食品系バイオマス、紙系バイオマス、し尿・汚泥系バイオマスとする。なお、地域によっては下水汚泥や家畜排泄物との共同処理を行うことでバイオガスの発生量を増大させ、効率的な整備が可能となる場合もあることから、産業廃棄物としての廃棄物系バイオマスについても対象とする。

これらの廃棄物系バイオマスについては、循環型社会推進基本法における循環利用の原則、「再使用、再生利用、熱回収、処分という順の優先度」に則り、食品系バイオマスの堆肥化、飼料化、紙系バイオマスの再生紙への利用を優先させることは第一に考慮すべきである。しかし、一般廃棄物のように厨芥類などの食品系バイオマスやティッシュペーパーなどの紙系バイオマスはマテリアル利用が非常に難しく、分別のために費用がかかるのが実情である。そのため、これらの利用しにくいバイオマスを中心としてバイオガス化することを目的とするものである。

	一般廃棄物	産業廃棄物		
食品系バイオマス	食品廃棄物(厨芥)	動植物性残さ(食品加工残さ)		
紙系バイオマス	紙ごみ	紙くず		
し尿・汚泥系バイオマス	し尿・浄化槽汚泥	有機性汚泥(下水汚泥含む)		
その他		家畜排せつ物		


表 1-1 本マニュアルで対象とする廃棄物系バイオマス

(2) バイオガス化システムの概要と導入のメリット

バイオガス化システムは、廃棄物系バイオマス(食品廃棄物・紙ごみ・汚泥等)を収集し、嫌気条件下(酸素の無い状態)で微生物の働きによって分解し、メタンガスと二酸化炭素を含む可燃性ガス(バイオガス)を生成し、燃料や発電・熱源として利用するシステムのことをいう(図1-1参照)。

バイオガス化システムのメリットとして、環境負荷低減、エネルギー回収、残渣利活用、経済性の向上が挙げられる。まず、バイオガス化システムの導入により、焼却量を減らすことができ、GHG排出量を抑制することができる。試算によれば、1トンあたりの処理量に対し、約 $0.32t-CO_2$ /年削減できるとされている(年間9,300tの処理対象物を処理する乾式メタンコンバインド施設の場合を想定)。

注)繊維類、木質系廃棄物、動物の死体については本マニュアルでは対象としない。

(出所)「メタンガス化(生ごみメタン)施設整備マニュアル」(平成20年1月、環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課)を基に作成。

図 1-1 バイオガス化システムのイメージ

また、小規模の焼却施設で発電できなかった地域(例えば70t/日未満の可燃ごみ地域)でも、可燃ごみや生ごみからバイオガスを回収することができ、これによって発電やガスの回収が可能になり、温暖化対策にも貢献する(例えば、1tあたりの処理量に対し、約207Nm³回収を回収、前例と同様に年間9,300tの処理対象物を処理する乾式メタンコンバインド施設の場合を想定)。

さらに、バイオガス化システムを導入しFITを適用して売電することで、焼却施設を単独で導入するよりもトータルコストを抑えることができる可能性があり、経済性でも有利となる(例えば、焼却施設(300t/日)を乾式メタンコンバインド施設(乾式メタン30t/日、焼却施設300t/日)に変更した場合、年間約4,000万円の費用削減効果があると試算されている)。

そして、バイオガス化システムにおける発酵残渣(消化液ともいう)は液肥としてそのまま、あるいは堆肥化して肥料として活用することができ、周囲に農地がある場合はこの肥料を活用している事例が多く存在する。また、都市部では発酵残渣を焼却施設で燃料利用するなど、残渣を再生利用することで、地産地消・循環型社会の形成にも寄与する。

国では、バイオガス化施設を対象に平成23年度まで高効率原燃料回収施設として、高率補助を 実施してきた。また平成26年度時点の循環型社会形成推進交付金においても、バイオガス化施設 での熱利用率の要件等を満足するものに高率の交付率を設定し、これらの施設の導入を後押しし ている。

(3) バイオマス利活用の検討の視点

廃棄物系バイオマスの利活用の検討にあたっては、以下の3つの視点から検討する必要があ

る。

- ①廃棄物系バイオマスの安定的な処理
- ②廃棄物系バイオマスの資源化物としての利用
- ③廃棄物系バイオマスによる温暖化対策

1) 廃棄物系バイオマスの安定的な処理

廃棄物系バイオマスの安定的な処理を図るためには、腐敗しやすさに伴う悪臭発生、異物混入による生物処理への影響等に留意する必要があり、分別収集過程や処理施設への受入、前処理における十分な選別処理、また周辺地域への環境面の影響を最小限にするために、メタン発酵の消化液の排水による水質汚染、悪臭等への対策を十分に行う必要がある。

従って、本マニュアルでは、廃棄物処理・資源化としての視点から、安定で継続的な運転が 可能な処理施設の整備を検討する手順を示すとともに、分別収集の過程や処理施設において、 生活環境の保全上支障を生ずるおそれのないよう配慮した計画手順について記述する。

2) 廃棄物系バイオマスの資源化物としての利用

廃棄物系バイオマスに係る資源化物が利用されるかどうかは、地域における需要が第一であるが、競合する他の製品との品質、価格差、流通チャンネルなど品質と価格のバランスも重要である。

また、バイオマスのカーボンニュートラルという特長による温暖化対策として有効性から、 交付金・補助制度、固定価格買取制度(FIT)などの支援策を十分に生かすことが重要である。

このような支援策を採用してもなお他の競合製品の価格を上回る場合でも、地球温暖化対策やエネルギー保全としての効果、地域での産業創出または雇用効果が高ければ、バイオマスの資源化利用に踏み切る価値はある。そのため、事業化において効果的なPR (たとえば地域ブランド化)による製品の優位性、行政からの支援や住民の協力(市民ファンドなどの活用)などの可能性について検討することが重要である。この場合、市民との意見交換を通して事業の実施可能性を判断することや、地方自治体等での廃棄物担当部局や環境部局、経済産業部局、財政部局との十分な協議を実施することが重要である。

3)地球温暖化対策

バイオマス活用推進基本法に示されているように、カーボンニュートラルの特性を有する廃棄物系バイオマスを、マテリアル利用やエネルギー利用することで温室効果ガスの削減を図ることも重要な役割である。現在、わが国で熱利用や輸送用燃料として利用される化石燃料は膨大な量にのぼっており、これらの一部をバイオマスで代替することによって温室効果ガスを削減することの役割は大きいといえる。

またわが国のエネルギー自給率が通常でも低いことに加え、東日本大震災後の原発事故の影響で一次エネルギーが化石燃料に大きく偏っている状況では、化石燃料以外のエネルギーを活用することでエネルギーの多様化を図り、エネルギー安全保障としての役割を果たすことも重

要である。

このことから、地球温暖化対策、エネルギー保全という視点も本マニュアルのねらいに加え、 バイオマス利活用の検討手順においては、温室効果ガスの削減効果等の算定方法等についても 記載することとする。

(4) 本マニュアルの目的

バイオマス利活用に関するマニュアル類は、管轄する省庁において以下の表 1-2 に示すように整備されている。これらは、バイオマスの利用を進めるための目標の設定を行うことを中心としたもの(都道府県・市町村バイオマス活用推進計画作成の手引きなど)、バイオマス資源化のための施設の設計を中心としたもの(メタン化施設整備マニュアルなど)が多い。実際には、目標設定後に具体的にどのような施設(規模と種類・形式)を整備し、それをどのように活用するか(需要先の確保)の計画手法に関するマニュアルが必要である。

	••••	••	
名称	監修・編集	年月	主管省
ごみ処理施設整備の計画・設計要領 2006 改訂版、	全国都市清掃会議	2006年4月	環境省
メタンガス化(生ごみメタン)施設整備 マニュアル	環境省大臣官房廃棄物・リサ イクル対策部廃棄物対策課	2008年1月	環境省
エネルギー回収型廃棄物処理施設整備マニュアル	同上	2014年3月	環境省
市町村バイオマス活用推進計画検証マニュアル骨子案	(三菱総研)	2011年3月	農水省
都道府県・市町村バイオマス活用推進計 画作成の手引き	農林水産省食料産業局バイオマス循環資源課	2012年9月	農水省
バイオマスエネルギー導入ガイドブック 第3版	(独)新エネルギー・産業技 術総合開発機構	2010年1月	経済 産業省
バイオソリッド利活用基本計画(下水道 汚泥処理総合計画)策定マニュアル	日本下水道協会	2004年	国土 交通省

表 1-2 バイオマス利活用に関するマニュアル等

以上のことから本マニュアルは、主として地方自治体における廃棄物処理・資源化の担当者が、地域特性を生かしてバイオガス化(エネルギー利用)を行うに際して、廃棄物処理・資源 化施設としての安全・安心な運転を可能とする施設の計画を支援することを目的とする。

また、地域の特性に応じた効果的・効率的なバイオマス利活用方法(需要の確保)の検討手順を明確にする。特に、従来のマニュアル類では明確でなかった施設の規模・種別を検討するための物質収支や熱収支の整理内容を明確にし、具体的な施設の諸元を計画する手順を提示する。

また、今後の地域での人口減少やごみ量の抑制から遊休施設が発生することも想定されることから、複数自治体での共同処理(広域化)や防災拠点などの他のインフラ施設との連携を考慮した手順についても示す。

廃棄物系バイオマスの 安定、安全な処理 廃棄物系バイオマスの 資源化利用の促進 地球温暖化対策・ エネルギー保全

本マニュアルの目的

- 廃棄物処理・資源化施設として の安全・安心な運転を可能とす る施設計画
- 地域の特性に応じた効果的・効率的なバイオマス利活用方法の 手順の提示
- 施設の規模、種別と事業方式を 決定できる計画手順の提示
- 複数自治体での共同処理や防 災拠点などの他のインフラ施設 との連携を考慮した手順の提示

既存マニュアルは目標の 設定、設計レベルのマニュ アルが多い

廃棄物処理・資源化施設の整備に当たって、どのような施設(規模、種類、形式)をどのような利用(需要の確保)をするか具体的な計画手法の提示が必要

図 1-2 本マニュアルの目的

1. 2 本マニュアルの構成

本マニュアルの構成は以下のとおりである。まず、マニュアルの構成、利用方法を示す。 次に具体的な検討プロセスとして、(1)計画条件の設定、(2)現状把握、(3)利活用案の設定、(4) 利活用システムの検討、(5)利活用計画の評価と決定の5段階から構成される。最後に資料編では、 関連する法律、補助制度と、廃棄物系バイオマスの利活用の事例等を示す。

【解説】

本マニュアルは、まずマニュアルの構成と利用方法を示す。

次に、廃棄物系バイオマスの利活用の検討手順は5段階に分かれており、それぞれを確実に実施することで、利活用案の策定と計画決定(合意形成)していくことができる。計画は作成するだけでなく実施されることが必要であるため、関係者の合意形成過程が重要と考えられることから、そのようなプロセスを提案している。

具体的には検討プロセスの第1段階として、まず「計画条件の設定」を行う。ここではまず広域化に配慮した①対象自治体の設定を行う。これは今後の廃棄物の発生傾向において、人口の減少などにより廃棄物処理量が減少し、遊休施設が生じるなど、広域的な対応を図る必要もあることを考慮している。また小規模自治体においては、経済的な規模の施設を整備するためには広域的な対応を図ることも必要な場合がある。さらに、バイオガス化による生成物の資源化の際に、堆肥などの需要を確保する際には、複数自治体を対象とすることで問題の解決を図ることができる場合があるためである。また、これまでのロードマップ検討においての知見を下にした②都市規模によるバイオガス化の方向性を提示し、当該自治体の一般的な整備の方針を把握する。さらに他の計画条件として③他の社会インフラ施設との連携についても考慮する。これは、下水処理施設との共同化により効率的な施設整備が可能なばかりでなく、財政出動の加速化を図ることができるためである。さらに、バイオガス化施設を④災害廃棄物処理、防災拠点としての整備を行う場合についても検討するなど、高度なエネルギー供給拠点としての整備の可能性についても配慮するものである。

次に第2段階の「現状把握」を行う。この段階では地域の特性を把握し、利活用の検討のための 基礎データを収集するものである。検討内容は⑤廃棄物系バイオマスの賦存量、利用量の把握、 ⑥廃棄物処理体系の整理、⑦資源化物等の需要量の把握である。

第3段階の「利活用案の設定」の段階においては、⑧廃棄物系バイオマスの利活用目的の設定、 ⑨バイオガス発生量、生成物量の見通し、⑩資源化物等の需給バランスの検討、⑪対象バイオマス、対象地域、生成物利用等の決定の順で、検討を加える。この段階はバイオガス化の基本的な方針を決めるもので、対象自治体、対象バイオマス、生成物の利用、他の施設との連携などの複数の代替案から候補を絞っていく過程である。ここでは、広域的な複数自治体を対象とした検討方法について、第2段階、第3段階の検討を別途まとめて、記述を加える。

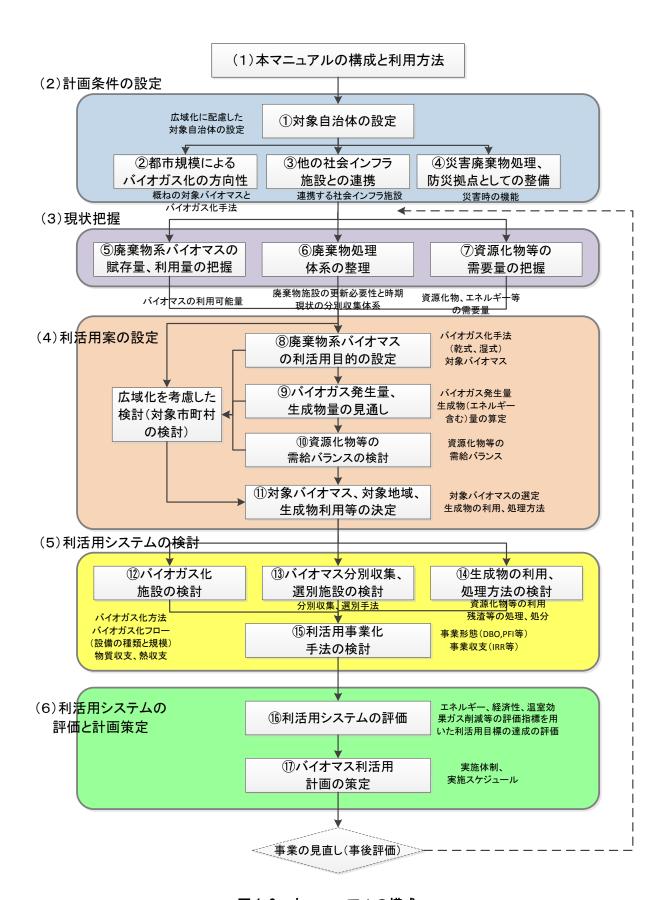


図 1-3 本マニュアルの構成

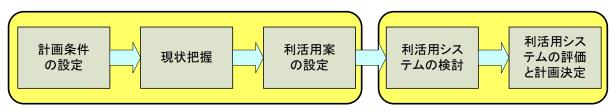
次に第4段階の「利活用システムの検討」段階においては、⑫バイオガス化施設の検討、⑬バイオマス分別収集、選別施設の検討、⑭生成物の利用、処理方法の検討、⑮利活用事業化手法の検討を行う。この段階は、廃棄物処理施設としての基本計画策定の意味を持つ内容である。

すなわち、具体的な施設の規模、形式、配置等を検討していくものである。

第5段階の「利活用システムの評価と計画策定」段階では、⑩利活用システムの評価、⑪バイオマス利活用計画の策定を行う。計画策定においては、実施段階での担当者の役割や、実施までの手順(スケジュール)を整理して行くものとする。

なお、各種の関連する法律については、資料編に示す。さらに、実際に廃棄物系バイオマスの 利活用を実施している事例についても、資料編に一覧表として示す。

1. 3 本マニュアルの利用方法


本マニュアルは、(1)計画条件の設定から(4)利活用案の設定までは、計画の方向性を決めるためのプロセスであり、(5)から(6)はその結果を受けて廃棄物処理施設としての計画を立案するプロセスとなっており、構想から施設整備の計画までの意思決定の段階に応じて、関係者への資料説明のためにマニュアルを利用していくことができる。

【解説】

本マニュアルは、地方自治体の廃棄物処理部門の担当者が、一般廃棄物処理基本計画やバイオマス活用推進基本計画で定められたバイオマス利活用施設を整備していくまでの計画手順を示し、その計画作成の手助けとすることを目的としているが、以下のような段階的な意思決定の手順を重視しており、構想的な計画書の作成(利活用方針)までの検討に用いることもできる。

すなわち、本マニュアルは以下のような段階的な意思決定を踏まえて計画を立案できるものとし、(1)計画条件の設定から、(2)現状把握、(3)バイオマス利活用案の設定までは、計画の方向性を決める段階としている。この段階で対象地域と対象となる廃棄物系バイオマスを決定し、生成物の需要先などを見込むことができる。したがって、この段階までが廃棄物系バイオマスの構想計画の策定段階ということができ、数多くの代替案の中から次の段階で検討すべき代替案を絞り込むことが主目的となっている。

一方、次の(4)利活用システムの検討、(5)利活用システムの評価と計画決定は具体的な施設の整備計画の検討段階であり、事業の規模、事業実施費用などが明らかになる段階である。この段階では、事業実施のための検討が中心となり、事業主体やファイナンスも含めた検討を行うことができる。

廃棄物系バイオマス利活用の基本方針決定(構想計画)

バイオマス利活用の施設整備計画立案

図 1-4 計画の意思決定のための手順

なお、計画にあたっては、上位計画としての他の計画との関連について十分配慮することが必要である。すなわち、環境基本計画や一般廃棄物処理基本計画などの法定計画に加え、バイオマスタウン構想(バイオマス産業都市構想)、地域新エネルギービジョン等の分野別の関連する計画についても把握しておくことが望ましい。

さらに、廃棄物系バイオマスの利活用を複数の自治体で実施する場合には、その意思決定過程を効率的に行うため県の担当者などからの助言、支援を得ることも必要であり、例えば計画決定の主要な段階で検討会(協議会)等への出席を求めることが有効と考えられる。

1. 4 用語の定義

本マニュアルで用いる用語を、以下のとおり定義する。

用語	説明
ジノナママ	もともと、生態学で生物(bio)の量(mass)を示す用語である。本マニュアルでは、
バイオマス	化石燃料を除く、動植物に由来する有機物である資源のことをいう。
廃棄物系バイオマス	バイオマスのうち、廃棄物として排出されるバイオマスのことをいう。
	種々の制約条件を考慮せず理論的に求められる、潜在的なバイオマス資源の上
 賦存量	限値であり、当該地域において1年間に発生するバイオマス資源量。バイオマス
照行里 	資源の採取及び利用に伴う様々な制約等は考慮していない量で、賦存量=利用
	量+処分量+未利用量となる。基本的には重量換算で把握する。
 利用量	バイオマス賦存量のうち、堆肥や飼料、発電等のエネルギー利用により、既に利
177万里	用しているバイオマス量をいう。
┃ ┃処分量	バイオマス賦存量のうち、現在利用がされていないバイオマス量で、主に焼却処
たり 重	分、埋立処分等で処理されているバイオマスをいう。
未利用量	バイオマス賦存量のうち、利用も処分もされていない量をいう。
利用率	賦存量に対する利用量の占める割合。
 バイオガス	メタン発酵において発生する、メタン、二酸化炭素を主成分とするガスのことをい
7 1 3 3 7	う。
バイオガス化	有機物をメタン生成菌等により嫌気性発酵(消化)してバイオガスを得る技術をい
(メタン化)	う。
	投入したバイオマス量当りのバイオガス発生量をいう。単位は Nm³/tである。バイ
┃ バイオガス発生原単位	オガスの発生量をメタン濃度 50%に変換してこの原単位を算定する場合がある。
八八万万八光工冰平区	循環型社会推進交付金の基準となるバイオガス発生原単位はこのメタン濃度 50%
	に変換した値を用いる。
 バイオ燃料	バイオマスの持つエネルギーを利用したアルコール燃料や下に示すバイオガス等
* . 1 . 2 WW.4 . 1	のその他の燃料のことをいう。
	原料(投入ごみ)の固形物濃度を6~10%程度に水分調整した後にメタン発酵処
湿式メタン発酵	理を行う方式であり、し尿処理や下水処理で昔から幅広く採用されている。生ごみ
	等、分解率の高い原料に適した方式である。
	原料(投入ごみ)の固形物濃度を 15~40%程度に水分調整した後にメタン発酵処
乾式メタン発酵	理を行う方式であり、生ごみ以外に水分の低い紙や草木等を原料としたメタン発
	酵にも適している。
発酵残渣	メタン発酵により残さとして生ずるもの。消化液と同意味であるが、本マニュアルで
(消化液)	は発酵残渣という言葉を用いる。
脱水固形物、脱水ろ液	メタン発酵における発酵残渣を脱水して固形分と分離された液のことを言う。
┃ ┃ 発電効率	投入エネルギーに対する得られた電力エネルギー割合のこと。ごみ発電施設で
70.000	は、発電量をごみと外部燃料の熱量の和で除した値である。
	燃料を燃焼させることにより発生した排ガスから熱回収を行い、所定の圧力及び
ボイラ	温度を持つ蒸気を発生する圧力容器のこと。大きく分けて、ボイラ本体とエコノマイ
	ザで構成される。
ボイラ効率	ボイラに供給された熱量に対するボイラで有効に利用された熱量の割合のこと

	(JISB0126)。ボイラに加えられたごみや助燃燃料の燃焼熱、燃焼用空気の熱等が蒸気の熱として変換される割合で、残りは出口排ガスやボイラからの放熱等の損失となる。
メタン発生効率	分解有機物量当りのメタン発生量を示す。単位は Nm³/t-VS
PFI	Private Finance Initiative 従来公共部門が提供していた公共サービスを民間主導で実施することにより、設計、建設、維持管理、運営に民間の資金とノウハウを活用し、効率的かつ効果的な公共サービスの提供を図るための手法をいう。
PPP	Public Private Partnership 企業やNPOなどの民間企業が何らかの形で参加する公共サービスの提供手法 の総称で、PFIをはじめ、公営企業の民営化、包括的民間委託等の手法をいう。
TS(固形物量)	廃棄物系バイオマス中の固形物量をいう。TS と表現するとき、固形物の割合を表す場合がある。含水率をWとするとき、TS=1-Wである。
VS(有機物量)	廃棄物系バイオマス中の有機物量をいう。
VS/TS (強熱減量)	固形物中の有機物の割合を示し、強熱減量とも言われる。
VS 分解率	有機物のうち、メタンガスに分解する有機物の割合を示し、バイオマスの種類によって異なる値を示す。

2 計画条件の設定

2. 1 対象自治体の設定

今後の人口減少、3Rの推進によるごみの減量化等により、地域での廃棄物処理施設の稼働率が低下し、処理の効率性の低下も想定されることや、大規模災害に備えた災害廃棄物を広域的に処理する対策を講ずることも必要なことから、廃棄物処理体系を広域的な観点から見直すことも考慮して、バイオガス化を対象とする自治体を設定する。

【解説】

廃棄物系バイオマスのバイオガス化施設の整備においては、廃棄物処理の効率性、安定性を重視した計画が求められるが、近年の人口減少、ごみ処理量の減少を考慮すると、単独の地方自治体ではなく広域的な視点から廃棄物処理を検討することが必要である。特に、廃棄物系バイオマスのバイオガス化においては、一般廃棄物のうち食品廃棄物(生ごみ)、紙ごみを取り出して処理するものであり、分別収集や選別の過程では投入されるバイオマスが減少することも想定される。過年度調査において整理された食品廃棄物の量は表 2-1 に示すとおりであり、紙ごみが資源化されたいる地域なども多いことを想定すると、小規模都市、農山漁村では処理規模が小さくならざるを得ない。

表 2-1 都市規模別の自治体数、食品廃棄物等発生量

Pre Historian - Pre Pre-					
	自治体数 (件)	発生量 (トン/年)	発生量/自治体 (トン/日)		
全体	1,751	11,865	18.6		
大都市	34	3,714	299.2		
地方中心都市	259	4,595	48.6		
小規模都市	691	2,916	11.6		
農山漁村	767	640	2.3		

(出所)平成 24 年度廃棄物系バイオマス利用推進事業報告書

廃棄物系バイオマスのエネルギー利用面でのポテンシャルを想定した場合、焼却による発電施設の設置は70 t/日以上の規模が必要であるが小規模都市、農山漁村では焼却発電を導入することができない。一方、廃棄物系バイオマスのバイオガス化施設では比較的小規模の処理量でも発電が可能であり、今後更新を迎える焼却施設をバイオガス化とのコンバインドシステムに改良することで、今までエネルギー利用されなかった廃棄物系バイオマスを有効に活用することができる。それに加えて、比較的小規模の自治体が共同して廃棄物系バイオマスをコンバインドシステムによりエネルギー利用を進めることで、さらに多くの未利用エネルギーを活用することが可能となる(酒井伸一・矢野順也、食品廃棄物のリデュース、リサイクルによる都市廃棄物処理戦略に関する展望、廃棄物資源循環学会誌、Vol. 25、No. 1、2014)。

この観点から、バイオガス化施設への循環型社会形成推進交付金は概ね 20t/日以上を目安とした交付を想定しており、この規模以上を対象処理量とすることが想定される(エネルギー回収型廃棄物処理施設整備マニュアル、環境省、平成 26 年 3 月)。

さらに、災害廃棄物の処理という観点からも、廃棄物処理施設整備計画(平成25年5月閣議決定)においては「東日本大震災並の規模を含む様々な規模の災害に対応できるよう、公共の廃棄物処理施設を、通常の廃棄物処理に加え、災害廃棄物を円滑に処理するための拠点と捉え直し、平素より廃棄物処理の広域的な連携体制を築いておく必要がある。その際、大規模な災害が発生しても一定期間で災害廃棄物の処理が完了するよう、広域圏ごとに一定程度の余裕をもった焼却施設を維持する」とされている。バイオガス化施設(焼却施設との併設を含む)の整備にあたっては、災害廃棄物処理の拠点として位置づける場合、複数の自治体で処理することを念頭に検討をする必要がある。

他方、バイオガス化後の発酵残渣を資源化して、堆肥や液肥として活用する際には、耕作地での需要が必要となり、都市部では確保が難しい需要を確保するために広域的な対応を図ることが問題を解決するポイントとなる。

このような観点から廃棄物系バイオマスのバイオガス化施設の整備にあたっては、広域的な視点でその対象地域を設定することとする。

2. 2 都市規模によるバイオガス化の方向性

廃棄物系バイオマス活用ロードマップによれば、廃棄物系バイオマスの発生量や堆肥等の需要量の傾向などから、都市規模別のバイオガス化の導入見込みが高いパターンが整理されており、 それを参考に当該地域でのバイオガス化施設の検討を行うものとする。

廃棄物系バイオマス活用ロードマップ(平成25年6月、環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課)によれば、一般的に都市規模別に表2-2のようなバイオマス利活用のモデルを提案している。大都市、地方中心都市等の都市部では、食品廃棄物、紙ごみなどを相当程度の規模で収集可能であるが、土地利用面では耕作地が少なく堆肥などの需要が少ないと考えられるため、バイオガス化後の残渣を焼却するモデルを提案している。一方、小規模都市、農山村では食品廃棄物等の収集量が多くを見込めない可能性があるため、他のバイオマスとの混合処理や複数の地方自治体を対象として広域処理を検討することが必要であり、土地利用面の特徴から発酵残渣を肥料化することを検討するなどのモデルを提案している。

表 2-2 都市規模別のバイオガス化の導入見込みが高いパターン

都市区分	主要な利用モデル
	● 食品廃棄物(又は食品廃棄物+紙ごみ)分別収集→バイオガス化(残渣焼
大都市	却)
	● 可燃ごみ収集→機械選別→バイオガス化(残渣焼却)
	● 食品廃棄物(又は食品廃棄物+紙ごみ)分別収集→バイオガス化(残渣焼
	却)
地方中心都市	● 可燃ごみ収集→機械選別→バイオガス化(残渣焼却)
	● 食品廃棄物分別収集→バイオガス化(残渣焼却)【他のバイオマスとの混
	合処理】

	● 食品廃棄物分別収集→バイオガス化(残渣焼却又は肥料化)【広域的な処理】
小規模都市 	● 食品廃棄物分別収集→バイオガス化(残渣の肥料化)【他のバイオマスとの混合処理】
農山漁村	● 食品廃棄物分別収集→バイオガス化(残渣の肥料化)【他のバイオマスとの混合処理】
受皿起源(ユー	● 可燃ごみ収集→炭化→燃料利用(電力会社等における化石燃料代替)
ザー立地地点)	● 食品廃棄物分別収集→液体燃料化→輸送燃料利用

(出所)『廃棄物系バイオマス活用ロードマップ』(平成25年6月、環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課)

2. 3 他の社会インフラ施設との連携

バイオガス化施設を効率的、効果的に整備するためには、焼却施設や下水処理施設等の他の社会インフラ施設と連携して整備することが効果的である。そのため地域の連携可能な施設を列挙して(既設、新設の両方を考慮)、バイオガス化施設との連携の可能性や効果、制約条件等を把握し、連携する機能及び施設を選定する。

【解説】

バイオガス化施設を効率的、効果的に整備、運営することや施設整備の迅速化を図るためには、 他の社会インフラ施設との連携も考慮する必要がある。地方自治体においては財政面の制約から 新規施設の整備を躊躇している場合があり、他の社会インフラ施設との連携でサービス提供の効 率性や付加価値を拡大することで、施設整備への意思決定を迅速にすることが可能となる。

以上のことから、下水処理施設等の他のインフラ施設との連携の効果や考慮すべき事項を整理 するとともに、連携対象の選定方法を示す。

(1) 社会インフラ施設の抽出

バイオガス化施設と連携が考えられる社会インフラ施設として、想定されるものを列挙すると 以下のとおりである。

- ●焼却施設 (廃棄物の資源化処理施設を含む)
- ●し尿処理施設
- ●下水処理施設
- ●畜産排泄物処理施設 (堆肥化、バイオガス化施設)
- ●福祉施設(介護施設、老人ホーム等)
- ●教育・研究施設 (小中学校、高校、研究機関等)
- ●警察、消防施設
- ●市区役所、町村役場
- ●交通施設 (鉄道駅、道の駅)
- ●娯楽施設 (浴場、スポーツ施設等)
- ●エネルギー供給施設(電気、ガス)

(2)連携の目的

他の社会インフラ施設との連携の目的を整理すると以下となり、上記の社会インフラ施設との連携の内容を表 2-3 に示す。

- ① 排水・廃棄物の処理
- ② 資源化、バイオガス化
- ③ 熱利用
- ④ 防災等の機能の整備

なお、連携する社会インフラ施設が産業廃棄物処理施設等の場合は、循環型社会形成推進 交付金の対象外となり、その施設の管轄によって他の補助・交付の対象となる場合があるこ とに留意することが必要である。また、共同施設の場合は廃棄物種別の処理量の按分により 交付金・補助金額を算出する。

表 2-3 他のインフラ施設との連携の内容

	連携の目的	連携する他のインフラ施設	連携の内容
1	廃棄物・排水の	•焼却(熱回収)施設	バイオガス化後の発酵残渣の焼却
	処理	・し尿処理施設	バイオガス化後の発酵残渣・排水の処理
		•下水処理施設	バイオガス化後の発酵残渣・排水の処理
2	資源化、バイオ	•廃棄物中間処理施設	堆肥化等の共同化
	ガス化	・し尿処理施設	し尿汚泥のバイオガス化、堆肥化の共同化
		•下水処理施設	下水汚泥のバイオガス化、堆肥化の共同化
		•畜産排泄物処理施設	バイオガス化、堆肥化の共同化
3	熱利用	•市区役所、町村役場	バイオガス化によって生成するバイオガスの直
	(平常時)	•福祉施設、教育•研究施設	接利用または発電後のエネルギーの利用
		·警察·消防施設、交通施設	
		・下水、し尿処理施設	
4	防災機能等の	•災害用備蓄施設	災害時用資機材の備蓄
	整備(災害時)	・非常時のエネルギー供給施設	災害時エネルギー(電力、ガス)の供給

(3) インフラ施設との連携の要件

他のインフラ施設との連携における期待される効果は以下のとおりである。

- ① ごみ処理の効率化
- ② 熱エネルギーの利用促進
- ③ 施設・設備の共用
- ④ 付加価値の向上

また、考慮しなければならない事項として以下がある。

- ① 立地場所(法規制、自然条件、土地利用状況を含む)
- ② 連携事業主体特有の阻害要因がないこと(機密性の高い事業、再生可能エネルギーを既に利用しているなど)
- ③ 整備時期(他のインフラ施設が新設の場合、その整備タイミング)
- ④ 費用負担(補助金適用の可能性、その負担原則の取り決め)
- ⑤ 運営主体(役割分担、人材の流動性、必要人員)

(4) インフラ施設との連携の評価

前項で列記した連携の要件や考慮事項を整理することで、共同処理やエネルギー利用における 効率性等を判断でき、バイオガス化施設と連携して整備すべき他のインフラ施設を決定すること ができる。評価のイメージを表 2-4 に示す。

表 2-4 インフラ施設との連携の評価のイメージ

			評価項目				
連携事業	地域 (立地)	処理効率 化	熱エネルギー利用	施設・設備の 共用化	付加価値 向上	留意事項 (制約条件)	評価
A 焼却施 設	バイオガス化 施設に隣接し て整備可能	0	0	◎ 固形物処理 を焼却処理	0		
B し尿処 理施設	対象自治体 の中間位置	0	0	◎ 排水処理 が不要		立地スペース がない	
C下水処 理施設	対象自治体 から距離大	0	0	◎ 消化槽が整 備済み		立地場所が遠 い	
D 市営温 水 プ ー ル		_	0	0	0		
E 擁護老 人 ホ ー ム	•••	_	0	0	0	環境面での制 約が多い	
F 堆肥化 施設	•••	0	0	0			

2. 4 災害廃棄物処理、防災拠点としての整備

バイオガス化施設は地域の中心的な廃棄物処理施設であり、災害時の対策を盛り込む場合には 災害廃棄物の処理施設としての機能を検討することや、防災拠点としての役割を盛り込むことも 検討する必要がある。そのためそれらの要件を整理し、必要機能の検討及び規模設定を行う。

【解説】

(1) 災害廃棄物処理量の検討

災害廃棄物対策指針によれば、「東日本大震災並の規模を含む様々な規模の災害に対応できるよう、公共の廃棄物処理施設を、通常の廃棄物処理に加え、災害廃棄物を円滑に処理するための拠点と捉え直し、平素より廃棄物処理の広域的な連携体制を築いておく必要がある。その際、大規模な災害が発生しても一定期間で災害廃棄物の処理が完了するよう、広域圏ごとに一定程度の余裕をもった焼却施設を維持する」とされている。

従って、災害廃棄物の処理を想定する場合には、災害廃棄物の発生量の想定に基づき、一定期間で災害廃棄物が処理できるよう施設の規模を設定することが必要である。なお、通常は対象としていない廃棄物系バイオマスでも、災害時に施設が被害にあうことも想定し(例えば老朽化したし尿処理施設など)、その受け入れ先としての機能についても事前に検討することが必要である。検討の内容を以下に示す。

- ・災害時の対象廃棄物系バイオマスの設定
- ・災害廃棄物量の想定(災害廃棄物対策処理計画等に基づく)
- ・災害時の廃棄物系バイオマスの処理量の設定(複数自治体間の調整)
- ・廃棄廃棄物系バイオマスの災害時の処理規模の設定

(2) 防災拠点の要件

インフラ施設のうち、災害廃棄物処理施設については、災害廃棄物対策指針に要件が定められている。それによれば、市町村は災害廃棄物処理計画を定めることとされ、その計画おいて一般廃棄物処理施設等の耐震化、不燃堅牢化、浸水対策、非常用自家発電設備等の整備や断水時に機器冷却水等に利用するための地下水や河川水の確保等の災害対策を講じること、廃棄物処理に係わる災害等応急体制を整備するための施設の補修に必要な資機材の備蓄を行うこと、収集車両や機器等を常時整備し、緊急出動できる体制を整備することを求めている。

また、災害廃棄物を受け入れる機能を有する場合は、災害廃棄物の受け入れに必要な設備として、下記の設備・機能を整備することとされている。

- 耐震・耐水・耐浪性
 下記の基準に順ずる。
 - ●建築基準法
 - ●官庁施設の総合耐震計画基準及び同解説
 - ●火力発電所の耐震設計規定 JEAC3605-2009
 - ●建築設備耐震設計・施工指針 2005 年度版

②耐水性

ハザードマップに定められている浸水水位に基づき必要な対策を実施する。

③耐浪性

津波による被害防止にあたっては耐震性と同等の基準に基づき建物や設備を設計・施工する ことを基本とする。

④始動用電源

商用電源が遮断した状態でも1炉立ち上げができる発電機を設置する。始動用電源は、浸水 対策及び津波対策が講じられた場所に設置する。

⑤燃料保管設備

始動用電源を駆動するために必要な容量を持った燃料貯留槽を設置する。設置環境に応じて 地下埋設式等を採用すること。

⑥薬剤等の備蓄

薬剤等の補給ができなくても運転が継続できるよう貯槽等の容量を決定する。

また、既存調査によれば(平成25年度地域の防災拠点となる廃棄物処理施設におけるエネルギー供給方策検討委託業務報告書、(公財)廃棄物・研究財団、平成26年3月)、以下の要件があげられている。

- 1) 廃棄物処理システムの強靭化
 - ① 施設等のハード対策
 - 建築構造物の耐震化
 - 設備・機器の損壊防止策
 - 水害防止対策(浸水対策)
 - ② 廃棄物処理施設の運転等ソフト対策
 - 災害発生から運転再開までのスケジュール化
 - 施設の自立起動、運転
- 2) エネルギー供給の安定化
 - ① 専用電力ケーブルや専用供給配管の敷設
 - ② 供給量の安定化
- 3) 防災活動の支援
 - ① エネルギーの安定供給による防災活動の支援方策の積極的な検討
 - ② 廃棄物処理施設を避難場所とする際の安全性の検討

図 2-1 には、バイオガス化施設を防災拠点の 1 つとして位置付けた時の廃棄物処理システム全体及び周辺施設との関係について整理しており、平常時(実線矢印)と非常時(破線矢印)の廃棄物・エネルギー等のフローを、バイオガス化施設を中心に示している。

平常時は、バイオガス化施設へ搬入されたバイオマス資源を処理し、生成するエネルギー (ガス、電気、熱) や発酵残渣及び液肥等を、近隣の社会インフラ施設(農業施設、公共施設等)へ

供給する拠点施設としての機能を果たす。一方、被災時においては、焼却施設や最終処分場等の 廃棄物処理施設と一体となり、災害時の地域住民の避難施設や帰宅困難者受入施設としての防災 拠点施設としての機能に加えて、外部防災拠点(病院、避難施設等)へエネルギー等を供給する 被災時のエネルギー供給拠点として位置付けていく必要がある。

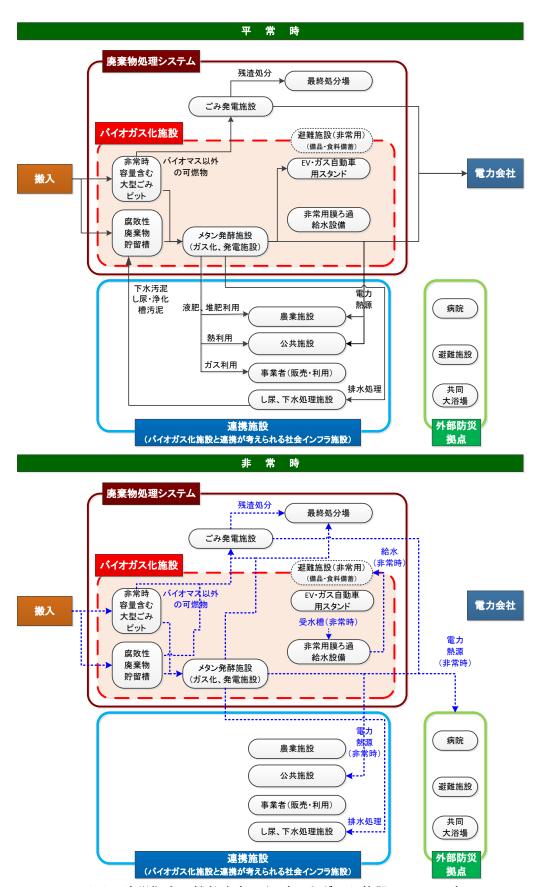


図 2-1 防災拠点の機能を有したバイオガス化施設のイメージ

3. 現状把握(地域特性の分析)

3. 1 廃棄物系バイオマスの賦存量、利用量等の整理

バイオガス化の対象となりうる廃棄物系バイオマスの賦存量(排出量)は、環境省実態調査や 市町村統計等より、下表のような算定方法により推計する。また、賦存量のうち、資源化に仕向 けられた量(利用量)については、排出されたバイオマスの資源化仕向け量をもとに現状の利用 量をまとめる。そして、将来の利活用可能量として、賦存量(排出量)と利用量の差を、将来的 に利活用可能な量として設定するものとする。

【解説】

廃棄物系バイオマスの賦存量(排出量)は、一般的に食品廃棄物等のように分別して計量されていることは少ないため、可燃ごみまたは混合ごみの収集量からごみの組成調査結果等をもとに推計することが必要である。

利活用可能量は賦存量(排出量)と現状の利用量から算定されるが、実際の利用目標量は、分別収集の経済性や利活用の効果をもとに算定される(図 3-1)。

廃棄物種別	項目	算定方法	出典等
一般廃棄物	食品廃棄物(家庭系、事業系)	可燃ごみ×生ごみ構成比率	市町村の組成調査 環境省『一般廃棄物処理実態調査』
	紙 ご み (家 庭 系、事業系)	可燃ごみ×紙ごみ構成比率	市町村の組成調査 環境省『一般廃棄物処理実態調査』
	し尿・浄化槽汚 泥	し尿・浄化槽汚泥収集量より 算定	市町村のし尿処理統計
産業廃棄物	動植物性残さ	①県レベルの排出量から比率で算定 ②業種別の売上高等より原単位方式で算定	① 都道府県産業廃棄物調査 ② 市町村別の経済センサス活動調 査、食品リサイクル法告示『食品廃 棄物等の発生抑制の目標値等』
	紙くず	県レベルの排出量から比率 で算定	都道府県産業廃棄物調査
	有機汚泥(主として下水汚泥)	下水汚泥発生量	日本下水道協会『下水道統計』
	家 畜 排 せ つ 物 (動物の糞尿)	畜産頭数等より原単位方式 で算定	農林水産省『農業センサス』

表 3-1 賦存量(排出量)の算定方法(例)

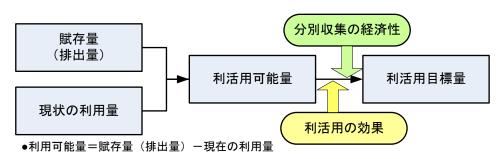


図 3-1 賦存量、利活用可能量、利活用目標量の考え方

(出所)環境省『廃棄物系バイオマスの利活用に係わる評価検討業務』、平成22年度

(1) 賦存量(一般廃棄物)の算定

ここでは、一般廃棄物の賦存量の算定方法を示す。その一例として地方自治体のごみ組成調査 を用いて算定する方法を示す。

(a)食品廃棄物(厨芥)

食品廃棄物量 = 地方自治体ごみ量① × 食品廃棄物比率②

①ごみ量

地方自治体等の集計値より全体のごみ量を把握。

②食品廃棄物比率

地方自治体等の廃棄物部門の組成調査結果または既存調査資料より把握。

表 3-2 にごみの組成調査結果の一例を示す。これは、ごみステーションに排出された家庭 ごみを回収し、分析を行ったものである。

表 3-2	こみの種類別の重量比	(湿里重)

大りと こりの住場がの主皇	九 (座王里/			
組成分類	重量比			
食品廃棄物	34.1			
雑紙	9.1			
新聞紙	6.0			
ダンボール	3.8			
紙パック	0.7			
紙製容器包装	5.8			
その他紙	12.5			
繊維	3.5			
ペットボトル	1.6			
プラスティック製容器包装	7.1			
廃プラスチック	1.9			
ゴム・皮革類	1.6			
木·竹·草	1.7			
金属	2.3			
ガラス	3.8			
その他	4.8			

(出所)環境省『容器包装廃棄物の使用・排出実態調査の 概要(平成23年度)』より作成

(b) 紙ごみ

紙ごみ量 = 地方自治体ごみ量① × 紙ごみ比率②

①ごみ量

地方自治体等の廃棄物統計により全体のごみ量を把握。環境省『一般廃棄物処理実態調査』でも把握が可能である。

②紙ごみ比率

地方自治体等の廃棄物部門の組成調査結果または既存調査資料より把握(前掲表 3-2 参照)。

(c) し尿・浄化槽汚泥

し尿・浄化槽汚泥量 = し尿処理場搬入汚泥量 +農業集落排水等の汚泥量

し尿・浄化槽汚泥は、し尿処理場に搬入されるものと、農業集落排水等(漁業集落排水を含む)の汚泥量を把握して合計することで算定される。

(2) 賦存量 (産業廃棄物) の算定

ここでは、産業廃棄物の賦存量の算定方法を示す。その一例としてここでは都道府県での産業廃棄物の資料を用いて簡易に算定できる方法を示す。

(a) 動植物性残さ(食品廃棄物)

動植物性残さ量 = 都道府県別動植物性残さ量① × 都道府県内の市町村産業構成比② または

動植物性残さ量 = Σ (食料品製造業等の売上高等③ × 業種別原単位④)

① 都道府県別動植物性残さ量

都道府県の産業廃棄物統計により都道府県全体の動植物性残さ量を把握する。

② 都道府県内の産業構成比

産業構成比は、当該食品加工業の従業者数や出荷額の県全体と当該市町村の比率を設定。

③ 食料品製造業等の売上高等

食品残さを排出する食料品製造業や飲料製造業等の売上高等を総務省統計局『経済センサス活動調査』等から把握する。なお経済センサス活動調査の総務省統計局による公表データには、市区町村別・産業分類(細分類別)のデータはないため、産業分類別(細分類別)のデータが必要な場合には、都道府県より細分類別のデータを入手するか、別の市町村独自のデータ用いて按分する必要がある。

④ 食料品製造業等の食品残さ原単位

食料品製造業等の食品残さ原単位を平成24年度末に告示された『食品廃棄物等の発生抑制の目標値』や国立環境研究所のデータベースより把握する。

表 3-3 に「食品廃棄物等の発生抑制目標値」及び、国立環境研究所のデータベースに蓄積されている食料品製造業等の食品残さ原単位を示す。

表 3-3 食品廃棄物等の発生抑制の目標値

業種	業種区分	原単位の 分母の名称	目標値		
	肉加工品製造業	売上高	113	kg/百万円	
	牛乳·乳製品製造業	売上高	108	kg/百万円	
	醤油製造業	売上高	895	kg/百万円	
	味噌製造業	売上高	191	kg/百万円	
	ソース製造業	製造量	59.8	kg/t	
食品製造業	パン製造業	売上高	194	kg/百万円	
	めん類製造業	売上高	270	kg/百万円	
	豆腐·油揚製造業	売上高	2,560	kg/百万円	
	冷凍調理食品製造業	売上高	363	kg/百万円	
	そう菜製造業	売上高	403	kg/百万円	
	すし・弁当・調理パン製造業	売上高	224	kg/百万円	
食品卸売業	食料·飲料卸売業(飲料を中心とするものに限る)	売上高	14.8	kg/百万円	
	食料·飲料卸売業(飲料を中心とするものを除く)	売上高	4.78	kg/百万円	
食品小売業	各種食料品小売業(スーパー)	売上高	65.6	kg/百万円	
	菓子・パン小売業	売上高	106	kg/百万円	
	コンビニエンスストア	売上高	44.1	kg/百万円	

(出所)食品リサイクル法における発生抑制、農林水産省・環境省、平成24年4月

(b) 紙くず (産業廃棄物)

紙くず (産業廃棄物) 量 = 都道府県別紙くず量① × 都道府県内の市町村産業構成比②

① 都道府県別紙くず量

都道府県の産業廃棄物統計により都道府県全体の紙くず量を把握する。

②都道府県内の市町村産業構成比

産業構成比は、当該食品加工業の従業者数や出荷額の県全体と当該市町村の比率を設定。

(c)下水汚泥

下水汚泥は、地方自治体の下水道部門での統計より把握する。公益社団法人日本下水道協会『下水道統計』でも把握が可能である。

なお、下水道統計で下水汚泥量を把握する場合は、処理プロセス毎に含水率が異なっており、 その含水率を考慮して汚泥量を把握することが必要である。下水処理施設の設計、計画を行う 部門ではこのような含水率による数字の変動で誤解を生じないよう、乾重量で整理することが 多い。

(d) 家畜排せつ物(動物のふん尿)

家畜排せつ物量 = 都道府県別動物のふん尿量① ×都道府県内の市町村家畜頭数比率② または

家畜排せつ物量 = Σ (家畜頭数③ \times 家畜別排出量原単位④)

① 都道府県別動物のふん尿量

都道府県の産業廃棄物統計により都道府県全体の動物のふん尿量を把握する。

② 都道府県内の市町村家畜頭数比

家畜頭数の把握は、農水省農業センサス等の統計書より把握し、当該都道府県の家畜頭数の 比率を算定する。

③ 家畜頭羽数

家畜頭数の把握は、農水省農業センサス等の統計書より把握する。

④ 家畜別排出量原単位

家畜別排出量原単位はバイオマス活用推進計画の手引きにより把握が可能である。表 3-4 に家畜別排出量原単位を示す。

なお、バイオマスは廃棄物系バイオマスのほかに、未利用バイオマスや資源化作物等も含まれるが、廃棄物系バイオマスだけでは資源化施設の規模が小さく経済的な処理が行われない場合などは、これらのバイオマスを加えた処理、資源化を考慮することが有効となる場合がある。未利用バイオマスは、稲わら、もみ殻、野菜等の非食用部、林地残材などであり、これらの賦存量の算定方法は、バイオマスタウン構想策定マニュアルに詳しい記載があるので、参考にされたい。

表 3-4 家畜別排出量原単位

			発生原	単位(kg/頭(羽)/日)	発生原単位(t/頭(千羽)/年)			
			ふん	尿	計	ふん	尿	計	
		搾乳牛	45.5	13.4	58.9	16.6	4.9	21.5	
乳用牛	乳用牛	乾乳牛	29.7	6.1	35.8	10.8	2.2	13.1	
		育成牛	17.9	6.7	24.6	6.5	2.4	9.0	
	肉用牛	2才未満	17.8	6.5	24.3	6.5	2.4	8.9	
肉用牛		2才以上	20.0	6.7	26.7	7.3	2.4	9.7	
		乳用種	18.0	7.2	25.2	6.6	2.6	9.2	
豚	豚	肉豚	2.1	3.8	5.9	0.8	1.4	2.2	
加入		繁殖豚	3.3	7.0	10.3	1.2	2.6	3.8	
	採卵鶏	雛	0.059	-	0.059	21.535	_	21.5	
鶏・馬		成鶏	0.136	1	0.136	49.640	_	49.6	
	ブロイラー		0.130	_	0.130	47.450	_	47.5	
馬	馬		23.0		23.0	8.4		8.4	

[※]農林水産技術協会「環境保全と新しい畜産」より

(出所)農水省『都道府県・市町村バイオマス活用推進計画の手引き』、平成 24 年 9 月

(3) 利用量の算定

上記で算出した賦存量のうち利活用可能な量を把握するために、現在の利用量を算定する必要がある。

廃棄物系バイオマスの利用量については、各種廃棄物統計や担当部局とのヒアリングなどを もとに算定する。まず、一般廃棄物については、各種資源化施設への仕向け量を整理すること で算定が可能である。具体的には、以下のような資源化施設があり、表 3-5 に示すように、これを廃棄物系バイオマスの種別ごとに整理する。

各種施設のうち、RDF、RPF、炭化施設のように廃棄物系バイオマスだけではない廃棄物(プラスチック等)を含む場合があり、仕向け量の組成分析結果より推計することが必要な場合がある。この場合は、その組成比率を用いて、利用量の算定を行う。

表 3-5 廃棄物系バイオマスの利用量の算定例(一般廃棄物の一例)

	堆肥化 施設	飼料化 施設	メタン化 施設	RDF 施設	炭化 施設	エタノール 化施設	BDF 施設	合計
食品廃棄物(厨芥)								
紙ごみ								
廃棄物系 バイオマス合計								

ここで、廃棄物系バイオマスには含まれず、バイオマスの性状は同じであるが廃棄物として 計上されない有価物や、有価では引き取られないが資源化物として回収されるものもある。賦 存量としてこれらを含んでバイオマス量を算定している場合には、これらの利用量を差し引く 必要がある。 これは廃棄物統計でも一部把握できるものもあるが、それを補完するものとして各種のリサイクル関連統計がある。バイオマスのうち有価物として利用されているものの代表として古紙があるが、これは回収ルートとして町内会などで収集して市町村廃棄物担当に渡される集団回収と、民間企業が収集しているものがある。

有価物に該当するものとして、雑紙・雑誌・新聞紙等の紙類、調理残さ等の食品類(残飯ではなく均質な調理残さなどの有価物)が考えられる。これらの利用量については、図 3-2 に示すように集団回収ルート、民間の回収・リサイクル業者ルートなどがある。統計データとして得ることは難しいが、市町村内の回収業者にヒアリング等を行ってその量を把握することが考えられる。

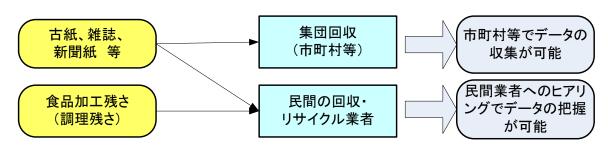


図 3-2 有価物のリサイクルによる利用量の把握

(出所) 環境省『廃棄物系バイオマスの利活用に係わる評価検討業務』、平成 22 年度

(4) 利活用可能量の算定

利活用可能量は、図 3-3 に示すように賦存量から利用量を引いたものである。厳密には廃棄物として排出されたものの利用量と、有価物として再利用されたものの両方を差し引く必要があるが、上記のようにデータの把握が困難な場合には、賦存量から利用量(廃棄後の利用)を引くことで代用するものとする。

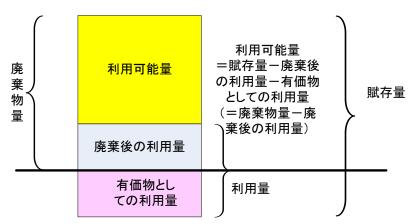


図 3-3 利活用可能量の算定方法

(出所)環境省『廃棄物系バイオマスの利活用に係わる評価検討業務』、平成22年度

3. 2 廃棄物処理体系の整理

分別収集区分、中間処理、最終処分の現状について整理し、現状の一般廃棄物処理システムに おける課題点を整理する。

【解説】

(1) 分別収集区分

廃棄物系バイオマスのうち、一般廃棄物(ごみ)を中心にそれぞれの分別品目の整理を行う。 現状で、廃棄物系バイオマスをどのような分別体系で収集しているかを把握することにより、 新たな分別を行った際の効率性を判断する材料とすることができる。また、処理量が把握できれ ば、バイオマスの賦存量を算定する際の情報となる。

環境省では、現状のごみの収集状況を踏まえて、『ごみ処理基本計画策定指針』(環境省、平成25年6月)において、分別収集のパターンを以下のように分類している。

- ① 類型 I: 資源回収する容器包装は缶、ガラスびん、ペットボトルであり、古紙・布類、燃や すごみ、燃やさないごみ、その他の専用処理のごみ、粗大ごみの分別収集を行っている市町 村
- ② 類型 II:類型 I に加えて、容器包装としてプラスチック製容器包装、紙製容器包装と小型家 電の分別収集を行っている市町村
- ③ 類型Ⅲ:類型Ⅱに加えて生ごみ、剪定枝、廃食油等の資源化のための分別収集を行っている 市町村

ごみ処理基本計画策定指針では、市町村の分別収集の区分の現状が、類型Ⅰ以前の段階のもの、類型Ⅱ、類型Ⅲのものに区分されていることを考慮して類型化したものとしており、市町村がステップバイステップで取り組んでいくものとしている。そして、類型Ⅱまたはこれに準ずる水準の市町村、その他の意欲ある市町村にあっては、さらにバイオマスの有効利用の観点から分別収集区分を見直すこととし、その際には類型Ⅲを分別収集区分の目安とするとしている。

表 3-6 にごみの品目の一覧と分別収集区分の整理イメージを示すが、これをもとにどのようなごみが分別されて収集しているかを表形式でわかりやすく整理することが望ましい。

表 3-6 現状における分別収集区分の整理イメージ

			発生量	自家	集団·店頭		排	出	再生利用	中間処理	最終処分
Ш				処理量	拠点回収量	排出量	収集量	直接搬入ごみ量	量	量	量
	缶	アルミ缶									
容		スチール缶									
#2		無色									
110	(リターナフルびん)	茶色									
包		青・緑									
16.6	その他ガラス	白黒その他ガラス									
装	紙類	紙パック									
廃		段ポール									
-		その他紙製容器包装									
棄	プラスチック	ペットボトル									
物		白色トレイ									
400		その他プラスチック製容 器包装									
	可燃物	紙									
容		生ごみ(厨芥)									
-43*		繊維									
H		剪定枝(草木類)									
器		その他可燃物									
H		プラスチック									
包		ゴム・皮革									
	不燃物	金属									
		ガラス									
装		有害ごみ 蛍光灯									
H		乾電池									
廃		その他									
H		陶磁器・石									
棄		その他不燃物									
来		廃家電(テレビ・冷蔵庫・ 洗濯機・エアコン)									
物		家具(机・タンス等)									
499		布団,マットレス、畳									
		厨房用器具(ガスポンペ等)									
以		自転車									
		その他粗大ごみ									
外	特別管理	PCBを含む製品									
21	一般廃棄物	ばいじん									
		感染性一般廃棄物									

(2) 一般廃棄物量、廃棄物の質の把握

一般廃棄物処理基本計画等より、現状及び将来の目標時点の一般廃棄物量と廃棄物の質(ごみ質)を把握する。

ごみの分別収集により、ごみの発熱量の変化などを把握することで、廃棄物処理の改善方針と 廃棄物系バイオマスの利活用の方針が整合するかどうかを判断することも必要である。

廃棄物組成ごとの発熱量は、地方自治体でのごみ発熱量分析結果より求めるが、品目の分別が行われていない場合には、表 3-7 に示すような平均的な発熱量を用いることも可能である。なお、バイオガス化に投入した廃棄物の発酵残渣やバイオガス化に投入しなかった廃棄物を併せて焼却するメタンコンバインドシステムを導入する場合には、バイオガス化に併設する焼却施設において焼却するバイオガス以外の廃棄物(プラスチック類等)の発熱量も考慮する必要がある。

表 3-7 廃棄物の組成(3成分)と発熱量

	組	1成(%)	1	発熱量	発熱量の算定根拠
	水分	可燃分	灰分	(MJ/kg)	元杰里沙奔足低顶
食品系バイオマス	70. 0	28. 0	2. 0	5. 2	生ごみの乾重量当り発熱量は上記「Fact Book 2000」より、17.3MJ/kgであり、含水 率70%として5.2MJ/kgと算定。
紙系バイオマス	10. 0	85. 0	5.0	15. 1	紙系バイオマスの乾重量当り発熱量は 「Fact Book 2000」より、16.8MJ/kgであ り、含水率10%として15.1MJ/kgと算定。
木質系バイオマス	35. 0	60.0	5. 0	11.9	木質系バイオマスの乾重量当り発熱量は「Fact Book 2000」より、18.3MJ/kgであり、含水率35%と して11.9MJ/kgと算定。
繊維系バイオマス	10.0	85. 0	5.0	15. 1	繊維系バイオマスの乾重量当り発熱量は紙と同程 度とし、15.1MJ/kgと算定。
下水汚泥 (脱水汚泥ベース)	80. 0	16. 0	4.0	3. 2	下水汚泥の乾重量当り発熱量は16.0MJ/kg(下水道事業団資料)であるので、これに含水率80%として3.2MJ/kgと算定。
し尿・浄化槽汚泥	80. 0	16. 0	4.0	3. 2	下水道汚泥と同程度と仮定
動物の糞尿(産廃)	90. 0	4.5	5. 5	1.7	動物の糞尿の乾重量当り発熱量は豚の発熱量 4,105kcal/kg(第18回エネルギーコンファレンス) であり、これに含水率90%を考慮して算定。
動物の死体(産廃)	90. 0	4.5	5. 5	0.9	動物の死体の乾重量当り発熱量は、食品廃棄物の発熱量2,240kcal/kg(バイオマス特性データ)、含水率90%として算定。

注)熱量は湿重量当りの低位発熱量として表示。

(出所)環境省『廃棄物系バイオマスの利活用に係わる評価検討業務』、平成22年度

(3)中間処理方法

廃棄物系バイオマスを中心にそれぞれのごみ種別ごとの中間処理方法について整理する。

ここでは、それぞれの中間処理施設の処理量、能力、稼動年数、稼働率等を整理し、現行の廃棄物処理体系の課題等について把握することが重要である。

その上で廃棄物系バイオマスの利活用を行うとした場合に、現行の処理施設への影響、処理施設の更新・拡張等におけるメリット・デメリットを把握できるように整理する(一例として表 3-8 を参照)。同表はバイオガス化対象のごみ種別を仮定し、バイオガス化の対象ごみと他の中間処理施設のごみ処理量を把握した上で、その稼働率をもとにバイオガス化導入における施設の課題を整理することを意図したものである。なお、バイオガス化と他の中間処理のごみ処理量を算定する際、バイオガス化対象のごみが全てバイオガス化処理量となるわけではなく、分別収集における協力率、機械選別における選別残渣率などを考慮して算定することが必要である(協力率、選別率については第4章及び第5章を参照)。

バイオガス化の具体的なメリットとしては、現行の焼却施設の稼動年数が経年化していることやその稼働率が高い場合に、バイオガス化と焼却施設のコンバインド処理を行うことにより焼却施設の処理量を減らして拡張時期を遅らせることや、既存の生ごみを利用した堆肥化施設の老朽化が進み維持管理費が増大している場合などに、バイオガス化に切り換えることによる経費の削減効果等が考えられる。

なお、バイオガス化に移行する場合に考慮すべき既存中間処理施設への影響については、発酵

残渣を焼却処理しない場合においては、含水率の高い生ごみ(厨芥類)が除かれることで、焼却対象ごみの発熱量が高くなり、焼却炉内の温度が上昇することがある。なお、この影響については第5章での施設検討において、焼却施設への投入ごみの熱量を算定する箇所を参照されたい。

表 3-8 ごみ種別の中間処理施設の状況

	ごみの種別	排出量	分別収集区分	処理施設	処理能力	稼動年数	稼働率
	ガラスびん						
	アルミ缶・スチール缶						
資源ごみ	ペットボル						
貝別この	プラスチック製容器包装						
	紙製容器包装						
	古紙類•布等						
	紙						
およし	厨芥類						
燃やすごみ	布•繊維						
07	廃プラスチック類						
	木•竹草類						
.bb 14.2-4.	金属類						
燃やさな いごみ	ガラス・陶磁器						
いこの	雑物等						
	電池・蛍光管						
	家電4品目						
その他	小型家電						
	広域認定制度に基づく処理・パソコ ン二次電池・廃 消火器 等						
粗大ごみ	家具類 等						
特別管理	廃家電製品に含まれる PCBPCB 使用部品						
	感染性一般廃棄物						
物	一定のごみ焼却施設から生ずるばいじん				7 TO		

注)ごみ処理基本計画策定指針(環境省、平成25年6月)の分類にしたがって整理

表 3-9 バイオガス化移行を仮定した場合の中間処理施設の稼働状況

				燃やすごみ						
				厨芥類	木·竹·草 類	布•繊維	廃プラス チック類			
		排出量								
	処	<u>l</u> 理施設			焼却施設					
現行	処理能力									
	処理量									
	稼働率									
	排出量									
	処理施設		バイオガス化新設施設			焼却施設				
バイオガ	処理能力									
ス化移行	hn TEE	バイオガス				_	_			
後	処理 量	焼却								
		合計		•						
	;	稼働率								

注)バイオガス化対象ごみのうち、分別収集の協力の度合い、機械選別による選別 率等により他の中間処理施設にまわる量を考慮する必要がある。

(4) 最終処分

中間処理後の残さ等の最終処分の状況を整理する。最終処分状況の整理においては、施設の諸元、残余容量(残余年数)、増設の必要性などを整理する。また、最終処分率等についても整理し、計画目標の達成度を評価する。

廃棄物系バイオマスの資源化が進むことにより、最終処分に回る廃棄物量も減少する可能性があり、現在の最終処分の残余容量を把握しておくことは非常に重要となる。

3. 3 資源化物等の需要量の把握

資源化物の需要量は、まず資源化物の特徴から需要の範囲を想定する。次に、需要の範囲に基づいて、地域の産業構造などをもとに需要量の推計を行う。この需要量の推計により、 当該地域の廃棄物系バイオマス利活用の可能性が把握できる。

【解説】

資源化物の需要は、資源化物の特性に応じて対象範囲が異なる。

表 3-10 に示すように、電力は事業所内(発酵処理施設部分)での需要を超える場合は売電を行うことができる。基本的に電力需要の上限はないと考えられるが、FIT(固定価格買取制度)に基づいて売電を行う場合、その売電量が地域の受電設備の容量を超えるものでないかを確認する必要があり、超える場合、売電をする事業者の負担で受電設備を整備する必要がある。

一方、熱エネルギーの場合は熱損失が大きいため、事業所内とその近隣の事業所への供給まで と考えるのが妥当である。また、発酵残渣については、当該自治体や周辺市町村の農地が需要量 想定範囲となる。

需要量想定の対象範囲 必要な品質 隣接町村 周辺地域 市内 県内等 事業所内での利用、余剰分は周辺事業所または電力会 安定な供給 ①電力エネルギー 社に売電 周辺事業所 必要熱量 ②熱エネルギー 供給 所内利用、CNG車両、ガス 純度、必要熱量 ③気体燃料(メタン・水素) 事業への卸売等 自治体内(焼却施設)が中 必要熱量、発火点等 4固体燃料 当該自治体及び周辺市町村の耕地へ供 肥料取締法等での基準 ⑤肥料(堆肥,液肥)

表 3-10 資源化物の需要量想定の範囲

(出所) 環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成 22 年度

需要想定の範囲を明確にしたうえで、地域特性をもとに需要量の推計を行う(図 3-4)。ただし、需要は競合する製品との関連や流通販売の方法で大きく変わりうるが、ここでは大まかな検討を行うための推計と位置付ける(利活用システムの設計の段階で詳細な検討を行う)。需要想定における需要量算定の方法を以下に示す。

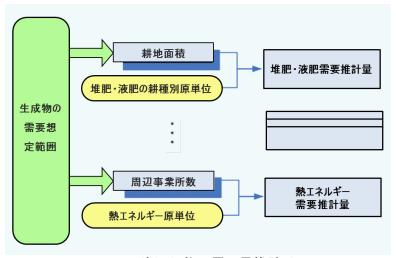


図 3-4 資源化物の需要量推計手順

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成22年度

(1) 電力

電力は所内利用と売電が考えられる。所内利用の場合は、既存の施設の電力設備の容量、さらに新設するバイオガス化設備の電力容量を合算することで、需要量を算定することができる。

売電の場合は、地域電力グリッド(一般電気事業者)に売電する場合と、近隣の特定の需要者に売電する場合(特定電気事業者、特定規模電気事業者)がある。前者の場合は基本的には需要に制限はないが、電力会社の送電網の整備状況によっては系統連系のための整備費が大きくなることに留意する必要がある。したがって、事前に管轄の電力会社営業所にヒアリングするなど、地域の電力設備状況を調査しておくことが必要となる。

後者の特定電気事業者の場合は、限定された区域に対し、自らの発電設備や電線路を用いて、電力供給を行う事業者であり、特定規模電気事業者は特別高圧・高圧受電による契約電力 50 k W 以上の需要家で一般電気事業者の管理する送電線を通じて小売する事業者である。いずれも特定の需要者を対象に送・配電するものであるので、対象となる需要者を選定して、その電力需要を算定することが必要である。

(2) 熱

発電が効率的でない場合にバイオガスをボイラ等で直接利用する場合と、バイオガス化施設の 発電廃熱を利用したコジェネレーション設備により熱エネルギーを利用する場合がある。熱需要 は、近隣の工場、宿泊施設、保養施設、施設園芸ハウスなどでの利用が考えられるが、熱の損失 を考慮した検討が必要である。

熱需要の算定については、個別の設備の熱負荷のデータがある場合はそのデータを用いて算定する。そのようなデータがない場合は各種文献に示された面積当りの熱負荷に面積を乗じて算定することができる。熱負荷原単位については一例を表 3-11 に示す。

熱需要量 = \sum 熱負荷原単位 imes 施設別の面積

表 3-11 施設ごとの熱負荷原単位の一例

(1)最大負荷原単位

			業務施設 (標準型)	業務施設 (OA 型)	医療 施設	宿泊 施設	商業 施設	スホ [°] ーツ 施設	住宅	駐車場
電力]負荷	W/m ²	50	71	50	50	70	70	30	20
熱	給湯	kJ/m²∙h	58.7	58.7	167.4	418.7	83.9		67.0	0.0
負	暖房	kJ/m²∙h	209.2	142.2	343.1	280.4	334.8	439.6	125.6	0.0
荷	冷房	kJ/m²•h	376.9	443.9	376.9	313.9	502.2	439.6	167.4	0.0

(2)年間平均熱負荷原単位

			業務施設 (標準型)	業務施設 (OA 型)	医療 施設	宿泊 施設	商業 施設	スホ [°] ーツ 施設	住宅	駐車場
電力	〕負荷	W/m²	156	189	180	200	226	250	21	102.2
熱	給湯	kJ/m²∙h	9.4	7.6	334.8	334.8	96.1		125.6	0.0
負	暖房	kJ/m²∙h	129.6	247.0	309.6	334.8	146.5	339.1	83.9	0.0
荷	冷房	kJ/m²∙h	293.0	552.6	334.8	418.7	523.1	339.1	33.5	0.0

(出所)都市ガスによるコジェネレーションシステム計画、設計と評価(空気調査衛生工学会)

(3) 気体燃料

気体燃料としては、バイオガスを精製したメタンガスと、メタンガスを改質した水素の利用が 想定される。

メタンガスの利用形態として場内利用、都市ガス原料としての利用、CNG 燃料としての利用、ガス事業への導管注入がある。ガス需要は近隣に都市ガス企業がある場合に都市ガス原料の利用、 導管注入の場合が最も大きく、場内利用は小さい。なお、CNG 燃料は一般的には CNG 車に用いられていることが多いが、その普及が全国で3.4万台(2012年度)などに見られるように、現状ではその需要規模は小さい。

都市ガス燃料、ガス導管注入の場合は、近隣に都市ガス事業者が存在することが必要である。 都市ガス事業者は全国に 209 箇所あり (2012 年 10 月末)、その事業の供給規模、対象区域等を把握した上で、需要量を算定する (ガス事業については第5章5.3を参照)。

都市ガス事業へのメタンガスの供給については、ガス事業者が定める受け入れ基準を満たす必要があり、その条件を確認して需要の想定を行う必要がある(受け入れ基準については 5.3 参照)。 水素の利用の場合は、現在のところ実験的に水素エネルギーが利用されているため、これらの実証活動と連携した需要先確保が必要でである。

(4) 固体燃料

固体燃料としての利用は、焼却施設の助燃材として所内利用、または自治体内の他の事業の焼 却施設への供給が考えられる。

乾式メタン発酵のコンバインドシステムの場合は、発酵残渣は隣接する焼却炉にて燃焼することを前提に計画されており、所内利用として利用する典型的なケースである。この場合、要求される品質は含水率、灰分などの組成が求められるのみであるが、他事業での利用の場合は燃料としての性能を求められ、そのための品質管理にコストがかかる可能性がある。メタン発酵後の発

酵残渣から生成される燃料のため発熱量も少ないため、他の事業での利用の可能性は低い。

(5) 肥料(堆肥、液肥)

1) 堆肥

堆肥の需要量としては、表 3-12 に示すように堆肥の需要先である耕地面積に堆肥需要原単位を乗じて算定することができる。

堆肥の利用には耕種農家など利用する側の意向が大きく影響し、また個々の利用者により意向に大きな差がある場合もあるため、農家から求められる量や品質、価格を聞き取り、実際の利用可能量、競合する堆肥についても整理しておく必要がある。

また、地域や作物、栽培方法によって施用すべき堆肥・液肥の量や質が異なること、運搬・散布に手間や専用の機械などを要するほか、散布には季節性があり、これらが実際の利用可能量を制限することも多いため、運搬・散布体制や、散布時期までの堆肥・液肥の保管場所等もあわせて把握しておく必要がある。

堆肥需要量 = \sum 堆肥需要原単位 × 需要先の面積等 (t/B) $(t/B \cdot 10a)$ (10a)

表 3-12 堆肥需要原単位の一例

土	壌の種類	圃場	施用形態	施用量t/10a
低地土	細粒質土	湿田	堆肥	0.6
		乾田	堆肥·厩肥	1 以上 2 以下
	中粗粒質土	湿田	堆肥	0.6
		乾田	堆肥•厩肥	1 以上 2 以下
	れき質土	乾田	堆肥・厩肥	1 以上 2 以下
台地土	細粒質土	湿田	堆肥	0.6
		乾田	堆肥・厩肥	1 以上 2 以下
	中租粒・れき質	湿田	堆肥	0.6
,	黒ボク土	湿田	堆肥	0.6
		乾田	堆肥•厩肥	1 以上 2 以下

(出所) 新潟県における土作りから抜粋

2) 液肥

液肥は発酵後の消化液を処理せずそのまま利用することができるため、資源化物としては低コストで利用できるものであるが、農家の協力が不可欠であるため、その調査を行って需要量の算定を行うことが必要である。

堆肥、液肥の需要の想定にあたっては、化学肥料との併用も想定されるため、過剰な施肥によって窒素汚染が生じないよう、適切な施肥量を施用することが必要である。なお液肥の場合、散布方法や成分等の不明な事項も多いため、資料編に説明を加えたので、参考にされたい。

参考として、九州地方の圃場での液肥散布量の事例から表 3-13 に示す。

液肥需要量 = 液肥需要原単位 × 協力可能な農家の耕地面積 (k L/D) $(k L/D \cdot 10 a)$ (10 a)

表 3-13 液肥の施肥量の例

		10a当りの施肥量	施肥時期		
水稲			荒代かき期に土壌表面に施用するか苗活着後(田植		
(麦跡)			え後1週間程度)に流し肥として施用		
	追肥	1kL 程度	流し肥として施用(出穂期2週間前を目途に)		
水稲	元肥	堆肥1t程度	田植えの1ケ月以上前		
(麦跡以外)	追肥	1kL 程度	流し肥として施用(出穂期2週間前)		
麦	元肥	3kL 程度	土壌表面施用:作付前		
	追肥	1.8kL 程度	土壌表面施用:2 月中~下旬		

(出所)メタン発酵消化液の液肥利用マニュアル、(社)地域資源循環技術センター

なお、バイオガス化後の発酵残渣の消化液利用の事例として、表 3-14 に大木町、山鹿市、富山グリーンフードリサイクル(株)の事例を示す。大木町、山鹿市では水稲及び麦の元肥として利用し、富山の事例では堆肥の発酵用スラリーとして活用している。効果としては多くの項目が挙げられているが課題は散布に関するものが多い。

表 3-14 液肥利用の事例

	次 0 1.1 (火油の4.4/10の上)3						
		大木町	山鹿市	富山グリーンフード(株)			
原料バイオマス(t/日)		31.0	36.5	34.9			
内	生ごみ(一廃)	3.1	1.0	17.5			
訳	し尿(一廃)	27.9					
(t/	食品残渣(産廃)			17.4			
日)	家畜糞尿(産廃)		35.5				
液肥使用量		実績 4,758(m³ /年間) 計画 6,000(m³ /年間)	26.6 (m³/日) 9,722 (m³ /年間)	8(t/日)			
液肥の利用用途		•水稲元肥: 25ha,3000 m³ •麦元肥: 25ha,3000 m³	・水稲∶3.5m³/10a ・麦∶4.8m³/10a	消化液を堆肥の発酵用スラリーとして利用。堆肥原料は消化液の排水処理後の汚泥と剪定枝			
利用効果		ビタミン(B12,C)が豊富/ 腐植質が多い(土づくり効 果がある)/緩効、速効性 肥料両方の性質がある/ 病害虫、糸状菌の防除効 果がある	温室効果ガスの削減/経費の削減(メタンガスの利用による)/ごみの減量化/農業の活性化/土づくりの促進/家畜排泄物利用による環境保全等	消化液を入れることで、 窒素、カリなどの成分が 改善し、肥料としての価 値が高まる			
問題	点	町が散布する経費	散布経費の削減				

(出所)本調査でのアンケート調査結果、平成23年度廃棄物系バイオマス推進事業調査、環境省

4. 利活用案の設定

4. 1 廃棄物系バイオマスの利活用目的の設定

廃棄物系バイオマスの資源化を行い、地域における利活用を行うための目的を設定する。 目的に応じて、利活用の目標や計画案の評価内容を変えることが必要である。

【解説】

ここでは、前節までに整理した当該地域におけるバイオマスの賦存量、産業構造、廃棄物処理 の体系をもとに、まちづくり方針(総合計画、地域振興計画)やバイオマスの取組状況、地域の 課題等を整理したうえで、バイオマス利活用の目的を設定する。

- ●まちづくり方針 総合計画、地域振興計画、まちづくり計画
- ●廃棄物系バイオマスに係わる既存計画 環境基本計画、一般廃棄物処理基本計画、循環型社会形成推進計画、下水道事業計画
- ●バイオマスの取組状況 対象資源、変換技術、その活用方法 その規模と運営主体、導入時の活用制度 各主体の参加状況、参加主体の評価(評判)、今後の課題
- ●地域の課題

市民生活の向上

産業動向(農林水産業の発展、新産業・雇用創出など) 環境・エネルギー等(エネルギー創出、環境負荷削減など)

バイオマスの利活用における目的は、以下のものが考えられる。

- ① 地球温暖化の防止
- ② 循環型社会の形成
- ③ 農林漁業、農山漁村の活性化、地域力の向上
- ④ 競争力のある新たな戦略的産業の育成

地域の特性を考慮して、当該地域の利活用を行うための目的を設定する。目的に応じて、利活用の目標や計画案の評価内容を変えることが必要である。その達成度を確認するには、表 4-1 に例示するように、それぞれの目標に対応したより詳細かつ具体的な目標設定を行い、様々な指標を用いて評価することが必要である。

表 4-1 利活用目的の設定と具体的な行動指標の一例

	具体的な行動	指 標
1. 地球温暖化防止	GHG の削減	CO ₂ 削減量
2. 循環型社会の形成	バイオマス活用の推進	バイオマス利用率
	3R の推進	リサイクル率
		エネルギー回収率
		最終処分量の削減量
3. 農山漁村の活性化	エネルギー素材供給	電気、ガス、熱供給量
	液肥の供給	既存商品代替量(肥料代替等)
	家畜排せつ物の適正処理	家畜排せつ物の適正処理量
4. 地域力の向上	行政コストの削減	売電量、売電収入、処理コスト削
	防災機能の充実	減
	コミュニティの活性化	災害時受入れ可能人数、自家発
		電能力
		液肥による緑地創出・保全
5. 戦略的産業の形成	バイオマスによる産業創出	新技術の実用化・商用化件数
		雇用創出人数

また、上記の目標達成を目指すとした場合、現状のまちづくり方針や、廃棄物系バイオマスに 係わる既存計画に、その方向性が示されていない場合には、これらの方針や計画を刷新すること が望ましい。バイオガス化を導入した自治体における上位計画等での位置づけ例を表 4-2 に示す。

表 4-2 上位計画におけるバイオガス化の位置づけ例

		<u> </u>
自治体名	上位計画名	バイオガス化の位置づけ
	京都市循環型社	「ごみ量をピーク時の半分以下に減らす」という目標達成に向けた5つの
京都市	会推進基本計画	重点戦略の一つとして「バイオマスの利活用」を掲げ、その具体策として、
	(2009-2020)	バイオガスによるエネルギー回収を挙げている。
	長岡市一般廃棄	一般廃棄物処理基本計画では、重要課題として、「ごみを利用したガス化
	物処理基本計	や発電、焼却熱の利用など、ごみを有効な利用エネルギーとして活用」す
長岡市	画、長岡市総合	ることを記載。
	計画	総合計画には、基本計画の施策内容として、生ごみの資源・エネルギー
		化事業を進めることを記載。

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書

4. 2 バイオガス発生量、生成物量の見通し

バイオマス活用事業を実施するにあたり、事業の継続性を確保するためには生成物の需給バランスを確認することが重要である。

廃棄物系バイオマスの賦存量(排出量)と生成物の需要推計量から、想定する生成物の需給 バランス(マテリアルバランス、エネルギーバランス)を算定する。

【解説】

廃棄物系バイオマスの賦存量(排出量)から、バイオガス化を適用した場合の生成物量を推計する。推計方法は、ここではバイオガス化施設、バイオマスの収集方法、資源化方式が決まっていないため、概略量を把握できる方法とする。算定方式の一例を以下に示す。

(1) バイオガス発生量

バイオガス発生量は下式に示すように、前節(4)で把握したバイオマスの利用可能量に、投入率、バイオガス発生原単位(バイオマス湿重量当りのバイオガス発生量)を乗じて算定することができる。文献によればバイオマス発生原単位は表 4-3 のとおりであり、バイオマスにより大きく異なっている。ただし、アンモニア濃度が高い場合には発酵阻害が生ずる場合があり、その場合は発生量が減少する。表 4-3 にバイオマス種別のバイオガス発生原単位を示し、表 4-4 に現在稼働中のバイオガス施設のバイオガス発生原単位を示す。

なお、バイオマスの投入率とはバイオマス利用可能量に対して、分別収集による収集可能な量 (住民の協力率)や機械選別により発酵適物として選別(機械選別率)されたものの割合を示す。

バイオガス発生量= \sum {バイオマス利用可能量×投入率×バイオガス発生原単位 } (Nm³/日) バイオマス種別 (t/日) (-) (Nm³/t)

投入率:廃棄物系バイオマスの分別収集への協力率、機械選別機による選別率等

表 4-3 バイオマス種別の重量当りバイオガス発生量

	バイオガス発生 原単位(Nm³/t)	メタン濃度 (%)	出所
食品廃棄物	150	50~60	循環型社会形成推進交付金の交付標準値
ホテル厨芥	175	55 ~ 60	バイオガス研究会、京都バイオガス化技術実証プラント実証試験報告書
紙系廃棄物	490	55 ~ 60	同上
草木系廃棄物	85	55 ~ 60	同上
豚排泄物	19~34	65 ~ 75	バイオマス再資源化技術の性能·コスト評価、農工 研技法 204、2006 年
乳牛排泄物	15~30	55 ~ 60	同上
下水汚泥	12~14	57 ~ 63	下水処理場へのバイオマス(生ごみ)受け入れマニュアル、下水道新技術推進機構、2011年3月

表 4-4 バイオガス発生量の実績

事業	稼動	処理能力	対象	処理実績	処理方式	バイオガス 発生量	ガス 発生原単位
所	開始年	(t/日)	バイオマス	(t/日)		(m³/日)	(m^3/t)
А	H24.4	34	生ごみ 紙 廃食用油 下水汚泥 水産汚泥	12	湿式中温	1,121	94.8
В	H15.8	55	家庭系生ごみ 事業系生ごみ	22.9	湿式中温	2,596	113.4
G	H18.4	110	事業系生ごみ その他産廃	83	湿式中温	17,000	204.8
Н	H25.4	55	家庭系生ごみ 事業系生ごみ	31	湿式中温	5,389	173.8
J	H17.3	7.14	家庭系生ごみ し尿汚泥	5	湿式中温	436	87.2
N	H18.10	17.8	家庭系生ごみ 事業系生ごみ し尿汚泥	15.3	湿式中温	385	25.2
0	H17.3	9	生ごみ	6.0	湿式中温	112	18.7
Р	H18.4	80	家庭系生ごみ 事業系生ごみ 下水汚泥 畜産糞尿 その他産廃	56.6	湿式中温	3,405	60.2
S	H15.4	30	家庭系生ごみ 事業系生ごみ その他産廃	26.26	湿式中温	5,278	201.0
С	H15.4	16	家庭系生ごみ 事業系生ごみ	6.8	湿式高温	670	98.2
D	H15.4	22	家庭系生ごみ 事業系生ごみ	7.6	湿式高温	1,645	216.4
Т	H15.4	40	家庭系生ごみ 事業系生ごみ その他産廃	24	湿式高温	3,000	125.0
К	H16.3	50	事業系生ごみ 下水汚泥 その他産廃	15.35	乾式	2,009	255.9 ^注
L	H25.9	36	家庭系生ごみ 事業系生ごみ 紙類	20.2	乾式	3,300	192.5 ^注
М	H26.4	51.5	可燃ごみ し尿下水汚泥 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51.50	乾式	5,580	175.2 ^注

(出所)平成 26 年度廃棄物系バイオマス利活用導入促進事業調査報告書、環境省

注)乾式メタン発酵のメタンガス発生原単位はメタン濃度 50%値への換算値である。また、M はし尿・下水汚泥を除いた可燃ごみ量に対してのガス発生量である。詳細は図 5-5 を参照。

実際に自治体において分別収集を行いその協力率を算定した実績を表 4-5 に示している。これは環境省等が実施したモデル事業での数値であり、比較的規模の小さい地域の住民を対象としており、比較的協力率が高い。これらの協力率の設定にあたっては、モデル事業での分別収集調査やアンケート調査などにより把握することが望ましい。

また、可燃ごみからの機械選別率については、表 5-3(1)を示したので、参考にされたい。

表 4-5 分別収集協力率の一例

(単位:%)

	A 市a地区	A 市b地区	В町	C 組合
生ごみ	79.5	67.8	93.4	
生ごみ、紙ごみ、草木類				74.5

(出所) 平成 22 年度環境省廃棄物系バイオマス次世代利活用推進事業調査報告書

(2) 発酵残渣、消化液量

廃棄物系バイオマスの発酵後に生成されるものは、発酵残渣(消化液)である。発酵残渣は原料バイオマスに希釈水が投入され、メタン発酵過程で有機物分が分解されて発酵槽から排出されたものであるが、その量は投入するバイオマスの種別、メタン発酵方式により異なる。簡便な方法でその量を把握するための方法として、下に示すように廃棄物処理量に発酵残渣率を乗じて算定することができる。メタン発酵方式、投入バイオマスの種別の発酵残渣率の実績を表 4-6 に示す。

発酵残渣(消化液)量 = 投入ごみ量×発酵残渣の発生率 (m^3/E) (t/E) (m^3/t)

表 4-6 発酵残渣(消化液)の発生量実績

メタン発 酵種別	事業名	廃棄物処理量 ①(t/日)	発酵残渣量 ②(t/日)	発酵残渣発生 率②/① (m³/ t)	投入廃棄物 の種別
	G	83	150	1.81	事業系生ごみ、その他産廃
;;;; -1 :	I	35	28	0.80	家庭系生ごみ、し尿汚泥
湿式 中温	S	26.3	20.3	0.77	食品廃棄物(家庭・事業系),その他産廃
.1.7	N	15.3	14	0.92	食品廃棄物、し尿下水汚泥
	Р	56.6	82.5	1.46	食品廃棄物、下水汚泥、畜産糞尿
2E	С	6.8	11.6	1.71	食品廃棄物(家庭・事業系)
湿式 高温	D	7.6	24	3.16	食品廃棄物(家庭・事業系)
10171111	Т	24	32	1.33	食品廃棄物(家庭・事業系),その他産廃
	K	15.35	21	1.37	事業系生ごみ、下水汚泥、その他産廃
乾式	L	20.2	37.2	1.84	可燃ごみ(食品廃棄物、紙類)
	М	51.5	63.52	1.23	可燃ごみ、し尿・下水汚泥

(出所) 平成 26 年度廃棄物系バイオマス利活用導入促進事業報告書、環境省

(3)発電電力量

発電電力量は以下の式によって算定される。すなわち、(1)で算定したバイオガス発生量に、メタン濃度、メタン発熱量、発電効率を乗じることで算定する。

廃棄物系バイオマスの種別のメタン濃度は表 4-3 に掲載しており、これを参考に設定する。

発電効率は発電機の種別によって異なる。発電方式別にマイクロガスタービンは20~30%、デュアルフューエルエンジンは30~35%、ガスエンジンは30~40%、燃料電池は40%程度などとされている(ごみ処理施設整備の計画・設計要領、2006改訂版、全国都市清掃会議)。発電機の種別等の設備諸元を決定する前の構想段階では、概ね30%程度の数値を用いることが多い。

発電電力量=バイオガス発生量 × メタン濃度× メタン発熱量 × 発電効率 ÷ 3600 (kWh/日) (Nm³/日) (-) (MJ/m³) (-) (MJ/kWh) メタン発熱量=37.18MJ/m³

(4) 熱量

メタンガスを燃焼させて直接熱利用する際の最大利用可能熱量は以下の式で算定される。すなわち、(1)で算定されたメタンガス発生量にメタン熱量、ボイラ効率を乗ずることで算定する。ボイラ効率は概ね80%程度を設定する。

実際には、熱利用の場所により熱の輸送過程で損失を生ずるので、熱利用場所までの距離が近いことが重要となる。以下の熱量は基本的には場内または隣接施設での熱利用としてとらえるべきであり、場外への利用可能熱量は熱損失を考慮して決定する必要がある。

最大利用可能熱量 =メタンガス発生量 × メタン発熱量 × ボイラ効率 (MJ/日) (Nm³/日) (MJ/m³) (-)

なお、発電と同時にその廃熱も利用するコジェネレーションシステム (CGS) の場合、発電後の比較的温度が低い熱を空調、給湯等に利用することで、熱の総合的な利用を図ることができる。コジェネレーションマニュアル (日本コージェネレーションセンター) によれば電力需要と熱需要が適切に組み合わされ両方使い尽くした場合では廃熱で入力エネルギーの 45%の利用ができるとされており、上記のメタンガス発生量の熱量にこれらの割合を乗ずることで算定が可能である。また、バイオガスを利用するコジェネレーションシステムも販売されており、総合熱利用効率80% (発電効率 32%、熱回収率 52%、総合効率 84%) をうたっているものもある。

4. 3 資源化物等の需給バランスの検討

利活用事業を実施するにあたり、事業の継続性を確保するためには資源化物の需給バランスが最も重要である。

廃棄物系バイオマスの賦存量(排出量)と資源化物の需要推計量から、想定する資源化物の需給バランスを算定する。

【解説】

(1) 需給バランスの算定方法

推計された資源化物供給可能量と資源化物の需要推計量から、想定する資源化物の需給バランスを算定する。

資源化物需給バランス = 資源化物供給可能量 - 資源化物需要量

上記の計算によって需給バランスが正の場合は、需要量が供給可能量よりも少ないため、生成物の余剰が発生する可能性があり、その場合、生成物の適正処理を行う必要がある。

生成物として電気を想定した場合、既存の電力網への系統連携をすればよいが、既に地域の受電施設の容量に余裕がない場合には、他の方法(特定電気事業など)を検討する必要がある。

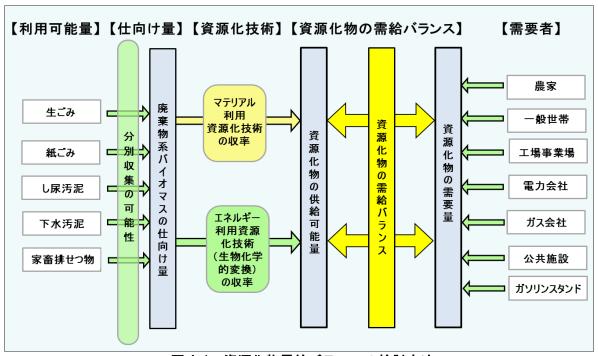


図 4-1 資源化物需給バランスの検討方法

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成22年度

また、生成物としてガスや熱を想定した場合、供給可能量よりも需要量が少ないと、未利用のまま外部環境に放出することになる。さらに、発酵残渣については、液肥や堆肥原料としての需要量が供給可能量よりも少ない場合には、排水処理施設を整備して下水処理するか、焼却施設に持ち込んで処理するなどの対応が必要になる。

なお、廃棄物系バイオマスから資源化技術別の平均収率は、各資源化技術の性能表をもとに設定することとする。表 4-3 に示したバイオマス種別の重量当りバイオガス発生量等をもとに、廃棄物系バイオマスを原料として電気、熱エネルギーを生み出す場合の標準的なエネルギー量(収率)を図 4-2 に示す。

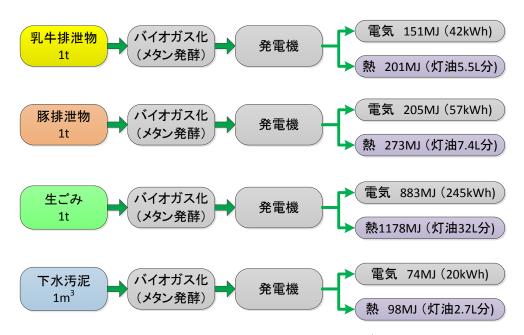


図 4-2 廃棄物系バイオマスからのエネルギー変換

4. 4 対象バイオマス、対象地域、生成物利用等の決定

地域での需給バランスと資源化技術の効率性等の評価をもとに、対象とする廃棄物系バイオマスと生成物の利用方法を選定する。

また、広域化を考慮して複数自治体を対象とした場合には、ここで対象地域について決定する。

【解説】

(1)対象バイオマス、生成物利用の決定

対象とする廃棄物系バイオマスの候補およびバイオガス化施設を選定する。地域での需給バランスとバイオガス化施設の効率性等の評価を行う。

廃棄物系バイオマス活用ロードマップ(平成25年6月、環境省大臣官房廃棄物・リサイクル対 策部廃棄物対策課)では、主に原料バイオマスの供給可能量の視点から、表4-7に示すように、 都市規模別のバイオマス活用の導入見込みが高いパターンを示している。これによると、大都市 や地方中心都市では、食品廃棄物や、食品廃棄物と紙ごみを対象としたシステムの導入が期待さ れ、小規模都市や農山漁村では、食品廃棄物と他のバイオマス(し尿、下水汚泥、家畜排せつ物) の混合処理による導入拡大が提案されている。

表 4-7 都市規模別のバイオマス活用の導入見込みが高いパターン(再掲)

<u> </u>	門院侯別のハイオマス石用の等八元のかが同じハメーク(丹桐)
都市区分	主要な利用モデル
	● 食品廃棄物(又は食品廃棄物+紙ごみ)分別収集→バイオガス化(残渣焼
大都市	却)
	● 可燃ごみ収集→機械選別→バイオガス化(残渣焼却)
	● 食品廃棄物(又は食品廃棄物+紙ごみ)分別収集→バイオガス化(残渣焼
	却)
地方中心都市	● 可燃ごみ収集→機械選別→バイオガス化(残渣焼却)
	● 食品廃棄物分別収集→バイオガス化(残渣焼却)【他のバイオマスとの混
	合処理】
	● 食品廃棄物分別収集→バイオガス化(残渣焼却又は肥料化)【広域的な処
	理】
│小規模都市 │	● 食品廃棄物分別収集→バイオガス化(残渣の肥料化)【他のバイオマスと
	の混合処理】
# 1.1/7 ± 1	● 食品廃棄物分別収集→バイオガス化(残渣の肥料化)【他のバイオマスと
│農山漁村 │	の混合処理】
受皿起源(ユー	● 可燃ごみ収集→炭化→燃料利用(電力会社等における化石燃料代替)
ザー立地地点)	● 食品廃棄物分別収集→液体燃料化→輸送燃料利用

⁽出所)『廃棄物系バイオマス活用ロードマップ』(平成25年6月、環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課)

(2) 広域化を考慮した検討

1)対象自治体の選定手順

廃棄物系バイオマスの利活用の対象となる自治体候補の設定手順を図 4-3 に示す。

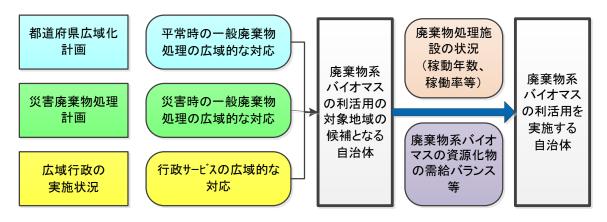


図 4-3 廃棄物系バイオマス利活用の対象自治体の選定手順

2) 対象地域の候補となる自治体の設定

まず、都道府県において廃棄物処理における広域化計画が策定、改定されている場合、それを 参考に対象自治体を設定する。また、災害廃棄物処理計画が策定済みの場合も広域的な処理を念 頭に作成されているため、これらも広域化自治体の候補を設定する参考にすることができる。

ただし、既存廃棄物広域化計画は主として焼却施設を対象としたダイオキシン対策を中心とした計画であるため、廃棄物系バイオマスの利活用とは視点が異なることから、バイオマスの利活用から広域的な対応を検討することも必要である。

そのため、他の想定される検討対象地域を設定するために、以下の様々な広域行政サービスの 実施状況(広域行政圏)を調査する。

- · 水道事業
- 下水道事業
- •消防、警察事業
- 教育、福祉事業
- ・ごみ処理、し尿処理
- •病院、介護事業

都道府県広域化計画、災害廃棄物処理計画、広域の行政サービスの実施状況を整理するイメージを表 4-8 に示す。これらの結果、同表の結果より共通の行政サービスを行っている数の多いところを抽出して、対象地域の候補となる自治体としてB市、C町、Z村を選定する。

A市 B市 C町 D町 E町 F町 . . . Z村 都道府県広域化計画 \bigcirc \bigcirc \bigcirc \bigcirc 災害廃棄物処理計画 \bigcirc \bigcirc \bigcirc \triangle 現行の 水道事業 \bigcirc \blacktriangle \bigcirc \bigcirc 広域行 下水道事業 lack0 \bigcirc lacklack \wedge 政 警察・消防 Δ \triangle Δ Δ 教育(高校) \triangle \triangle \triangle \triangle 福祉施設 Δ \triangle Δ ごみ処理 ▲ \triangle Δ し尿処理 • 病院・介護 \bigcirc \bigcirc \triangle \triangle A市との共通数 3 7 0 0 1 検討の対象自治体 \bigcirc 0 X X \bigcirc

表 4-8 広域的な検討対象地域(市町村組合)の検討イメージ

2) 複数自治体の組合せ案(広域化案)の作成

選定された候補自治体の組合せ案を作成する。例として、広域的な廃棄物処理ができると考えられる組合せ案を表 4-9 のように作成する。

表 4-9 複数自治体の組合せ案(広域化案)の作成結果例

	A市	B市	C町	Z村
単独案	0			
広域化案1	0		0	
広域化案 2	0	0		
広域化案 3	0		0	0
広域化案 4	0	0	0	0

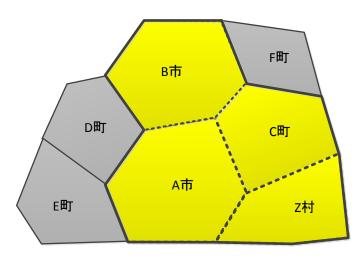


図 4-4 対象自治体の検討結果イメージ

3) 広域的な検討対象地域での現状把握

複数の対象自治体の廃棄物処理施設を検討する際には、広域化案別に特徴が比較できるように整理することが必要である。一例として個別自治体のデータを複数自治体の組合せ別に整理した事例を表 4-10 に示す。このような整理結果を用いて、複数自治体でバイオガス化を行う場合の、メリット、デメリット等を把握することができる。

表 4-11 では、各自治体間の分別収集の状況を整理しており、この類似性から自治体が共同でバイオガス化に移行する際の容易性・同調性が把握可能である。

また、各自治体の施設の稼動年数、稼働率を整理しており、これらから焼却施設の更新の必要性が把握可能であり、自治体間で共同してバイオガス化に向かう可能性について検討ができる。

表 4-10 広域的な検討対象地域(複数自治体)の整理例

		A市	B市	C町	Z 村
人口					
	生ごみ(厨芥)			0	
分	紙パック	0	0	0	0
別	ダンボール	0	0	0	
収	その他紙(雑紙)		0		
集	容器包装ブラスチック	0	0	0	0

プラスチ	ック(その他)				
廃棄物処理量(可燃物)	80t/日	100t/日	70t/日	30t/日
生ごみ量(資源	化以外)				
紙ごみ量(資源	化以外)				
中間処理施設	焼却施設能力	100t/日	140t/日	80t/日	60t/日
(焼却施設)	同上(稼動年)	15 年	5 年	20 年	30 年
	補修の必要性				
	稼働率				
中間処理施設	焼却施設能力				
(資源化施設)	同上(稼動年)				
	補修の必要性				
	稼働率				
最終処分場	施設容量(m³)				
	残余容量(m³)				
	残余年数(年)				
その他のバイ	下水汚泥				
オマス	し尿汚泥				

表 4-11 広域化案の廃棄物処理の現状把握の整理例

		広域化案	A 市単独	A市+C町	A 市+B 市	A 市+C 町 +Z 村	A 市+B 市 +C 町+Z 村
人口	<u> </u>					1 2 47	ТО М Т 2 4 9
		-(厨芥)		0(0)	1(100)	1 (50)	2(66)
分	紙パッ		0	1(100)	1(100)	2(100)	3(100)
別	ダンボ	ール	0	1(100)	1(100)	1 (50)	2(66)
収	その他	!紙(雑紙)		1(100)	0(0)	2(100)	2(66)
集	容器包	!装ブラスチック	0	1(100)	1(100)	2(100)	3(100)
	プラス・	チック(その他)	-	1(100)	1(100)	2(100)	3(100)
廃棄	物処理	量(可燃物)	80t/日	150 t/日	180 t/日	180 t/日	280 t/日
	イオマ	食品廃棄物	25 t/日	40t/日	55t/日	50t/日	80t/日
ス賦	存量	下水汚泥					
		し尿汚泥					
	引処 理	焼却施設能力					
施設	ξ	同上稼動年数					
		資源化施設能力					
		資源化施設稼動 年数					
最終	処分	施設容量(m³)					
		残余容量(m³)					
		残余年数(年)			これの割		

注)分別収集については、A市と同一の分別収集の数をカウントし、それの割合を表示

4) 広域化案の評価

表 4-12 に示すような項目を用いて広域化案(複数自治体の組合せ案)の需給バランス等を把握 し、広域化案の評価を行い、対象自治体を選定する。

これまでのバイオマス賦存量からバイオガス化の対象を選定し、バイオガス発生量、発酵残渣(消化液)を算定して、エネルギー及び資源化物の供給可能量を広域化案ごとに算定する。

また、需要についても自治体ごとのエネルギー及び資源化物の需要量を算定し、広域化案ごとの総和を算定する。以上の結果から、供給可能量と需要量より各種の需給バランスを算定し、広域化案ごとの評価を行う。

表 4-12 広域化案の資源化物利用の評価イメージ

女・12 広場に未の負添し物が用の計画す クーク							
		広域化案	A 市単独	A市+C町	A 市+B 市	A 市+C 町 +Z村	A 市+B 市 +C 町+Z 村
	人口						
	廃棄物処理量	量(可燃物)	80t/日	150 t/日	180 t/日	180 t/日	280 t/日
	バイオマス	食品廃棄物	25 t/日	40t/日	55t/日	50t/日	80t/日
資	賦存量	下水汚泥					
源		し尿汚泥					
化	バイオガス化	の対象 合計					
物供	バイオガス発	生量(m³/日)					
給	発電見込み量	昰(kWh/日)					
,,,,	売電可能量(⟨Wh/日)					
	精製ガス供給	i可能量(m³/日)					
	発酵残渣	固形物(t/日)					
		消化液(m³/日)					
	資源化物 製造見込み 量	堆肥(t/日)					
		液肥(m³/日)					
		固体燃料(t/日)					
資	エネルギー	電力(kWh/)					
源		ガス(m³/日)					
化物		熱エネルギー					
需	Year High	(GJ/日)					
要	資源化物	堆肥(t/日)					
		液肥(m³/日)					
L_	1 . 1%	固体燃料(t/日)					
需給	エネルギー	電力(kWh/日)					
バ		ガス(m³/日)					
ラ		熱 エ ネ ル ギ ー (GJ/日)					
ン	 資源化物	(GJ/日) 堆肥(t/日)					
ス		液肥(m³/日)					
		固体燃料(t/日)					
雲終							
	対象自治体の遺						
					•	•	

4. 5 バイオマス利活用目標の設定

事業で対象とする廃棄物系バイオマスの仕向け量を検討し、その利用率目標などの目標値 を設定する。

【解説】

各種の上位計画等の活用目標をもとに、活用量または利用率を設定する。バイオマス活用推進 基本計画においては表 4-13 の利用率が示されている。

表 4-13 バイオマス活用推進基本計画における利用率目標

バイオマスの種類	現在の年間発生量	現在の利用率	2020 年の目標
家畜排せつ物	約 8,800 万 t	約 90%	約 90%
下水汚泥	約 7,800 万 t	約 77%	約 85%
黒液	約 1,400 万 t	約 100%	約 100%
紙	約 2,700 万 t	約 80%	約 85%
食品廃棄物	約 1,900 万 t	約 27%	約 40%
製材工場残材	約 340 万 t	約 95%	約 95%
建設発生木材	約 410 万 t	約 90%	約 95%
農作物非食用部	約 1,400 万 t	約 30%(すき込みを含	約 45%(すき込みを含
展下物系及用 的	新り1,400 万 t	めば約 85%)	めば約 90%)
林地残材	約 800 万 t	ほとんど未利用	約 30%以上

(出所)『バイオマス活用推進基本計画』(平成 22 年 12 月 17 日閣議決定)

上記の食品廃棄物の利用率目標は、対象とするバイオマスの発生量に占める資源化施設への仕 向け量と定義されているため、廃棄物系バイオマスロードマップにおいても以下の定義を用いて いる。

対象とするバイオマスの資源化施設仕向け量(湿重量)の計 バイオマス利用率 = 対象とするバイオマスの賦存量(湿重量)の計

5. 利活用システムの検討

利活用システムとは図 5-1 に示すように、廃棄物系バイオマスの分別収集・機械選別、バイオガス化、生成物の利用から構成され、本章ではこれらの計画手順を示す。また、これらのシステムを実現させるための事業化の過程も重要であり、その事業化手法についても説明を加える。

バイオガス化方式によって分別収集または機械選別の選択肢が変わるため、本章ではまずバイオガス化施設の検討から説明を加える。

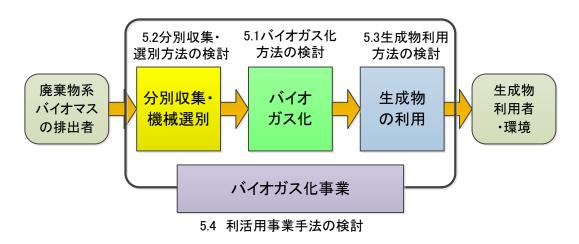


図 5-1 利活用システムの構成要素と本章での内容

5. 1 バイオガス化施設の検討

(1) バイオガス化施設の構成

廃棄物系バイオマスの利活用可能量や資源化物の需要などをもとに、バイオガス化施設の規模、方式を選定する。ここでは、現行の分別収集区分、廃棄物処理体系(特に焼却施説施設との連携)などを考慮し、焼却と資源化に回されるごみ量とごみ質(特に発熱量)を算定し、それをもとに資源化物の利用先の確保、現状の廃棄物処理体系における適切性、資源化の効果などを評価して資源化手法を選定するものとする。

【解説】

1) バイオガス化の処理方式

バイオガス化の処理方式には処理対象物の固形分濃度によって湿式と乾式に、また発酵温度によって中温発酵方式と高温発酵方式に分類できる(表 5-1)。湿式は固形分濃度 $6\sim10\%$ 、乾式は $25\sim40\%$ である。湿式は高温(約 55%)、中温(約 35%)の 2 種類があるが、乾式は高温のみという特徴がある。発酵温度が高い方が、メタン発酵速度が速くなり、メタン発酵に必要な日数が減少する。

湿式は機械などの駆動部が少なく省電力でメンテナンスコストが低いという特徴があり、乾式は紙などの固形物のバイオガス化が可能なので、ガス発生量が多いこと、排水量が少なく、排水処理コストが小さいという特徴がある。また、乾式はバイオマス以外の異物の混入に対して許容度が大きく、機械選別による方法でもトラブルを生じないという特徴がある。

表 5-1 バイオガス化処理方式の比較(湿式・乾式)

	湿	式	乾 式		
	中温(約 35℃)	高温(約 55℃)	高温(約 55℃)		
固形分濃度	6~10%	6~10%	25%~40%		
発酵物	・家畜糞および尿 ・下水汚泥、し尿処理汚泥 ・生ごみ	・家畜糞および尿 ・下水汚泥、し尿処理汚泥 ・生ごみ ・紙	家畜糞 ・下水汚泥、し尿処理汚泥 ・生ごみ ・紙、植物(剪定枝類)		
電力使用量 エネルギー 使用量	・機械などの駆動部が少なく省電力でメンテナンスコストが低い・加温のためのエネルギーが少ない	・機械などの駆動部が少なく省電力でメンテナンスコストが多い・加温のためのエネルギーが多い	・湿式に比べて駆動部の電力消費が多くなる。・加温のためのエネルギーが多い		
増殖速度 ガス発生量	・増殖速度が高温に比べて 遅い。	・増殖速度が速くガス発生量も 多い	・増殖速度が速くガス発生量も多 い。		
発酵槽容量	・メタン発酵日数が多くなるため、発酵槽容量は大きくなる	・増殖速度が速いため、発酵槽 容量は小さくてすむ。	・横型発酵槽は比較的大きな要 領を必要とする。		
希 釈 水・排 水量	・希釈水量が多い傾向にあ り、排水量は多くなる。	・希釈水量が多い傾向にあり、 排水量は多くなる。	・希釈水量は少なく、排水量は少なくなる。		
設置スペー ス	・滞留時間が長いため、湿 式高温に比べて必要面積 は大きい。	・滞留時間が短いため必要面 積は小さい。	・横型の発酵槽では必要面積が 大きい。		
アンモニア 阻害	・アンモニア阻害に対する 安定性が高い。	・アンモニア阻害に対する安定性が問題。	・アンモニア阻害に対する安定性が問題。		
維持管理	・メタン発酵菌の種類が多く、維持管理が比較的容 易に行える。(原料の変動 に強い)	・メタン発酵菌の種類が少ないため、維持管理に細心の注意が必要となる。	・メタン発酵菌の種類が少ないため、維持管理に細心の注意が 必要となる。		

(出所)「エネルギー回収型廃棄物処理施設整備マニュアル、環境省、平成 26 年」を加筆

2) バイオガス化施設の構成

バイオガス化施設の機能的な構成を示すと以下のとおりである(図 5-2)。バイオガス化施設の各設備を分類すると以下のように分類される。

- A.廃棄物処理施設設備 -①受入・前処理設備
 - ②メタン発酵設備
 - ③環境保全設備
- B.資源化物利用施設設備-④エネルギー利用設備
 - ⑤マテリアル利用設備

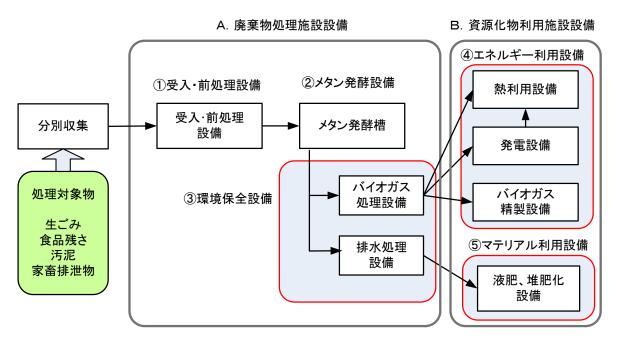


図 5-2 バイオガス化施設の機能に着目した施設構成

同図に示すように施設は、A. 廃棄物処理施設設備とB. 資源化物利用施設設備に分類される。A. 廃棄物処理施設設備は、①受入・前処理設備、②メタン発酵設備、③環境保全設備に分けられる。①受入・前処理設備には、持ち込まれた廃棄物系バイオマスから資源化に不要なものを除去する選別設備や破袋・破砕設備が含まれる。さらに、②メタン発酵設備はメタン発酵槽、ガスホルダー、脱硫設備、余剰ガス燃焼設備を含み、バイオガスを資源化物利用設備に送り込む。③の環境保全設備は、処理施設からの悪臭により周辺環境への影響を防止する脱臭設備や排水処理設備を含む。

そして、B. 資源化物利用施設設備には、④エネルギー利用設備と⑤マテリアル利用設備がある。④エネルギー利用設備はバイオガスを電気エネルギーに変える発電設備やボイラなどの熱利用設備、さらに純度の高いメタンガスとして供給するための精製設備があり、⑤マテリアル利用設備は発酵残渣(消化液)を液肥として利用するための設備(貯留設備を含む)、発酵残渣を堆肥化する堆肥化設備などを含む。

従来は生ごみを分別収集してバイオガス化し、発酵残渣を肥料利用する湿式のバイオガス化 施設の導入が主流であったが、都市部では発酵残渣の肥料としての需要がないため、発酵残渣 処理が課題であった。そのため、バイオガス化の発酵残渣を焼却処理(助燃材利用)すること で残渣処理の課題を解決するコンバインドシステムが有効な方法が採用されている。

湿式と乾式のそれぞれの発酵方式別に分別収集、バイオガス化、生成物の利用、処理の3つの観点から比較を行ったものを表5-2に示す。

表 5-2 バイオガス化方式(湿式、乾式)の違いによる利活用システムへの影響

	湿式	乾式
分別収集、	異物の混入の条件が厳しいため、可燃物の	異物の混入の条件がゆるいため、可燃物を
機械選別	機械選別の採用が難しく、分別収集が原則	機械選別により選別しても発酵施設への影
	となる。	響がない。
バイオガ	中温、高温の2方式があり、条件によって	高温方式で効率的に処理する。
ス化	選択が可能。	紙ごみ、草木類等を発酵の対象とできるた
		め、バイオガス発生原単位(バイオマス投
		入量当りのバイオガス発生量)は大きい。
残渣処理、	・発酵対象を生ごみ(食品廃棄物)、汚泥	・分別収集によれば残渣を液肥、堆肥利用
残渣利用	等に限定し、分別収集するため液肥として	することも可能。
	の利用が可能となる。液肥として全量利用	・可燃物を収集し選別する場合は、発酵残
	できれば排水処理、固形物処理設備を軽減	渣を脱水し、脱水固形物を焼却施設で助燃
	できる。	材として利用する (焼却施設とのコンバイ
	・発酵残渣の脱水後の堆肥としての利用も	ンド)。ただし排水処理後の脱水ろ液を液
	可能である。	肥として利用することは可能。
	・液肥利用できない場合は排水処理が必要	・希釈水の投入量が少なく、排水処理コス
	となる。	トが少ない。

乾式メタン発酵方式は、生ごみの分別収集が不要なこと、紙類、剪定枝等もバイオガス化の原料として利活用できること、交付金制度が充実してきたこと等からこの方式を採用する自治体も増えてきている。乾式バイオガス化施設は、単体の施設ではなく、選別や破砕などの前処理施設、さらに環境保全施設、エネルギー利用施設からなり、資源化システムとして検討することが必要である。乾式メタン発酵の処理フローを図5-3に示す。

処理フローに示すように、メタン発酵残渣を脱水して焼却施設の助燃材として利用すること や、排水処理後の排水を焼却施設のガス冷却用水として利用し、河川等への無放流を実現して いるところもある。焼却処理と資源化処理の組み合わせという意味で、ごみ処理システムをコ ンバインドシステム(乾式)と称する。

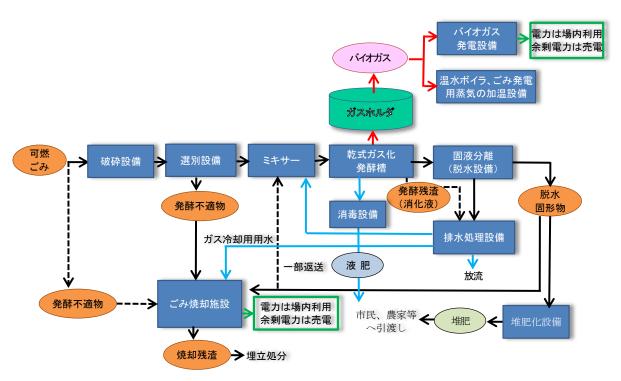


図 5-3 コンバインドシステムの処理プロセス

コンバインドシステムは、廃棄物処理における高度なエネルギー回収と施設間相互の有効利用を目的としたものであり、一般廃棄物において、水分の多い厨芥等のバイオマスは焼却よりメタン発酵の方がエネルギー効率は高いと考えられる。これらを除いたプラスチック主体のごみの焼却発電とバイオガス化発電のコンバインドシステムは、ごみ焼却施設の単独の発電量よりエネルギーの回収率が高くなると考えられる。

以上のことから、本節では乾式メタン発酵のコンバインドシステムにおける施設の計画手順を中心に記述する。

小規模施設においては排水処理施設の建設費、維持管理費がコストを上昇させる場合があり、 発酵残渣を液肥として全量利用して排水処理施設を設置しないことで、そのコストを軽減する ことができる。湿式メタン発酵方式で液肥を利用し、排水処理コストを削減した効率的なシス テムもいくつか見られる。ここでは、乾式メタン発酵のコンバインドシステムの検討手順を示 すが、湿式メタン発酵についても同様な手順で計画することが可能である。乾式メタン発酵の コンバインドシステムは分別収集によらずに機械選別によってもバイオガス化可能であるこ とから、分別収集が困難で堆肥等の需要が見込めない大都市部でも採用可能な方式である。

なお、湿式メタン発酵の場合は分別収集を前提とし、バイオガス化対象ごみを食品廃棄物や 汚泥、家畜排泄物に限定することで液肥や堆肥の利用が可能なため、これらを効率的に利用し たシステムの構築を検討することが有効である。

(2)物質収支、エネルギー収支

対象地域、対象バイオマスの利活用可能量、資源化物の需要からバイオマス処理量が設定 されるが、これに基づきバイオガス化施設の各種の設備の規模を設定するための物質収支、 エネルギー収支を検討する。

【解説】

1) コンバインドシステムの物質収支

バイオガス化施設の各種の設備の規模を設定するための物質収支、エネルギー収支を検討する手順を以下に示す。この物質収支、熱収支を通して、前処理設備、排水処理設備、エネルギー利用設備などの諸元を検討することができ、またこの検討結果は市民、出資者、電力の買取会社、生成物の利用者等へ計画内容の説明を行う際にも活かされるものである。

コンバインドシステムの物質収支の例を図 5-4 に示す。これらの算定式については、以下のとおりである(各ごみ量等に付した番号は図 5-4 と物質量の番号と一致している)。

① 可燃ごみ量 $=\Sigma$ (品目別可燃ごみ量) (t/H) 品目 (t/H)
$\{$ 品目別可燃ごみ量 $=$ Σ (品目別可燃ごみの 3 成分別量) $\}$ (t/H) 3 成分 (t/H)
② 選別ごみ量 $=$ Σ (品目別可燃ごみ量 \times 品目別機械選別率) (t/日) 品目 (t/日) (-)
$\{$ 品目別選別ごみ量 $=$ Σ (品目別選別ごみ量の 3 成分量) $\}$ $(t/日)$ 3 成分 (t/H)
(以下全ての物質量は3成分、すなわち水分、可燃分、灰分ごとに計算される)
③ 発酵不適物量 = ①可燃ごみ量 - ②選別ごみ量 (t/日) (t/日)
④ 発酵槽投入量 = ②選別ごみ量 + 希釈水量 + 返送水量 (t/日) (t/日) (t/日)
 ⑤ VS 分解量 = ④発酵槽投入 VS 量 × VS 分解率 (t/日)
⑥ バイオガス発生量 = ⑤VS 分解量 × バイオガス発生原単位 (Nm³/F) (t/F) (Nm³/VS-t)
⑦ 精製ガス発生量=バイオガス発生量×メタンガス濃度×精製工程でのメタン回収率 (Nm³/日) (Nm³/日) (-) (-)
⑧ 発酵残渣量 = ④発酵槽投入量 − VS 分解量 (t/日) (t/日)

- ⑨ 脱水固形物量 = ⑦発酵残渣量 ×発酵残渣と脱水固形物の(100-含水率)比(t/目) (-)
 ※(100-含水率)比= (100-発酵残渣の含水率)/(100-脱水固形物の含水率)
- ⑩ 脱水ろ液量 = ⑦発酵残渣量 ⑧脱水固形物量
- ① 排水処理量 = ⑨脱水ろ液量 肥料等への利用量 (m^3/B) (m^3/B) (m^3/B)
- ⑫ 放流量 = ⑩排水処理量 返送水量 冷却水量 $(m^3/1)$ $(m^3/1)$ $(m^3/1)$ $(m^3/1)$
- ① 乾燥固形物量 = ⑧脱水固形物量 × (100-含水率) 比
 (t/日) (-)
 ※ (100-含水率) 比= (100-脱水固形物の含水率) /(100-乾燥固形物の含水率)
- ④ 焼却処理量 = 非ガス化対象可燃ごみ+ ③発酵不適物 + ②乾燥固形物量 (t/日) (t/日) (t/日) (t/日)
- (b) 焼却残渣量 = (3)焼却処理量 × 焼却残渣率 (t/日) (t/日) (-)

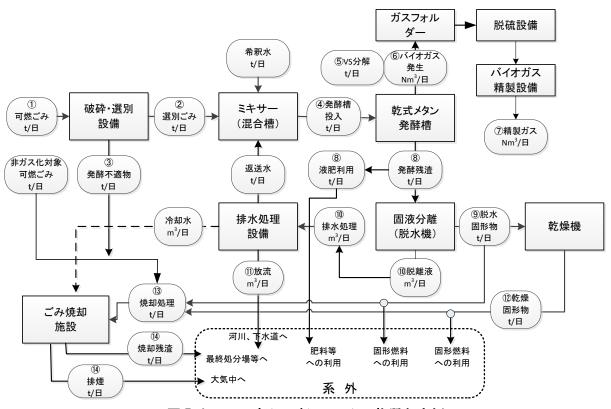


図 5-4 コンバインドシステムの物質収支例

①可燃ごみ量については対象地域のバイオガス化の対象とするごみ量を設定する。②選別処理量については、対象の可燃ごみをもとに、破砕、選別施設の特性を踏まえ算定する。なお、4章にも示したように表 5-3(1)の機械選別率の実績を参考に、可燃ごみ量(品目別)に機械選別率を乗じて、算定することもできる。

なお、以下の計算において、ごみ質分析結果(湿基準)に基づき、ごみ量は3成分(水分、可燃分、灰分)ごとに算定する。

表 5-3(1) 品目別機械選別率の一例

(単位:%)

	発酵対象物へ移行分	発酵不適物へ移行分	
厨芥類(生ごみ)	100	0	
紙ごみ	65	35	
ビニール類	20	80	
布類	15	85	
選別設備の構成	破砕機、破砕ごみ粉砕分別機(ハンマーブレード式)		

(出所) 高岡好和・河村公平・角田芳忠: 南但地域における可燃ごみのバイオガス化と焼却のコンバインドシステム、廃棄物資源循環学会、V0125、No1、2014

表 5-3 (2) 機械選別前後のごみ組成

(単位:%)

組成分類	受入ごみ組成	選別ごみ組成	
厨芥類	4~11	3∼ 7	
紙ごみ	24~32	40~ 57	
プラスチック類	13~29	9 ~ 16	
布類	4~6	1~6	
木・竹・ワラ類	10~39	8~23	
不燃物類	3 ~ 7	1~4	
その他	4~13	6 ~ 17	
選別設備の構成	一次破砕機、磁力選別機、破砕ごみ選別機(振動篩式)、二 次破砕機		

(出所)杉原英雄、村田英彰、内田博之、臼井勝久、服部孝一、上原伸基: 可燃ごみによるバイオガス化施設の運転について、第25回廃棄物資源循環学会研究発表会講演論文集、2014

選別後に除去された③発酵不適物は焼却施設にまわされる。次に、④乾式メタン発酵槽への投入量は、②選別ごみと希釈水、(排水処理施設からの)返送水である。希釈水量等については、嫌気性菌が投入ごみにいきわたること、及び目標含水率になるように決められる。なお図5-5に示すように、実績では投入ごみ量の5割から同程度の量のようである。

メタン発酵槽での分解量(⑤VS 分解量)は投入ごみの VS 量に VS 分解率を乗じて算定する。 VS 分解率については、バイオマス種別に以下のような値となっている。続いて⑥バイオガス発生量は、この⑤VS 分解量にメタン発生効率を乗じて算定される(表 5-4 参照)。このバイオガスを精製してメタンガスとして供給する場合は、これにメタン濃度を乗じて⑦精製ガス量を算定する。

表 5-4 バイオマス種別の強熱減量、VS 分解率、バイオガス発生効率

	固形物量 TS (kg/kg)	強熱減量 VS/TS (kg/kg)	VS 分解率 (%)	メタン 発生効率 (Nm³/t-VS)	メタン濃度 (%)
食品廃棄物	0.2~0.25	0.90~0.95	70 ~ 90	450 ~ 650	55 ~ 60
紙系廃棄物	0.93	0.96	66	490	55 ~ 60
草木系廃棄物	0.59	0.90	20	85	55 ~ 60
豚排泄物	0.04~0.09	0.70~0.80	45 ~ 55	650 ~ 750	65 ~ 75
乳牛排泄物	0.07~0.11	0.70~0.85	40~50	450~550	55 ~ 70
下水汚泥(濃縮汚泥)	0.03~0.04	0.80	50	550	57 ~ 63

- (出所)1)バイオガス研究会、京都バイオガス化技術実証プラント実証試験報告書
 - 2)バイオマス再資源化技術の性能・コスト評価、農工研技法 204、2006 年
 - 3)メタン発酵、野池達也編著、技報堂出版、2009年
 - 4)下水処理場へのバイオマス(生ごみ)受け入れマニュアル、下水道新技術推進機構、2011年3月
 - 5)メタン発酵技術の概要とその応用展望、李玉友、JEFMA、No.53、2005 年

表 5-5 生ごみからのバイオガス発生量

項目	生ごみ
メタン発生量	0.35~0.55Nm³/kg一分解 VS
	0.35Nm³/kg一分解 CODcr
有機物分解率	
VS	75~80%
CODcr	70~75%
メタン濃度	50~65%

(出所)メタンガス化(生ごみメタン)施設整備マニュアル)

メタン発酵後の⑧発酵残渣量は、④発酵槽投入量から⑤VS 分解量を減じたものである。発酵 残渣はそのまま液肥として肥料として利用される場合と脱水を経て排水処理される場合があ る。排水処理する場合の物質収支は、発酵残渣は脱水機等の固液分離により、⑨脱水固形物と ⑩脱水ろ液に分けられる。これらは固液分離後の目標含水率によって計算できる(計算式参照)。

⑩脱水ろ液は排水処理に回され(⑩排水処理量は脱水ろ液量と同量)、河川放流、または下水放流の排水基準まで水質を改善させる。排水処理水は発酵槽へ希釈水として使われることや焼却施設での冷却水として使われる場合があり、これらを差し引いたものが河川、下水に放流される(⑪放流水量)。

そして、バイオガス化のコンバインド施設としての焼却施設には、バイオガス化の対象としなかった可燃ごみ(プラスチック等)とバイオガス化対象ではあるが選別施設で除去された③発酵不適物、さらに発酵残渣からの固形物(⑧脱水残渣または脱水固形物をさらに乾燥した⑫乾燥固形物)が集められ、焼却処理される(⑬焼却処理量)。

最後に、焼却施設での焼却残渣は最終処分場で処分される(⑭焼却残渣量)。 物質収支の例を図 5-5 に示す。

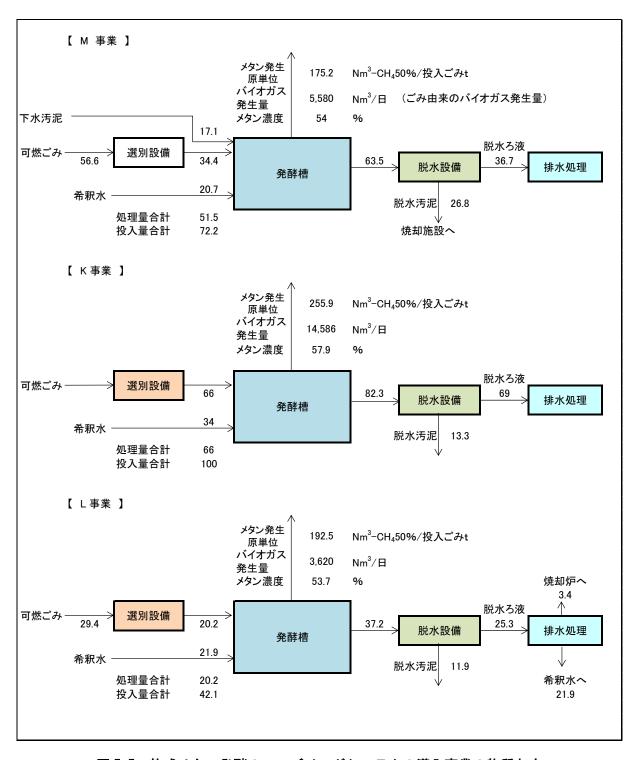
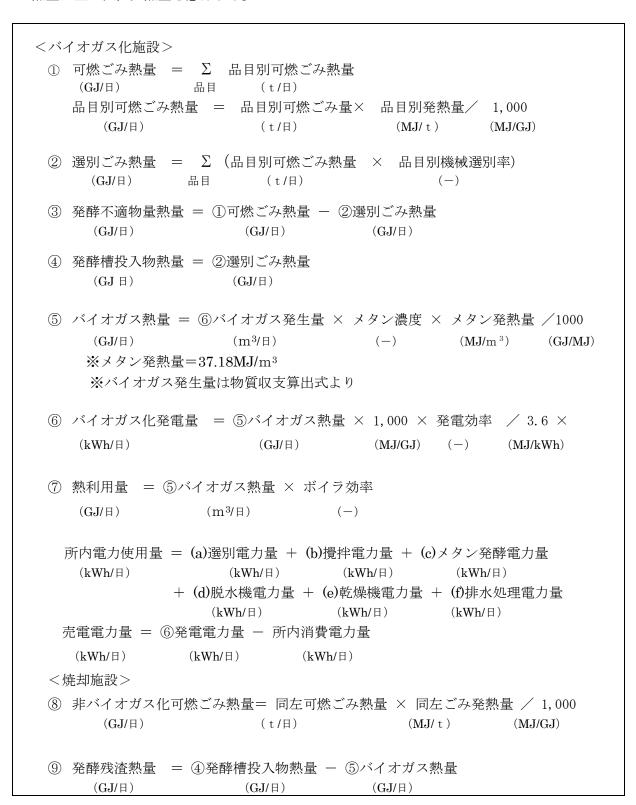


図 5-5 乾式メタン発酵のコンパインドシステムの導入事業の物質収支


注) M、L 事業の物質収支の単位は t/日であり、K 事業は投入量を 100 とする相対値である。

(出所) 1:メーカー資料

- 2:河村公平・中西英夫・入江直樹:カンポリサイクルプラザにおけるバイオリサイクル 施設の報告、タクマ技法、Vol. 13、No. 1、2005
- 3: 高岡好和・河村公平・角田芳忠: 南但地域における可燃ごみのバイオガス化と焼却のコンバインドシステム、廃棄物資源循環学会、V0125、No1、2014

2) コンバインドシステムの熱収支

コンバインドシステムの熱収支の例を図 5-6 に示す。これらの算定式については、以下のとおりである(ごみ等の熱量に付した番号は図 5-6 の熱量の番号と一致している)。なお文中の熱量は全て低位発熱量を意味する。

⑩ 脱水固形物熱量 = ⑨発酵残渣熱量 × 固形物移動率 (GJ/目) (GJ/目) (-)乾燥固形物熱量 = ⑩脱水固形物熱量 × 固形物移動率 (GJ/目) (-)(GJ/目) ⑩ 焼却処理物熱量 = ⑧非バイオガス化対象可燃ごみ熱量+③発酵不適物熱量 (GJ/目) (GJ/目) (GJ/目) + ①乾燥固形物熱量 + ⑩脱水固形物熱量 (GJ/目) (GJ/目) ③ 焼却発電量 = ①焼却処理物熱量 ×発電効率 ×1000 / 3.6 (kWh/∃) (GJ/日) (-)(MJ/kWh)(MJ/GJ) ④ 焼却施設熱利用量 = ⑪焼却処理物熱量 × ボイラ効率 (-)(GJ/目) (GJ/目) 売電電力量 = ⑩焼却発電量 - (g)所内消費電力量 (kWh/∃) (kWh/∃) (kWh/∃)

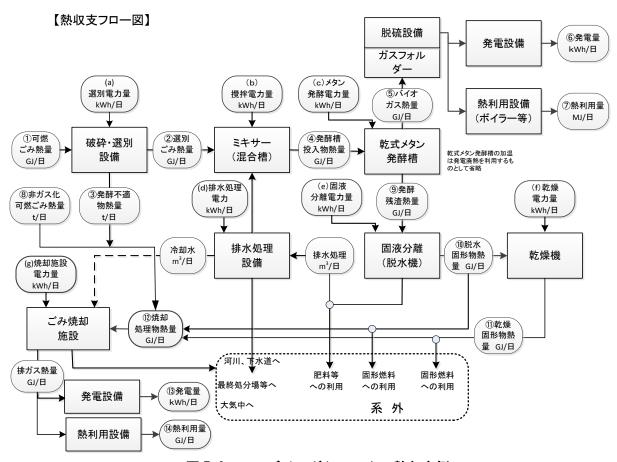


図 5-6 コンバインドシステムの熱収支例

まず、コンバインドシステムのうちのバイオガス化施設の熱収支は以下のとおりである。

バイオガス化の対象となるごみの品目別可燃物の熱量(以下、全て低位発熱量を指す)を把握し、これらの総和が対象となる①可燃物の熱量となる。これにそれぞれの選別率を乗じて、②選別ごみの熱量を算定する。品目別の選別率は前掲の表 5-3(1)のとおりである。この結果、③発酵不適物の熱量は①可燃物の熱量から②選別ごみの熱量を減じたもとして算定される。また、④発酵槽への投入物の熱量は希釈水の混合を経ても②選別ごみの熱量に等しい。

次に、⑤発生したバイオガスの熱量はバイオガス発生量にメタンガス濃度とメタン発熱量 (37.18MJ/m³) を乗じて算定する。また、バイオガスを用いて発電する場合の⑥発電量は⑤バイオガス熱量に発電効率を乗じて算定する。さらに、熱利用の場合は、ボイラ効率をこれに乗ずることで算定する。

なお、バイオガス化施設内での電力使用量(いわゆる所内電力使用量)は、(a)選別、(b)攪拌(混合槽)、(c)メタン発酵、(d)固液分離(脱水)、(e)排水処理、(f)乾燥等で使用する電力の総和である。発電した電力のうち所内電力を差し引いたものが売電(他の施設に供給)できる電力量である。

次に、焼却施設の熱収支については以下のとおりである。

焼却施設に投入されるごみ等の熱量を算定する。まず®バイオガス化の対象にならない可燃物の熱量は可燃物量に発熱量を乗じて算定する。次に⑨発酵残渣の熱量は④発酵槽投入物熱量から ⑤バイオガス熱量を減じたものである。

また⑩脱水固形物の熱量は発酵残渣の熱量のうち固形物に移動した割合(固形物移動率)から 算定する。基本的には、脱水によって除去されるものは水のみであると仮定すると、固形物移動 率は1である。さらに⑩乾燥固形物の熱量も脱水固形物と同様に算定できる。

以上のことから、⑫焼却施設に投入されるものの熱量は、⑧バイオガス化の対象にならない可燃物、③発酵不適物、⑩脱水固形物、⑪乾燥固形物の熱量の総和である。焼却発電を行う場合は、この熱量に発電効率と係数(3.6MJ/kWh)を乗じることで、⑬発電量を算定できる。なお、発電した電力のうち所内電力を差し引いたものが売電(他の施設に供給)できる電力量である。

計画段階で使用されている所内電力原単位の一例を表 5-6 に示す。

焼却施設 バイオガス化施設 備考 事例 処理量 電力量 電力原単位 処理量 電力量 電力原単位 t/日 kWh/日 kWh/t t/日 kWh/日 kWh/t 42 15,000 357 2,774 154 湿式、文献1 1 18 2 210 46.639 222 90 9.266 103 湿式、文献1 3 180 200 乾式、文献2 5.487 110 乾式、文献3

表 5-6 バイオガス化施設の所内電力の原単位

(出所)文献1:メタンガス化施設整備マニュアル、環境省、平成20年1月

文献2: 井上陽仁・松籐敏彦: 乾式メタン発酵を用いた焼却施設とのコンバインドシステムのエネルギー評価土木学会論文集 G(環境)、Vol.70、No.2、2014

文献3:カンポリサイクルプラザにおけるバイオリサイクル施設の運転、タクマ技法、2005年

(3) 処理目的に応じた設備の組み合わせ

バイオガス化施設の設備構成は、バイオガス、発電した電力、生成物の需要、建設予定地 の公害防止条件、ユーティリティ、他の処理施設との関係等を考慮して検討する。

【解説】

バイオガス化施設の設備構成の例は、表 5-7 のとおりである。バイオガス、発電した電力、生成物の需要、建設予定地の公害防止条件、ユーティリティ、他の処理施設との関係等を考慮して検討することが必要である。コンバインドシステムの場合の設備の構成とその諸元を示した例を表 5-8 に示す。

表 5-7 設備構成の例

項目	基本構成
区分	
受入供給設備	ごみの受入、貯留、供給を円滑に行う設備である。
	計量機、プラットホーム、投入扉、ダンピングボックス、受入装置、ごみピッ
	ト、ごみクレーン、ごみホッパ、定量供給設備等により構成される。
前処理設備	ごみの供給、搬送、選別、発酵を円滑に行うための設備である。
	破砕機、破袋機、可燃ごみ選別機、搬送設備等により構成される。ごみ質
	に応じて磁力選別機、アルミ選別機を整備する。
メタン発酵設備	発酵処理を円滑に行うための設備である。
	投入装置、撹拌装置、発酵槽、加温装置等で構成される。
バイオガス利用設備	バイオガスの処理、貯留、変換を行うための設備である。
	脱硫装置、ガス貯留装置、余剰ガス燃焼装置、発電設備(ガスタービン、ガ
	ス機関)等を整備する。
発酵残渣処理設備	発酵残渣の処理、貯留を行うための設備である。
	污泥貯留槽、污泥供給装置、脱水装置、調質装置、脱水污泥貯留槽、脱水
	分離水槽等を整備する。
	発酵残渣を堆肥、燃料、炭等に変換して再利用する場合には、資源化の方
	法に応じた処理設備が必要となる。
脱臭設備	施設内で発生する臭気を処理する設備である。
給水設備	場内に用水を給水する設備である。受水槽、ポンプ類等を整備する。
排水処理設備	脱水後の分離水を下水道あるいは河川へ放流する場合や施設内で利用す
	る場合に適正な水質に処理するために設置する。
	消化液を肥料として利用する場合には、回収される消化液の水質と利用先
	の条件に応じた処理設備が必要となる。
電気設備	バイオガス化施設の運転に必要な電気を受電し各機器へ供給するために
	整備する。非常用電源の整備も含む。
計装設備	バイオガス化施設の運転に必要な制御設備、遠方監視、遠隔操作装置及
	びこれらに関係する計器、操作機器等を整備する。
雑設備	空気圧縮機、真空掃除装置、洗車装置、機器搬出設備等

表 5-8 コンバインドシステムの設備諸元の一例

区分	項目	諸元		
計量所		車両積載台〇基		
		横Om×縦Om(10tロングボディー車対応)		
		最小計量目盛Okg		
受入施設	プラットホーム	幅Om×奥行Om		
	ごみピット	幅Om×奥行きOm×高さOm・全自動クレーンO基		
	門の構成	〇門(電動駆動観音扉式)+ダンピングボックス〇基		
選別施設	処理方式	一次破砕機(二軸せん断式)・磁選機・選別機(振動スクリーン)		
	処理能力·系列数	Ot/h、選別機のみ〇系列		
バイオガス	受入·前処理設備	選別ごみピット・二次破砕機(二軸せん断式)		
化施設	発酵方式	乾式高温メタン発酵(コンポガス方式)		
	発酵槽規模	Ot/日(可燃ごみ: Ot/日・汚泥: Ot/日)		
		発酵槽有効容量: Om³×O系列 横型(直径Om×長さOm)		
		55℃高温発酵		
		最長〇日間		
	メタンガス発生率	ONm³dry/t(メタンガス濃度 50%換算)		
		バイオガス燃焼式熱風発生炉及び独立加熱器によりボイラー蒸気		
	バイオガスの利用方法	をOMPa×O°Cまで昇温(高い効率の発電)		
		脱水前処理装置・凝集混和槽脱水機(スクリュープレス)		
	排水処理設備	凝集·脱水·硝化脱窒処理		
焼却施設	処理方式	連続燃焼ストーカ式並行流焼却炉(スクリュープレス)		
	施設規模・	Ot/日(Ot/日×丸基·年間 280 日換算)		
	運転計画	○炉運転・277 日・○炉運転:74 日・共通点検 14 日		
	燃焼室	滞留時間:○秒以上•温度:○℃以上		
	ガス冷却・	過熱器付自然循環式水管ボイラ(発生蒸気: OMPa×O°C)		
	熱回収設備	ボイラ(エコノマイザ) 出口温度:○℃		
	蒸気タービン発電機	定格出力: Okw(O炉運転・高質ごみ・冬期)		
		・発電端効率(発電量/ごみとメタンガスの熱量): 〇5%		
		・年間発電量∶○kWh/年		
		・消費電力量: OkWh/年(可燃ごみ処理施設内)		
		・送電端効率(消費電力分を減じた効率): 〇8%		
		・二酸化炭素排出係数: OtCO2/kWh		
		·二酸化炭素削減量: OtCO2/kWh		
		・年間送電量:○kWh/年		
	灰出し設備	灰前処理設備(ふるい選別) 焼却灰ピット 集じん灰貯留槽		
	焼却残渣の有効利用	セメント工場においてセメント原料化		
	排ガス処理	無触媒脱硝・消石灰・活性炭噴霧・ろ過集じん器		
	 通風設備	平衡通風方式(押込送風機及び誘引送風機)		
	I THE URL ST TIES	煙突:内筒〇本(1 炉 1 煙突方式) 高さOm		

(4)環境対策

バイオガス化施設で発生する排ガス、排水、騒音、振動、悪臭については、関連法及び条例に基づき、建設予定地の公害防止条件を満足するとともに、地域ニーズを考慮して検討する。

【解説】

1) 排ガス

大気汚染防止法の規制を満足するための対策を講じておく必要がある。

2) 排水

水質汚濁防止法の規制を満足するための対策を講じておく必要がある。

下水道に放流する場合には、下水道の受入基準を満足するための対策を講じておく必要がある。

3) 騒音

建設予定地について、騒音規制法に基づき知事が指定する地域の場合は、規制の対象となる。 ただし、指定地域外においても騒音規制法の規制に準じた騒音対策を講じておくことが望まれる。

4)振動

建設予定地について、振動規制法に基づき知事が指定する地域の場合は、規制の対象となる。 ただし、指定地域外においても振動規制法の規制に準じた振動対策を講じておくことが望まれる。

5) 悪臭

建設予定地について、悪臭防止法に基づき知事が指定する地域の場合は、規制の対象となる。 ただし、指定地域外においても悪臭防止法の規制に準じた悪臭対策を講じておくことが望まれる。

6) 条例に基づく規制

1)~5) の他、都道府県条例を遵守し、条例に規定された条件に該当する場合には必要な対策を講じておく必要がある。

X 0 0					
環境項目	法規制等	対策の検討事項			
① 排ガス	大気汚染防止法、関連条例	排ガスが窒素酸化物等の大気汚染防止法の規 制を満足するための対策			
② 排水	水質汚濁防止法、関連条例(下 水放流する場合下水道条例)	放流水が BOD、pH 等の水質汚濁防止法、下水道の受け入れ基準を満足する対策			
③ 騒音	騒音規制法、関連条例	敷地境界における騒音規制法の規制に準じた 対策			
4 振動	振動規制法、関連条例	敷地境界における騒音規制法の規制に準じた 対策			
⑤ 悪臭	悪臭防止法、関連条例	敷地境界、排出口における悪臭防止法等の規 制に準じた対策			

表 5-9 環境対策の内容

(5) 防災拠点等の機能

災害対策の強化を目指し、バイオガス化施設の整備においても強靭な廃棄物処理システムを確保する視点が重要である。ここでは、循環型社会形成推進交付金の適用対象(平成 26 年時点)機能を前提に、地域における実情に応じて他の防災拠点との機能の整合を図った上で、必要な防災拠点機能を整備するものとする。

【解説】

エネルギー回収型廃棄物処理施設整備マニュアル(平成26年3月環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課)等を踏まえ、バイオガス化施設に求められる防災拠点機能を次に示す。

1) 耐震性

建築基準法等の基準に準じた設計・施工を行う。

2) 耐水性

ハザードマップ等で定められている浸水水位に基づき、必要な対策を実施する。

3) 耐浪性

津波による被害防止にあたっては、東日本大震災時に、津波による壁等の損壊はあったが構造体は残存していたことを踏まえ、耐震性と同等の基準に基づき、建物や設備を設計・施工することを基本とする。

4) 始動用電源

商用電源が遮断した状態でも、自立起動、継続運転ができる発電機を設置する。始動用電源は、浸水対策及び津波対策が講じられた場所に設置するものとする。

5)薬剤等の備蓄

薬剤等の補給ができなくても、運転が継続できるよう、貯槽等の容量(1週間分程度)を決定する。

水については、1 週間程度の運転が継続できるよう、災害時の取水方法を検討しておくこと とし、避難所への飲料水の供給も視野にいれて検討する。

6) エネルギー供給

バイオガス、電気を災害時であっても安定して供給できるものとし、防災活動の支援へも寄 与できるものとする。

商用電源の復旧までの期間やバイオガス、電気の継続供給を考慮し1週間程度のごみ貯留容量を確保する。

バイオガスについては、小規模商用ガス供給事業者への供給を考慮し緊急時の連携手法について協議検討する。

7) 防災機能の分担

コンバインドシステムでは、ごみ焼却施設の防災拠点機能との整合、役割分担を図る。

5.2 バイオマス分別収集、選別施設の検討

(1) 分別収集方法の検討

ここでは、以下の項目について検討する。

- ① 分別(選別)主体
- ② 収集頻度
- ③ 収集場所
- ④ 収集容器(袋)
- ⑤ 効率的な廃棄物系バイオマス収集方法(収集ルート)

【解説】

1) 分別(選別)主体

まず、食品廃棄物を市民が分別したものを収集するか、可燃ごみとして混合して収集し、中間 処理施設で選別するか(機械選別)の2通りがある。

可燃ごみとして混合して収集する場合、選別施設の選別能力が問題となる。可燃ごみには、プラスチック、不燃物等も混入する可能性があり最終的に資源化物として利用する場合には、製品の品質低下が懸念される。また可燃物からの選別が完全でない場合を想定して資源化技術は堆肥化、飼料を選択しないなどの対応を図る必要がある。

また、異物の混合を避けられない場合は、分別が確実に行える排出者に限定して、分別収集する対応策もある。飼料化、堆肥化を行っている事例の中では、事業系の排出者(給食センター、レストラン、スーパー、食品加工業者等)に限定して分別収集している事例も見られる。

廃棄物系バイオマス利活用計画の策定にあたっては、地域特性を考慮して対象とする排出者を 設定する必要がある。

2) 収集頻度

廃棄物系バイオマスを可燃ごみから分離分別して収集すると、新たに分別するごみと他の可燃ごみを別々に収集することによって、収集コストが増大する。また、食品廃棄物などは長期間経つと臭気が発生し、市民の快適性が損なわれることとなるため、収集頻度を大幅に減らすことはできない。そのため、収集コストと住民、事業者の快適性、利便性を損なうことなく収集頻度を決定することが必要である。

そのため、実際の事例では、食品廃棄物の収集回数は変えずに、他の可燃物の収集回数を少なくして対応することが多い。図 5-7 に食品廃棄物の分別収集を行っている事業体にアンケート調査を行った結果より食品廃棄物と可燃ごみの収集回数を示しているが、食品廃棄物の収集回数 2 回が最も多く、9 割以上が 2 回の収集となっている。他の可燃ごみの収集回数は、2 回が約 5 割、1 回が 3 割程度となっている(「メタンガス化施設整備マニュアル」、(財) 廃棄物研究財団、メタン発酵研究会)。

分別収集前の可燃ごみの収集が週3回の場合、食品廃棄物を週2回、その他の可燃ごみを週1 回収集するのであれば、ごみの収集回数は変わらない。食品廃棄物を週2回、その他の可燃ごみ も週2回収集する場合は1回分収集が多くなることになる。ごみの分別収集回数は、ごみ分別の 対象者や地域特性に合わせて収集回数を選択することが必要である。

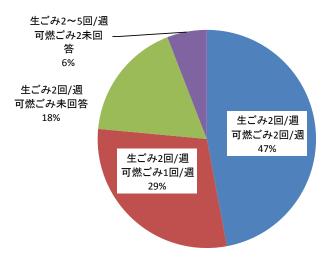
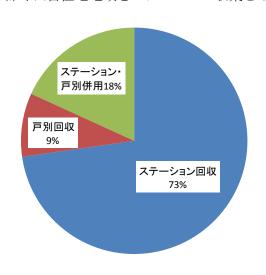



図 5-7 食品廃棄物と可燃ごみの収集回数の事例

(出所)「メタンガス化施設整備マニュアル」、(財)廃棄物研究財団、メタン発酵研究会

3) 収集場所

分別収集の収集場所として、ステーション回収方式と戸別回収方式があるが、アンケートによればステーション回収方式が多いようである。図 5-8 に示すように、食品廃棄物の分別収集を行っている事業体にアンケート調査より、ステーション回収は約7割、戸別回収は約1割、併用は約2割となっている。また、ステーション・戸別回収を採用している場合は、市街地を戸別回収、農存部や公営住宅地域をステーション収集としているケースがあり、経済性を理由としていた。

収集場所を選択した理由

収集場所	設定理由	回答数
ステーショ	以前からの方法、他の収集 方法と同じ	10
ン回収	収集の効率性・合理性	3
	経済性	1
戸別回収	排出者責任の明確化	2
	経済性	2
ステーショ ン・戸別併	以前からの方法、他の収集 方法と同じ	1
用	住民・収集作業員の負担軽 減	1

図 5-8 食品廃棄物の収集場所の事例

(出所)「メタンガス化施設整備マニュアル」、(財)廃棄物研究財団、メタン発酵研究会

4) 収集容器(袋)

収集容器については、袋とバケツまたは専用容器などがある。袋の場合でも、指定袋(プラスチック製)、指定袋(紙袋)、レジ袋、生分解性プラスチック製の袋などがある。

アンケート調査では、指定袋を使っているもののうち「生分解性袋」あるいは「紙袋」を採用している地方自治体は、その後の処理としていずれも堆肥化を行っている。また、「ポリバケツ・専用容器」による排出を採用している地方自治体も、堆肥化処理を行っていることが分かった。

生分解性袋あるいは紙袋の指定袋を採用した理由は、「ごみ袋も一緒に処理でき、省力化が図れる」が多かった。なお、指定の紙袋を採用している地方自治体はいずれも、「生ごみを新聞紙に包んで指定袋に入れる」よう指導している。

資源化技術及び前処理方法に合わせて、収集容器を選択することが必要である。

5) 効率的な廃棄物系バイオマス収集方法

効率的な収集方法として考えられる方法は、以下の3点である。

- ① 分別収集用に開発された分別収集車の利用
- ② 効率的なごみの収集ルートの選定
- ③ ごみの中継輸送による効率性の向上

(a) 分別収集車

分別収集車は、圧縮板式2分別収集車と呼ばれ、1台の車両で同時に2種類の廃棄物を圧縮積 込みでき、ボディ内に分別収納し、分別排出できる車両である。従来2トン車クラス2台で収集 していたところを5トン車クラス1台で収集できるようになることが特徴である。分別ごみ収集 車には、左右、上下で荷室が分割されたタイプがあり、それぞれのタイプによって使い勝手の善 し悪しがあるため、積み込む廃棄物の特性に応じた車両の選択が重要となる。

北九州市で行われた食品廃棄物エタノール化リサイクルシステム実験事業では、分別収集を担当した企業が2室分別収集車両を開発した。車両は可燃物を上段(積載容量5.6m³)に、食品廃棄物を下段(積載容量4.6m³)に積載する上下積載車両とした。収集運搬にかかわる人件費と燃料費のトータルでは、4tパッカー車との比較では約9割、同等の重量である5tパッカー車との比較では6割程度となっている。ただし、本実験は事業系食品廃棄物の収集を目的としており、収集ステーション間の距離は長い。2室分別収集車での投入作業は通常のパッカー車と比較して投入口が狭く、作業時間が約1.5倍程度遅くなることがわかっており、これを一般世帯の収集に用いるためには、排出者間距離1.0km 近辺より長いと2室車が有利ということになったことが報告されている。分別収集車については、今後も改善されていくと想定されるが、積み込みに時間がかからない車両の開発が望まれる。

(b) 効率的な収集ルートの検討

資源化する食品廃棄物等(乾式メタン発酵の場合は紙、剪定枝を含む)とその他の可燃ごみに 分別して収集すると、従来の可燃ごみトータルで収集されていた収集ルートでは積載量が少なく なるため、効率的な収集を行うため収集ルートを変える方法が考えられる。

具体的には、図 5-9 に示すように、従来6つのごみ収集ブロックをパッカー車が1日2ブロック、すなわち3日かけて収集していたものと仮定する(図の上左)。生ごみを分別収集することで収集ルートを変えなければ、さらに3日かけて収集することになる。これを、収集ルートを変えて積載量がいっぱいになるように収集するブロックを1箇所増やし3ブロックずつ収集すると食品廃棄物の収集は2日、同様に可燃ごみも2日で済むことになり、人件費と運搬距離を削減することができる。

この事例は説明を簡単にするため、食品廃棄物と可燃ごみの重量が半分ずつで、ごみ収集作業に要する時間は変わらない(区域を広くすると収集時間は拡大するが)として想定しており、実際の地域の分別収集はこのように単純ではないが、このような方法を援用することにより焼却施設への往復距離を減らし、1日当りの収集量を増加させることが可能となる。

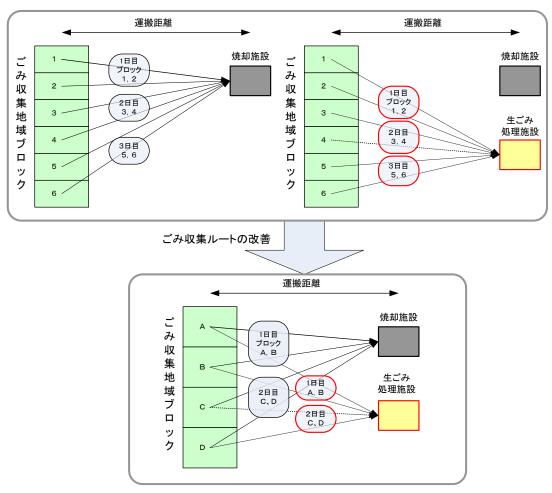


図 5-9 収集ルートを変更して効率的に収集する方法の一例

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成22年度

(c) ごみの中継輸送による効率性の向上

バイオマスの処理量を増大させるために、広域的な地域での収集を行う場合には、処理施設

への距離が長距離となる可能性があり、ごみを小・中型収集車から大型輸送車に積み替える「中継施設」を設けることによる収集運搬の効率化を図ることが可能となる。分別収集のためにより広い地域を収集しなければならない場合には、中継輸送などの方法も効果が上がる場合がある。

6) 分別収集への協力を促進する対策

バイオマスの分別収集は、分別排出に面倒さを伴うものであり、さらに家庭や事業所での臭気等の問題があり、協力率を高めるための効果的なPR、普及啓発方法が重要である。

分別収集の協力度を高める施策立案の視点は、①分別収集の PR 方法、②環境対策(臭気など)、③分別収集方法の3点である。

バイオマスの分別排出の実施前に、事前に地域を限定した分別収集の予備調査や住民並びに 事業者へのアンケートを実施してその意識を把握し、それをもとに分別排出への協力を高める 普及啓発方法を検討することが望ましいが、過去の環境省モデル事業の調査結果などを参考に 整理した結果を表 5-10 に示す。

同表に示すように地域の特性や臭気対策などに配慮することが重要である。さらに、PR、普及啓発の手段として、パンフレット、研修会、見学会、ビデオ (DVD) 教材などがあり、これらを有効に利活用することが協力率を高めることになる。

臭気等の環境対策のために、台所等での保管場所、保管容器、消臭方法、収集ステーション での配慮などが挙げられている。

また、ごみの収集容器、ごみ収集頻度なども分別への協力度に影響を与えるとされており、これらを参考に分別収集方法を選択することが必要である。

分別収集への協力度に関連する要因 分別収集への協力度を高める施策 年齢、居住年数等の考慮 分別収集のPR 世帯属性 説明会、施設見学会 パンフレット、DVDの活用 住居形態 分 別 屋内での臭気対策 生ごみの臭い 協 環境対策 ごみ収集ステーション対策 力 生ごみ 分別意識 度 ごみ収集車での対策 収集容器 アンケート調査 収集容器(袋、バケツ) 分別収集方法 等により 収集頻度 協力度を高める 分別収集回数、時間帯 対応を分析

図 5-10 バイオマス分別排出の普及啓発方法

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成22年度

表 5-10 分別排出に関する普及啓発方法

			↑別排出に関する晋及啓発万法 │
		項目	内 容
分別収 集のPR	地域の特徴 にあった PR	年齢層、 居住年数 住居特性	・年齢が若い世代の世帯に対する PR などの配慮(昼間は在宅率が低い) ・居住年数が短く、地域での交流が少ないと分別の協力が少ないことから、地域全体で取組む仕組みを確立する。 ・戸建住宅は保管場所があるが、集合住宅は保管するスペースが少ないため、保管場所などの工夫を説明
(普及・ 啓発)	PR 実施方法	説明会、 施設見学会	・説明会の開催・食品廃棄物リサイクルに係る施設見学会・環境管理システムの取得奨励(事業所)
	PR 用の資	パンフレット	・ごみ分別の品目の具体的な説明 ・図を用いたわかりやすい表現
	料	ビデオ、DVD	・ごみ問題を解決する対策の説明 ・分別収集による資源化の効果の説明
TE 14 44	屋内での臭 気対策	台所の臭気対策	・保管場所(ベランダ、庭等)・保管用のふたつきバケツの配布・茶がらやコーヒー滓などを入れて消臭・消臭製品の活用
環境対策	収集ステー ションでの対 策	鳥獣被害 (猫、カラス)対策	・カラス等の被害を防止するためごみ集積場所にネットをかける・ごみ排出コンテナにより鳥獣の侵入を防ぐ
	ごみ収集車 での対策	ごみ収集車の 改造(臭気対策)	・テールゲート積み込み装置内部のホッパードラムの改良 ・回転、押し込みの各プレート先端の改良
	ごみ収集容	素材	 ・液漏れしないプラスチック袋 ・特殊強化プラスチック(破れにくい) ・鳥獣被害の少ない袋(強度、色)またはバケツ
	器	形状、構造	・ふた付きのバケツ・水きり装置のついたバケツ
ご み 収 集方法		大きさ	・紙ごみの収集のために大きな袋(60Lなど)を用意(乾式メタン 発酵の場合)
	ごみ収集回	収集回数	・地域の生活スタイルにあった収集頻度 (気温の高い地域では、臭気の問題から週 2 回以上の頻度を求める)
	数、時間帯	収集時間帯	・鳥獣被害を防ぐため、夜の排出を禁止し、朝のみの排出とする
経済的イン	経済的インセンティブ(交		・分別収集の協力率を向上させるため、他の可燃物を有料化してバイオガス化対象ごみを有料化からはずす、または収集料を安くする。既に有料化している場合は減収となるので、それを考慮して計画する必要がある

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』平成22年度に追加、修正

(2) 選別施設の検討

選別施設は可燃ごみとして収集されたものをバイオガス化施設への投入可能物に選別するための施設である。バイオガス化施設の種類(乾式、湿式)や可燃ごみの収集容器、収集区分などに応じて、適切な機械設備の組合せを選定する。

【解説】

1)メタン発酵投入物の選別設備

食品廃棄物の分別収集が困難であると判断された場合は、収集後に機械装置による選別を行う 前提で、可燃ごみとして収集することになる。

機械選別の方式は、回転式ドラム型や、それにハンマーブレードが装着されたものが採用されている。これら機械の性能については、実証時データではあるが、食品廃棄物の98%以上をメタン発酵原料として回収できることが確認されている。

可燃ごみから食品廃棄物等を選別する機械選別装置の開発事例等を表 5-11 に示す。

表 5-11 機械選別装置のメーカー開発事例・再生利用事業者導入事例

	衣 3⁻Ⅱ 傲愀3	B 別装直のメーカー開発事例 * P	工机几乎不行等八乎的
事業者名	機械選別技術	開発状況等	分別精度等
バイオエ	回転ブレード式	■食品廃棄物(主に事業系一般	■処理能力:5t/h が複数あり。
ナジー株	破袋分別機	廃棄物、産業廃棄物)を受け入	■重量比、かさ比重において約 95%
式会社		れ、機械選別機で食品廃棄物と	以上の分別が可能である。
		それ以外(ビニールや弁当箱)に	■前処理、後処理のプロセスも考慮し
		選別。	たシステム設計が必要。
株式会社	ハンマーブレー	■可燃ごみを投入し、破砕後	■生ごみは 100%近く回収でき、選別
タクマ	ド式破砕選別機	に、スクリーン径以下のものを回	ごみ中のプラの混入率は 10%以下
,,,		収。	で、不適物 20%以下を実証。
		■平成 17 年度に自治体 C にお	■紙おむつについても、不織布など
		いて実証実験を行い、その後、	が残渣に移行し、し尿が吸収されてい
		実機が南但広域行政事務組合	る部分が選別ごみとして回収されるこ
		に導入されている。	とが確認できている。
日立造船	羽根付回転ブレ	■可燃ごみから、エタノール化に	■重量物に含まれるバイオマス以外
株式会社	ード式破砕分別	資する食品廃棄物・紙を選別す	の物質を 5%以下にすることを目標と
林 丸五江	機→パルパー	る装置。	しており、実証試験の結果より達成で
		■現在、実証試験中。破砕後、	きる見込み。
		食品廃棄物はふるいの穴から落	■食品廃棄物の回収率は 8~9 割程
		下し、乾いた紙、プラ等軽量物と	度。
		選別。軽量物からパルパーで、	
		紙繊維を回収。	
川崎重工	一次破砕機、磁	■可燃ごみのうち受入ホッパを	■可燃ごみ中の発酵不適物の除去
株式会社	力選別機、破砕	通過した 500mm のごみを一次破	率は、布類 63%、ビニール類 64%、
休八云仁	ごみ選別機(振	砕機で150mmまで粗破砕後、振	不燃物類 75%である。
	動篩式)	動スクリーンにて機械選別	■メタン発酵設備は支障なく運転でき
		■乾式メタン発酵を導入した防	ている。
		府市で実装されている。	

(出所)平成24年度廃棄物系バイオマス利用推進事業報告書に最新の情報を加えて加筆、修正。 杉原英雄他:可燃ごみによるバイオガス化施設の運転について、全国都市清掃研究・事例発表会講演論文 集、平成27年1月

2) 選別設備を含めた前処理システム構成例

前処理(選別設備等)のシステム構成の例を表 5-12 に示す。

選別設備は、①異物を除去する、②移送を容易にする、③発酵処理を容易にすることを目的に 設置する。

搬入されるごみ中に発酵不適物の混入が多いと、選別設備に多大な設備投資が必要になるとともに、故障の回数、部品の交換回数が増える可能性が高い。このため選別設備は耐久性に優れた構造及び材質であることが必要であるとともに、収集方式や処理方式に適合した形式・規模を選定することが重要である。

設備能力を高めるほど、整備コストと消費エネルギーは増大するので受入れるごみの性状と各機器の実績等を考慮し、最適な機器選定を行う必要がある。

A 事業	B 事業
破砕機	一次破砕機
∇	∇
∇	磁力選別機
∇	∇
破砕ごみ粉砕分別機	破砕ごみ選別機
(ハンマーブレード式)	(振動篩式)
∇	∇
選別ごみ用ピット	選別ごみ用ピット
∇	∇
∇	二次破砕機
∇	∇
選別ごみ切出装置	搬送コンベヤ
∇	∇
ミキサー	ミキサー
∇	∇
発酵槽	発酵槽

表 5-12 前処理(選別設備等)のシステム構成の例

3)選別率(選別精度)

乾式メタン発酵を採用している自治体では、生ごみを分別収集せずに可燃ごみとして収集した 後にバイオガス化施設で機械選別し発酵対象物を回収している。

機械選別による選別率(選別精度)は表 5-3(1)を参照

4) 分別収集と機械選別の比較

生ごみを分別収集するか他の可燃物と混合収集するかに関しては、メタン発酵の方式と関係する。

導入事例では、生ごみを分別収集する場合には湿式メタン発酵方式が採用され、可燃ごみに 含めて回収する場合には乾式メタン発酵方式が採用されている。

湿式メタン発酵の場合、下水道汚泥、し尿・家畜糞尿等、含水率が高く、質が一定の処理対

象物に適した方式である。乾式メタン発酵の場合、湿式では処理できない紙類等も処理が可能で、生ごみが厳密に分別されていない処理対象物に対応できる方式である。

ただし、可燃ごみには発酵不適物のプラスチック類、金属類、家電品、不燃物類等の様々な 廃棄物が混入している場合があるため、発酵対象ごみの円滑は搬送と発酵の促進を図るため、 異物除去や粒径調整が必要となる。そのため、ごみ質分析結果を考慮して、地域の実情に合っ た、破砕設備、選別設備等の前処理設備が必要となる。

表 5-13 に示す観点から分別収集と機械選別の比較を行い、地域にとって望ましい発酵対象 物の回収方法を設定する必要がある。

表 5-13 分別収集と機械選別の評価の視点

組成分類	分別収集	機械選別
メタン発酵方式	湿式、乾式どちらでも可能	メタン発酵不適物が混入する可能性が 高いため、要件がゆるい乾式を採用可能
市民の協力性	分別収集への理解と協力を得る必要 がある	市民レベルで分別の協力を得る必要がない
収集容器の変更	専用生ごみ袋などを用意する必要がある ステーションに専用の回収容器など を設置し回収する場合もある	従来通りの収集容器で対応可能
収集頻度の変更	収集回数が増える場合がある	収集回数は変わらない
副生成物の再利用	消化液を液肥化した場合や、発酵残 渣を堆肥化することが可能	発酵不適物が比較的多く含まれるため、 液肥利用や堆肥の利用は難しい(焼却処 理しサーマルリカバリを適切)
発酵残渣	発生量は比較的少ない	発生量は比較的多い
収集運搬費	高くなる傾向にある(一般的に分別 に伴う収集回数が増える可能性)	従来と変動なし
必要面積	狭い	やや広い (機械選別のための用地が必要)

6)発酵対象ごみの性状

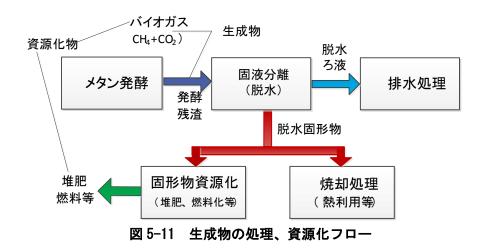
副生成品の品質を確保するために必要となる機械選別の方法を設定するために、機械処理対象 ごみ及び発酵対象ごみの性状を把握しておく必要がある。

ごみ処理施設の計画・設計要領 2006 改訂版(全国都市清掃会議)に準じて、機械選別処理対象 ごみの性状を表 5-14 のように整理しておく。

表 5-14 機械選別処理対象ごみの例

	Mediane Services And Services In Services					
項目(単位)	区分	低質ごみ	基準ごみ	高質ごみ	
=	水分	(%)				
三成分	灰分	(%)				
ת ו	可燃分	(%)				
	厨芥類	(%)				
	紙類	(%)				
種類組成	木・竹・わら類	(%)				
組成	布類	(%)				
	合成樹脂類	(%)				
	その他	(%)				
	炭素	(%)				
	水素	(%)				
元素組成	窒素	(%)				
組成	酸素	(%)				
	硫黄	(%)				
	塩素	(%)				
低位多	 発熱量	(kJ/kg)				
単位位	本積重量	(t/m^3)				

5.3 生成物の利用、処理方法の検討


(1) 生成物の利用方法の検討

生成されるバイオガス並びに資源化物のの利用方法(供給対象、流通、販売を含む)を設定 しその需要推計を行い、供給対象を設定し、利用方法を検討する。需要はその流通、販売する 範囲やその方法(販売ルートの確保)により異なるため、流通、販売の範囲やその方法を仮定 して需要推計を行うものとする。

【解説】

バイオガス化による生成物の流れを示すと図 5-11 のとおりである。バイオガス化によってバイオガスと発酵残渣が生成する。本マニュアルでは、この発酵残渣を固液分離することにより得られた液体を「脱水ろ液」と称し、固体を「脱水固形物」と称している。脱水固形物は堆肥等に加工されるか、固形燃料(炭化物等)に加工して資源化される。またそのまま燃料として焼却処理される場合もある。

発酵残渣は液肥(消毒後)として利用するか、脱水後の脱水ろ液を排水処理することになる。 発酵残渣を固液分離せず、直接、排水処理し、発生する汚泥を堆肥等に利用する場合もある。

ここでは、まずバイオガスの利用方法等について検討し、その方法に応じた利用量(需要量)を推計する。需要を確保するにはその販売ルートなどを確保することがきわめて重要であり、ここではその販売、流通方法を含めた利用方法の検討を行う。

1) バイオガスの利用

バイオガスはその利用方法としてガスの直接利用と発電による熱と電力の利用を行う2つの方法がある(図 5-12)。ガスの直接利用はバイオガスの精製を経て、場内利用(給湯、暖房、発酵槽加温等)、都市ガス原料としての供給、都市ガス導管への直接注入、近隣施設への導管(加温等)の方法がある。

さらにバイオガスを利用した発電による電力の利用の場合は、場内利用、グリッド(一般電気事業者)への売電、電気事業者として特定地域に売電する方法がある。なお、特定地域に電

力を供給する場合は、グリッドの電線を用いて特定地域に供給する場合(特定規模電気事業者) と電線網を敷設して供給する場合(特定電気事業者)がある。

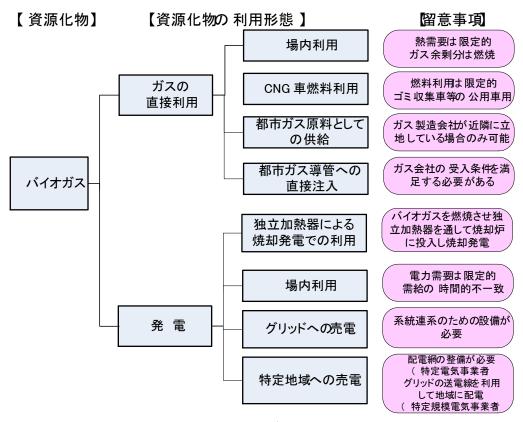


図 5-12 バイオガスの利用形態

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』、平成22年度に加筆

これらの2つの方法の中間的な方法として、バイオガスを燃焼させて独立加熱器を通じて焼 却施設の廃熱ボイラで発生した蒸気をさらに加熱する熱源として利用する方法がある。これは 防府市のコンバインドシステムで導入された方法であり、一般的な焼却炉の発電効率よりも高い効率が得られる。独立加熱器を通過したバイオガス燃焼排ガスは熱回収率を最大限に向上させるため焼却炉内に投入される。

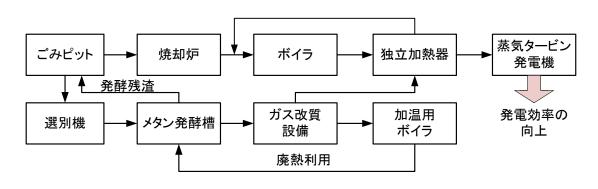


図 5-13 独立加熱器によるバイオガスの利用

(a) ガスの直接利用

(ア) バイオガスの利用用途

ガスの直接利用の概要と特徴を表 5-15 に示す。供給先によって、ガスの精製のレベルが異なっている。場内利用が最も精製のレベルが低く、次いで都市ガス原料、CNG 燃料、最もレベルが高いのが導管注入である。立地条件の制約として、場内利用、都市ガス原料の場合が最も厳しく、CNG 燃料が最も少ない。ガス需要は都市ガス原料、導管注入の場合が最も大きく、場内利用、CNG 燃料は小さいという特徴がある。

表 5-15 バイオガスの利用用途の概要と特徴

	精製コスト	満たすべき基準	立地条件の制約	概要	ガス 需要
場内利用	低	ボイラ利用であれば、精製を要しない	バイオガス化施 設、隣接する施設 等への供給	場内での暖房、給湯、発酵槽加温等の熱利用に用いる。	/ \
CNG 燃料	中	CH ₄ 濃度 95%程度	小さい。CNG 車の 普及台数で需要が 決まる。	ごみ収集車両やバス等での利用が見込まれる。専用の車両、 燃料供給スタンドが必要。	/ /\
都市ガス原料	低	CH ₄ 濃度 95%程度 に精製し、必要に 応じて熱量調整	大きい。都市ガス 工場の近隣に限定 される。	バイオガスを精製し都市ガス原料として、都市ガス工場に送る。都市ガス(LNG)の量と精製バイオガスの量によりガス成分の受入基準が緩和できると考えられる。	ţ
導管注入	高	都市ガス事業者 が定めたバイオガ ス購入要領の基 準による	小さい。都市ガスイ ンフラが整備され ていれば基本的に どこでも可能。	バイオガスを精製し、微量成分の除去、熱量調整、付臭等のプロセスを経て都市ガス相当の品質のガスを既存のガス導管へ注入する。	大

ガス直接利用を行っているバイオガス化施設の事例を表 5-16 に示す。神戸市は都市ガス導管注入、CNG 燃料利用の両方を行っており、城南島食品リサイクル施設は発電に加えて都市ガス導管注入を行っている。長岡市は隣接するガス会社工場にガス原料を供給しており、立地上の優位性を生かしている。

表 5-16 ガス利用を行っている主なバイオガス化施設

事業主体	処理能力	対象バイオマス	ガス利用	ガス利用量
城南島食品	110t/日	事業系生ごみ	都市ガス導管注入	都市ガス供給用
リサイクル		その他産廃	発電利用	約3,000Nm³/日
施設				発電利用

	Г	Г	ı	
				約 12,000Nm³/日
神戸市	$320,000\text{m}^3/$	下水汚泥	都市ガス導管注入	都市ガス供給用
	日 (水処理)		自動車燃料	2, 000Nm³/日
			場内利用	天然ガス車用
				1,300Nm³/日
				場内利用
				2,700Nm ³ /日
金沢市	46,000 m ³ /日	下水汚泥	都市ガス精製	都市ガス供給量
	(水処理)			約 42 万 Nm³/年
				(H21 実績)
長岡市	90, 200 m³/日	下水汚泥	都市ガス原料	精製ガス供給量
	(水処理)			約 60 万 Nm³/年
稚内市	34t/⊟	生ごみ	CNG 装置 4Nm³/h	天然ガス車用
		紙	ガス発電機	35,040Nm³/年
		廃食用油	25kW×8 台	電力・温水用
		下水汚泥	蒸気ボイラ1台	858,115 N m³/年
		水産汚泥	(350kg/h)	乾燥用(蒸気)
				251, 485Nm³/年
富山グリー	40t/日	家庭系生ごみ	ガス販売	ガス販売
ンフードリ		事業系生ごみ	マイクロガスター	3,000Nm³/日
サイクル		その他産廃	ビン 30kW×3	

(イ) ガス事業者

都市ガス原料、導管注入の場合は、近隣に都市ガス事業者が立地することが条件であり、それを調査することが必要である。都市ガス事業者は表 5-17 に示すように全国に 209 (2013 年 10 月末、日本ガス便覧) あり、そのうち 28 が公営事業である。近隣のガス事業者を調査して、供給量、供給価格、供給区域などを整理して、ガス事業者への供給の可能性を整理した上で、直接ガス事業者と協議を行うことが必要である。

表 5-17 地域ごとの都市ガス事業数

	私営	公営	計
北海道	9	1	10
東北	31	6	37
関東	74	16	90
中部	7	_	7
北陸	3	1	4
近畿	16	3	19
中国	11	2	13
四国	1	ı	1
九州	27	-	27
沖縄	1	_	1

(出所)日本ガス協会、「ガス事業便覧」、平成24年版

(ウ) ガスの直接利用のための条件と設備構成

バイオガスの精製はバイオガスに4割~5割程度含まれる二酸化炭素の除去が目的であり、 精製方法には、主として気液接触法(高圧水吸収法)、PSA分離法、膜分離法がある。

表 5-18 メタン濃縮技術の比較

方式	気液接触法	PSA 分離法	膜分離法
分離媒体	高圧水	分子篩活性炭等	高分子膜
	水への溶解度の差	吸着剤への吸着率の	分離膜に対する透過速度
濃縮原理	を利用しメタンを	差を利用しメタンを	の差を利用 しメタンを選
	選択分離する。	分離する。	択分離する。
メタン純度	97%以上	98%以上	98%以上
メタン収率	98%程度	80~85%程度	55~65%程度

(出所)「バイオガス化マニュアル」(社)日本有機資源協会(平成 18 年 8 月)

気液接触法(高圧水吸収法)は、常圧または高圧でバイオガスを水と接触させ、水に二酸化炭素等を吸収させてメタンガスを分離する方法である。また PSA 分離法は、圧力変化により脱吸着を行う物理吸着法である。膜分離法は分離膜に対する等加速度の差を利用してメタンを選択分離する方法である。PSA 分離方式は、水は不要で設置スペースが小さく、コストが比較的安価であるとされて、精製後のメタン濃度は 98%以上である。

都市ガス導管への直接投入の受入条件は、以下のように設定されている(詳細は各ガス会社の受入条件を参照)。

- ① ガスの組成、圧力、性状、量の条件を満たし、ガス会社が供給するガスと互換性を有する。 大阪ガスの性状の条件は以下のとおりである(大阪ガス(株)バイオガス購入要領より一 部抜粋)
 - ▶ 標準熱量:45MJ/Nm³
 - ➤ 硫化水素: 1.0mg/Nm³以下➤ 全硫黄: 5.0mg/Nm³未満
 - ▶ 付臭濃度:12~16mg/Nm³
 - ▶ 水素:4vol%以下
 - ▶ 酸素: 0.01 vol%以下
 - ➤ 窒素:1.0 vol%以下
 - ▶ 二酸化炭素: 0.5 vo1%以下
- ②上記の条件を満たしていることを確認するために双方で常時監視を行う。
- ③ 受入地点は中圧導管に接続するものであること。
- ④ 圧力はガス会社の導管の運用圧力の範囲内
- ⑤ 管ネットワークに影響を及ぼさない量、圧力であること。

ガス事業の上記の条件により、熱量調整設備(都市ガスの標準熱量(13A)の熱量 45MJ/m³を満足するために LPG を添加し熱量を調整)、付臭装置(都市ガスと同一の付臭剤を使用し添加する)、計測設備を付加することが必要になる。

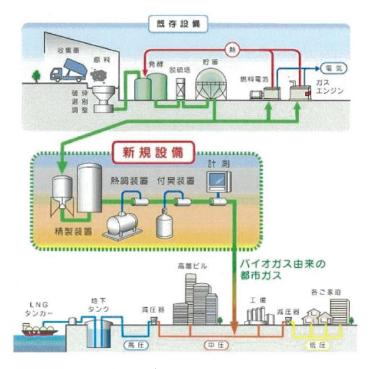


図 5-14 バイオガスの直接供給のための施設

(出所)平成23年度廃棄物系バイオマス利用推進事業報告書(バイオエネジーの施設)

(b) 発電利用

(ア) 電力の利用用途

発電による電力利用は、表5-19に示す用途がある。場内利用の場合は、電力需要は限定的であり、コジェネ設備(熱電併給)を導入して電機と熱を効率的に利用することが有効である。グリッド(一般電気事業者)への売電(卸供給事業者: IPP)は、系統連係のための整備が必要であり、FITの認定手続きが必要である。また、再生可能エネルギーの買い取り量が多い地域にあっては、受電変動幅に制約がある場合がある。さらに、特定地域への売電は、特定電気事業者の場合は配電網の整備が必要であり、特定規模電気事業者の場合はグリッドの送電線を利用して地域に配電することが可能である。表5-20に電気事業の種類を示すが、電気事業法を遵守して事業を行うことが必要であり、供給に制約(規模別)がある場合があるため注意が必要である。FITの認定手続きは、資料編を参照されたい。

表 5-19 電力の利用用途の概要と留意点

利用用途	利用範囲	電力供給における留意点
発電	•場内利用	・電力需要は限定的
	(処理場内電力)	・コジェネ利用が有効

・グリッドへの売電	・系統連係のための整備が必要
(卸供給事業者:IPP)	・再生可能エネルギーの買い取り量が多い地域にあって
	は、受電変動幅に制約がある場合がある
	・FITの認定手続きが必要
・特定地域への売電	・配電網の整備が必要(特定電気事業者)
(特定地域への電力供	・グリッドの送電線を利用して地域に配電(特定規模電気
給)	事業者)

(イ) 電気事業者の現状

電気事業者の区分と事業内容を表 5-20 に示す。一般電気事業者がいわゆる電力グリッドであり、東京電力をはじめとする 10 電力会社であり、その他各種の電気事業者が存在する。

_	X ∪ L∪ 电X平不日VE	∸/J
事業者区分 (略称	事業内容	販売対象
一般電気事業者	不特定多数の利用者に電力を供給	制限なし
卸電気事業者	一般電気事業者に電力を供給(200万 kWを超える発電設備を保有)	一般電気事業者
卸供給事業者 (IPP)	一般電気事業者に電力を供給(200万kW以下の発電設備を保有)	一般電気事業者
特定規模電気事業 者(PPS)	一般電気事業者の送配電ネットワー クを使って電力を供給	一般電気事業者から 50kW 以上の 電力を受けている利用者
特定電気事業者	特定の地域で自社の発電設備と送配 電ネットワークを使って電力を供給	地域内の利用者
特定供給	関係者に対して自社の発電設備と送 配電ネットワークを使って電力を供給	子会社など

表 5-20 電気事業者の区分

(ウ) 電力利用設備

電力の利用設備としての発電機は以下の種類があり、それぞれの特徴、発電効率を以下に示す。

- ・ガスエンジン
- ・ガスタービン、マイクロガスタービン
- ・デュアルフューエルエンジン
- 燃料電池

① ガスエンジン

ガスエンジンは、発電と同時にコージェネレーションにより温水として排熱回収するのが一般的である。発電効率は30~40%程度で、排熱回収を含めた総合効率は60~80%である。

②タービン、マイクロガスタービン

ガスタービンは、主に大規模発電用として用いられ、排ガスからの熱回収によってコージェネレーションされる。マイクロガスタービンは、数十 kW 程度の小型であり、騒音・振動対策も容易である等の長所がある。総合効率はガスエンジンとほぼ同等である。

③デュアルフューエルエンジン

比較的小規模の発電機としてデュアルフューエルエンジンがある。バイオガス専燃よりも安定した運転ができるといわれており、発電効率も比較的高いが、軽油等の補助燃料が必要で、補助燃料用のタンク等の付帯設備も必要になり、指定数量を越えると消防署への届出が必要となる。

4)燃料電池

燃料電池の特徴は、40%程度と高い発電効率と80%程度の高い総合効率が得られることである。また、有害な排気ガスをほとんど発生させないことや低騒音であることなどの長所が挙げられる。

課題として長寿命化、低コスト化が残っており、技術開発の進展が望まれている。

なお、ガスエンジンやガスタービンは騒音が発生するので防音対策が必要となる。規制値は各地域によって異なるので確認しておく。詳細は「ごみ処理施設整備の計画・設計要領 2006 改訂版」((社) 全国都市清掃会議) を参照されたい。

売電を行う場合は逆潮流可能な系統連系を行う必要がある。この場合単独運転検出装置の設置が必要になる。これら必要なコストと売電単価やリスクを勘案し検討する。

【コラム1】再生可能エネルギーに関する政策の現状と固定価格買取制度(FIT)

日本のエネルギー最終消費量は高度成長期の1960年代から1970年代まで高い伸びを示したが、2度の石油危機の反省からエネルギーの効率的利用を進めるものの、2011年度では1973年度と比較して民生部門は2.4倍、運輸部門で1.9倍と増加している。

二次エネルギーである電気は、家庭用及び業務用を中心に需要は増加の一途をたどっており、電力消費量は約460TWhから約1,050TWhと2倍以上に上昇している。

一方、我が国は二度にわたる石油危機を契機に、エネルギー供給を安定化させるため、石油代替エネルギーとして原子力、天然ガス、石炭等の導入を推進し、エネルギー源の多様化を図るとともに、1979年以降、新エネルギー開発を加速させた。その結果、一次エネルギーに占める石油の割合は2010年度には40.0%まで削減し、1973年度における75.5%から大幅に改善された。

しかし、2011 年3 月11 日に発生した東日本大震災は、未曽有の被害をもたらすとともに、我が国のエネルギー供給の課題も浮き彫りにした。震災と同時に発生した原子力発電所の事故により電力需給は逼迫し、長期間休止していた火力発電所を再稼働するなどにより停電等による被害を回避することができたものの、従来の大規模電源による電力供給形態に内在するリスクが顕在化した。

そのため、再生可能エネルギーを含めた多様なエネルギー源の活用がこれまで以上に求められることとなり、これらを前提とした電力供給システムへの転換が必要となってきた。再生可能エネルギー導入の意義は、エネルギー自給率の向上、火力発電の燃料調達コスト抑制、CO2 排出量の削減に貢献することである。

再生可能エネルギーとは、石油、石炭、天然ガス等の化石燃料から生み出したものではなく、太陽光や風力、地熱等、地球上で自然に起こる現象を利用して繰り返し使えるエネルギーを指す。 具体的には、太陽光発電、風力発電、バイオマスエネルギー、水力発電、地熱発電、太陽熱発電・太陽熱利用、潮流発電等がある。我が国の電力供給に占める再生可能エネルギーの割合は、2011年度で5%程度であり、天然ガス35%、石炭27%、石油15%に対して極めて少ないのが実情である。

既に再生可能エネルギーについては、補助的な位置付けではなく、基幹的な電源として位置付けつつ導入拡大に取り組むことが国際的な潮流となっている。各国ともに固定価格買取制度やRPS制度による支援を行っており国際エネルギー機関(IEA)の予測では、2011年から2035年にかけての世界における1次エネルギーの増減見通しでは、OECD諸国において化石燃料や原子力が減少し、これを再生可能エネルギーが代替していくことが予想されている。

固定価格買取制度(FIT)とは、再生可能エネルギー源(太陽光、風力、水力、地熱、バイオマス)を用いて発電された電気を、一定の期間、固定価格で電気事業者が買い取ることを義務付けるもので、2012 年7 月より開始された。このFIT制度導入後の設備容量の導入、認定状況を下表に示す。FIT導入前は再生可能エネルギーの設備容量は2,060万kWであったが、2014年11月末にはFIT制度への新規認定容量は7,349万kWとなっている。このうち、バイオマスはFIT導入前230万kWでありFIT制度導入後の新規の認定容量では148万kWとなっている(表-1)。なお、バイオマスのうち、バイオガスに限定すると1.8万kWとなっており全体の1.2%となっている(表-2)。

表一1 再	耳生可能エネルギーの導入実績	(単位:万kW)
-------	-----------------------	----------

	導入容量 移行認定分 (2014年11月末)	導入容量 新規認定分 (2014年11月末)	認定容量 新規認定分 (2014年11月末)
太陽光(住宅)	468	280	334
太陽光(非住宅)	26	1,176	6,688
風力	253	22	143
中小水力	21	3	34
バイオマス	113	12	148
地熱	0	0	1
合計	881	1,493	7,349

(出所)再生可能エネルギー発電設備の導入状況、資源エネルギー庁、閲覧日2015年3月2日

注)「新規認定設備」とは、本制度開始後に新たに認定を受けた設備のこと。導入設備とは買取を始めた設備をいう。 移行認定分とは再エネ特措法(以下、「法」という。)施行規則第2条に規定されている、法の施行の日において 既に発電を開始していた設備、もしくは、法附則第6条第1項に定める特例太陽光発電設備(太陽光発電の余剰 電力買取制度の下で買取対象となっていた設備)であって、本制度開始後に本制度へ移行した設備をいう。

表-2 FIT制度施行後の新規認定件数、認定容量(2014年11月末時点)

		バイオマス発電設備(バイオマス比率を考慮)				
	メタン発酵 ガス	未利用 木質	一般木質・ 農作物残さ	建設廃材	一般廃棄物・	合計
認定件数(件)	75	43	27	4	51	200
認定容量(kW)	18,181	586,761	593,560	11,377	266,880	1,476,759

(出所)資源エネルギー庁HP、固定価格買取制度website、閲覧日2015年3月2日

買取価格は「効率的に事業が実施された場合に通常要する費用」と「1 キロワット時あたりの 単価を算定するために必要な、1 設備あたりの平均的な発電電力量の見込み」の2 点を基礎とし て算定することとしており、その際、「再生可能エネルギー導入の供給の現状」、「適正な利潤」、 「これまでの事例における費用」の3 点を勘案することとしている。また、配慮事項として「施 行後3 年間は利潤に特に配慮」、「賦課金の負担が電気の使用者に対して過重なものとならない こと」の2 点が掲げられている。

バイオマス利用技術は、既存のエネルギーシステムとの親和性が高く、世界でも利用が進んでいる再生可能エネルギーである。再生可能エネルギーの中でも気候や自然条件に左右されない安定な電源とされており、地熱発電と並んでベース電源として位置づけられるうるエネルギーということができる。また、エネルギーの地産地消の観点から、我が国はこれらバイオマスのエネルギー利用促進のための技術開発に注力してきた。そのため、廃棄物系バイオマスを活用した発電を中心としたエネルギー利用は極めて重要な位置づけを持つものということができる。

【参考文献】

・再生可能エネルギー技術白書第2版、(独)新エネルギー・産業技術総合開発機構、2014

(2) 排水処理、残渣処理の検討

1) 排水処理、残渣処理の事例

バイオガス化施設の発効残渣の利用及び排水処理の方法を図 5-15 に、発酵残渣の資源化、排水処理の事例を表 5-21 に示す。

発酵残渣の利用形態としては、液肥、固液分離後の固形物を肥料あるいは燃料利用、発酵残渣を排水処理し、発生する汚泥を肥料・燃料利用に分類される。

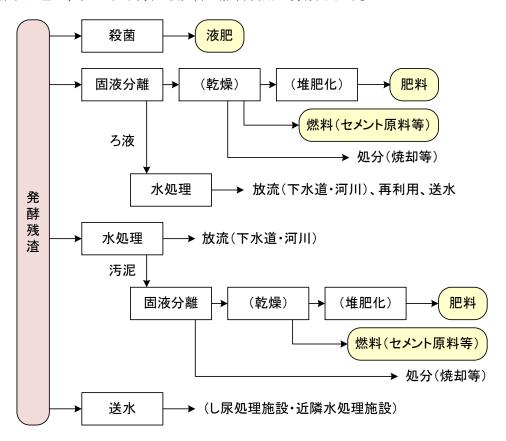


図 5-15 発酵残渣の利用及び排水処理の方法

①液肥利用

発酵残渣を殺菌処理するのみで液肥として利用可能である。

製造した液肥は無償提供されている事例が多く、販売収入は見込めないが、需要地さえ確保 されれば設備費、処理費ともに安価で導入しやすいため、他の方法よりも費用対効果が高い。

②脱水固形物の肥料利用

発酵残渣を脱水(および乾燥)処理した固形物は堆肥原料として利用される。製造される堆肥は、肥料として販売することができ、一定の収入を見込むことができる。

採用事例が最も多い方法である。

③脱水固形物の燃料利用

発酵残渣を脱水、乾燥処理した固形物は、燃料やセメント原料(助燃剤)として利用されて

いる。製造される乾燥固形物は、販売されているが、売却先が限定されるため、採用事例は多くない。

④水処理汚泥の肥料・燃料利用

発酵残渣を直接排水処理し、処理に伴い発生する汚泥を脱水、乾燥処理して肥料原料や燃料として利用する方法で、排水処理後の処理水は放流される。

採用事例は多くないが、小規模な施設や近隣で合同処理が可能な場合に採用されている。

⑤脱水後の排水処理

脱水後のろ液は排水処理される。処理水は、近隣に下水道がない場合以外は下水道に放流している。

また、排水処理方式は硝化脱窒法に膜処理を付加した方式の採用が多く、特に小規模施設では膜処理が多く採用されている。

表 5-21 発酵残渣の資源化、排水処理の事例

事業	発酵	発酵残渣の資源化	排水処理
者	方式	元研 次温 •2 英篇·旧	がかた生
Α	湿式	脱水装置で処理後、乾燥装置で処理し、堆	排水処理設備で処理後、、一部は受け入
		肥として市民、農家へ還元	れ装置へ返送して場内再利用、一部は下
			水道放流
В	湿式	脱水、乾燥後、肥料化	処理後、河川放流
С	湿式	脱水後、肥料化	処理後、下水道放流
D	湿式	脱水後、焼却処理	処理後、下水道放流
Q	湿式	脱水後、堆肥原料として搬出	処理後、下水道放流
F	湿式	脱水、乾燥後、肥料化	処理後、下水道放流
S	湿式	脱水、乾燥後、ガス化溶融施設で処理	グループ内の処理施設で他の排水と合同
		合成ガス、スラグ、メタルを回収し燃料化及	処理
		び資源化	
G	湿式	排水処理の汚泥を脱水、乾燥後、一部をセ	処理後、下水道放流
		メント原料化	
Н	湿式	脱水、乾燥後、セメント原料化	希釈後、下水道放流
I	湿式	脱水、乾燥後、セメント原料化	隣接のし尿処理施設で処理
		一部肥料化	
Т	湿式	排水処理の汚泥を脱水後、堆肥化、未処理	処理後、下水道放流
		の発酵残渣の一部を堆肥に振りかけて利用	
K	乾式	脱水後、堆肥化、一部は焼却	簡易処理後、ごみ焼却施設へ噴霧
L	乾式	脱水後、焼却	処理後、冷却水として排ガス中に噴霧
М	乾式	脱水後、焼却	処理後、下水道放流
U	乾式	排水処理槽内水の一部を液肥	処理後、河川放流
N	湿式	殺菌後、液肥	なし
Р	湿式	一部殺菌後、液肥	処理後、下水道放流
		排水処理の汚泥を脱水、堆肥化	

2) 発酵残渣の処理方式の検討

発酵残渣の処理方式については、周辺地域の需要を考慮した上で、需要先(製品の需要があるのか等)との調整も含め、各処理方法の実現性を検討する必要がある。

区分検討項目発酵残渣発生量生成物の生産可能量
安定供給量発酵残渣性状肥効成分、有害物等の含有量
発熱量、重金属類、りん周辺地域の需要利用者意識、散布面積、季節変動、栽培種
環境への影響(臭気、土壌への影響など)販売・流通方法販売対象エリア、運搬方法

表 5-22 発酵残渣の処理方式の検討項目

①液肥利用

液肥利用は発酵残渣の肥料成分を利用するため、農業利用が主であり、液肥利用のための必要な施設として、貯留施設、消毒施設、輸送施設、散布施設等がある。

周辺の類似施設(競合他社)の有無、価格設定

肥料の需要には季節変動があるため、貯留施設が必要であり、農業利用に有害な菌類の除去のための消毒施設、農家等への輸送施設、散布施設(必要な場合)などがある。それぞれの諸元を決定するための、検討の視点を表 5-23 に示した。

まず、基本的な情報として液肥生産量の推計、液肥の需要調査、液肥の品質の設定が必要であり、設備の諸元の決定のために液肥の貯留方法、貯留容量の設定、液肥の供給方法の検討(輸送、散布)がある。また、コストの試算のために建設費、維持管理費と販売単価、売却益の調査等を検討することが必要である。

		我 U 20 /庆/记书引用307/2050/4天日3 V7/25/3
項目	区分	液肥利用
施設構成		 ・貯留施設(需要の季節変動を考慮) ・消毒施設 ・輸送施設(農家・圃場等への輸送) ・(散布施設)(必要な場合)
検討	基本的事項の把握	・液肥生産量の推計・液肥の需要調査・液肥の品質の設定・臭気、土壌、公共用水域への影響
の視点	設備内容の検討	・液肥の貯留方法、貯留容量の設定・供給設備の検討(輸送、散布)
点	コスト、維持管理性の検討	・建設費、維持管理費、施設の運転管理方法・販売単価、売却益の調査

表 5-23 液肥利用のための検討の視点

②肥料利用

肥料化・堆肥化の利用は、発酵残渣に含まれる栄養分を肥料として農地還元するものである。 必要施設としては、発酵残渣を固液分離するための脱水施設、必要に応じて含水率を調整する ための乾燥施設の他、性状を安定化させる堆肥化施設、需要の変動に対応するための貯蔵施設が 必要である。それぞれの諸元を決定するための、検討の視点を表 5-24 に示した。

検討の視点として、生成品の生産量の推計、・需要調査が重要である(第3章参照)。

また、法律(肥料取締法)に対応した品質であることを明示する必要があるための品質設定や、 堆肥の製造方法(主として堆積方式、攪拌方式)、貯留方法、供給方法等の検討も必要である。

コストの検討については、建設費、維持管理費、売却益の調査等を行いその実現性を把握する ことが必要である。

液肥、堆肥ともに、農地での利用にあたっては、土壌や公共用水域の硝酸汚染が問題になる場合があることに留意し、利用地域での土壌中の窒素の蓄積状況や他の農業起源の窒素投入状況を 把握した上で検討する必要がある。

項目	区分	肥料化(堆肥化)
施設構成		・脱水施設・乾燥施設(必要に応じて)・堆肥化施設(安定化施設)・貯蔵施設(需要の季節変動を考慮)
検討	基本的事項の把握	 ・生成品の生産量の推計 ・需要調査 ・法律の整理、品質の設定 ・競合する製品の調査 ・臭気、土壌、公共用水域への影響
の視点	設備内容の検討	・生成品の製造方法(堆積方式、攪拌方式)・貯蔵設備・供給設備の検討
	コスト、維持管理性 の検討	・建設費、維持管理費、施設の運転管理方法・売却益の調査

表 5-24 肥料利用のための検討の視点

③燃料·建設資材利用

燃料利用については、脱水汚泥を焼却施設に投入して助燃材として利用する場合と炭化処理等を行って固形または粉末燃料として売却する場合がある。

必要施設としては、発酵残渣を固液分離するための脱水施設、必要に応じて含水率を調整する ための乾燥施設や炭化施設の他、搬出形態に合わせた搬出施設が必要となる場合がある。

それぞれの施設諸元を決定するための、検討の視点を表 5-25 に示した。

焼却施設への助燃材の場合は、その含水率等の受入基準や焼却施設の受入可能量等を調査する

ことが必要である。また、炭化物の場合は要求される性能及び需要量の調査を行う(第3章参照)。 建設資材としての利用の場合はセメント原料の場合は主として脱水汚泥をそのままセメント業 者に処理委託する場合が最も多いが、焼却灰や溶融スラグを路盤材や埋め戻し材等に加工して、 販売する方法もある。

燃料等の利用でも生産量の推計、需要調査、要求品質などを整理することが必要であり、コストの検討については、建設費、維持管理費、売却益の調査などを行いその実現性を把握することが必要である。

区分 燃料化 建設資材 項目 (助燃材、炭化物) (セメント原料等) 脱水のみによる簡易な助燃材化(焼 脱水汚泥を用いたセメント原料化、焼 却炉への投入)と、炭化物等の固形 処理の概要 却灰や溶融スラグなどを用いた路盤 または粉末燃料化がある。 材、埋め戻し材の利用がある。 •脱水施設 ・乾燥施設(必要に応じて) 施設構成 ・炭化施設(必要に応じて) ・搬出施設(必要に応じて) 焼却施設での受入基準等の調査 生成品の生産量の推計 (助燃材供給) -需要調査 基本的事項の把握 -需要調査 ・法律の整理、品質の設定 炭化物の要求性能 検 ・含水率調整に必要となる設備の検 ・セメント原料の場合は脱水汚泥をそ 討 のまま供給する 他の場合(焼却、溶融等)は以下の検 の 炭化物製造の処理施設 設備内容の検討 視 •貯蔵設備 討が必要 点 供給設備の検討 生成品の製造方法 •貯蔵設備 建設費、維持管理費、施設の運転 ・セメント原料としての処理費の把握

表 5-25 燃料・建設資材利用のための検討の視点

なお、このほかに発酵残渣(消化液)を用いて藻類を培養し、これを機能性飼料(微細藻類配合飼料)として家畜に供給できる製品開発なども行われている(研究団体:微細藻類畜産飼料の新技術確立コンソーシアム)。これらの新製品は南丹市八木バイオエコロジーセンターでの生産、小売を想定して研究がすすめられており、消化液の付加価値の高い利用方法として注目される。

・設備の建設・維持管理費、施設の運

転管理方法売却価格等の検討

④排水処理

コスト、維持管理性

の検討

管理方法

・ 売却益の調査

発酵残渣を排水処理する場合は、放流先(河川放流と下水放流の2つの場合あり)の基準を把握して処理方式を決定する必要がある。また、処理水の再利用を行う場合についてもその利用要件に適合する処理方式を選択することとなるが、施設規模や維持管理体制等、運転管理の実情を

考慮した上で検討する必要がある。

○下水道放流の場合

下水排除基準:BOD<600mg/L、SS<600mg/L、窒素含有量<240 mg/L 等

(※下水道法施行令 第九条の五 (特定事業場からの下水の排除の制限に係る水質の基準を定める条例の基準)を参照)

生物処理が最も効率的であるが、放流先の下水道規模が小さい場合は流入負荷の影響が 大きくなる可能性があるため、下水道管理者との調整が必要である。

○河川等への放流の場合

放流基準:放流先の基準項目、基準値を確認する

放流先の下流に閉鎖性水域がある場合、水稲への引水利用や漁業者等の利水がある場合は、窒素・りんの処理にも留意が必要である。

○処理水再利用の場合

水質基準:用途による基準値を確認する

処理方式の選定では、基準が BOD のみの規制の場合は生物処理のみで十分であるが、窒素の基準がある場合は窒素除去ができる生物学的脱窒素処理 (循環式硝化脱窒法) が一般的に採用されている。

また、色度等の基準が設定されている場合には凝集処理、砂ろ過、オゾン処理、活性炭吸着等の高度処理施設が必要である(それぞれの処理施設の計画・設計方法は「ごみ処理施設整備の計画・設計要領 2006 改訂版、(社)全国都市清掃会議、平成 18 年 6 月」を参照)。

また、処理性能だけでなく、処理設備の維持管理性も重要な検討項目のひとつであり、維持管理体制を踏まえた検討が必要である。

なお、排水処理で発生する汚泥の資源化については、②肥料利用、③燃料・建設資材利用を参 照されたい。

_		No to Minima Manager Manager
項目	区分	排水処理、放流
施設構成		•流入施設
		·生物処理施設(BOD 除去)
		•生物処理施設(窒素除去)
		•固液分離施設(沈殿池、膜分離)
		・凝集、砂ろ過、活性炭処理などの高度処理
		・汚泥処理(資源化以外の埋め立て等)
検	基本的事項の把握	・放流先の排水基準、下水道の受入基準等の調査
討		・排水負荷量(総量規制のある場合)
の	設備内容の検討	・排水処理設備の方式、処理能力の検討
視	コスト、維持管理性	・建設費、維持管理費、施設の運転管理方法
点	の検討	・維持管理性の検討

表 5-26 排水処理施設の構成と検討の視点

5. 4 利活用事業化手法の検討

事業化手法として、地方自治体での公設公営で実施する方法に加えて、民間企業を活用する PFI (プライベート・ファイナンス・イニシアチブ)、PPP (パブリック・プライベート・パートナーシップ) 事業等があり、効率的な事業化手法を検討する。また、適用可能な補助金・交付金等を確認するとともに、必要に応じて、金融機関の活用 (ファンドの活用等) についても検討する。

【解説】

(1) 事業化方法の選択肢

事業化手法として、従来型の公設公営方式や、PFI 方式 (たとえば BTO、BOT など)、PPP 方式 がある。

PPP (Public Private Partnership:パブリック・プライベート・パートナーシップ)とは、官民協働と訳され、公共サービスの提供に関する民間活用の総称として用いられ、民間委託(公設民営、アウトソーシング)、第 3 セクター、PFI、民営化を含むものと解釈されている。一方、PFI (Private Finance Initiative:プライベート・ファイナンス・イニシアチブ)は PFI 法にのっとり、公共サービスに民間の資金、経営能力及び技術能力を活用し、公共で実施するよりも効率的、効果的に公共サービスを調達することを言う。PFI については法律に従って、その事業手法別に施設の所有権やリスク負担方法などが決められており、この仕組み以外の部分を PPPと呼んでいる。なお、第 3 セクターとは公共と民間の共同出資により事業を設立し、そこで建設、所有、維持管理、運営を行うものを言う。これらの特徴を表 5-27 に示す。

表 5-27 事業形態別のコスト等の特性

	表 0 27 学术が認例のコハーサの利益				
事業方式		式	官民の役割分担	特 徴	
公設公営			公共:資金調達、仕様の決定 民間:公共の仕様に基づき施 設の設計・施工、場合によっ て運転・保守管理を受託。	・民間は事業の投資回収に責任を負っていないため投資コストが高止まり傾向。 ・単年度契約で、長期の定額運営契約を締結していないため、事業リスクを公共が負担	
	公 設 民 営 (DBO¹)		公共:条件の提示、資金調達 民間:公共の条件に基づき施 設の設計・施工、運転・保守 管理を行う。	・施設の建設、運転、保守管理を一体化するため 民間の自由度が高く効率化による運営コストが 抑制可能。 ・民間事業者が投資回収に責任を負っていないた め、投資コスト抑制にインセンティブが働かない。	
P P	第3セクター		公共、民間の共同出資により 事業を設立。設計、施工、運 転、保守管理を共同で行う。	・公共と民間との共同事業であり、リスク負担があいまいになる場合や、公共に負担が多くなる可能性がある。	
	PFI	BOT ²	公共:条件の提示 民間:公共の条件に基づき、 施設の設計・施工・運転・保 守管理及び資金調達を行う。	・施設建設後、所有権を維持したまま運営する。・契約により、ほとんどの事業リスクは民間事業者が負担。民間事業者は投資回収責任を負っており、投資コストを抑制するインセンティブが働く。・民間からの資金調達により金利面では負担が大きい。	

¹ Design Build Operate の略 ² Build Operate Transfer の略

	BTO ³	公共:条件の提示 民間:公共の条件に基づき、 施設の設計・施工・運転・保 守管理及び資金調達を行う。	・施設建設後、所有権を公共に移転して運営する。 ・BOT とリスク負担、資金調達面は同様であるが、 公共が施設を所有することにより固定資産税の
			負担がなくなる。

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書

また、DBO 方式及び PFI 方式の一般的な事業スキームを図 5-16、図 5-17 に示す。

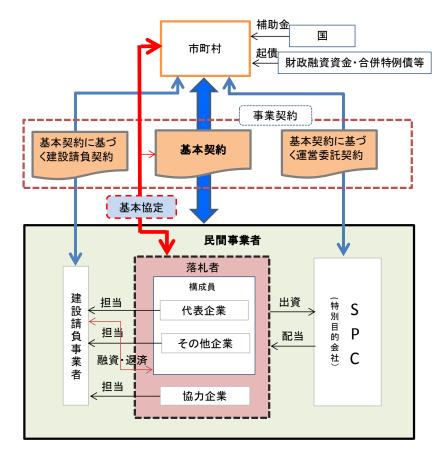


図 5-16 DBO 方式の一般的な事業スキーム

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書

_

 $^{^3}$ Build Transfer Operate \mathcal{O} 略

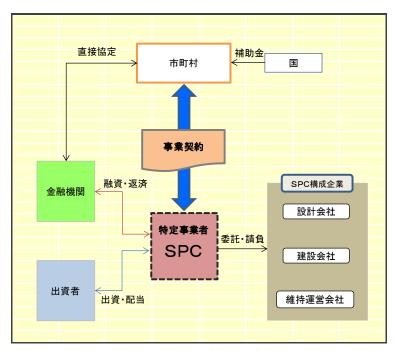


図 5-17 PFI 方式の一般的な事業スキーム

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書

(2) DBO のメリット、デメリット (DBO と PFI の違い)

DBO のメリットは、補助金や交付金、起債という地方公共団体に認められた資金調達手段の活用と、設計・建設・維持管理・運営を包括的に単一の企業グループに委ねることで事業費の効率 化を図るという PFI 手法のメリットの活用を両立できる点である。

また、DBOは、自治体による起債が可能であり、起債をすれば交付税還付が受けられる(合併特例債等⁴)。したがって、民間事業者が資金を調達する PFI と比較すると資金調達コストは大幅に低い。

また、DBO の場合、法人税は課税対象だが固定資産税は課税されないが、PFI は課税される。 さらに、DBO はどちらかと言えば自治体主導であることから、民間主導型で様々な法的規制等の ある PFI に比べ事業開始の確実性は高いと言える。

⁴ 合併特例債:合併特例債とは、市町村の合併に伴い特に必要となる事業について、合併年度とこれに続く15ヵ年度に限り、地方財政法第5条各号に規定する経費に該当しないものにでも充てることができる(充当率95%)ものであり、その元利償還金の70%について後年度において普通交付税の基準財政需要額に算入されるという地方債である。

表 5-28 事業方式による税負担

○-課税 ×-非課税

税の種類	課税主体	PFI		公設民営	公設公営
(元0)(生共		BOT	ВТО	DBO	公政公名
法人税	国	0	0	0	×
登録免許税 (商業登記)	国	0	0	×	×
登録免許税 (不動産登記)	国	0	×	×	×
法人事業税	県	0	0	0	×
法人県民税	県	0	0	0	×
不動産取得税	県	0	×	×	×
固定資産税	市	0	×	×	×
都市計画税	市	0	×	×	×
事業所税	市	0	0	×	×
法人市町村税	市	0	0	×	×

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書

一方で、DBO の場合、施設を自治体が所有するためリスク移転があいまいになる恐れがある。 SPC との事業契約等で可能な限りリスク分担の明確化を図ることが重要である。また、PFI は金融機関による事業監視機能が期待できるが、DBO は自治体の責任で行わなければならない。

PPP 手法を用いた、バイオガス化施設(コンバインド含む)の詳細を表 5-29 に示す。

表 5-29 PPP 手法を用いたバイオガス化施設一覧表(生ごみ主体)

衣 3⁻29 「FF ナ 法を用いたハイオガ入化施設 ⁻ 見衣(生この主体)				
事業名		稚内市(仮称)生ごみ中間処理 施設整備・運営事業	長岡市生ごみ バイオガス化事業	防府市クリーンセンター 整備・運営事業
—————————————————————————————————————		北海道稚内市	新潟県長岡市	山口県防府市
事業概要		・生ごみのエネルギー回収施 設の整備、維持管理、運営	・生ごみを利用した生ごみバイ オガス化施設の建設、維持管 理、運営	・可燃ごみ焼却処理施設、バイオガス化施設、リサイクル施設の整備、維持管理、運営・既存の焼却施設、破砕処理施設の解体・撤去
	募集•選定方式	総合評価一般競争入札	総合評価一般競争入札	公募型プロポーザル
	事業方式	ВТО	ВТО	DBO
予定価格		0.040.005.050.00	E 010 000 E00 III	建設費:13,125,000,000円
	(税込)	3,349,265,850 円	5,619,862,500 円	運営費:13,335,000,000円
決定価格		建設費:1,781,610,000円	4,701,690,350 円	建設費:10,069,500,000円
	(税込)	運営費:1,443,661,000円	4,701,090,330 []	運営費:10,605,000,000円
	落札時 VFM	5.9%	31.2%	34.8%
	アドバイザー	㈱日本技術開発	パシフィックコンサルタンツ(株)	(株)日本総合研究所・復権調査 設計(株)・西村ときわ法律事務所
	for TOTAL CAR SOLVE	市が搬入する生ごみ(4,202t/年),	可燃ごみ焼却(75t/日×2基),	家庭系生ごみ、事業系生ごみ
	処理対象バイオマス	紙(511t/年)又は油類(29.2t/年), 下水汚泥(2.090t/年)、市が許可す	バイオガス化(可燃ごみ 34.4t/	合わせて 65t/日(発酵対象物
	及び処理量	下水汚泥(2,090t/平)、円が計可9 る水産廃棄物等(500t/年)	日,汚泥 17.1t/日)、リサイクル 施設(23t/5h)	55t/日)
		建物用地面積:約 4,500m²	施政(23t/5h) 約 24,000m ²	約 10,000m²
	, , , , , , , , , , , , , , , , , , ,	メタン発酵バイオガス化方式	メタン発酵バイオガス化方式	メタン発酵バイオガス化方式
	バイオガス処理方式	(湿式)	(乾式)	(湿式)
+/-	メタン発酵処理能力	メタン発酵槽 23t/日、 受入設備 34t/日	25.75t/日×2槽 (350日/年換算)	メタン発酵槽 2 基:55t/日
施設概	バイオガス利用量	858,115Nm3/年	稼動後1年未満のため未記載	3,285,000Nm3/年
概	発電量(発電効率)	1,230MWh/年(32%)	独立加熱器による焼却発電	4,100MWh/年(31%)
要	圧縮天然ガス	35,040Nm³/年	なし	なし
	江州入然カス	(生ごみ収集車の燃料)		
		希釈水、洗浄水として場内で再	除外施設にて処理後、発酵槽	隣接下水処理場の処理水で希
	発酵残渣(ろ液)	利用及び排水処理後下水道放	の希釈水として利用し、余剰分	釈後下水処理施設へ移送処理
	※ サオ/ロルハ)	流	は下水道放流	
	発酵残渣(固形分)	堆肥利用	脱水後ごみと共に焼却	燃料化(ペレット)して販売
	その他	PFI 国内発のメタン発酵施設整	国内初のメタン発酵 DBO 事例 及びコンバインド方式(焼却施	PFI 国内 2 事例目のメタン発酵
	CVIB	備 PFI 事業	設・バイオガス化複合施設)	施設整備 PFI 事業
 事業類型		サービス購入型	サービス購入型	サービス購入型
	実施方針の公表	H21.5	H19.12	H21.7.28
	特定事業の選定	H21.6	H20.2	H22.2
事	募集要項の公表	H21.7	H20.3	H22.4
事業スケジュー	提案書提出	H21.10	H20.4	H22.9
スケ	優先交渉権者の決定	H21.12	H20.10	H22.11
ヺ	特定事業契約の締結	H22.3	H21.3	H23.3
Ţ	設計•施工着手	H22.4	H21.3	H23.4
ル	供用開始	H24.4	H25.4	H25.7
	事業期間	15 年間	20 年	15 年間
	契約終了	H39.3	H45.3	H40.6
選定グループ 一番 他応募者		大林グループ	JFE エンシ゛ニアリンク゛ク゛ルーフ゜	カワサキ重工業グループ
		荏原エンジニアリング・サービスグループ 協和エクシオグループ JFE エンジニアリンググループ	三井造船グループ、荏原、三 菱化工機	荏原エンジニアリングサービスグループ 日立造船グループ
Щ		サス・ジンナーコモルエロ第3/ロン		l

(出所)平成 25 年度廃棄物系バイオマス利活用導入促進事業報告書、第 36 回全都清研究・事例発表会講演論文集

(3) PPP/PFIの取組推進上の課題及び留意点

ここでは、PPP/PFI を活用する上での課題や留意点を示す。

1)注意すべき法制度的制約

廃棄物処理法上、市町村の責務との関係上、PFI 手法を活用する際に整合性を図る必要がある制度的制約として、以下の点が挙げられる。

表 5-30 バイオガス化の導入に関する法制度上の制約

制度	制約内容
一般廃棄物処理計画の策定	一般廃棄物処理計画を市町村が策定する義務があり、実施さ
(廃棄物処理法第6条)	れる PFI 事業は、市町村が定める計画と整合性を図る必要が
	ある。
市町村の固有事務、統括的責任	一般廃棄物処理は市町村の固有事務であり、統括的処理責任
(廃棄物処理法第6条の2)	は市町村にある。

2) 職員の雇用問題

一般廃棄物処理に関する責任は市町村に帰属している。多くの現業職員を抱えている事業であるが、PPP事業として推進されれば、事業の運営は民側により行われるため、職員の扱いについての問題が発生する。

公務員は制度上身分保証がなされているので解雇という手法をとることが難しいことと、労働組合による反発等が当然考えられるので、既存施設への併設等には大きな課題となることがある。

3) PPP 手法導入のメリット、デメリット

PPP 手法を導入することにより、設計・建設・維持管理・運営といった業務を一括で発注、性能発注方式を採用し、民間のノウハウを幅広く活かすことによりライフサイクルコストの低減が図られ、安くて質の良いサービスの提供が可能となる。特に PFI 事業では市町村側は財政支出の平準化が図れる。

一方、廃棄物政策が究極的に目指すところは、循環型社会の形成の推進により、ごみがゼロになることであるが、PPP 手法では供給するごみがゼロになれば民間事業者は事業として成立しなくなる。この不整合をどう考えるか、特に事業の安定性のためには計画したごみ量の安定供給と、事業性を確保できるサービス対価の設定が課題となる。

4) 応募企業数の確保

内閣府の統計 (「PFI に関する年次報告 (平成 21 年度)」、内閣府民間資金等活用事業推進室)によると、PFI 事業の応募者数は減少傾向にある。その理由として、①応募企業の予定価格が低い (要求水準と予定価格がバランスしない)、②参画に係る時間・費用が大きい、③参加資

格が厳しく参加可能な企業が限定される、④民間への過度なリスク移転・不確実性の高いリスク 負担がある、⑤同時期に同業種の公募が重なるなどの理由が考えられる。バイオガス化事業を想 定した場合、事業者の参入意欲を向上させるための工夫としては、以下が考えられる。

- ▶ 売電等生成物の収入はすべて事業者側の収入とする等のインセンティブを与える。
- ➤ 生成物(売電、精製バイオガス、液肥など)の販売先や販売方法に関し、事前に公共が 事業環境を整えることで、民間事業者の不要なリスクを回避し、事業の安定性を確保す ることは事業を成功に導くうえで重要である。発酵不適物の焼却処理、発酵残渣の焼却 処理、排水の下水放流等施設から排出される廃棄物を安定的に行えるよう事前に公共が 処理委託先との受け入れ条件等を取り決めておくことも重要である。
- ▶ サービス対価の見直し等基準を明確にしておく。

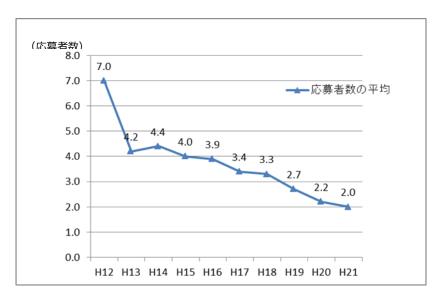


図 5-18 PFI 事業の応募者数の推移 (出所)内閣府『平成 21 年度 PFI に関する年次報告書』

5) VFM の考え方と課題

VFMでは、事業手法の決定に大きなウエイトを占める定量的評価(経済評価)のツールであり、定性評価(環境に与える影響、住民への安心感、事業の継続性、民間のノウハウ等)と共に特定事業の選定のためや(特定事業の選定段階)事業者選定時の定量評価のために使用される。 VFM は特定事業の選定段階ではシミュレーションであるが、落札時は実際の VFM が得られる。シミュレーションにあたっては条件設定の仕方で数値はかなり変動する。焼却施設等の PFI での実施事例が多いものについては現実的な条件設定が可能であるが、メタン発酵(バイオガス化)施設については、未だ事例が少ないことから条件設定にはより慎重に行う必要がある。

 $^{^5}$ V FM(Value For Money): 一般に、「支払に対して最も価値の高いサービスを供給する」という考え方である。同一の目的を有する 2 2 つの事業を比較する場合、支払に対して価値の高いサービスを供給する方を他に対し「V F M がある」といい、残りの一方を他に対し「V F M がない」という

6) 準備期間の長期化、事務量の増加

これまでに PPP を活用したバイオガス化の 3 事例 (稚内市: BOT、長岡市: BOT、防府市: DBO) を見ると、実施方針の公表から施設整備までに、稚内事例で 3 年、長岡事例で 4 年 1 ヶ月、防府事例では 5 年 4 ヵ月かかっている。

その間、特定事業の選定や、募集要項、応募者との対話、提案書の受付~審査、委員会活動、 特定事業契約という手順を経て、事業が開始される。

以下に、一般的な PFI 及び DBO の手続きと期間を図 5-17 に示す。

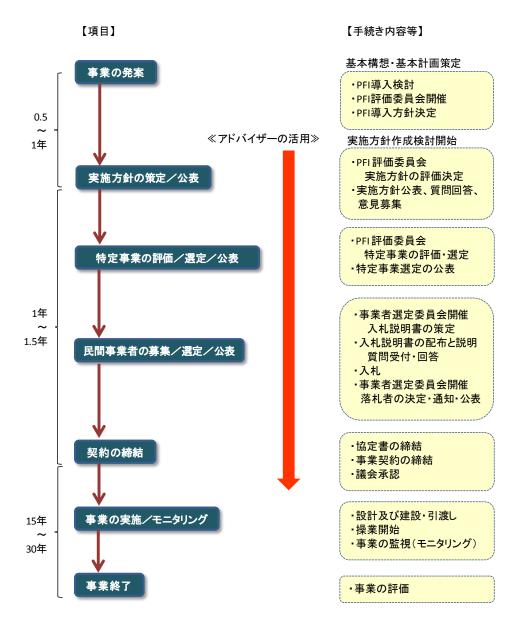


図 5-19 PPP 手法の取組フロー

(4) 財政的な支援制度

バイオガス化の導入に活用可能な国等の補助金、交付金制度等の一覧を表 5-31 に示す (平成 26 年度時点)。この中で、設備導入支援に関する交付金・補助金は比較的長期間 (5 年程度) の設定が行われているが、実用化・事業化支援に関するものは単年度等の短期的な設定となっていることに留意する必要がある。

表 5-31 バイオガス化の導入に活用可能な国等の補助金及び交付金等(平成 26 年度末時点)

性格	交付金•補助金等	主管 省庁	事業主体	概要	補助率等
	循環型社会形成 推進交付金	環境省	市町村、都道 府県、地方公 共団体	メタンガス化施設からの熱利用率350kWh /ごみトン以上の施設を整備するもので あり、メタン発酵残さとその他のごみ焼却 を行う施設と組み合わせた方式を含み、 施設の長寿命化のための施設保全計画 を策定し、マニュアルに適合したものに交 付する。	事業費の1/2
設備導入支援	地域バイオマス産 業化推進事業(農 山漁村6次産業化 対策事業)	農林水産省	地方公共団体 民間団体等	バイオマス産業都市構想に位置付けられた施設に対し交付。 (新規施設) 実用化されている技術を利用して事業採算性が確保できると認められるもの及びこれら施設の付帯施設の新設を対象(成果拡大施設) エネルギー変換効率の向上や製造コストの低減等の成果拡大のために必要なバイオマス利活用施設であって、事業化プロジェクトの事業採算性が確保できると認められるものの増設・改造を対象	施設整備に対 して 1/2 の補 助金交付
	新 世 代 下 水 道 支援事業制度	国土 交通省	都道府県、市 町村	下水汚泥とその他のバイオマスの混合・ 調整施設、消化施設、消化ガス利用施設 及びその付帯施設に対して交付する。	設備費の 1/2 ~2/3 の補助 金交付
実用化	先導的「低炭素・ 循環·自然共生」地 域創出事業	環境省	都道府県、市 町村、地方公 共団体 民間事業者	再エネ導入のポテンシャル等の調査・整備、低炭素地域づくりのための事業化計画の策定、実現可能性(FS)調査の支援及び事業化計画の策定等にあたっての専門家派遣や人材育成等の支援、事業の実施に必要な再エネ・省エネ設備の導入支援を行うもの。	地方公共団体 地域実行計画 の計上事業等 に係る設備導 入支援:地方 公共団体(1/2 ~2/3)
事業化	再生可能エネルギ 一等導入推進基金 事業(グリーンユー ディール基金)	環境省	都道府県、市 町村、地方公 共団体	再生可能エネルギーを活用した自立・分散型エネルギーの導入等による「災害に強く環境負荷の小さい地域づくり」に資する再生可能エネルギー等の導入を支援するもの。	公共施設への 再生可能エネ ルギー等機器 の導入に対 し、定額補助
支 援	新エネルギー等導 入加速化支援対 策費補助金	経済 産業省 ・ 資源エ ネルギ	都道府県、市 町村、地方公 共団体、民間 事業者	地方公共団体と民間事業者が連携し、地域一体となって取組む新エネルギー等の設備導入事業(社会システム枠)に対して事業費の一部を補助。バイオマス発電、バイオマス熱利用、バイオマス燃料製造	補助率 1/2 以 内

		一庁		を対象に補助	
	地域循環型バイオ ガスシステム構築 モデル事業	環境省 ・ 農林 水産省	(環境県、 (環府、地,その) (では、地,その) (では、地,その) (では、地,では、というでは、 (では、地)では、 (では、できる。) (では、できる。) (では、できる。) (では、できる。) (では、できる。) (では、できる。) (では、できる。) (では、できる。) (では、できる。) (でき。) (で。) (で。) (で。) (で。) (で。) (で。) (で。) (で	(環境省事業) 硝酸性窒素等による地下水汚染への対処を目的とし、原則としてその主な発生源である家畜排泄物を原料とするバイオガス事業。バイオガス製造設備等の地域循環型バイオガスシステムの構築に必要な設備をリース方式により導入、運用する。(農水省事業)水産系廃棄物と食品廃棄物と水産系廃棄物を組合せ、食品廃棄物と家畜排泄物の組合せたバイオガス事業を対象	(環境省) 予算限度額の 範囲内で1~2 件、予算総額3 億円 (農林水産省) 予節囲内で1~2 件、予算総額 21億円。
維持費支援	再生可能エネルギ 一の固定価格買取 制度	資源エ ネルギ 一庁	民間団体、地 方公共団体	再生可能エネルギー導入を促進するため 電力会社に電力の買取を義務付け、その 事業化が可能な価格を設定した制度。調 達期間は20年と設定されている。	メタン発酵によるガス化発電 の調達価格は 39 円/kWh(税 抜き)

(5) 資金調達方法

PFI 事業でバイオガス化事業を実施する場合には、DBO の場合に調達可能な起債利率と比べて高い金利の金融機関から資金を調達することとなる。ここでは本事業のような環境保全事業に対して低利の貸付を行っている官民ファンド、環境ファンド等の資金調達の事例を示す。

1) 官民ファンド

官民ファンドとは、国の資金を呼び水として新たなインフラ事業等への民間投資を喚起し、地方自治体の財政負担の縮減や民間の事業機会の創出を図るものである。官民ファンドの事例を表5-32に示す。

表 5-32 官民ファンドの事例

ファンド	所轄	備考
株式会社民間資金等活用事業 推進機構 (官民連携インフラファンド)	内閣府	2013 年 10 月 7 日設立 公共施設等の建設、維持管理、運営等に活用す ることで、同一水準のサービスをより安く、又は、 同一価格でより上質のサービスを提供する
株式会社海外需要開拓支援機 構(クール・ジャパン機構)	経済産業省	2013 年 11 月 25 日設立 日本発の商品、サービスの海外展開を支援する
一般社団法人環境不動産普及 促進機構(Re-Seed 機構)	国土交通省 環境省	2013 年 2 月 14 日成立 耐震・環境性能を有する良質な不動産形成のため の官民ファンド
日本政策投資銀行 競争力強化ファンド	財務省	2013 年 3 月 12 日創設 日本の競争力強化に資する新たな価値の創造や 企業価値向上に向けた取り組みに支援
株式会社産業革新機構	経済産業省	2009 年 7 月 17 日創設 オープンイノベーションを通じて次世代の産業を創 出する

株式会社地域経済活性化支援 機構 内閣府、金融 庁、総務省、 財務省、経済 産業省 2009 年 10 月 14 日に(株)企業再生支援機構として創設、地域の再生現場の強化や地域経済の活性化への支援

(出所)内閣府「官民ファンドの運営に係わるガイドライン検証報告第2回」、平成26年11月より抜粋

なお、環境省では、平成25年度より、「地域低炭素投資促進ファンド創設事業」として、地域・ 市民ファンド、SPC等に対する投資ファンドを創設している。初年度の採択事例の1つは以下の バイオガス化事業であった。

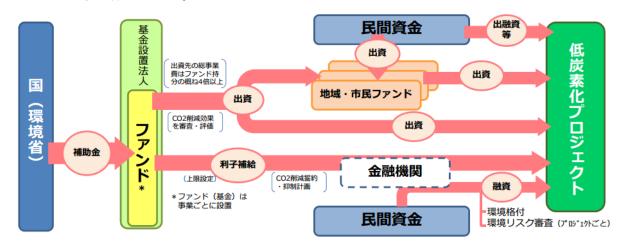


図 5-20 地域低炭素投資促進ファンド創設事業の仕組み

(出所)一般社団法人グリーンファイナンス推進機構資料

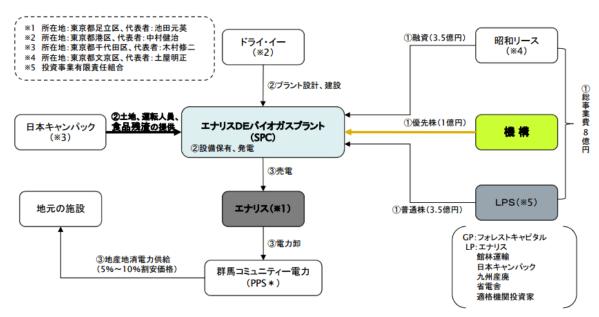


図 5-21 「地域低炭素投資促進ファンド創設事業」の採択を受けた食品工場の食品残渣を原料としたバイオガス発電事業の概要

(出所)一般社団法人グリーンファイナンス推進機構資料

2)環境ファンド

地方自治体、地方の金融機関が環境保全事業の促進の目的で設立しているファンドもある。環境ファンドは、再生可能エネルギー事業の普及拡大や環境対策に取り組む企業を後押しするために形成され、機関投資家、個人投資家等、幅広い投資家から出資を募ることができることが特徴である。再生可能エネルギーの固定価格買取制度により価格変動リスクが抑制され、安定したキャッシュフローが見込めるようになる。環境ファンドの事例を表 5-33 に示す。

		P4	′ -
ファンド名	出資者	出資対象	意義、特徴など
東京都官民連携インフラファンド	東京都	・首都圏を中心に 10〜30 万 kW級の発電事業 ・再生可能エネルギー事業 や、首都圏以外の事業	①社会資本投資における長期的か つ安定的な資金循環システム構 築を先導する。 ②電力の安定供給と再生可能エネ ルギー投資の早期実証に貢献す る。
市民風車ファント・他	株式会社自然 エネルギー市 民ファンド	風力発電、太陽光発電等事 業 	市民が参加する自然エネルギーの普及を全国的に推し進める。
温暖化防止おひ さまファンド他	備前グリーン エネルギー株 式会	風力発電、太陽光発電事業、 自然エネルギー・省エネル ギー事業	①地域の自然エネルギー利用·環境 教育の拠点機能を創造する。 ②グリーン電力の利用を促進する。
農山漁村再 エネファンド	農林中央金庫 及び全国共済 農業協同組合 連合会	農山漁村・中間地の関係者 が取り組む再生可能エネル ギー事業で、地域活性化、 安定した経営が見込まれる 事業	持続可能な地域農業の振興と循環型社会確立を目指し、再生エネルギーの利用促進など、地域資源を最大限活する取組を促進する。

表 5-33 環境ファンドの事例

市民の出資により再生可能エネルギーの利活用を普及する取り組みの一例として市民風車ファンド(市民風車ファンド 2014 石狩厚田)の事例を図 5-22 に示す。市民など出資者が株式会社あい風市民風車基金に出資し、基金が風力発電事業者へ貸付を行う。

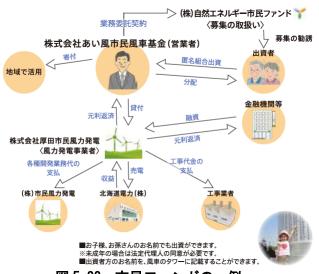


図 5-22 市民ファンドの一例

6. 利活用案の評価と計画決定

6. 1 利活用事業の評価 (環境負荷、事業効果の分析)

バイオガス化事業の評価は、循環型社会の形成、地球温暖化防止、バイオマス活用、経済性等の視点に基づき、定量的な評価指標をもとに評価するものとする。評価指標として、循環型社会形成については、エネルギー回収率、地球温暖化防止については、温室効果ガス削減量、バイオマス利活用については、バイオマス利用率、経済性についてはコスト(事業採算性)等を設定し、これらを定量的に把握し、これらの指標を総合化して利活用事業を評価する。

【解説】

(1) 評価方法

一般廃棄物の処理に関しては、「市町村における循環型社会づくりに向けた一般廃棄物処理システムの指針」(環境省、平成19年6月)がその施策の評価方法を提案している。また、バイオマス活用推進計画において、バイオマス利用率目標が設定されている。ここでは、これらの考え方に基づき評価方法を提示する。

利活用事業について、図 6-1 に示すように循環型社会の形成、地球温暖化防止、バイオマス活用、経済性、地域への波及効果の視点に基づき、定量的な評価指標をもとに評価するものとする。 評価指標については以下の指標を設定する。

<循環型社会の形成>

- エネルギー回収率
- 最終処分量の削減量
- <地球温暖化防止>
 - ・温室効果ガス削減量
- <バイオマス活用>
 - バイオマス利用率

<事業コスト>

- ・事業化に伴うコスト(建設費、維持管理費)
- <地域への波及効果>
 - ・新規雇用の発生 (新規雇用数、新規雇用費)

評価においては、これらを組み合わせた指標を用いて総合的に評価を行うものとする。

(2) 循環型社会の形成に関する指標

ここでは、循環型社会の形成に関する以下の指標の算定方法を示す。循環型社会形成のための指標とは、以下の指標である。

- ・エネルギー回収・利用:廃棄物からのエネルギー回収率
- ・最終処分: 最終処分量の削減量

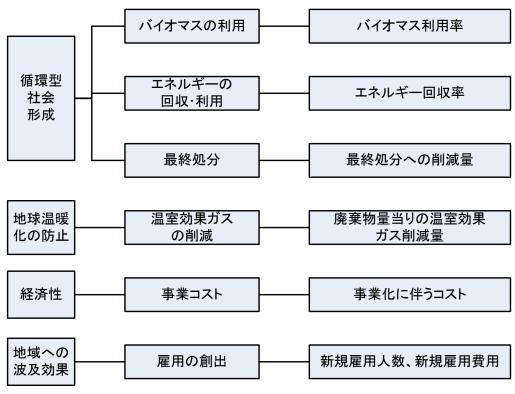


図 6-1 利活用事業の評価構造

(出所) 環境省『廃棄物系バイオマスの利活用に係る評価検討業務』、平成22年度

1) エネルギー回収率

廃棄物処理の全過程で要するエネルギー使用量と、回収量を算定する。

エネルギー使用量= 中間処理施設(バイオガス化施設とそのコンバインド施設)での電力使用量、燃料使用量

エネルギー回収量= バイオガスを用いた発電、熱回収量によるエネルギー回収量

各種エネルギーの使用量は、廃棄物系バイオマスの処理量に原単位を乗じる方法で算定することができる。環境省過年度での各資源化手法別の電力、燃料等のエネルギー原単位の一例を示すと表 6-1 となる。

2) 最終処分量の削減量

最終処分量は、廃棄物系バイオマスの資源化に伴って最終処分される量の変化を予測して算定する。

最終処分量の削減=資源化後の最終処分量-資源化後の最終処分量

表 6-1 エネルギー使用量・回収量の計算方法(一例)

大項目 項目 類値 実績 デフォルト値の アフォルト値の 実績 デフォルト 値の 実績 デフォルト 値の 実績 デフォルト 値の 実績 デフォルト 値の 東海 アフォルト値の 東海 東海 アフォルト値の 東海 アフォルト値の 東海 アフォルト値の 東海 アフォルト値の 東海 アフォルト値の 東海 東海 アフォルト値の アフォルト値の アフォルト値の 東海 アフォルトを引力を引力を引力を引力を引力を引力を引力を引力を引力を引力を引力を引力を引力を	記彦, 出口晋吾「バイオ 上温室効果ガスの視点 経析」廃棄物学会論文 2005 記彦, 出口晋吾「バイオ と温室効果ガスの視点 解析」廃棄物学会論文
収集車輛燃料使用量(km/年) = 車両台数×1台当り走行距離/燃費×365 (台/日) (km/台) (km/L) (日/年)	上温室効果ガスの視点 解析」廃棄物学会論文 2005 記彦, 出口晋吾「バイオ と温室効果ガスの視点 解析」廃棄物学会論文
収集・運搬	2005 記彦, 出口晋吾「バイオ と温室効果ガスの視点 解析」廃棄物学会論文
収集・運搬	上温室効果ガスの視点 解析」廃棄物学会論文
焼却灰輸送車輛燃料使用量(km/年) =	上温室効果ガスの視点 解析」廃棄物学会論文
焼却炊棚法 車輛 車両台数×1台当り走行距離/燃費 × 365 (台/日) (km/台) (km/L) (日/年) 燃費(軽油) 実績より算定 5 km/L からみた厨介利用システム 誌 vol.16,No.2 pp173-187 1台当り走行距離 実績より算定 60 km/台	
大田 大田 大田 大田 大田 大田 大田 大田	
焼却(電力) ごみ処理量当り電力使用量×ごみ処理量×365 焼却施設のごみ処理量当り電力使用量 実績より算定 200 kWh/ごみt 力65,184(kWh/日)/300(t/ =217kwh/日より設定	処理に関す
焼却施設重油使用量(L/年) = 焼却・(重油) 「売りのでは、 「大田・ 「大田・ 「大田・ 「大田・ 「大田・ 「大田・ 「大田・ 「大田・	理方式のライフサイクル 文誌, 第12巻, 第5号,
中間処理 メタン化 (電力) メタン化施設電力使用量(kWh/年)= ごみ処理量当り電力使用量 ×ごみ処理量 × 365 (kWh/ごみt) メタン化施設のごみ処理量当り電力使用量 メタン化施設のごみ処理量当り電力使用量 実績より算定 100 kWh/ごみt り9,266kWh/日、メタン発酵90 103kWh/tと設定	消費電力 環境省「生ご /日より、 か等の3R・ 処理に関す
堆肥化 (電力)	、テムの分析・計画・評
#肥化 (重油)	、テムの分析・計画・評
最終処分場電力使用量(kWh/年)= 電力 浸出水量当り電力使用量×浸出水量×365 最終処分場の浸出水量当り電力使用量 実績より算定 2.6 kWh/m3 松藤敏彦:都市ごみ処理シ 価	、テムの分析・計画・評
電が (kWh/m³) (m³/日) 漫出水量 最終処分場面積及び地域の降水 量より算定 埋立深さを仮定して(10m)、 積を算定。これに一日最大 量を算定。	
堆肥化施設重油使用量(L/年) = 燃料(重油) ごみ処理量当り重油使用量×ごみ処理量×365 (L/ごみt) 撮終処分場のごみ処理量当り重油使用量 実績より算定 0.62 L/ごみt 松藤敏彦:都市ごみ処理シームでは、(L/ごみt) というないでは、日) というない はが はいました はいました はいました はいまい はいまい はいまい はいまい はいまい はいまい はいまい はいま	、テムの分析・計画・評
堆肥化施設軽油使用量(L/年)= 燃料(軽油) ごみ処理量当り軽油使用量×ごみ処理量×365 (L/ごみt) (t/日) 最終処分場のごみ処理量当り軽油使用量 実績より算定 0.23 L/ごみt 松藤敏彦: 都市ごみ処理シー価価	、テムの分析・計画・評
実績値。またはごみ組成より算 でみ熱量ごみ組成から算定する場合 で。ごみ組成から算定する場合 の通り(生ごみ4.2、紙ごみ1	
発電量(kWh/年) = こみ焼却発電効率 実績値 15 % 環境省「一般廃棄物処理!	態調査結果」平成12年
空収 ごみ熱量×発電効率/電力発熱量 (MJ/年) (%) (MJ/kWh) メタン化発電効率 (位) 日本産業機械工業会 値 30 % 回のあり方」都市と廃棄物	
電力発熱量 - 3.6 MJ/kWh	

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』、平成22年度

(3) 地球温暖化防止に関する指標

地球温暖化防止に関する指標は温室効果ガス削減量を設定することとし、現行と廃棄物系バイオマスの資源化の場合の温室効果ガス排出量の差を算定する。

温室効果ガス削減量=現行の温室効果ガス排出量-資源化後の温室効果ガス排出量

温室効果ガス排出量は、廃棄物処理の全過程で発生する CO_2 、 CH_4 、 N_2O を算定する。ここでは表 6-2 に示す青色部分の温室効果ガスを算定する。温室効果ガス排出量は市町村等の温室効果ガス 削減のための実行計画策定を推進する「地球温暖化対策の推進に関する法律施行令」(平成 11 年 政令第 143 号)に基づくガイドラインを参考に以下の項目に関して算定するものとする。

- ① 収集車輛の燃料使用による二酸化炭素排出
- ② 収集車輛の燃料使用によるメタン、一酸化二窒素排出
- ③ 中間処理施設の電力使用による二酸化炭素排出
- ④ 中間処理施設の燃料使用による二酸化炭素排出
- ⑤ 焼却施設による二酸化炭素排出(プラスチックの燃焼)
- ⑥ 焼却施設によるメタン、一酸化二窒素排出
- ⑦ 最終処分場におけるメタン排出(可燃ごみの直接埋め立て)

温室効果ガスの算定に関して、各種の原単位の一例を示すと表 6-3 となる。

表 6-2 温室効果ガス排出量算定の対象

1. 二酸化炭素	3. 一酸化二窒素
イ 燃料の使用	イ ボイラにおける燃料の消費
ロ 他人から供給された電気の使用	ロ ディーゼル機関における燃料の消費
ハ 他人から供給された熱の使用	ハ ガス機関・ガソリン機関における燃料の消費
ニ 一般廃棄物の焼却	ニ 家庭用機器における燃料の消費
ホ 産業廃棄物の焼却	ホ 自動車の走行
へその他	へ 船舶における燃料の消費
2. メタン	ト 麻酔剤(笑気ガス)の使用
イ ボイラにおける燃料の消費	チ 家畜の飼養(ふん尿処理)
ロ ガス機関・ガソリン機関における燃料の消費	リ 耕地への合成肥料の施用
ハ 家庭用機器における燃料の消費	ヌ 耕地への有機肥料の施用
ニ 自動車の走行	ル 牛の放牧
ホ 船舶における燃料の消費	ヲ 農業廃棄物の焼却
へ 家畜の飼養(消化管内発酵)	ワ 生活排水の処理に伴う排出
ト 家畜の飼養(ふん尿処理)	カ 浄化槽の使用に伴う排出
チ 水田の耕作	ヨ 一般廃棄物の焼却に伴う排出
リ 牛の放牧	タ 産業廃棄物の焼却に伴う排出
ヌ 農業廃棄物の焼却	レ その他
ル 埋立処分した廃棄物の分解	
ヲ 生活排水の処理に伴う排出	
ワ 浄化槽の使用に伴う排出	
カ 一般廃棄物の焼却に伴う排出	
ヨ 産業廃棄物の焼却に伴う排出	
タその他	

(出所)温室効果ガス総排出量算定方法ガイドライン、平成23年10月、環境省

表 6-3 温室効果ガス排出量の計算方法(一例)

大項目		項目		数值		単位	デフォルト値の根拠(文献)	
人坦日				実績	デフォルト	- 単位	ナンオルト値の依拠(文献)	
			灯油発熱量	_	36.7	GJ/kL		
			灯油排出係数	_	0.0185	t-C/GJ		
	燃料の使用 による温室	二酸化炭素排出量(CO2-t/年)= 燃料使用量×単位発熱量×排出係数×44/12	軽油発熱量	_	38.2	GJ/kL	温室効果ガス排出量算定・報告マニュアル	
	効果ガス排 出量	MATCH A TECHNICAL (MJ/L) (t/MJ)	軽油排出係数	-	0.0187	t-C/GJ	Ver3.1、平成22年9月、環境省·経済産業省	
			A重油発熱量	_	39.1	GJ/kL		
			A重油排出係数	_	0.0189	t-C/GJ		
	自動車の走	メタン排出量(CO₂-t/年)=	排出係数(軽油特殊用途車)	_	0.000013	kg-CH ₄ /km		
	行に伴うメータンの排出	総走行距離×排出係数×地球温暖化係数/1000	排出係数(ガソリン特殊用途車)	_	0.000035	kg-CH ₄ /km	温室効果ガス総排出量算定方法ガイドライン、平成18年8月、環境省	
	タンの排出	(km/年) (kg−CH ₄ /km) (一) (t∕kg)	メタン地球温暖化係数	-	21	I		
	自動車の走行に伴う一酸化二学の非出電力使用による素が出場では、	一酸化二窒素排出量(CO ₂ -t/年)=	排出係数(軽油特殊用途車)	_	0.000025	0 2		
			排出係数(ガソリン特殊用途車)	-	0.000035	kg-N ₂ O/km	温室効果ガス総排出量算定方法ガイドライン、平成18年8月、環境省	
		(KIII/ #) (Kg-N ₂ O/ KIII/ (-) (t/ kg/	メタン地球温暖化係数	-	310	_		
温室効果ガス排出量		二酸化炭素排出量(CO ₂ -t/年)= 電力使用量×排出係数×365/1000 (kWh/日)(kg-CO ₂ /kWh)(日/年)(t/kg)	年度、電力会社によって排出係数が異なる。毎年12月に、環境省から電気事業者ごとの実排出係数が公表されるため、その値を用いる。一例として、平成21年度東京電力の実排出係数を右に示す。	-	0.384	kg-CO2/kWh	温室効果ガス排出量算定・報告マニュアル Ver3.1、平成22年9月、環境省・経済産業省	
	焼却施設で		プラスチック焼却による排出係数(CO2)	-	2.965	$kg-CO_2/dry-t$		
	の排出量 (連続燃焼	ごみ焼却量×排出係数×地球温暖化係数/1000 (t/年) (kg-CO₂/t) (-) (t/kg)	ごみ焼却による排出係数(CH4)	-	0.00096	kg-CH ₄ /t	温室効果ガス総排出量算定方法ガイドライン、平成18年8月、環境省	
	式)	(t/\mp) $(kg-GO_2/t)$ $(-)$ (t/kg)	プラスチック焼却による排出係数(N ₂ O)	-	0.0565	$kg-N_2O/t$		
	堆肥化施設	O排出量 (drv-t/年) (kg-CH』/drv-t) (ー) (t/kg)	堆肥化による排出係数(CH4)	_			廃棄物分野における算定方法の改善について、 第4部、廃棄物分科会報告書、平成21年3月、	
	での排出量		堆肥化による排出係数(N ₂ O)	_	0.6	kg-N ₂ O/dry-t	環境省温室効果ガス排出量算定方法検討会	
			メタン排出係数(食物くず)	_	143	$kg-CH_4/dry-t$		
	最終処分場	温室効果ガス排出量(CO ₂ -t/年)= 最終処分量×排出係数×温暖化係数/1000	メタン排出係数(紙くず)	_	138	$kg-CH_4/dry-t$	温室効果ガス総排出量算定方法ガイドライン、平	
	での排出量	(dry-t/年) (kg-CH ₄ /t) (-) (t/kg)	メタン排出係数(繊維くず)	_		$kg-CH_4/dry-t$	成18年8月、環境省	
			メタン排出係数(木くず)	_	138	kg-CH ₄ /dry-t		

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』、平成 22 年度

(4) バイオマス活用に関する指標

バイオマス活用に関する指標はバイオマス活用推進基本計画の目標と同じバイオマス利用率量を設定することとし、対象とするバイオマスの発生量に占める資源化施設への仕向け量をバイオマス利用率とする。

(5) 事業コストに関する指標

事業コストとして、ごみの収集、中間処理(資源化含む)、最終処分までの全体のプロセスでの コストの算定をおこなう。

なお事業の費用対効果については、「廃棄物処理施設整備事業に係る費用対効果分析について」 (H12.3 衛環第 18 号厚生省水道環境部環境整備課長通知)及び「廃棄物処理施設整備事業に係る 費用対効果分析について」(H12.3 厚生省水道環境部環境整備課)に説明されているので、これら を参考に分析をすることが望まれる。

<イニシャルコスト>

- ①ごみ収集車輛の購入費
- ②中間処理施設の整備費
- ③最終処分場の整備費

<ランニングコスト>

- ① 人件費、
- ② 電力費
- ③ 燃料費
- ④ 薬品費
- ⑤ 施設点検·補修費

各資源化手法別の建設費、維持管理費については、メーカー資料等をもとに算定可能である。 また、基本計画レベルで利用可能なコストの算定方法を示した文献を示すと表 6-4 となる。

表 6-4 バイオマス利活用技術のコスト等の算定ための参考文献

	参考文献	内容
1	NEDO: バイオマスエネルギーガイドブック第3版、2010	木質バイオマスの直接燃焼、食品廃棄物のメタ
		ン発酵に関する建設費、維持費の費用関数
2	柚山義人他:バイオマス再資源化技術の性能・コスト評	燃焼、堆肥化、飼料化、炭化、固形燃料化、BD
	価、農工研技法 204、pp61~103、2006.	F化に関する建設費、維持管理費の算定方法
3	松藤敏彦:都市ごみ処理システムの分析・計画・評価	焼却、堆肥化、固形燃料化、最終処分のエネル
	—マテリアルフロー・LCA 評価プログラム	ギー、コスト、温室効果ガス排出量の算定方法
4	酒井伸一他:バイオ資源・廃棄物の賦存量分布と温室	焼却、堆肥化、メタン化、最終処分のエネルギ
	効果ガスの視点から見た厨芥利用システム解析、廃棄	一消費量、温室効果ガスの発生原単位
	物学会論文誌、Vol.16、No.2、pp173~187、2005	
5	日本産業機械工業会:中小都市バイオマス計画のあり	焼却施設、メタン化施設のコストの算定方法
	方、都市と廃棄物、Vol.35、No.7~No.12、2005.	
6	環境省:平成21年度廃棄物系バイオマスの利活用等に	焼却、堆肥化、メタン発酵のエネルギー、コス
	係る海外廃棄物処理技術情報調査及び評価検討業務	ト、温室効果ガス排出量の算定方法
	報告書、2009.	
7	平成 24 年度廃棄物処理の3R 化・低炭素化改革支援事	焼却施設、メタン化施設のコストの算定方法
	業業務報告書	

さらに、費用算定の事例として環境省の過年度調査で用いられた費用関数を表 6-5 に示す。

表 6-5 コストの計算方法(一例)

	数值						~~ . u l /± o +P +hr / + ++ \	
大項目		項目		実績	デフォルト	単位	デフォルト値の根拠(文献)	
		車輛購入費(千円/年)= 車輛台数×車輛単価×減価償却率(1/15)	ごみ収集車単価	実績値	5,000	千円/台		
		(台) (千円/台) (一)	焼却灰輸送車単価	実績値	10,000	千円/台		
	イニシャルコスト	中間処理施設整備費(千円/年)= (中間処理施設単価×ごみ処理量)	焼却(発電施設あり)	費用関数 213.41・X ^{-0.}		百万円/t/日	平成24年度廃棄物処理の3R化・低炭素化改革支援事業業務報告書	
		(千円/(t/日)) (t/日) または 費用関数(ごみ処理量)	湿式メタン発酵(発電施設あり)	費用関数 195.3•X ^{-0.4}		百万円/t/日	平成26年度廃棄物系バイオマス利活用導入促進調査報告書 全国の11施設の実績より回帰式にて費用関数を作成	
		×減価償却率(1/15)	最終処分場	-	20,000	千円/(t/日)	実績値より	
		電力使用料(千円/年)=(電力使用量-売電量)	電力使用量-売電量	上記の計算による		円/t	焼却発電施設より推察	
		(kWh/年) ×電力単価/1000	電力単価(買電)	実績値	12	円/kWh	(社)日本産業機械工業会「中小都市バイオマス計画のあり方」都市と 廃棄物 vol.35.No.7(2005)	
		(円/kWh)	電力単価(売電)	実績値	39	円/kWh	FIT制度認定設備の場合を想定	
	ランニング		メタン発酵発電施設		6000~ 9000	円/t	(社)日本産業機械工業会「中小都市バイオマス計画のあり方」都市と 廃棄物 vol.35.No.6(2005)を参考に、水道使用量、	
コスト(車輛、中間処理、最		人件費(千円/年)= 人員数×人件費単価 (人/年) (千円/人) 燃料費(千円/年)= 燃料使用量×燃料単価×365 (L/日) (円/L) (日/年)	人員数(ごみ収集)			人	自治体の分別収集状況によって算定する。ごみ収集車当り2名配置するものとし、週休2日として2割増の人員数とする	
終処分場の 導入費用・維 持管理費用)			人件費単価	実績値	5,000	千円/年		
村官理員用)			燃料使用量	ごみ収集、焼却残さ 施設等での使用量の		L/年		
			燃料単価(軽油)	実績値	120	円/L	実勢値	
	コスト		燃料単価(重油)	実績値	100	円/L	実勢値	
			焼却施設原単位	実績値	9.5	千円/ごみt		
		保守点検・補修費(千円/年)= 保守点検・補修原単位×ごみ処理量×365	堆肥化施設原単位	実績値	7.2	千円/ごみt	環境省「生ごみ等の3R・処理に関する検討会(第5回)参考資料1 平成18年2月6日	
		保寸点検・補修原単位×こみ処理量×365 (千円/ごみt) (t/日)	メタン化施設原単位	実績値	9.4	千円/ごみt		
			最終処分場原単位	実績値	_	千円/ごみt		
		次年ル に 末+nin 3 / 7 円 / ケン	ごみ投入量	シナリオ設定		t/年		
		資源化物売却収入(千円/年) = ごみ投入量×資源化率×365 (t/日) (%)	堆肥資源化率	モデル事業の実績 値	30	%	事例の実績より	
		(D H) (70)	堆肥販売単価	モデル事業の実績 値	2,000	円/t	事例の実績より	

(出所)環境省『廃棄物系バイオマスの利活用に係る評価検討業務』、平成22年度に加筆修正

ここでのコスト計算はそれぞれの資源化方式のコスト比較及び事業性についての大まかな判断をすることに用いるものと位置付け、詳細な費用項目での積み上げは想定しない。コストの算定方法は、処理量あたりの原単位方式で算定するものや実績値から費用関数で求めるものなど、いくつかの方法がある。図 6-2 は焼却施設のごみ処理能力当りの建設費の費用関数を示している(平成 24 年度廃棄物処理の 3 R 化・低炭素化改革支援事業業務報告書より)。図 6-3 は湿式メタン発酵の全国 11 施設の実績値より回帰式によりごみ処理能力当りの建設費の費用関数を作成した結果である(平成 26 年度廃棄物系バイオマス利活用導入促進事業調査報告書)。これらの図から明らかなようにごみ処理能力当りの建設費は処理規模が大きくなるほど低減してくるのが一般的である。

維持管理費についても、実績値などで費用関数を作成している事例がある。機種別の費用の相違などを把握することが重要であり、前述した報告書に維持管理費の積算値等が示されている。このような実績値による費用関数の場合は、その実績費用のばらつきなどを考慮した費用の上下限を把握しておくことが必要である。

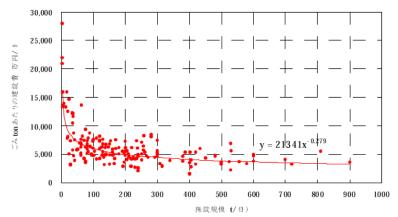


図 6-2 ごみ処理能力当りの建設費の費用関数の一例 (焼却施設) (出所)平成 24 年度廃棄物処理の3R 化・低炭素化改革支援事業業務報告書、環境省

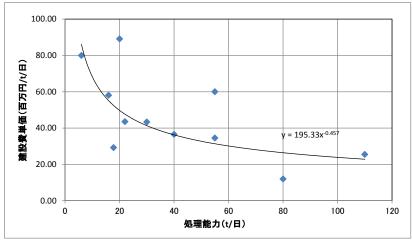


図 6-3 ごみ処理能力当りの建設費の費用関数の一例 (バイオガス化施設) (出所)平成 26 年度廃棄物系バイオマス利活用導入促進事業調査報告書、環境省

【コラム2】 事業効果の評価方法

事業の費用対効果をさらに詳細に分析するために、事業採算性を検討する場合には、以下のような評価手法がある。

事業性の評価として、以下の項目がある。

- ① 年間収支:単年度収支黒字化
- ② 設備投資回収年数:10年未満など
- ③ 内部収益率 (エクイティ IRR: 8%以上)

(a) 年間収支(概略計算方法)

これは、年間収入と支出のバランスにより評価する方法で、年間収入から建設費の減価償却費相当分と維持管理費を加えた年間支出を除して、プラスの場合は事業採算性があると判断するものである。

具体的には、バイオマスの処理処分費が 20,000 円/ t かかっており、資源化事業の処理単価が 15,000 円/ t であれば、年間収支はプラスになるとの評価となる。

(b) 設備投資回収年数

設備投資回収年数=建設費(補助等を考慮)÷年平均キャッシュフロー

=建設費×(1-補助率)÷(年間収入キャッシュフローー年間支出キャッシュフロー) この評価方法は複数の資源化方法を比較して、回収年数が短いものほど高い評価とするも のである。事業の実施の判断のためには、基準年数を決めてそれを下回ることを評価すべき であるが、基準年数を設定できない場合には、次のような判断基準が参考となる。

すなわち、民間企業の機械設備の設備投資回収年数は4、5年と言われているが、これは機械の耐用年数の半分程度で回収できれば良いとの考え方に基づく。実際の耐用年数は15年、事業期間は20年程度と長いことを考えると8~10年を目安に考えることも可能とされている(バイオマスエネルギー導入ハンドブック、NEDO、第3版)。

(c)内部収益率(IRR)

投資は将来の利益のために、現在の資金を投入するものである。一般に人は将来得られる 資金よりも現在得られる資金を選考する。資金を国債の購入や銀行預金で運用すれば将来利 息を受け取ることができるためである。

そこで、現在の貨幣価値と将来の貨幣価値とを比較するために、将来時点の価値を比率で 現在価値 (Present Value、PV) に換算することが行われる。この比率を割引率とよぶ。

現在価値(PV)=将来価値/(1+割引率)^T

(T年後の現在価値)

現在価値ベースのキャッシュフローをディスカウント・キャッシュフローといい、その和 を正味現在価値(Net Present Value, NPV)という。

正味現在価値 (NPV) = Σ {T 年後のキャッシュフロー/ (1+r) $^{\text{T}}$ }

r:割引率

正味現在価値は、各年度のキャッシュフローの割引率を考慮して合計したものであり、複

数の事業の NPV を比較し、NPV が大きなほうが良好な収益性を示すと判断する。

または NPV>0 であれば収益性を示し、NPV<=0 であれば収益性がないと判断する。

下表は期初に-100単位の投資をし、2年目より26単位のキャッシュフロー(事業収支)があった場合のNPVを算定した例を示している。

	期初	1年後	2年後	3年後	4年後	5年後	6年後	損益
キャッシュフロー	-100	0	26	26	26	26	26	30
現在価値(r=3%)	-100	0	24.5	23.8	23.1	22.4	21.8	15.6
現在価値(r=5%)	-100	0	22.2	20.6	19.0	17.6	16.2	-4.4

↑ NPV

ところが、上表に示すように割引率の設定により異なった結果(正、負)が出る可能性がある。そのため、正味現在価値がプラスとなる(0となる)割引率を算定して、経済性を評価したものが内部収益率(Internal Rate Return、IRR)である。割引率 r による NPV の変化と、IRR の意味を図示すると図 6-4 となる。

複数のプロジェクトの IRR を比較し、IRR の高いほうが良好な収益性を示すと判断する。または、適切なハードル・レートを設定し、IRR がハードル・レートより大きければ収益性を有し、IRR がそれより小さければ収益性がないと判断する。

IRR の判断基準として一般的には、8%前後を事業性があると判断することが多いとされる (バイオマスエネルギー導入ガイドブック第3版、NEDO)。

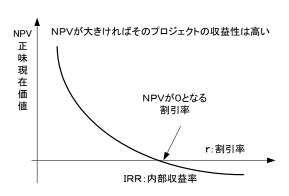


図 6-4 内部収益率 (IRR) の概念

(6) 地域への波及効果

当該地域におけるバイオマス利活用による波及効果として、新たに雇用が創出される効果(雇用創出効果)がある。「バイオマス活用推進計画の作成の手引き」によれば、雇用効果は以下の2つの指標により把握するとされている。

- ① 新規雇用人数
- ② 新規雇用費

なお、バイオマス関連施設に直接従事せず、資材の運搬等の関連事業の従事者については、新規の雇用増加と見なすための判断が難しいケースもありうることから、個々の取組内容を踏まえ、判断していく必要があるとされている。 雇用人数、雇用費の算定方法は以下による(「バイオマス活用推進計画の作成の手引き」から引用)。

① 新規雇用人数

バイオマス関連施設の雇用者数で評価する。 なお、バイオマスの収集・運搬及びバイオマス製品の運搬・販売等の関連産業における雇用増加人数を聞き取り調査等により把握しうる場合は、上記に加算して新規雇用人数を算定することができる。

② 新規雇用費

バイオマス関連施設の雇用者への支払額で評価する。 なお、バイオマスの収集・運搬及び バイオマス製品の運搬・販売等の関連産業における増加雇用者への支払額を聞き取り調査等に より把握しうる場合は、上記に加算して新規雇用人数を算定することができる。

(6) 評価指標による総合的な評価

ここでは、これまでに算定した指標を用いて総合的な評価を行う方法を示す。

「市町村における循環型社会づくりに向けた一般廃棄物処理システムの指針」(環境省、平成 19 年 6 月)では、複数の指標をレーダーチャートにより示して、目標値との達成度や類似都市との比較により評価する方法を示している。図 6-5 に示した複数の評価指標をレーダーチャートで表わし、基準となる指標値と比較するなどして資源化事業の妥当性を判断するものである。

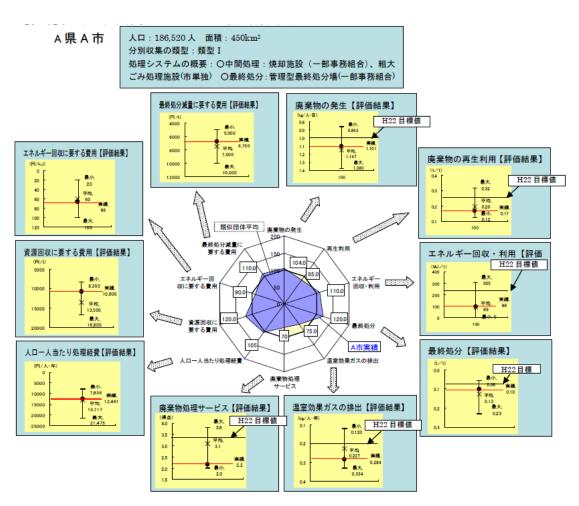


図 6-5 評価指標を基にした事業の評価イメージ

(出所)市町村における循環型社会づくりに向けた一般廃棄物処理システムの指針、環境省

6.2 バイオマス利活用計画の策定

バイオマス利活用事業を実施していく上での複数の利害関係者への調整、法規制への対応について整理する。さらに、事業の推進体制(役割分担)を検討し事業実施までのスケジュールを明確にして、バイオマス利活用計画書の策定を行う。

【解説】

以下の項目を整理して、最終的に利活用計画書を作成する。

- ① 計画策定における各主体の役割と対応
- ② 法規制等への対応した実施体制
- ③ 基礎調査から事業実施までのスケジュール

(1) 計画策定における各主体の役割と対応

1) 都道府県、地方環境事務所の役割

バイオマス利活用計画を策定するのは地方公共団体(都道府県、市町村、特別区、一部事務組合等の組合)または民間企業が想定される。本マニュアルは廃棄物系バイオマスのうち一般廃棄物を中心に記述しているため、その主体は市町村、特別区またはその集合体である一部事務組合となる。ただし、その事業が広域的な廃棄物系バイオマスを対象とする場合、都道府県はその調整役として役割を有する可能性がある。具体的には以下の項目が考えられる。

<都道府県の役割>

- 広域化対象地域担当部局との協議会、情報交換会の実施支援
- ・利活用技術の研究開発で、実験、実証段階における産官学連携による取組支援
- ・県民、事業者等に対する意識醸成のための普及啓発

都道府県の参画の仕方としては、以下のような役割が期待される。特に広域的な地域を対象と する場合には、複数の自治体での調整を十分に図る必要がある。

他方、国の機関であり循環型社会形成推進計画等の作成において協議に参加する環境省地方事務所についても広域的な計画作成においてはその調整の役割を期待することができる。また、地方環境事務所については、国と直結しているため、バイオガス化の支援制度や交付金適用条件の情報提供、全国の事業実施状況など、国の施策伝達の機会を利用して具体的な情報の提供が望まれる。

<地方環境事務所の役割>

- ・広域化対象地域担当部局との協議会、情報交換会の実施支援
- ・バイオガス化事業の支援制度、交付金適用条件等の制度に関する情報提供
- ・バイオガス化事業に関する技術的助言、事業実施者の紹介 等

2) 市町村、一部事務組合での計画策定の体制

まず、計画の合意形成は行政が主体となって行うが、行政も関連する部所が多岐にわたっているため、十分な検討と調整が図れるような検討体制を作り、進めていくことが必要である。表 6-6 に各担当部局が本事業の計画策定時点における役割と事業実施時点における役割を示している。

さらに、行政以外にも住民の意見を反映させる検討会方式や、専門技術者等の意見を聴取するなどの体制を確保することが必要である。

表 6-6 市町村(一部事務組合)内の各部局の役割

	計画策定	事業実施
廃棄物処理· 資源化部局	・廃棄物系バイオマスの処理・資源化に関する 知見を有し、計画を主体的に立案して行く役割	事業の実施における運営管理PFI 事業の場合は経営状況のモニタリング
農林水産部局	・農業系廃棄物の利活用に関する知見を提供し、共同して利活用できるかの検討に協力する。 ・発酵残渣の農業利用など循環利用面での活用に関する検討に協力する	・農業利用における事業実施段階の 支援(堆肥等の資源化物の販売促 進等)
下水道部局 (土木部局含 む)	・下水汚泥の利活用に関する知見を提供し、共同して利活用可能かの検討に協力する・発酵残渣の排水処理に関して下水処理場が共同化できるかの検討に協力する	・下水処理場が発酵残渣の排水処理 を分担している場合、その処理実施 に関する協力
エネルギー関 連部局	・再生可能エネルギーの利用、FIT 認定に関する手続きの支援	・再生可能エネルギーの販売先との 調整への支援
総合企画部局 (広報部局)	・自治体の総合計画等との整合性のチェック ・事業の立地調整、住民説明などへの情報提供 への協力	・住民、事業者への事業運営時点の 理解の確保への支援
環境部局	・事業実施における環境面での影響に関するチェック機能 ・当該事業が環境計画上の整合性チェック(例えば地球温暖化防止計画での GHG 削減における貢献などの評価)	・環境面での各種モニタリング情報の 提供

なお、バイオマス利活用事業を実施していく上で当該地域の住民や事業者等への理解、協力が 重要であり、これらの対象者に情報を提供していくことも必要である。ここではそれらの情報提 供の事例等を表 6-7 に示す。

表 6-7 バイオガス化事業の情報提供の事例

	長岡市	町田市
Web サイト	ごみ、資源化 バイオガス化事業の説明サイト	ごみ、資源化 新しい施設建設に関する情報
提供される情報	 ・施設概要 ・施設の稼働状況(処理量、発酵不適物、バイオガス発生量、発電電力、送電電力) ・事業の概要(取り組みの経緯) ・事業の効果 	ごみ資源化建設ニュースの発行 ・焼却量、資源化量の変化 ・建設候補地、実施工程 ・建設候補地の概要 ・資源化施設のQ&A ・バイオガス化施設の事例紹介
見学、講演会等	・見学の受け入れ	・講演会の実施
その他	・生ごみ分別の留意事項	地区連絡会の設置
備考	平成 25 年本格稼動開始	平成 32 年稼動予定

(出所)長岡市ホームページ、町田市ホームページ(閲覧時点:2015年2月)

(2) 法規制等への対応した実施体制

バイオガス化の各種の設備においては、その運転操作において技術者の資格を要する場合など があり、法規制等についての整理も行い、有資格者を有する体制についても検討する。

具体的には、発電設備(ガスエンジン、ガスタービン)を設置する際には、電気主任技術者を 設置することとなり、また、ガスタービン等を設置する場合 300kW 以上の場合はボイラータービ ン主任技術者が必要となる。

また、排水処理施設の排水量が法律、条例の基準以上の場合は、公害防止管理者(排水)必要となり、その資格を有するものを配置させる必要がある。

(3) 基礎調査から事業実施までのスケジュール

これらの実施体制のもとで、計画から事業実施までのスケジュールを策定する。食品廃棄物のうち家庭系生ごみをバイオガス化する場合には、バイオガス化の処理量をより正確に把握するために生ごみの分別収集に関する住民アンケートや、モデル地域での分別収集に関する実験調査なども必要である。また、自治体の分別収集区分によっては、可燃物を機械選別する場合の選別率を把握する調査も必要な場合がある。さらにバイオガス化後の発酵残渣を液肥または堆肥化する場合には、農家等への需要調査など各種の基礎調査を行って、資源化物の引き取り可能性を把握することも必要である。これらの事業実施のための基礎調査、段階別の計画、事業者選定(PFIなど)のための手続きなどのスケジュールを作成し、確実に事業を開始できる計画書を策定する。

項目 1年目 2年目 3年目 4年目 5年目 6年目 7年目以降 庁内協議·調整 利活用基本計画 生ごみ等の分別収 基礎調査 集・選別モデル事業 資源化物需要等調査 PFI宝現可能性調查 (PFIの場合) 基本設計 循環型社会推進基本 計画 実施設計 施設の設計 PFI事業者選定 調達 (PFIの場合) 生活環境影響調査 設備許可、FIT認定取 測量、敷地造成 施設の建設 施設建設 運転 運転、事業実施

表 6-8 スケジュール表の一例