平成 31 年度環境省委託業務

平成 31 年度中小廃棄物処理施設における 先導的廃棄物処理システム化等評価・検証事業

CO2分離膜を適用した

次世代低炭素型高効率バイオガス発電システム

及びコンバインドシステム

成 果 報 告 書

令和2年9月

株式会社タクマ

株式会社ルネッサンス・エナジー・リサーチ 南但広域行政事務組合

<u>目 次</u>

要約	1
Abstract	7
第1章 事業概要	14
1. 事業概要	14
2. 事業目的、成果目標及び実施スケジュール	16
2-1. 事業目的	16
2-2. 成果目標	17
2-3. 実施スケジュール	21
3. 事業実施体制	21
3-1. 事業実施体制	21
3-2. 事業に係る検討会	22
3-3. 平成 31 年度中小廃棄物処理施設における廃棄物エネルギー回収方策	等
に係る検討調査委託業務ヒアリング等への協力	23
4. システム概要	24
第2章 システム I: CO2分離膜を適用した高効率バイオガス発電システム?	26
1. 平成 29、30 年度の成果概要	26
1-1. 基礎試験	26
1-1-1.基礎試験目的	26
1-1-2.基礎試験方法	27
1-1-3.基礎試験結果	28
1-2. 平成 30 年度実証試験 1	32
1-2-1.実証試験目的	32
1-2-2.実証試験方法	32
1-2-3.実証試験結果	34
1-3. 平成 29、30年度試験結果まとめ	37
2. バイオガス中膜被毒成分の調査	38
2-1. バイオガス中膜被毒成分の分析結果	39
2-2. 膜被毒成分除去の基礎試験	42
3. 平成 31 年度実証試験 1	44
3-1. 実証試験目的	44
3-2. 実証試験方法	44
3-3. 実証試験結果	46

4. 実調	証試験 2	
4-1.	実証試験概要	
4-2.	実証試験方法	
4-3.	実証試験工程	
4-4.	実証試験結果	
5. ま	とめ	61

第3章 3	システムⅡ:分離回収した CO2の有効利用システム	62
1. 分离	難回収した CO2の利用用途についての調査	
2. 分离	難回収した CO2の灰への固定化システムの評価	66
2-1.	CO2固定化試驗	66
2-2.	CO2固定化処理灰の重金属溶出挙動	70
2-3.	まとめ	73
3. 分离	難回収した CO2を用いた重曹製造システムの評価	74
3-1.	重曹製造試験	75
3-2.	重曹製造システムの FS	79
3-3.	まとめ	
4. 分离	難回収した CO2を用いたメタネーションシステムの評価	
4-1.	メタネーション反応による合成メタンの製造	
4-2.	メタネーションシステムの検討条件	
4-3.	メタネーションシステムの FS	
4-4.	まとめ	

1.	十八 29	、30 千夜の成木幌安	
1-	-1. NO	x 濃度と排ガス量の低減効果を向上させる運転方法の検討	94
1-	-2. 燃炸	尭シミュレーション	95
	1-2-1.	目的	95
	1-2-2.	解析方法	95
	1-2-3.	解析結果	100
	1-2-4.	まとめ	107
1-	-3. 小型	型実験炉での実証試験	107
	1-3-1.	試験目的	107
	1-3-2.	試験方法	108
	1-3-3.	試験結果	113
1-	-4. 実言	正試験結果を踏まえた燃焼シミュレーションによる再計算	118
2.	まとめ.		119

第5章 各システムのFS(CO2排出量およびコスト試算)	120
1. 従来の単純焼却システムとコンバインドシステムの試算条件	121
2. 各システムの CO2 排出量の試算	122
2-1. 単純焼却システムの CO2 排出量	122
2-2. 従来コンバインドシステムの CO2 排出量	123
2-3. 高効率コンバインドシステム システム I の CO2排出量	124
2-4. 高効率コンバインドシステム システムⅡ、Ⅲの CO2排出量	125
2-5. 高効率コンバインドシステム システム全体の CO2排出量	126
3. 各システムのコストの試算	127
3-1. 単純焼却システムのコスト	128
3-2. 従来コンバインドシステムのコスト	129
3-3. 高効率コンバインドシステム システム I のコスト	130
3-4. 高効率コンバインドシステム システムⅡ、Ⅲのコスト	131
3-5. 高効率コンバインドシステム システム全体のコスト	133
4. 高性能舶用天然ガスエンジンの評価	134
第6章 成果と課題	135
1. 成果と課題	135
参考文献	139

近年、各種施策の推進により、ごみ焼却に伴って生じるエネルギーの有効利用が 一層進められ、蒸気タービンを用いたごみ発電の発電効率が向上している。具体的に は、発電設備が設置されている施設における発電効率の平均値は、平成 18 年度は 10.93%であったが、平成 29 年度は 12.98%と上昇している。しかしながら、蒸気タ ービンは小型になるとエネルギー損失が相対的に大きくなるため、発電出力の小さ い施設では発電効率が低くなることから、100 トン/日未満の中小規模施設において は、ほとんど発電が行われていない。

一方、メタンガス化施設に設置するガスエンジンは、施設規模 100 トン/日未満 の施設であっても、蒸気タービンと比較して高い発電効率が確保できるため、効率の 高いごみ発電プロセスを構築できる。

廃棄物のメタンガス化によって生成されるバイオガスは、メタン (CH₄) 濃度が 50 ~55%、二酸化炭素 (CO₂) 濃度が 45~50%であるため、バイオガス専用のガスエン ジンを用いて発電を行っているが、発電効率は汎用の都市ガス仕様のガスエンジン より低いものとなっている。また現状システムのバイオガス中の CH₄ 濃度では適用 できる国内製のガスエンジンが少なく、海外製のものを導入せざるを得ない状況に あり、初期コストや維持管理コストが高いものとなっている。

バイオガスの CH4 濃度を 90%程度まで高めることにより、都市ガス仕様の国内製 汎用ガスエンジンを使用することが可能となる。これによって、バイオガス発電シス テムの発電効率が向上して CO₂ 排出量が削減でき、初期コストや維持管理コストに 優れたシステムとなり、中小規模施設におけるメタンガス化施設の導入促進に繋が り、有効利用される廃棄物エネルギーが増大する。

バイオガス中の CO₂を分離する方法には、吸収剤や吸着剤による分離法(化学吸 収法や PSA 法)や、分子サイズや膜材料への親和性の違いにより分離する膜分離法、 CO₂との沸点の違いを利用して分離する深冷分離法などがある。CO₂排出量削減の観 点より、膜による分離は省エネルギープロセスであり、バイオガス中の CO₂を分離 する方法として適している。

バイオガス中の CO₂を膜分離法によって分離し、CH₄ 濃度を 90%程度まで高める と、都市ガス仕様のガスエンジンが適用可能となる。施設規模が 50 トン/日程度の バイオガス用エンジン発電機(300kW クラス)の発電効率は 33%程度であるが、都 市ガス仕様では 38%程度となるため、約 15%の発電量増加が見込まれる(システム I)。

分離回収した高濃度の CO₂を大気放出させずに、併設する焼却施設から発生する 主灰や飛灰へ固定化(炭酸化)することで、カーボンマイナスも可能となる。灰の炭 酸化によって、重金属類の溶出が抑制されるため、主灰を土木用資材として有効利用 し、また飛灰の重金属固定化薬剤の使用量を削減されることで、ランニングコストを 低減できる。また分離回収した CO₂ を別の用途へも利用することで、さらなるカー ボンマイナスが可能となる(システムⅡ)。

ガスエンジンの排ガスは低酸素濃度であるため、この排ガスを併設する焼却炉内 へ吹き込むことで、排ガス再循環システムと同様の効果が期待できる。すなわち、焼 却炉およびガスエンジン排ガス中の窒素酸化物(NOx)を同時に抑制し、また低空気 比燃焼により排ガス量が減少するため、誘引通風機などの消費電力を低減すること ができる(システムⅢ)。

図 1 次世代低炭素型高効率バイオガス発電システム およびコンバインドシステム 以上のように、メタンガス化施設と焼却施設から成るコンバインドシステムに CO₂分離膜を適用することによって、現状よりも高効率なバイオガス発電を行うこと ができる。さらに分離回収した CO₂やガスエンジン排ガスを併設する焼却施設で有 効利用することで、CO₂排出量を削減することができる。そこで、平成 29 年度から CO₂分離膜を適用したバイオガス発電システムの CO₂排出量やライフサイクルコス トについて、従来システムとの比較評価・検証を行った。

システム I については、平成 29 年度にバイオガスの組成に調整した模擬ガスを 用いて CO₂分離膜の最適運転条件をラボ試験で確認し、これに基づいて実証試験装 置の設計・製作を行った。平成 30 年度は実際のバイオガスを用いて CO₂分離膜の 適用性を確認する実証試験を行い、その結果から最適運転条件の再検討を行った。 平成 31 年度は再検討した運転条件で実証試験を行い、その試験結果から、本シス テムの CO₂排出量とコストの削減量を試算した。さらに平成 31 年度は、別途開発 を進めている高性能な舶用天然ガスエンジンを本システムに適用した場合の、更な る CO₂排出量とコストの削減量について検討を行った。

システム II については、平成 29 年度に灰への CO₂ 固定可能量の測定と、固定化 処理灰の重金属類溶出量の抑制効果の確認を行った。また、その他の CO₂利用用途 について調査し、整理を行った。平成 30 年度は CO₂ 固定化処理灰の重金属類溶出 挙動の追加調査を行った。またその他の CO₂利用用途として、併設焼却炉の酸性ガ ス処理薬剤として利用できる重曹(NaHCO₃)の製造試験と、メタネーションによ る CO₂の利用について検討を行った。

システムⅢについては、平成29年度に併設焼却炉とガスエンジン排ガスのNOx と排ガス量の削減効果について、燃焼シミュレーションで確認を行い、小型実験炉 で検証を行った。平成30年度は更なる削減効果を得ることができる条件につい て、燃焼シミュレーションと小型実験炉で検証を行った。

平成29年度から31年度における成果概要は以下のとおりである。

【システムI】

- (1) 模擬ガスを用いた基礎試験と実際のバイオガスを用いた実証試験でガス圧力や 温度、湿度条件を変化させた場合の膜の CO2 透過速度を測定し、透過速度の依 存式を導出した。
- (2) 実証試験の結果から得られた CO₂分離膜の最適運転条件は以下の通りである。 【設定条件】
 - 原料ガス CH₄ 濃度: 52.5%-dry
 - 原料ガス CO₂ 濃度: 47.5%-dry
 - ・ 膜面積

 ・ 膜分離モジュール1本(低圧仕様)
 - 精製ガス CH₄ 濃度:90%-dry

【最適条件】

- 原料ガス流量 : 2m³N/h
- 原料ガス圧力 : 340kPa(G)
- 原料ガス温度 :110℃
- 原料ガス湿度 : 80%Rh
- (3) 10 回の立上げ下げを含む 10 日間の運転を行い、安定した CO₂ 分離膜の性能を 確認した。
- (4) 高性能舶用天然ガスエンジンを適用するためのシミュレーションによる CO2分離膜の想定最適運転条件は以下の通りである。なお、シミュレーションの精度は明石市二見浄化センターで実施した予備試験で確認している。

【設定条件】

- 原料ガス CH₄ 濃度: 52.5%-dry
- 原料ガス CO₂ 濃度: 47.5%-dry
- ・ 膜面積
 ・ : 膜分離モジュール1本(低圧仕様)
- 精製ガス CH₄ 濃度: 80%-dry

【想定最適条件】

- 原料ガス流量 : 10m³N/h
- 原料ガス圧力 : 700kPa(G)
- 原料ガス温度 :110℃
- 原料ガス湿度 : 90%Rh
- (5) 八戸市東部終末処理場で実施した CO2分離膜と高性能舶用天然ガスエンジンの 組み合わせ実証試験の結果、目標とした発電効率43%(400kW時)に対して、 39%の結果であった(着火用パイロット燃料油の熱量を考慮すると38%)。

【システムⅡ】

- システム I で分離回収した CO₂を灰へ固定化した場合、灰の CO₂ 固定可能量は 灰 1ton-dry あたり、主灰では 55.4kg-CO₂、飛灰では 28.6kg-CO₂ であった。
- (2) 飛灰に CO₂を固定化することで環告 13 号による鉛溶出量が減少し、重金属固定 化薬剤を使用しなくても鉛溶出量が基準値以下になることを確認した。
- (3) 主灰に CO₂を固定化することで、飛灰と同様に環告 46 号による鉛溶出量が減少 した。しかし、環告 19 号による鉛含有量(塩酸に溶出する量)には抑制効果が なかった。
- (4) 灰の CO₂ 固定化による鉛の溶出挙動について、長期的な安定性を確認するために pH 依存性試験を行った。pH が 7 から 10 の範囲では溶出量は定量下限値未満であったが、それ以外では溶出量が増加した。飛灰では pH6 以下、11 以上で鉛溶出量が基準値を超過するため、重金属固定化薬剤を添加する必要があることが判明した。但し、CO₂ 固定化を行っていない飛灰と比べると固定化した場合の溶出量は少なく、重金属固定化薬剤の使用量が削減できる。
- (5) 併設焼却炉の酸性ガス処理薬剤に使用する消石灰に代えて、分離回収した CO₂ を利用して製造した重曹(NaHCO₃)を使用した場合、ランニングコストは低減 するが、重曹の原料となる苛性ソーダ(NaOH)の製造に係る CO₂排出量が消石 灰のそれよりも大きいため、システム全体としては CO₂排出量が増加する試算 を得た。
- (6) 分離回収した CO₂を利用してメタネーションにより合成 CH₄を製造し、発電を 行うシステムについて検討を行い、システムが経済的に成り立つ条件の分析を 行った。

【システムⅢ】

- (1) 燃焼シミュレーション(数値解析)によって、ガスエンジン排ガスを焼却炉内 へ吹き込むことで、排ガス再循環システムと同様に焼却炉およびガスエンジン 排ガス中の NOx を同時に低減し、また低空気比燃焼が可能であることを確認し た。
- (2) ガスエンジン排ガスを模擬したガスを小型実験炉の炉内へ吹き込むことで、排ガス再循環システムと同様に実験炉の排ガスおよび模擬ガスの NOx の低減と、低空気比燃焼が可能であることを確認した。
- (3) ガスエンジン排ガスの吹込み条件(吹込み流速、吹込み位置)による発生 NOx 量に対する影響を検証し、最適な吹込み条件を確認した。

【システム全体】

- (1) CO2排出量の削減効果は、50トン/日(14,000トン/年)の施設規模の場合、 高効率コンバインドシステムを適用すれば、従来の単純焼却システムよりも年 間 986ton の CO2が削減できると試算された。実証試験の結果、高性能ガスエン ジンを適用した場合の発電効率が目標値に達しなかったことと、試験に用いた 機種は 800kW 機をベースとした 400kW 仕様のガスエンジン発電機であり、試算 条件から外れるため、高性能ガスエンジンを適用したケースの比較評価は行わ ない。
- (2) 一方ライフサイクルコストに関しては、実証試験結果を反映した結果、膜エレメント本数やバイオガス脱硫設備のコスト増によって、単純焼却システムと比較して10年間で36.9百万円増加する結果となった。ただし、膜エレメントのコストについては、量産効果等により単価は当初想定(試作品単価)の30%にまで低減できる予定であり、50.6百万円/10年のコスト削減が期待できる。

		項目		従来 コンバインド	高効率 コンバインド 汎用エンジン
	従来	CO₂排出量	t-CO₂/年	-849	←
⊐:	ンバインド	コスト	百万円/10 年	- 30.5	←
	システム	CO₂排出量	t−CO₂/年	_	— 59
	I	コスト**2	百万円/10 年		+103.6 (+16.1)
高 効	システム	CO₂排出量	t-CO₂/年	_	-22
※ マロン	П	コスト	百万円/10 年		-17.0
ノバイ	システム	CO₂排出量	t−CO₂/年	—	- 56
シド	Ш	コスト	百万円/10 年	_	-19.2
	システム	CO₂排出量	t-CO₂/年	- 849	-986
	全体	コスト**2	百万円/10 年	- 30.5	+36.9 (-50.6)

表 1 各システムの CO₂ 排出量、コスト削減効果*1

※1:表中の数値は単純焼却システムと比較した場合

※2:括弧内のコスト削減量は膜エレメント単価が低減された場合

Abstract

In recent years, the implementation of various measures has further promoted the effective use of energy produced by waste incineration and improved the efficiency of waste power generation using steam turbines. Specifically, the average value of the efficiency of electric power generation in facilities where power generation systems are installed was 10.93% in FY 2006 and increased to 12.98% in FY 2017. However, compact steam turbines produce relatively large energy losses, and the efficiency of electric power generation is reduced in Municipal Solid Waste Incineration Facilities (MSWIFs) with small power generation output. Therefore, little electricity is generated in small- and medium-sized MSWIFs with a capacity of less than 100 t/day.

On the other hand, the gas engines installed in methane gasification facilities can establish highly efficient waste power generation processes because they can ensure higher power generation efficiency than steam turbines even if they have a capacity of less than 100 t/day.

Since the biogas, which is generated by the methane gasification of waste, contains methane (CH4) at a concentration of 50-55% and carbon dioxide (CO2) at a concentration of 45-50%, the gas engines dedicated for biogas are used for power generation. The power generation efficiency of gas engines dedicated for biogas is lower than that of general-purpose gas engines for city gas. In addition, there are only limited domestic-made gas engines compatible with the concentration of CH4, which is contained in the biogas generated by current system. As a result, the situation is such that there is no choice but to introduce foreign-made gas engines, which require high initial and maintenance costs.

Increasing the concentration of CH4 contained in the biogas to approximately 90% enables the use of domestic-made general-purpose gas engines for city gas. This not only realizes a reduction of CO2 emissions due to an increase in the power generation efficiency of biogas power generation system but also creates a system with lower initial and maintenance costs. As a result, the introduction of methane gasification facilities in small- and medium-sized MSWIFs is promoted, leading to an increase in waste energy that is used effectively.

The methods for separating CO2 contained in the biogas include the separation methods using an absorbent or sorbent (such as chemical absorption method and PSA method), the membrane separation methods for performing separation according to the difference in molecular size and affinity for the membrane material, and the cryogenic distillation method for performing separation by using the difference in boiling point from CO2. From the perspective of the reduction of CO2 emissions, the separation through the membrane is an energy-saving process and is appropriate as a method for separating CO2 contained in the biogas.

Separating CO2 contained in the biogas using a membrane separation method and

increasing the concentration of CH4 to approximately 90% enable the application of the gas engines for city gas. In the case of facilities with a capacity of approximately 50 t/day, the power generation efficiency of engine generators for biogas (300 kW class) is approximately 33%, but that of engine generators for city gas is approximately 38%. Therefore, the power generation amount is expected to be increased by approximately 15% (System I).

If the high concentration of CO2 separated and collected could be fixed (carbonated) to the bottom ash and fly ash generated from an incinerator, which is located at the same site, without releasing into the atmosphere, carbon negative would be realized. Since the carbonation of ash reduces the elution of heavy metals, utilizing bottom ash effectively as civil engineering material, as well as reducing the usage of heavy metals fixing agents for fly ash, would enable a reduction in running costs. In addition, using the separated and collected CO2 for other applications, further carbon negative is expected to be realized (System II).

The exhaust gas from gas engines contains a low level of oxygen. Therefore, the same effect as exhaust gas recirculation system can be expected by injecting this exhaust gas into an incinerator located at the same site. In other words, since the nitrogen oxides (NOx) both in the incinerator and the exhaust gas from the gas engine are reduced simultaneously, and the amount of exhaust gas decreases due to low air-ratio combustion, the power consumption of ventilation devices, such as induced draft fan can be reduced (System III).

Fig.1 Next-generation low-carbon highly efficient biogas power generation system and combined system

As described above, adopting the CO2 separation membrane in a combined system consisting of methane gasification facilities and incineration facilities makes it possible to perform biogas power generation more efficiently. Furthermore, utilizing separated and collected CO2 and exhaust gas from gas engines in the incineration facility located at the same site effectively reduces CO2 emissions. Therefore, the CO2 emissions and life cycle cost of the biogas power generation system in which the CO2 separation membrane was adopted were evaluated and verified in comparison with conventional system, starting from FY 2017.

For System I, simulated gas adjusted to the composition of biogas was used to obtain basic data on the optimal operating conditions of CO2 separation membranes in laboratory tests and to design and fabricate the testing device for a verification test in FY 2017. A verification test with real biogas was conducted to verify the applicability of CO2 separation membranes and to re-examine optimal operating conditions based on the results from the verification test in FY 2018. In FY 2019, a verification test was conducted under the re-examined operating conditions to estimate the amount of CO2 emissions and costs to be reduced in this system based on the results from the verification test. In addition, it was examined further CO2 emissions and cost reductions when a high-performance marine natural gas engine, which is being separately developed, is applied to this system in FY 2019.

For System II, the measurement of the amount of CO2 that could be fixed to ash and the determination of the reduction of the elution amount of heavy metals by the fixation to ash were performed in FY 2017. Other applications of CO2 were also investigated and summarized. In FY 2018, additional investigations of elution behaviors of heavy metals with the fixation of CO2 to ash were performed. In addition, other applications of CO2 were considered, including a production test of sodium bicarbonate (NaHCO3) that could be used as an acid gas treatment agent for the incinerator located at the same site and a study on the use of CO2 by methanation.

For System III, a combustion simulation was performed to determine the reduction of the amount of NOx and exhaust gas from the incinerator located at the same site and the exhaust gas from a gas engine and verification was performed in a small experimental incinerator in FY 2017. In FY 2018, combustion simulation and verification in a small experimental incinerator were performed to verify conditions to achieve further reduction.

The achievements from FY 2017 to FY 2019 are summarized as follows:

[System I]

- (1) The CO2 permeation rate of the membranes was measured under varying conditions of gas pressure, temperature, and humidity in basic tests using a simulated gas and verification tests using real biogas, and the permeation rate dependence formula was derived.
- (2) The optimal operating conditions of the CO2 separation membrane obtained from the results of the verification test are as follows:

[Set conditions]

•	CH4 concentration in raw material gas	: 52.5%-dry
•	CO2 concentration in raw material gas	: 47.5%-dry
•	Area of membrane	: One membrane separation module
		(low-pressure application)
•	CH4 concentration in purified gas	: 90% -dry

[Optimal conditions]

•	Raw material gas flow rate	: 2 m3N/h
•	Raw material gas pressure	: 340 kPa(G)
•	Raw material gas temperature	: 110°C
•	Raw material gas humidity	: 80% RH

- (3) By performing the operation for 10 days including 10 cycles of shutdown and restart, the performance of the stable CO2 separation membrane was confirmed.
- (4) The expected optimal operating conditions of CO2 separation membranes in the simulation for the application of the high-performance marine natural gas engine are as below. Note the accuracy of the simulation was confirmed by a preliminary test conducted at the Futami purification center in Akashi City.

[Set conditions]

CH4 concentration in raw material gas : 52.5%-dry
 CO2 concentration in raw material gas : 47.5%-dry
 Area of membrane : One membrane separation module (low-pressure application)
 CH4 concentration in purified gas : 80%-dry

[Expected optimal conditions]

•	Raw material gas flow rate	: 10 m3N/h
•	Raw material gas pressure	: 700 kPa(G)
•	Raw material gas temperature	: 110°C
•	Raw material gas humidity	: 90% RH

(5) The combined verification test of CO2 separation membranes and the high-performance marine natural gas engine conducted at the Toubu Sewage Treatment Plant in Hachinohe City showed that the power generation efficiency was 39% (or 38% when considering the calorific value of the pilot fuel oil for ignition), compared to the target level of 43% (400 kW/h).

[System II]

- (1) When the CO2 separated and collected in System I was fixed to ash, the amount of CO2 that could be fixed to ash was 55.4 [kg-CO2/t-dry ash] in the case of bottom ash and 28.6 [kg-CO2/t-dry ash] in the case of fly ash.
- (2) It was confirmed that fixing CO2 to fly ash decreased the elution amount of lead stipulated in the Notification No. 13 of the Ministry of the Environment (MOE) to the level lower than the regulation without using any heavy metal fixing agent.
- (3) As is the case with fly ash, fixing CO2 to bottom ash also decreased the elution amount of lead stipulated in the Notification No. 46 of the MOE. However, the elution amount of lead stipulated in the Notification No. 19 of the MOE (the amount of lead dissolved in hydrochloric acid) could not be reduced.
- (4) A pH dependence study was performed to determine long-term stability of elution behaviors of lead with fixation of CO2 to ash. The elution amount of lead was below the lower limit of quantification at pH values ranging from 7 to 10, but increased at other pH values. The elution amount of lead exceeded the standard value at pH values not higher than 6 but not lower than 11 when fly ash was used, highlighting the necessity of adding a heavy metal fixing agent. However, fly ash with a fixation of CO2 reduces the elution amounts compared with fly ash without fixation of CO2, potentially reducing the usage of heavy metal fixing agents.
- (5) When slaked lime used as an acid gas treatment agent in the incinerator located at the same site was replaced with sodium bicarbonate (NaHCO3) manufactured using separated and collected CO2, it was estimated that running costs could be reduced, but CO2 emissions would be increased in the entire system because CO2 emissions associated with the manufacture of caustic soda (NaOH) as a raw material for NaHCO3 are higher than those for slaked lime.
- (6) A system in which separated and collected CO2 was used to produce synthetic CH4 by methanation for electric power generation was considered and conditions under which the system was economically viable were analyzed.

[System III]

- (1) Through the combustion simulation (numerical analysis), it was shown that injecting the exhaust gas from a gas engine into the incinerator enabled to reduce the NOx both in the incinerator and the exhaust gas from the gas engine simultaneously in the same manner as an exhaust gas re-circulation system and also realized low air-ratio combustion.
- (2) It was clarified that injecting a gas simulating the exhaust gas from a gas engine into a small experimental incinerator reduced the NOx contained in the exhaust gas from the experimental incinerator and the simulated gas in the same manner as an exhaust gas recirculation system and realized low air-ratio combustion.
- (3) The effect of injection conditions of exhaust gas from a gas engine (injection flow rate and injection position) on the amount of NOx generated was examined to determine optimal injection conditions.

[Entire system]

- (1) For reduction in CO2 emissions, it was estimated that the application of a highly efficient combined system could reduce CO2 986 tons per year more than the conventional simple incineration system in the case of MSWIFs with a capacity of 50 t per day (14,000 t per year). As a result of the verification test, it was found that the power generation efficiency when the high-performance gas engine was adopted did not reach the target value, and that the model used for the test was a 800kW gas engine with a generator with a specification of 400kW, which deviates from the estimated conditions. Therefore, the comparative evaluation of the case where the high-performance gas engine is adopted, was not carried out.
- (2) In contrast, for life cycle costs, the results from a verification test were incorporated, resulting in an increase of 36.9 million yen in 10 years compared to the simple incineration system due to increases in the number of membrane elements and the costs of facilities for desulfurization of biogas. However, the cost of the membrane element is expected to be reduced to 30% of the initially estimated price (prototype price) due to mass production effects, the cost is expected to be reduced by 50.6 million yen per 10 years.

		14		Conventional	Highly efficient
		Item		combined	combined general-purpose engine
Cor	nventional	CO2 emissions	t-CO2/year	-849	←
c	ombined	Costs	million yen/ 10 years	-30.5	←
	System	CO2 emissions	t-CO2/year	—	-59
	Ι	Costs ^{**2}	million yen/ 10 years	_	+103.6 (+16.1)
High	System	CO2 emissions	t-CO2/year	—	-22
ly efficie	II	Costs	million yen/ 10 years	_	-17.0
ent comb	System	CO2 emissions	t-CO2/year	—	-56
ined	III	Costs	million yen/ 10 years	_	-19.2
	Entire	CO2 emissions	t-CO2/year	-849	-986
	system	Costs ^{*2}	million yen/ 10 years	-30.5	+36.9 (-50.6)

Table 1 Reductions in CO2 emissions and costs in the system^{*1}

*1: The values in the table are based on comparisons with a simple incineration system.

*2: The costs reduced in parentheses are those when the unit price of membrane elements is reduced.

第1章 事業概要

1. 事業概要

近年、各種施策の推進により、ごみ焼却に伴って生じるエネルギーの有効利用が 一層進められ、蒸気タービンを用いたごみ発電の発電効率が向上している。具体的に は、発電設備が設置されている施設における発電効率の平均値は、平成 18 年度は 10.93%¹⁾であったが、平成 29 年度は 12.98%²⁾となっている。しかしながら、蒸気タ ービンは小型になるとエネルギー損失が相対的に大きくなるため、発電出力の小さ い施設では発電効率が低くなることから、100 トン/日未満の中小規模施設において は、ほとんど発電が行われていない。

一方、メタンガス化施設に設置するガスエンジンは、施設規模 100 トン/日未満 の施設であっても、蒸気タービンと比較して高い発電効率が確保できるため、効率の 高いごみ発電プロセスを構築できる。

図 1-1-1 現状のメタンガス化施設システムフロー

中小規模施設で導入されている現状のメタンガス化施設の設備フローを図 1-1-1 に示す。廃棄物のメタンガス化によって生成されるバイオガスは、CH4 濃度が 50~ 55%、CO2濃度が 45~50%であるため、バイオガス専用のガスエンジンを用いて発電 を行っている。発電効率は汎用の都市ガス仕様のガスエンジンより低く、また現状シ ステムのバイオガス中の CH4 濃度では、適用できる国内製のガスエンジンが少ない ため、海外製のものを導入せざるを得ない状況にある。そのため、初期コストや維持 管理コストが高いものとなっている。

バイオガスの CH4 濃度を 90%程度まで高めることにより、都市ガス仕様の国内製 汎用ガスエンジンを使用することが可能となる。施設規模が 50 トン/日程度のバイ オガス用エンジン発電機(300kW クラス)の発電効率は 33%程度であるが、都市ガ ス仕様では 38%程度となるため、約 15%の発電量の増加が見込まれる。これによっ て、バイオガス発電システムの発電量が増加して CO₂ 排出量が削減でき、初期コス トや維持管理コストに優れたシステムとなり、中小規模施設におけるメタンガス化 施設の導入促進に繋がり、有効利用される廃棄物エネルギーが増大する。 そこで、本事業では分離膜を用いてバイオガス中の CO₂を分離して CH₄ 濃度を高 め、高効率なバイオガス発電を行い(システム I)、さらに分離回収した CO₂を有効 利用し(システム II)、さらにガスエンジン発電機の排ガスも有効利用する(システ ムIII)、『CO₂分離膜を適用した次世代低炭素型高効率バイオガス発電システム及びコ ンバインドシステム』の CO₂ 排出量やライフサイクルコストについて、従来システ ムとの比較評価・検証を行った。

さらに別途開発を進めている高性能な舶用天然ガスエンジンを本システムに適用 した場合の、更なる CO₂ 排出量とコストの削減について検討を行った。

2. 事業目的、成果目標及び実施スケジュール

2-1. 事業目的

本事業では先に述べた3つのシステムについて、平成29年度から31年度(一部 を令和2年度に実施)にかけて次に示す評価・検証を実施した。

• システム I: CO₂ 分離膜を適用した高効率バイオガス発電システム

メタンガス化施設で発生するバイオガスから CO₂ を分離してメタン濃度を向上 させ、都市ガス仕様の国内製汎用ガスエンジンを適用する。

また、別途開発を進めている高性能な舶用天然ガスエンジンの本システムへの 適用を検討する。

• システムⅡ:分離回収した CO2の有効利用システム

分離回収した CO₂を併設焼却施設から発生する灰(主灰・飛灰)へ固定化する ことで、大気放出する CO₂を削減するとともに、灰の炭酸化によって重金属類の 溶出を抑制する。

また、分離回収した CO₂を用いて重曹を製造し、併設焼却炉の酸性ガス除去薬 剤として利用することや、メタネーションにより合成 CH₄を製造し、発電を行う システムについて検討する。

システムⅢ:併設焼却炉でのガスエンジン排ガスの有効利用システム

ガスエンジン排ガスを併設する焼却炉内に吹き込み、排ガス再循環システムと 同等の効果を持たせることで、ガスエンジンと焼却炉の排ガス中 NOx を抑制し、 また低空気比燃焼とすることにより、排ガス量を低減し、誘引通風機などの消費 電力を低減する。

• システム全体

本システムを導入した場合のイニシャルコストやランニングコスト、および発 電量や施設の消費電力の増減による CO₂ 排出量の増減などについて、単純焼却シ ステムや従来のコンバインドシステムとの比較を行う。

2-2. 成果目標

本事業における各開発項目、評価方法及びその成果目標を示す。

(1) CO₂分離膜を適用した高効率バイオガス発電システム(システム I)

ア) CO₂分離膜の最適運転条件の基礎試験、実証試験1

バイオガスを模擬したガスを使用したラボ試験で、膜分離性能を左右するガス 温度、ガス圧力、ガス湿度などの条件を変えた試験を行い、各膜種における CO₂ 分離膜の分離性能に関する基礎データを取得する。またバイオガスに含まれる膜 被毒成分の分析を行い、膜分離性能に対する影響を調査・確認すると共に、膜被 毒成分の除去方法の検討、除去後の膜分離性能の確認を行う。

取得したデータに基づいてシミュレーションを行い、所要エネルギー・膜面積 を算出し、バイオガスの CH4 濃度を 90%程度に向上させる膜分離システムの実証 試験装置の製作を行い、南但広域行政事務組合のメタンガス化施設から発生する 実際のバイオガスを用いて実証試験を行う。実証試験の結果から、実用化規模に おける膜分離システムの最適化を図る。

イ) 高性能ガスエンジンの実証試験2

前項の試験で得られたデータを基に、八戸市東部終末処理場の既設メタンガス 化施設から発生するバイオガスを用いて、別途開発を進めている実用化規模の高 性能ガスエンジン(舶用を転用、加圧型、400kW)の性能および発電効率の確認、 最適な膜分離条件やエンジン稼働条件の確認を行う実証試験を実施する。実証試 験の結果から、実用化規模における膜分離システムの最適化を図る。

ウ) CO₂ 分離膜を適用した高効率バイオガス発電システムのフィージビリティスタ ディ(FS)

CO₂分離膜最適運転条件の基礎試験及び実証試験データを基に、本システムと 従来システムの CO₂ 排出量及びコスト削減量の比較を行う。

- (2) 分離回収した CO₂の有効利用システム(システムⅡ)
- ア)分離回収した CO₂の灰への固定量の分析及び、灰の重金属類溶出量の抑制効果の確認、FS

灰の CO₂ 固定可能量を確認するため、カラム(円筒状の容器)に充填した灰に CO₂ ガスを通気して、各試験条件における CO₂ 固定量及び固定化処理後の灰の重

金属類溶出量の分析を行い、CO2排出量及びコスト削減効果の試算を行う。また、 重金属類溶出量の挙動について調査を行う。

- イ)分離回収した CO2を用いた重曹の製造試験、FS システム Iの実証試験で分離回収した CO2を用いて重曹を製造する試験を行い、その試験結果を基に、本システムの CO2排出量及びコスト削減効果の試算を 行う。
- ウ)分離回収した CO₂を用いたメタネーションシステムの検討、FS 分離回収した CO₂を利用してメタネーションにより合成 CH₄を製造し、発電を 行うシステムについて検討を行い、CO₂ 排出量及びコスト削減効果の試算を行う。
- (3) 併設焼却炉でのガスエンジン排ガスの有効利用システム(システムⅢ)
- ア) 燃焼シミュレーション(数値解析)による排ガス性状の確認
 - 次項に記載する小型実験炉へガスエンジン排ガスを吹き込んだ場合の、焼却排 ガスの性状変化(温度、NOx、CO、O₂など)を燃焼シミュレーションで評価し、 従来燃焼方式や排ガス再循環システムとの比較を実施する。またガスエンジン排 ガスの吹込み方法(吹込み流速、吹込み位置)による発生 NOx 量の影響を確認す る。
- イ) 小型実験炉での実証試験による排ガス性状の確認

小型実験炉にガスエンジン排ガスを模した燃焼排ガスを吹き込み、焼却排ガスの性状変化(温度、NOx、CO、O2など)を分析し、また前項で得られた燃焼シミュレーションの結果と併せて、従来燃焼方式や排ガス再循環システムとの比較を 実施する。

ウ) ガスエンジン排ガスの有効利用システムの FS

燃焼シミュレーションと小型実験炉での実証試験の結果を基に、本システムの CO2排出量及びコスト削減量の比較を実施する。

本事業における各システムについての成果目標を表 1-2-1 に示す。

	%										``					
最終目標	(従来のバイオガスのメタン濃度 (50~55%) を CO ₂ 分離膜で 90%	まで向上し、耐用年数は5年を目標とする。			CO_2 分離膜を適用してバイオガスの CH_4 濃度を 90% にまで向上	することで、従来のバイオガス発電システムと比較して、	C0 ₂ : 147t/年	コスト :106 百万円/10 年	(50ton/日規模の場合)	の削減を目標とする。	00 ₂ 分離膜を適用してバイオガスのメタン濃度を向上するシ	ステム(システムI)において、高性能ガスエンジン(舶用を	転用、加圧型、400kW)を適用することによって、	発電効率 : 43%	(400kW 級の場合)	の効率を目標とする。
現状	適用する 002分離膜は、高圧の水素製造向けでは実用	化段階にあるが、一般廃棄物のバイオガス性状に適用	する 002分離膜の種類、必要膜面積、運転条件(ガス	圧力、温度など)、耐久性に関する知見が乏しい。	一般廃棄物のバイオガスに適用する CO2分離膜、分離	膜前後のガス処理装置の仕様に関する知見が乏しい。					汎用の都市ガス仕様のガスエンジンの発電効率は、現	状 38%程度(50ton/日規模、300kW級)である。				
項目	C0 ₂ 分離膜の	最適運転条件の確認			00_2 分離膜の実証試験 1						00_2 分離膜の実証試験 2					
L	シ	ステ	ムー	•												

表 1-2-1 各システムにおける成果目標(1/2)

19/140

	項目	現状	最終目標
<u>ارد</u>	${ m CO}_2$ の灰への固定化試験	00_2 の灰への固定に関する既往の研究例が少なく、 00_2	00 ₂ を灰へ固定化することで(ごみ量換算で 5.3kg-C0 ₂ /t-ご
ステ		固定可能量が明確でない。	み)、従来の焼却システムと比較して、
ל⊨			CO ₂ : 74t/年
1			コスト :7 百万円/10 年
			(50ton/日規模の場合)
			の削減を目標とする。
	分離回収した CO2の有効利	00_2 有効利用システムについて、関連技術に関する情	・ ${ m CO}_2$ 分離膜で分離回収した ${ m CO}_2$ を用いて重曹を製造するシス
	用に関わる実証試験およ	報収集、検討を行う。	テムについて基礎試験を行い、試験結果の評価を行う。
	び情報収集、検討		・ ${ m CO}_2$ 分離膜で分離回収した ${ m CO}_2$ を用いてメタネーション反応
			による合成 CH₄を製造するシステムについて評価を行う。
ッ	ガスエンジン排ガスの焼	ガスエンジン排ガスを焼却炉内に吹き込むことで、排	ガスエンジン排ガスを併設焼却炉内へ吹き込み、排ガス再循
ステ	却炉への吹き込み試験	ガス再循環システムと同程度の NOx および排ガス量	環システムと同等の NOx、排ガス量低減効果を得ることで、従
ל⊨		削減効果を期待しているが、吹き込む排ガス性状が異	来の焼却システムと比較して、
		なることによる影響に関する知見がない。	CO ₂ : 73t/年
			コスト :13 百万円/10 年
			(50ton/日規模の場合)
			の削減を目標とする。

表 1-2-1 各システムにおける成果目標 (2/2)

20/140

2-3. 実施スケジュール

事業全体の実施スケジュールは表 1-2-2 に示す通りである。

	-			
	平成29年度	平成30年度	平成31年度	令和2年度
システム I CO ₂ 分離膜を適用した 高効率バイオガス発電システム	基礎試験 実証試験装置手配	実証試験1	実証試験1 実証試験2	
システム Ⅱ 分離回収したCO ₂ の 有効利用システム	灰固定化試験 利用用途調査 ────►	重曹製造試験 メタネーション検討 ━━━━━		
システムⅢ 併設焼却炉でのガスエンジン 排ガスの有効利用システム	シミュレーショ	 ョン・実証試験 ▶		

表 1-2-2 事業実施スケジュール

3. 事業実施体制

3-1. 事業実施体制

本事業の実施にあたっては、メタンガス化コンバインド施設のプラントメーカで ある株式会社タクマ、共同実施者として CO₂分離膜の技術を保有している株式会社 ルネッサンス・エナジー・リサーチ、メタンガス化コンバインドシステムの施設管 理組合である南但広域行政事務組合の3者により実施した。

図 1-3-1 事業実施体制

3-2. 事業に係る検討会

表 1-3-1 のメンバーで構成する検討会を設置し、本事業の円滑な実施を図った。 検討会の開催実績を表 1-3-2 に示す。

	所属・役職		出席		
氏名			R2 9/10		
細見 正明	国立大学法人東京農工大学大学院 名誉教授	0	0		
田中嘉彦	環境省環境再生·資源循環局 廃棄物適正処理推進課 課長補佐	0	0		
大築貴洋	環境省環境再生·資源循環局 廃棄物適正処理推進課 環境専門員	0	_		
村上 栄司	環境省環境再生·資源循環局 廃棄物適正処理推進課 環境専門員	-	0		
足立 武彦	南但広域行政事務組合 次長兼環境課長	0	_		
村上泰啓	南但広域行政事務組合 環境課 副課長	0	_		
岡田治	株式会社ルネッサンス・エナジー・リサーチ 代表取締役社長	-	0		
中藤 邦弘	株式会社ルネッサンス・エナジー・リサーチ 技術本部 京都開発センター長	0	_		
花井 伸彰	株式会社ルネッサンス・エナジー・リサーチ 技術本部 神戸研究所長	0	0		
藤田 泰行	株式会社タクマ 技術開発部 部長	0	0		
工藤隆行	株式会社タクマ 技術開発部開発課 課長	0	_		
西澤 秀幸	株式会社タクマ 技術開発部開発課 課長	-	0		
加藤 考太郎	株式会社タクマ 技術開発部開発課 副参事	0	0		
的崎克規	株式会社タクマ 技術開発部開発課 課員	0	0		

表 1-3-1 検討会名簿

開催日		開催場所	内容		
第1回	令和元年 11 月 12 日	南但広域行政事務組合 南但ごみ処理施設 (南但クリーンセンター)	 事業内容紹介 実証試験1装置踏査 事業実施内容経過報告 討議 		
第 2 回	令和 2 年 9 月 10 日	八戸市公共下水道 東部終末処理場	 事業内容紹介 実証試験2装置踏査 事業実施内容経過報告 討議 		

表 1-3-2 検討会開催実績

3-3.平成 31 年度中小廃棄物処理施設における廃棄物エネルギー回収方策等に係る検 討調査委託業務ヒアリング等への協力

環境省が別途実施する「平成 31 年度中小廃棄物処理施設における廃棄物エネル ギー回収方策等に係る検討調査委託業務」に係るヒアリングや説明会に参加し、事 業内容の報告を行った(表 1-3-3)。

表 1-3-3 平成 31 年度中小廃棄物処理施設における廃棄物エネルギー回収方策 等に係る検討調査委託業務参加実績

名称	開催日	開催場所	主催
平成 31 年度中小廃棄物処理施設に	今和元年	航空全台	
おける廃棄物エネルギー回収方策			堤 境 目 日本 晋 培 街 生 セ ン タ ー
等に係る検討調査検討会	Т2Л4Ц	501 + 502 去	ロ本境境開生ビンター

4. システム概要

先に述べたように、本事業では CO₂ 分離膜を用いてバイオガス中の CO₂ を分離 して CH₄ 濃度を高め、従来よりも高効率なバイオガス発電を行い、さらに分離回収 した CO₂ およびガスエンジン発電機の排ガスを併設する焼却施設で有効利用するこ とで、CO₂ 排出量を削減するシステムについて評価・検証を行った。本システムの フローを図 1-4-1 に示す。

図 1-4-1 次世代低炭素型高効率バイオガス発電システム 及びコンバインドシステムフロー

バイオガス中の CO₂を分離する方法には、吸収剤や吸着剤による分離法(化学吸 収法や PSA 法) や、分子サイズや膜材料への親和性の違いにより分離する膜分離 法、CO₂ ガスとの沸点の違いを利用して分離する深冷分離法などがある。CO₂ 排出 量削減の観点より、膜による分離は省エネルギープロセスであり^{3)、4)}、バイオガス 中の CO₂を分離する方法として適している。

分離回収した CO₂ を大気へ放出させずに、併設する焼却施設から発生する主灰 や飛灰へ固定化(炭酸化)することで、カーボンマイナスも可能となる。灰の炭酸 化によって、重金属類の溶出が抑制されるため、飛灰の重金属固定化薬剤の使用量 が削減されることで、ランニングコストを低減できる。さらに分離回収した CO₂ を 他の用途へ有効利用することによって、更なる CO₂ 排出量の削減を行うことができ る。 ガスエンジンから排出される排ガスは低酸素濃度であり、この排ガスを併設する 焼却炉内へ吹き込むことで、排ガス再循環システムと同様の効果が期待できる。す なわち、ガスエンジン排ガスを焼却炉内へ吹き込むことで、焼却炉およびガスエン ジン排ガス中の NOx を同時に抑制し、また低空気比燃焼とすることにより排ガス量 を低減し、誘引通風機などの消費電力が低減できる。

本システムに適用する CO₂分離膜は、天然ガスの水蒸気改質法による水素製造 プロセスにおける水素と CO₂の分離用に開発され、実用段階にある技術である。 水素製造プロセスに比べて一般廃棄物のバイオガス中の CO₂分離は、耐圧性や対 水素選択性等の要求レベルが低いため、本技術を転用することが可能であると考え られる。本分離膜は促進輸送膜と呼ばれる膜であり、図 1-4-2 の模式図に示すよう に、膜中に CO₂と選択的・可逆的に反応する"CO₂キャリア"を含んでいる。CO₂と CO₂キャリアとの反応は発熱反応、放散は吸熱反応であり、膜内部でその反応エネ ルギーを賄うことができるため、外部からのエネルギー供給が不要である。他の機 構で透過する分離膜と比較して、CO₂の透過速度及び対 CH₄の選択性が高いとい う特徴がある。CO₂分離の駆動力は原料側と透過側の CO₂分圧差となるため、原 料側のガス圧力を高めると共に、透過側の CO₂分圧を下げるために、スイープガ スと呼ばれる CO₂以外のガス(本システムでは水蒸気)を供給する。

しかし、バイオガスに適用する場合の最適な促進輸送膜の種類、必要膜面積、 運転条件(ガス温度や圧力など)、耐久性等に関する知見が乏しい状況にある。

図 1-4-2 CO₂分離膜の原理

第2章 システム I:CO2 分離膜を適用した高効率バイオガス発電システム

メタンガス化施設で発生するバイオガスから CO₂を分離して CH₄ 濃度を向上さ せ、都市ガス仕様の国内製汎用ガスエンジンを適用するシステムにおいて、適用す る CO₂ 分離膜のバイオガスに対する最適運転条件を平成 29 年度に基礎試験で確認 し、この基礎試験結果から実証試験装置の設計・製作を行った。平成 30 年、31 年 度は南但広域行政事務組合のメタンガス化施設で発生する実際のバイオガスを用い て、実証試験を行い、実用化規模における膜分離システムの最適化を図った。また 平成 31 年度は別途開発を進めている高性能な舶用天然ガスエンジンの本システム への適用を検討した。

最適化を行ったシステムにおける CO₂排出量とコストの削減効果については、第 5章で報告する。

1. 平成 29、30 年度の成果概要 ^{5)、6)}

1-1. 基礎試験

1-1-1. 基礎試験目的

本システムに適用する CO₂分離膜は、水素製造プロセス用に開発された膜をベー スとしており、バイオガスに対する最適な運転条件、最適な膜種を確認する必要が ある。そこで南但クリーンセンターのバイオガス分析結果を基にした組成の模擬ガ スを使用して、CO₂分離膜の種類や必要膜面積、温度や圧力などの最適ガス条件に 関する基礎試験を行った。

1-1-2. 基礎試験方法

CO₂分離膜をバイオガスに適用するための基礎検討として、バイオガスを模擬した模擬ガスを用いて、各種の CO₂ 膜分離の基礎試験を実施した。

基礎試験では、膜種 A、膜種 B、膜種 C の 3 種類の有効膜面積 10cm² 程度の CO₂ 分離膜(平膜)を作製し、図 2-1-1 に示す CO₂ 分離膜性能評価装置を用いて、それ ぞれの膜で各種条件下での性能評価を行った。

- 膜種 A は水素製造プロセス用に開発された膜と最も近い構成の膜である。
- 膜種 C は A、B と比較して製膜液の構成がシンプルであり大量生産がより容易な膜である。

図 2-1-1 CO₂分離膜性能評価装置の概念図

各種条件下での膜性能を詳細に測定し、CO2透過速度のパラメーター依存式を導出し、その精度を確認した上で膜分離シミュレーターを構築した。

CO2透過速度のパラメーター依存式は下記の式を用い、基礎実験で取得したデー タにより係数 A~E をフィッティングした。

CO₂ 透過速度 = A × exp(-B/T) × $(P_{CO2})^{C}$ × $(RH_{F})^{D}$ × $(RH_{S})^{E}$ · · · 式 2-1-1

T :温度

- P_{CO2} : CO₂分圧差
- RH_F : 原料側湿度
- RHs :透過側湿度

1-1-3. 基礎試験結果

図 2-1-2~2-1-4 は、膜種 A、B、C の基礎試験で得た CO₂ 透過速度(実験値)と、 その試験から導いた依存式から算出した CO₂ 透過速度(計算値)の相関性を示した ものである。横軸が実験値、縦軸が計算値としてプロットしており、プロットが対 角線上に近いほど実験値と計算値が一致していることになる。

各図に示される通り、両方の値は良好に一致しており、導出した依存式が妥当で あり充分な精度を有することを確認した。

実験値 mol/m²skPa 図 2-1-2 膜種 A における CO₂ 透過速度 の計算値と実験値の相関

実験値 mol/m²skPa 図 2-1-3 膜種 B における CO₂ 透過速度 の計算値と実験値の相関

図 2-1-4 膜種 C における CO₂ 透過速度 の計算値と実験値の相関

表 2-1-1 は膜分離シミュレーターにより算出した、各温度での精製ガス(原料側の出口ガス)の CH4 濃度と CO2 分離膜モジュール本数との関係を示したものである。原料ガス条件は圧力 50kPa(G)、CH4 濃度 52.5%-dry、CO2 濃度 47.5%-dry、ガス 湿度 70%Rh である。原料ガス流量は実証試験の条件である 15m³N-dry/h とした。

105℃~120℃では CO₂分離膜モジュール 4 本で 90%以上の CH₄濃度の精製ガス が得られることがわかった。100℃の条件で CH₄濃度が低いのは、ガス中の水分が 凝縮するリスクによりスイープガスにスチームを流せないため、スイープガスを流 さない条件としており、CO₂分圧差がその他の条件の場合と比べ小さいことが主な 要因である。

膜種を比較すると、膜種 A と膜種 B では、同じ CO₂ モジュール本数で同等の CH₄ 濃度を得ることができる、膜種 C では A、B と比べて CO₂の透過速度が低い ため、得られる CH₄ 濃度が低いことがわかった。

原料ガス	膜種	CO2分離膜モジュール本数					
温度		1本	2本	3本	4 本	5本	
100°C	A	54.6	55.9	56.8	57.5	58.0	
	В	54.1	55.3	56.1	56.8	57.4	
	C	53.9	55.0	55.8	56.4	57.0	
105°C	A	65.9	77.3	86.5	92.8	96.6	
	В	65.0	76.3	86.3	93.8	98.0	
	C	60. 2	67.2	73.8	79.8	84. 9	
110°C	A	64.8	75.8	84. 8	91.5	95.7	
	В	63.9	74.6	84. 1	91.8	96.8	
	C	59.9	68.9	73.4	79.3	84. 5	
120°C	A	59.1	69.3	78.8	86.5	92.1	
	В	60.0	69.6	78.6	86.5	92.8	
	C	56.1	61.5	68.1	74.4	80. 1	

表 2-1-1 各温度での CH4 濃度(%-dry)と CO2 分離膜モジュール本数との関係

表 2-1-2 は膜分離シミュレーターにより算出した、各原料ガス湿度での精製ガスの CH4 濃度と CO2分離膜モジュール本数との関係を示したものである。原料ガス 条件は温度 110℃、圧力 150kPa(A)、原料ガス流量 15m³N-dry/h、CH4 濃度 52.5%-dry、CO2 濃度 47.5%-dry である。

膜種 A、B では湿度 40~90%Rh の領域で 90%以上の CH4 濃度の精製ガスが得ら れることがわかった。 膜種 A、B では温度を変えた場合と同様に、湿度を変えた場 合でも得られる CH4 濃度は同等であるが、 膜種 A の方が実績のある水素製造プロ セス用の膜に近い構成であるため、実証試験の CO₂分離膜モジュールには膜種 A を採用することとした。

原料ガス	膜種	CO₂分離膜モジュール本数				
湿度		1本	2 本	3本	4本	5 本
40 %Rh	Α	65.3	76.1	85.0	91.5	95.7
	В	63.9	74.4	83.8	91.4	96.5
	C	60. 1	67.0	73.5	79.3	84.4
70 %Rh	Α	64.8	75.8	84.8	91.5	95.7
	В	63.9	74.6	84. 1	91.8	96.8
	C	59.9	68.9	73.4	79.3	84.5
90 %Rh	Α	61.9	73.0	82.7	90.0	94.9
	В	62.5	73.4	83.3	91.2	96.5
	C	58.2	65.1	71.9	78.0	83.4

表 2-1-2 各湿度での CH₄ 濃度(%-dry)と CO₂ 分離膜モジュール本数との関係

ただし、表 2-1-1、2-1-2 に示したモジュール本数は、平膜を用いた基礎試験で 得た CO₂透過速度の依存式から構築したシミュレーターから得た必要膜面積を、 モジュール化効率(≒有効膜面積の割合)を 100%としてモジュール当りの膜面積 で割って算出したものである。実証試験や実用化装置に使用する図 2-1-5 に示すス パイラル型 CO₂分離膜モジュールのモジュール化効率は南但広域行政事務組合の メタンガス化施設での実証試験により実測する。

またモジュール当りの膜面積については、高圧仕様の水素用モジュールの膜面 積としている。実証試験では種々の制約から低圧条件で行うため、通過ガス体積の 増大に対応するために、図 2-1-5 に示すモジュール内のスペーサー厚みを増やして おり、1本当たりのモジュール膜面積は約 2/3 に減少している。

図 2-1-5 スパイラル型 CO2 分離膜モジュール構造の概念図

1-2. 平成 30 年度実証試験1

1-2-1. 実証試験目的

バイオガスの生成プロセスは生物反応であるため、発生するガスの量や CH4 濃度 には変動がある。この変動によって CO₂分離膜で精製したバイオガスの CH4 濃度も 変動すると考えられ、ガスエンジン発電機の出力に影響するものと考えられる。そ こで、南但広域行政事務組合のメタンガス化施設から発生するバイオガスの一部を 引き抜き、CO₂分離膜で CH4 濃度を向上させた後に、ガスエンジン発電機に供給し て発電を行う実証試験 1 を行い、実際のバイオガスに対する CO₂分離膜の適用性を 確認した。

1-2-2. 実証試験方法

実証試験は南但広域行政事務組合のメタンガス化施設(図 2-1-6、2-1-7)で行った。

図 2-1-6 高効率原燃料回収施設棟

図 2-1-7 高温乾式メタン発酵槽

実証試験装置の概略フローを図 2-1-8 に示す。南但広域行政事務組合のメタンガ ス化施設で発生するバイオガス(硫化水素、微量有害物除去後)の一部を引き抜 き、ガス昇圧ブロワで必要圧力まで昇圧後、加温・加湿装置で所要の温度と湿度に 調整し、CO₂分離膜ユニットに供給した。

実証試験で用いた CO₂分離膜ユニットは、図 2-1-9 のようにスパイラル型 CO₂ 分離膜モジュールが 5 本並列に連結された構成となっている(内、予備1本)。 CO₂分離膜ユニットに供給された原料ガスは 5 本の経路に分岐し、それぞれの CO₂ 分離膜モジュールに供給される。CO₂分離膜モジュールにより CO₂が除去された 後に合流し、ガスエンジン発電機に供給される高濃度の CH₄を含んだ精製ガスが 得られる。
CO₂分離膜モジュールの透過側には、スイープガスとしてスチームが供給でき る構造となっている。スイープガスを供給することによって、透過側の CO₂分圧 を低減させることで、膜分離の駆動力である CO₂分圧差を増大させることができ る。スイープガスは分離された CO₂と共に大気へ放出される。

CO₂分離膜モジュールで精製されたバイオガスは、除湿・加温装置で降温して ガス中の水分を除去後、昇温して露点温度以上にした後に、ガスエンジン発電機へ 送られる。発電した電力は負荷抵抗器で消費する。

実証試験に使用するガスエンジン発電機は、試験用であるために都市ガス仕様のエンジンではなく、バイオガス用のものを採用しているが、燃料の CH4 濃度が 75~100%に対応できる仕様のものとした。

加温装置や加湿装置で消費する蒸気は、実用化のプラントではガスエンジン発電 機の廃熱ボイラから供給することを想定しているが、実証試験装置のガスエンジン 発電機は小容量であり、廃熱ボイラが設置できないため、実証試験では試験用の蒸 気ボイラを設置して試験を実施した。

図 2-1-8 実証試験装置概略フロー

図 2-1-9 CO₂分離膜ユニットの概念図

1-2-3. 実証試験結果

(1) 最適運転条件の確認

図 2-1-10 に実証試験での原料ガス流量・ガス圧力と精製ガスの CH4 濃度の関係 を示す。

図 2-1-10 原料ガス流量・ガス圧力と精製ガス CH4 濃度の関係

原料ガスの流量を減少してガス圧力を上げることで、精製ガスの CH4 濃度が上昇 しており、ガス量が約 5m³N/h で 90%の CH4 濃度の精製ガスが得られている。CO₂ 分離膜の膜面積を一定にしてガス流量を減少することは、ガス流量を一定にして膜 面積を増やすことに相当する。CO₂ 分離膜装置に供給した原料ガスの圧力と、精製 ガス CH4 濃度の関係では、圧力が高いほど精製ガスの CH4 濃度が上昇している。こ れは原料ガスの圧力が高いほど、供給側の膜分離の駆動力である CO₂ 分圧差が大き くなるためである。 以上の様に、実証用試作モジュール、実際のバイオガスを用いて、目標 CH4 濃度 を達成する事に成功し、またそのための条件も明確化することができた。さらに実 用化システムで採用するガスエンジン機種を調査し、実用化段階ではガスエンジン 付属のガス昇圧装置を利用して、より効率の高い加圧条件を採用できることが分か った。この事は当初の想定より必要膜面積を小型化でき、低コスト化可能である事 を示している。平成 30 年度の実証試験で得られた結果を基に前述の式 2-1-1 に示し た CO2 透過速度の依存式のパラメーターを再フィッティングして、再試算した必要 膜面積(高圧仕様の膜分離モジュール本数として)を表 2-1-3 に示す。原料ガス条 件は実証試験の条件である CH4 濃度 52.5%-dry、CO2 濃度 47.5%-dry、ガス流量 15m³Ndry/h、ガス温度 110℃、ガス湿度 70%Rh とした。平成 31 年度は表 2-1-3 に示すガス 圧力を上げた条件で実証試験を行うこととした。

		平成 30 年度	平成 31 年度
		試験結果	試験条件
居씨관기도구	kPa(A)	151	441
	kPa (G)	50	340
膜モジュール本数	本	11	2

表 2-1-3 原料ガス圧力による必要膜分離モジュール本数の試算結果

(2) バイオガス中の膜被毒成分の影響調査

平成 30 年度の実証試験で得られた CO₂分離膜の CO₂透過速度の経時変化を図 2-1-11 (運転開始初日の CO₂透過速度を 100%とした時の変化率) に示す。

図 2-1-11 CO2 透過速度の経時変化

試験当初と比較して平成 30 年 9 月時点での CO₂ 透過速度が減少している。これ は装置のハード上の初期トラブルのためである。平成 30 年 9 月 27 日にハード上の 不具合対策を実施し、CO₂ の透過性能を確認したが、初期の性能までは戻らなかっ た。この原因について、CO₂ 分離膜を被毒する有害な微量成分がバイオガス中に含 まれている可能性があると考え、バイオガス中の膜被毒成分の詳細な調査を行った。 表 2-1-4 にバイオガス(実証試験装置入口、脱硫、微量有害物除去後)の分析結 果を示す。当初想定していた膜被毒成分は硫化水素や塩素であり、これらは CO₂分 離膜に対して影響のない濃度であることを実証試験開始前に確認していたが、微量 ながら膜に影響を与える濃度の硫化ジメチル(DMS)が検出された。そのため、平 成 31 年度はさらに詳細なガス分析を行うこととした。

년 ¹¹ 11		H29	H29	H29	H30	H30	H30	H30
休収口		10. 23	10. 23	12.6	10.4	10.5	10.11	11.2
H ₂ S	ppm	<0.1	N. D.	<0.1	N. D.	<0. 01	_	<0.01
\$0 ₂	ppm	<0.1	N. D.	<0.1	0.19	0. 027	<0.01	<0.01
NH ₃	ppm	<1	_	<1	_	<1	_	<0.1
HCI	ppm	0.4	—	0.4	_	<0. 1	<0.01	<0.03
CI ₂	ppm	<0.1	_	<0.1	_	<0.1	_	_
DMS ^{* 1}	ppm	_	_	_	_	_	_	0. 41

表 2-1-4 バイオガス微量成分分析結果

※1:DMS=硫化ジメチル、(CH₃)₂S

1-3. 平成 29、30 年度試験結果まとめ

平成 29、30 年度に行った基礎試験と実証試験の結果から得られた結果は以下の 通りである。

- バイオガスの模擬ガスを用いて各種条件で基礎試験を行い、各種 CO₂ 分離膜の性能評価を行い、各膜種の CO₂ 透過速度の依存式を導出し、実証試験に使用する膜種の選定と実証試験条件を決定した。
- 実証試験の結果からスパイラル型膜モジュールのモジュール化効率を実測し、 また実用化システムで採用するガスエンジン機種の調査結果から、実用化段階 での CO₂分離膜の最適運転条件(加圧条件)を確認した。
- バイオガスには当初想定していなかった膜被毒成分である硫化ジメチルが検出され、膜被毒成分の詳細分析と CO₂ 分離膜への影響の調査、除去方法の確立を行う必要があることが判明した。

2. バイオガス中膜被毒成分の調査

DMS を含めて硫黄化合物の分析はガスクロマトグラフ(FPD)で行っているが、 各種硫黄化合物のリテンションタイム(保持時間)が近似しており、硫黄化合物の 分離測定が困難であることや⁷⁾、分析機関によっては各種硫黄化合物の標準物質が 無いなどの理由で定量できない場合があり、硫黄化合物の定性・定量分析には慎重 を要する。今回、硫黄化合物の定性・定量分析はバイオガス中の全硫黄分析と併せ て行い、各種硫黄化合物の合計と全硫黄の量を比較することで、概ね全ての硫黄化 合物の定性・定量分析が行えていることを確認した。

バイオガス中の硫黄化合物の分析結果を基に、これらを除去するための基礎試験 や、CO₂分離膜に与える影響を確認するための基礎試験を行った。

2-1. バイオガス中膜被毒成分の分析結果

バイオガス中の硫黄化合物(以下、膜被毒成分と示す)の定性・定量分析結果 を表 2-2-1 に示す。分析はメタン発酵槽出口ガスと実証試験装置入口ガスの二か所 で行った。なお定性された硫黄化合物については、現時点では非公表とする。

バイオガスには硫化水素以外にも数種類の膜被毒成分が検出された。南但広域 行政事務組合のメタンガス化施設ではガスエンジン発電機に有害な硫化水素と微量 有害物を除去しており、これら物質を除去した後のガスである試験装置入口ガスの 硫化水素は定量下限値未満となっている。しかし有機硫黄分が微量ながら実証試験 装置入口ガスで検出されている。これらは膜被毒成分として CO₂分離膜の性能低 下を引き起こすため、微量の有機硫黄分を除去するための高次脱硫装置の基礎試験 を行った。なお、ガスクロマトグラフ (FPD) によって定性・定量分析された硫黄 化合物濃度の合計値と、全硫黄分析 (JIS K 2301(2011)7.1.1.3C 及び 7.1.3) による 分析値は概ね一致しており、ほぼ全ての硫黄化合物が定量されたといえる。

高次脱硫装置の設計において、バイオガス中の硫黄化合物の種類や濃度の条件 が不可欠であるため、他のメタンガス化施設(A施設)で発生するバイオガスにつ いても分析を行った(表 2-2-2)。南但クリーンセンターとA施設とを比較する と、発酵槽出口ガスの全硫黄濃度は概ね同じオーダーの濃度となっている。一方、 脱硫・微量有害物除去後ガスの全硫黄濃度は、A施設は南但クリーンセンターと比 較して低くなっている。脱硫と微量有害物除去の薬剤は定期的に交換しているが、 薬剤交換後からガス分析実施時期までの経過期間が南但クリーンセンターよりも他 施設の方が短いためである。

		<u>-)</u>			
拉田埠	āf:	<u> </u>	試験装置入口		
环场	ולי	光时信山口	(脱硫・微量有害物除去後)		
採取日		R1.6.5	R1.6.5		
硫化水素	ppm	21	<0. 01		
Α	A ppm		0.50		

ppm

 mg/m^3

 mg/m^3

<0.01

0.81

3.5

0.34

0.12

<0.01

0.07

<0.01

<0.01

0.04

0.04

0.06

42.6

46

1.3

<0.01

0.23

<0.01

<0.01

<0.01

<0.01

0.02

<0.01

0.10

0.06

0.02

5.4

4.9

В

С

D

Е

F

G

Н

Ι

J

Κ

L

М

全硫黄^{*/1}

全硫黄^{※2}

表 2-2-1 バイオガス中硫黄化合物の定性・定量分析結果(南但クリーンセンタ

_)

※1:各硫黄化合物をガスクロマトグラフ(FPD)で分析し、合計・換算した値 ※2:全硫黄分析 [JIS K 2301 (2011) 7.1.1.3C 法及び 7.1.3] にて分析

	-							
採取場所		発酵槽	「山口	脱硫・微量有害物除去				
採取日		R2.6.9	R2. 8. 24	R2.6.9	R2.8.24			
硫化水素	ppm	63	240	<0.01	<0.01			
Α	ppm	0.52	0.26	<0.01	<0.01			
В	ppm	0.17	<0.01	<0.01	<0.01			
C	ppm	1.3	1.6	<0.01	<0.01			
D	ppm	<0.01	<0.01	<0.01	<0.01			
E	ppm	<0.01	<0.01	<0.01	<0.01			
F	ppm	0.17	<0.01	<0.01	<0.01			
G	ppm	0.79	<0.01	0.15	0.07			
Н	ppm	<0.01	<0.01	<0.01	<0.01			
Ι	ppm	<0.01	0.06	<0.01	<0.01			
J	ppm	0.17	<0.01	<0.01	<0.01			
К	ppm	0.07	<0.01	<0.01	<0.01			
L	ppm	<0.01	<0.01	<0.01	<0.01			
М	ppm	0.15	<0.01	<0.01	<0.01			
全硫黄 ^{※1}	mg/m^3	95	346	0.2	0.1			
全硫黄 ^{※2}	mg/m^3	97	260	<0.5	<0.5			

表 2-2-2 バイオガス中硫黄化合物の定性・定量分析結果(A施設)

※1:各硫黄化合物をガスクロマトグラフ(FPD)で分析し、合計・換算した値 ※2:全硫黄分析[JIS K 2301(2011) 7.1.1.30 法及び 7.1.3]にて分析

2-2. 膜被毒成分除去の基礎試験

従来のメタンガス化施設ではガスエンジン発電機に有害な硫化水素を除去する ための脱硫装置を設けているが、本脱硫装置では CO₂分離膜に有害な有機硫黄分 の除去を行うことができず、CO₂分離膜をバイオガスに適用するためには、これら を完全に除去する必要がある。そこで微量の膜被毒成分を除去するための高次脱硫 装置の基礎試験を行った。高次脱硫装置は㈱ルネッサンス・エナジー・リサーチが 保有する高次脱硫触媒技術を応用したものである。

基礎試験装置を図 2-2-1 に示す。試験装置は平成 29 年度に行った CO₂分離膜の 最適運転条件を確認するために実施した基礎試験と同じ装置(図 2-1-1)であり、 CO₂分離膜の性能である CO₂透過速度の経時変化を測定した。ただし、平成 29 年 度の基礎試験では模擬のバイオガスで試験を行ったが、今年度は南但広域行政事務 組合のメタンガス化施設で発生する実際のバイオガス(脱硫、微量有害物除去後) を用いて試験を行った。

表 2-2-3 に基礎試験条件を示す。試験条件 1 は昨年度の実証試験の条件を再現す るために膜供給側のガス圧力を 50kPa(G)とし、試験条件 2 は今年度の実証試験条件 と同じとするために 340kPa(G)とした。基礎試験における単位膜面積あたりのバイ オガス流量は、実証試験条件の 5 倍としている。

	試験条件 1	試験条件 2
高次脱硫処理	無し	有り
バイオガス量	10 ml/min	←
膜供給側圧力	50 kPa(G)	340 kPa(G)
膜透過側圧力	大気圧	←
膜運転温度	110 °C	←
膜供給側湿度	70 %Rh	←
膜透過側湿度	70% Rh	<i>←</i>

表 2-2-3 基礎試験条件

図 2-2-2、2-2-3 に試験条件 1 および条件 2 における CO₂ 透過速度の経時変化を示 す。膜被毒成分を除去しない試験条件 1 では、平成 30 年度の実証試験と同様に CO₂ 透過速度の低下が確認され、300 時間で約 4 割の性能低下が確認された。一方、膜 被毒成分を除去した試験条件 2 では、300 時間以上 CO₂ 透過速度が安定しており、 高次脱硫装置が有効に作用していることを確認した。

試験条件2の試験終了後、高次脱硫装置出口のガス分析を行ったところ、硫化水素、有機硫黄分のいずれも定量下限値未満(0.01ppm)であることを確認した。

3. 平成 31 年度実証試験1

3-1. 実証試験目的

平成 30 年度に行った実証試験の結果と、実用化システムで採用するガスエンジン機種の調査結果から、実用化段階での CO₂分離膜の運転条件はガスエンジン発電機のガス昇圧装置を利用した加圧条件が最適であることが判明した。またバイオガスには膜被毒成分である硫黄化合物が微量ながら含まれており、CO₂分離膜をバイオガスに適用するためにはこれらを除去する必要があることが判明した。

そこで平成 30 年度に南但広域行政事務組合のメタンガス化施設に設置した実証 試験装置を改造し、加圧条件と膜被毒成分を除去した場合の CO₂分離膜の適用性と 最適運転条件を確認した。

3-2. 実証試験方法

今年度の実証試験装置の概略フローを図 2-3-1 に、平成 30 年度からの装置改造 内容を表 2-3-1 に示す。今年度は先に示した表 2-1-3 で試算したガス条件での試験を 行うためにガス昇圧装置の入れ替え、さらに膜被毒成分を除去するための高次脱硫 装置を追加した。なお、試験サイトでの消費電力量の制約から、処理ガス量を下げ て試験を行った。

表 2-1-3 で試算した膜本数と処理ガス量の関係は $15m^3N/h/2$ 本=7.5 $m^3N/h/$ 本であるが、高圧仕様の膜分離モジュールとしての試算値であり、試験では低圧仕様の膜分離モジュール(膜面積は高圧仕様の 2/3)を使用するため、処理ガス量は 7.5 $m^3N/h/$ 本×2/3=5.0 $m^3N/h/$ 本となる。

壮军夕升	Д	+*	H30 ±	H31 年度		
表直石林	11	1來	計画	試験結果	計画	
ガフ見に壮業	処理ガス量	[m³N/h]	15.0	5.0	5.0	
カ ム 昇圧装直 	ガス圧力	[kPa(G)]	50	80	340	
高次脱硫装置	有無	_	無し	必要	設置	
00 公離時社罢	膜本数	[本]	4	5	1	
002万吨限表目	単位ガス量	[m³N/h/本]	3.75	1.0	5.0	

表 2-3-1 実証試験装置仕様変更内容

図 2-3-2 から 2-3-4 に今年度設置したガス昇圧装置、高次脱硫装置、CO₂分離膜装置の写真を示す。

図 2-3-2 ガス昇圧装置

図 2-3-3 高次脱硫装置

図 2-3-4 CO₂分離膜装置

3-3. 実証試験結果

(1) 高次脱硫装置性能確認

表 2-3-2 に実証試験装置に設置した高次脱硫装置の性能確認試験結果を示す。 試験装置入口と高次脱硫装置出口のバイオガスの分析の結果、バイオガスに含ま れる膜被毒成分が除去されていることを確認した。

			-							
サンプリン	• グ箇所	記	、験装置入口	<u></u>	高次脫硫装置出口					
経過時間		0h47m	20h00m	36h00m	0h47m	20h00m	36h00m			
硫化水素	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
Α	ppm	0.44	0.44	0.32	<0.01	<0.01	<0.01			
В	ppm	0.01	0.01	0.02	<0.01	<0.01	<0.01			
C	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
D	ppm	0.11	0.11	0.11	<0.01	<0.01	<0.01			
E	E ppm <0.01		0.02	0.02	<0.01	<0.01	<0.01			
F	F ppm		<0.01	<0.01	<0.01	<0.01	<0.01			
G	ppm	0.02	<0.01	<0.01 <0.01 <0.01		<0.01	<0.01			
Н	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
Ι	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
J	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
К	ppm	0.04	0.05	0.07	<0.01	<0.01	<0.01			
L	ppm	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
М	ppm	0.06	0.05	0.05	<0.01	<0.01	<0. 01			
全硫黄 ^{※1}	mg/m^3	1.1	1.1	1.0	0	0	0			
全硫黄 ^{*2}	mg/m ³	1.4	1.2	1.0	<0.5	<0.5	<0.5			

表 2-3-2 バイオガスバイオガス中硫黄化合物の定性・定量分析結果

※1:各硫黄化合物をガスクロマトグラフ(FPD)で分析し、合計・換算した値 ※2:全硫黄分析[JIS K 2301(2011) 7.1.1.3 C 法及び 7.1.3]にて分析 (2) CO2分離膜性能確認

図 2-3-5 に実証試験開始当初の精製ガスメタン濃度の経時変化を示す。試験開始 当初、CO₂ 分離膜の性能低下が確認された。性能低下の原因調査を行った結果、ス イープガスとして CO₂ 分離膜に供給しているスチーム量が 1kg/h と非常に少なく、 試験中に流量が変動したことにより、必要量のスチーム量が確保できない状態とな ったために性能が低下した可能性が考えられた。そこで、スチーム量の設定流量を 5kg/h として必要量確保できるようにしたところ、図 2-3-6 に示すように安定した CO₂ 分離性能を確認することができた。

図 2-3-7 に加圧条件(膜入口で 340kPa(G)) における実証試験での原料ガス流量 と精製ガスメタン濃度の関係を示す。表 2-3-1 で示した今年度の実証試験条件の計 画値は、平成 29 年度の基礎試験で得た CO₂ 透過速度の依存式のパラメーターにつ いて、平成 30 年度の実証試験結果のフィードバックを行ってフィッティングし直 して試算したものである。膜 1 本あたりの処理ガス量は 5m³N/h と試算されていた が(計画値)、試験の結果膜入口ガス圧力 340kPa(G)、精製ガスメタン濃度 90%-dry の条件における処理ガス量は約 2m³N/h であった(試験結果)。この原因については 調査中であり、今後の検討課題である。

図 2-3-8 に 10 回の立上げ下げを含む、10 日間の運転における精製ガスメタン濃度の経時変化を示す(平均処理ガス量 1.9m³N/h)。精製ガスメタン濃度は延べ 57 時間にわたり概ね 90%-dry で一定となっており、本試験期間中では安定した CO₂分離膜の性能を確認した。

図 2-3-8 精製ガスメタン濃度の経時変化

4. 実証試験 2

4-1.実証試験概要

八戸市東部終末処理場の既設メタンガス化施設から発生するバイオガスを用いて、 膜エレメント 15 本を搭載した CO₂ 膜分離装置を準備し、CO₂ 膜分離装置で精製し たバイオガスを用いて、舶用天然ガスエンジン(加圧型、400kW)の性能および発 電効率を確認した。さらにメタン濃度によるエンジン性能への影響を調べ、最適な 膜分離条件(CO₂ 除去率等)やエンジン稼働条件を確認した。

4-2.実証試験方法

図 2-4-1 に実証試験 2 の装置概略フロー、図 2-4-2 に装置の配置図、図 2-4-3 に CO₂ 膜分離装置の写真、図 2-4-4 に周辺装置を含む装置の写真とフローを示す。

CO₂ 膜分離装置の運転条件は下記の通りである。実証試験1に比べ、バイオガス 流量に対する膜エレメントの本数が少ないのは、実証試験1よりも供給側圧力が高 く CO2 の膜透過の駆動力である CO₂分圧差が大きくなり、更に、今回用いる舶用天 然ガスエンジンに供給する必要メタン濃度が約80%であり、必要な CO₂除去率(原 料ガス中の CO₂から除去する CO₂の割合)が低いためである。

- ・膜入口温度 : 110℃
- ・供給側圧力 : 500~650kPa(G)
- ·透過側圧力 :大気圧
- ・バイオガス流量 : 50~200m³N/h
- ・供給側湿度 : 70% Rh
- ・スイープガス : 15本の膜エレメントの内、10本はスチーム供給
 5本はスイープガス無し

図 2-4-1 実証試験 2 装置概略フロー

図 2-4-2 実証試験 2 装置配置図

図 2-4-3 実証試験 2 で用いた CO2 膜分離装置の写真

図 2-4-4 実証試験 2 で用いた CO2 膜分離装置の写真とフロー

H31 年度に実施した実証試験 1 の結果に基づき、下記の条件で図 2-4-5 に示される構成でシミュレーションを実施し、エンジンの稼働に必要なメタン濃度 78.2%以上の精製ガスが得られることを確認した。

- ・温度 :110℃
- ・供給側圧力 : 650kPa(G)
- ·透過側圧力 :大気圧
- ・バイオガス流量 : 170m³N/h
- ・供給側湿度 : 90% Rh
- ・透過側スイープガス : 15の膜エレメントの内、10本はスチーム供給 5本はスイープガス無し

図 2-4-5 実証試験 2 のシミュレーションにおける装置構成

4-3.実証試験工程

前述の通り、実証試験1(南但)において、試験装置の性能低下(精製後バイオガ ス中の CO2 濃度上昇)が認められた。この現象は実証試験2においても同様に発生 することが予想されたため、実証試験2の実施可否の判断を保留し、工事手配を中 断するとともに、その原因究明を最優先課題として検討した。

その結果、試験装置の性能低下の原因が CO₂分離膜や膜分離モジュールの性能低 下ではなく、試験装置に供給するスチームの流量制御方法・精度の問題であり、実 験中にスチーム供給量が変化したため、膜分離装置の CO₂除去率が低下した事が分 かった。

その対策として装置を改善し、平成 31 年 12 月末には CO₂ 除去性能の安定性は 確認できたものの、工事手配中断もあり、実証試験 2 は平成 31 年度中の完了が困 難となり、令和 2 年 8 月末まで延長されることとなった。その後、令和 2 年 4 月当 初から 1 か月余りの期間、コロナ禍により休工期間となり、表 2-4-1 の青字で記載 の工程のように 1 か月遅延する状況となった。

					平	成31年	F度						令和2年度											
	4月	5月	6月	7月 8	月 9.	月 10	0月	11月	12月	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
基礎試験	膜被	₹畫成	分除	去試験	<u>.</u> 膜性	生能易	影響	確認	烈試 懸	↓ 全														
実証試験1(南但)	<u>試験</u> 試験 試験	送置 装置 装置	改造 改造 製作	手配		·造工 改造		試験	験	試驗	装置	撤去 試験	装置	撤去										
実証試験2(八戸)	彩融		<u>等</u>			王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王	5 備言		記判断	【験 f保留	基礎● 設礎●		撤 去 電記 電影 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市	事 事 事 事 事 事 事 事 事 事 二 事 一 音 二 事 一 役 】) 満 り) 満 の う の つ つ つ つ つ つ つ つ つ つ つ つ つ	↓ 備 計 二 二 二 二 二 二 二 二 二 二 二 二 二	ŷ·試 [気工]	<mark>験</mark> 事 予 備 備	験 		B/8~ 骸置	·8/16 去	.は休	¥)	
FS、評価・まとめ				基礎討	ì験 ì験				実証	E試験				<u>,</u> 美	証試	験								

表 2-4-1 実証試験 2 の実施スケジュール

4-4.実証試験結果

(1) 消化ガスの硫黄成分分析結果

図 2-4-6 に八戸市東部終末処理場の消化槽出ロガスの硫黄成分分析結果(図の△) を示す。また、一般廃棄物のメタンガス化施設の南但クリーンセンター(図の○) と別施設[A 組合](図の●)の発酵槽出ロガスの分析結果を併せて示す。なおプロッ トが無いものは、分析結果が定量下限値未満であったことを示している。図 2-4-7 は 消化槽または発酵槽出ロガスを既設の脱硫装置で処理した後の硫黄成分の分析結果 である。一般廃棄物由来のバイオガスと下水由来の消化ガスにおいて、硫黄成分の 種類や量に大きな違いはなかった。

発酵槽/消化槽出ロガス

表 2-4-2 と表 2-4-3 は、八戸市東部終末処理場の実証試験装置用に設置した高次 脱硫装置の出口ガスの分析結果で、試験条件は下記の通りである。

【試験条件】

- · 脱硫温度 : 常温
- ・ バイオガス流量 : 100m³N/h
- ・ 水素添加 : 無し

表 2-4-2 は 8 月 4 日(1 回目)と 8 月 31 日(2 回目)に採取した高次脱硫装置出 ロガスの分析結果である。1 回目の分析では硫化カルボニルのみ 0.17ppm が検出さ れ、それ以外はガスクロマトグラフィーの分析限界以下であった。2 回目の再分析 では硫化カルボニルは 0.1ppm 未満、全硫黄分析で 1mg/m³未満であり、1 回目の分 析で検出された硫化カルボニルは、消化槽出ロガスに含まれていないこと(図 2-4-6)、再分析では検出されなかったことから、コンタミネーションが原因であると考 えており、高次脱硫の効果が確認された。

		1 🖻	目	2回目		
採取E	日時	R2.8.4	R2.8.4	R2 8 31		
		15:45	16:00	NZ. 0. 51		
硫化水素	ppm	<0.01	<0.01	<0.1		
A	ppm	<0.01	<0.01	<0.1		
В	ppm	<0.01	<0.01	<0. 1		
С	ppm	<0.01	<0.01	<0.1		
D	ppm	<0.01	<0.01	<0.1		
E	ppm	<0.01	<0.01	—		
F	ppm	<0.01	<0.01	—		
G	ppm	0.17	0.17	<0.1		
Н	ppm	<0.01	<0.01	—		
I	ppm	<0.01	<0.01	—		
J	ppm	<0.01	<0.01	—		
К	ppm	<0.01	<0.01	_		
L	ppm	<0.01	<0.01	_		
М	ppm	<0.01	<0.01	<0.1		
全硫黄	mg/m ³	<0.5	<0.5	<1		

表 2-4-2 実証試験 2 高次脱硫装置出口ガス分析結果

※1:各硫黄化合物をガスクロマトグラフ(FPD)で分析した値 ※2:ICP発光分光分析法で分析した値 (2) CO2 膜分離装置とガスエンジンの組み合わせ予備試験

八戸市東部終末処理場で行う実証試験で使用する CO₂ 膜分離装置を明石市の二 見浄化センターに設置し、実証試験 2 の予備試験を行った。実証試験 2 に用いる CO₂ 膜分離装置は、図 2-4-8 に示される通り、5 基のモジュールが連結した装置(仮に 右から装置 A、B、C とする)が、3 基連結された構造となっており、計 15 基の膜 モジュールが搭載される。

本予備試験は、装置 A、B、C の内の 1 本の膜モジュールにバイオガスを供給し て、分離性能を確認した。なお、装置 A と C はスイープガスが流せる構造となって いる。本試験は装置の健全性を確認することを主な目的としている。

図 2-4-8 CO2 膜分離装置写真

試験条件と試験結果を表 2-4-3 に示す。ガス流量と圧力が八戸の実証試験2と異なるのは、二見浄化センターで使用できるバイオガス量の制約とバイオガス加湿用 ボイラーの吐出圧力の制約による(ボイラーは八戸の実証試験2では別のものを用 いた)。シミュレーションによる結果とほぼ同等のメタン濃度が得られることを確 認した。

		装置Aの内	装置 B の内	装置Cの内
		の1本	の1本	の1本
測定温度	°C	119	110	110
供給側入口乾ガス流量	m³N−dry/h	18.1	18.5	18.2
供給側入口圧力	kPa(G)	244	244	240
供給側 H ₂ 0 供給量	kg/h	9	9	9
供給側入口 CH₄濃度	%	56.7	56.3	55.7
供給側出口 CH₄濃度	%	61.9	65.0	65.0
スイープスチーム流量	kg/h	5	なし	5
シミュレーションによる	0/	62 1	67 0	62 2
供給側出口 CH₄濃度	/0	UZ. I	07.0	UZ. Z

表 2-4-3 明石市二見浄化センターでの予備試験結果

(3) CO2 膜分離装置とガスエンジンの組み合わせ実証試験

八戸市東部終末処理場で行った CO₂ 膜分離装置とガスエンジンの組み合わせ実 証試験結果を図 2-4-9 と表 2-4-4 に示す。東部終末処理場で発生する実際の下水消化 ガスを用いて、CO₂ 分離膜により CO₂ を除去し、舶用天然ガスエンジンによる発電 試験を実施し、400kW の場合 39%の発電効率が得られた。なお、発電効率の計算方 法は下記の式を用いている。

発電効率[%]=発電負荷[kW]÷メタン熱量[kW]×100

メタン熱量[kW]

= CO₂ 膜分離装置出ロドライガス量[m³N-dry/h]×メタン濃度[%]/100 ×メタン低位発熱量[35.8MJ/m³N]÷3.6[MJ/kWh]×100

目標とした発電効率 43%(400kW 時)に対して、39%の結果であった。なおガス エンジンはパイロット着火用に燃料油を使用しており、この熱量を考慮すると発電 効率は 38%となる。

図 2-4-9 実証試験 2 における発電負荷と発電効率の関係

発電負荷	発電効率	膜出口 乾ガス量	膜出ロガス メタン濃度	膜出ロガス メタン流量
[kW]	[%]	[m³N-dry/h]	[%-dry]	[m³N/h]
80	16	62	81	50
100	18	64	89	57
160	25	83	78	65
200	28	81	88	71
250	30	96	86	83
300	34	105	85	89
350	35	119	83	99
400	39	128	81	104

表 2-4-4 各発電条件における測定値

5. まとめ

- (1) 模擬ガスを用いた基礎試験と実際のバイオガスを用いた実証試験でガス圧力や 温度、湿度条件における膜の CO2透過速度を測定し、透過速度の依存式を導出 した。
- (2) 実証試験で得た結果から得られた CO₂分離膜の最適運転条件は以下の通りである。

【設定条件】

- 原料ガス CH₄ 濃度 : 52.5%-dry
- 原料ガス CO₂ 濃度 : 47.5%-dry
- ・ 膜面積
 ・ : 膜分離モジュール1本(低圧仕様)
- 精製ガス CH₄ 濃度 : 90%-dry

【最適条件】

- 原料ガス流量 : 2m³N/h
- 原料ガス圧力 : 340kPa(G)
- 原料ガス温度 :110℃
- 原料ガス湿度 : 80%Rh
- (3) 10 回の立上げ下げを含む 10 日間の運転を行い、安定した CO₂分離膜の性能を 確認した。
- (4) 高性能舶用天然ガスエンジンを適用するためのシミュレーションによる CO2分離膜の想定最適運転条件は以下の通りである。なお、シミュレーションの精度は明石市二見浄化センターで実施した予備試験で確認している。

【設定条件】

- 原料ガス CH₄ 濃度 : 52.5%-dry
- 原料ガス CO₂ 濃度 : 47.5%-dry
- ・ 膜面積
 ・ : 膜分離モジュール1本(低圧仕様)
- 精製ガス CH₄ 濃度 : 80%-dry

【想定最適条件】

- 原料ガス流量 : 10m³N/h
- 原料ガス圧力 : 700kPa(G)
- 原料ガス温度 :110℃
- 原料ガス湿度 : 90%Rh
- (5) 八戸市東部終末処理場で実施した CO2分離膜と高性能舶用天然ガスエンジンの 組み合わせ試験の結果、目標とした発電効率 43%(400kW 時)に対して、39% の結果であった(着火用パイロット燃料油の熱量を考慮すると 38%)。

第3章 システムⅡ:分離回収した CO2の有効利用システム

システム I で分離回収した CO₂ を有効利用することで、大気放出する CO₂ を削 減するシステムの評価を行った。

平成 29 年度 ⁵⁾は分離回収した CO₂を併設する焼却施設から発生する灰に固定化 することで、CO₂ 排出量の削減を行うとともに、灰の炭酸化によって重金属類の溶 出を抑制するシステムの評価を行った。また、他の CO₂利用用途について調査・検 討を実施した。

平成 30 年度⁶は CO₂ 固定化処理灰の重金属類溶出量の挙動について追加調査を 行った。また他の CO₂利用用途として、重曹を製造するシステムについて試験を行 い、システムの評価を実施した。さらに分離回収した CO₂を用いたメタネーション システムの検討を行った。

1. 分離回収した CO2の利用 途についての調査

日本政府は地球温暖化問題に対し、2030年度に2013年度比26%、2050年度に同 80%の温室効果ガス削減を目標に掲げている。目標達成には大幅なエネルギー政策 転換や技術革新が必要であり、石油代替としての再生可能エネルギーおよび CO₂を 排出しない水素の導入拡大が国策として進められようとしている。また、火力発電 所や高炉などの CO₂ 排出施設からの排ガス中に含まれる CO₂ を分離回収する技術 も有望視されており、回収した CO₂を地中に貯留する技術、いわゆる CCS (Carbon dioxide Capture & Storage) は世界的に技術開発が進められている。

分離回収した CO₂を利用することは CCU(Carbon dioxide Capture & Utilization)と 呼ばれ、種々の技術開発が進められており、それらの技術を対象として調査した。 CO₂利用用途の事例を表 3-1-1 に示す。

啩	ш	用途		松 校
Ť	$\overline{\mathbf{r}}$	尿素	•	2 NH $_3$ +CO $_2$ → CO (NH $_2$) $_2$ +H $_2$ O、圧力:15~25MPa、温度:180~200°C
成品			•	インド、マレーシアで商用プラント(三菱重工業)
製造			•	尿素国内生産量:45 万トン、輸入量:35 万トン(2006)
	0	パーノダメ	•	C0 ₂ +3H ₂ →CH ₃ OH+H ₂ O、圧力:3~10MPa、温度:200~300℃
			•	アイスランドで商用プラント(CRI 社、2012 年)
			•	メタノール輸入量:183 万トン(2001)、全量輸入
•	୭	エタノール	•	$2CO_2 + 6H_2 \rightarrow C_2 H_5 OH + 3H_2 O$
			•	メタノールよりも転換率(選択性)が低い
			•	エタノール輸入量:115 万 kL(2015)、全量輸入
•	4	重曹	•	$CO_2 + NaOH \rightarrow NaHCO_3 \downarrow$
			•	製造した重曹をごみ処理施設内で利用できる
	Q	ポリカーボネート	•	ビスフェノールやジオールなどと CO₂の重合で製造
			•	ポリカーボネート国内製造量:29 万トン
	9	PEF 原料	•	ポリエチレンテレフタレート (PET)の代替となるポリエチレンフラノエート (PEF)の原料であるフランジカルボン酸
				(FDCA) を製造
			•	ペットボトル国内販売量:26 万トソ
	\bigcirc	ポリクラトン	•	ブタジエンと CO ₂ の重合で製造
			•	自動車やスマートフォンの部品として利用可能

表 3-1-1 CO₂利用 途の事例 (1/2)

63/140

中で	・ $CH_4 + CO_2 \rightarrow 2CO + 2H_2$ (ドライリフォーミング)	 カーボンコーキングを抑制するリフォーミング触媒の研究事例が近年多く報告あり 	・ C0 ₂ +4H ₂ →CH ₄ +2H ₂ 0(メタネーション)	 欧州を中心に再生可能エネルギーで製造した水素(水の電気分解)を用いた実証試験 	・ 発電所などから排出された CO2を回収して油田の油層に送り込み、地下に残っている原油を回収 (EOR)	 現時点で回収した CO2が最も商用で利用されている用途 	・ 清掃工場排ガスから化学吸収法で分離回収した 00 を化粧品原料(アスタキサンチン) やジェット機燃料となる藻類	培養施設に供給(佐賀市清掃工場)	・ バイオガスの精製時に分離される CO₂を炭酸水として海藻工場に供給。精製された CH₄はガスエンジン(6kW)で利	用。ガスエンジンの排ガス中 CO₂はトマトエ場に供給(豊川浄化センター)
田	$C0 + H_2$		CH₄		化石燃料採取		漢類、トマト			
頁	0		6		0		1			
項	数	*					農業	苿		

表 3-1-1 CO2利用用途の事例 (2/2)

廃棄物処理施設は火力発電所などと比較すると小規模かつ分散型の施設である ため、排出される CO₂量は比較的少ない。そのため、回収した CO₂を貯留設備まで 搬送するには輸送費が高くなるだけでなく、輸送車両が排出する CO₂量も無視でき なくなる。従って、システム I で分離回収した CO₂は、施設内または施設周辺で利 用(地産地消)することが望ましいと考える。そこで CO₂利用用途として、重曹を 製造するシステムは、併設焼却炉の酸性ガス処理薬剤として利用することができる。 またメタネーションシステムで製造した CH₄は、システム I の汎用都市ガス仕様の ガスエンジンで発電を行うことができる。平成 30 年度はこの 2 つのシステムにつ いて評価を行った。

2. 分離回収した CO2の灰への固定化システムの評価

システム I で分離回収した CO₂を併設焼却施設から発生する灰(主灰・飛灰)へ 固定化することで、大気放出する CO₂を削減するとともに、灰の炭酸化によって重 金属類の溶出を抑制することで、重金属固定化薬剤の使用量を削減することができ る。このシステムの評価を行うために、CO₂ 固定可能量と重金属類の溶出抑制効果 の試験を実施した。

2-1. CO₂固定化試験

灰の CO₂ 固定可能量について、実験室規模の基礎試験を実施して確認した。また CO₂ 固定化処理後の灰の重金属類溶出量等の分析を行い、主灰の有効利用の可能性や飛灰の重金属固定化薬剤の低減量などについて確認を行った。

図 3-2-1、3-2-2 に示す試験装置を用いて基礎試験を実施した。アクリル製の反応カラム(内径 104mm)に灰を 250g-dry 充填し、所定流量の CO₂を所定時間カラム底部から通気した。灰の水分が 10~20%の範囲において CO₂の固定量が多くなるため、飛灰については蒸留水を添加して水分を 15%に調整した。主灰は湿灰を用いるため、有姿のまま試験に供した。また試験中に灰が乾燥することを防ぐために、通気する CO₂は水蒸気飽和槽を通して反応カラムに供給した。

図 3-2-2 CO2 固定化試験装置写真

(1) 灰の CO₂ 固定可能量

図 3-2-3 に灰の CO₂ 固定試験の結果を示す。通気時間が 30 分までは通気流量が 多いほど CO₂ 固定量が多くなっているが、60 分以上では通気流量によらず平衡に 達している。通気時間が 60 分における CO₂ 固定量(固定可能量)の平均値は、主 灰では 28.6kg-CO₂/t-dry 灰、飛灰では 55.4kg-CO₂/t-dry 灰であった。

図 3-2-3 灰の CO₂ 固定可能量

主灰および飛灰の CO2 固定可能量は、コンバインドシステムの年間ごみ処理量が 14,000 トンの場合、以下のようになる。

主灰:14,000t/年×8%-主灰×28.6kg-CO ₂ /t-灰	=32.0t-CO ₂ /年
飛灰:14,000t/年×2%-飛灰×55.4kg-CO ₂ /t-灰	=15.5t-CO ₂ /年
合計:	=47.5t-CO ₂ /年

これは、システム I で分離回収する CO2 量(約1,000t-CO2/年)の約5%となる。

(2) 飛灰の CO2 固定化による重金属類溶出量抑制効果

試験における CO₂ 通気流量が 0.88、3.52L/min の場合の、飛灰の CO₂ 固定化処理 前後の鉛溶出試験結果(環告 13 号法)を図 3-2-4 に示す(溶出量が定量下限値未 満の場合は、下限値の 50%の値で図示している)。

図 3-2-4 飛灰の CO2 固定量による鉛溶出量の影響

飛灰の CO₂固定量の増加に伴って鉛溶出量が減少しており、飛灰中の鉛が炭酸 化(PbCO₃)されることで、不溶化したものと考えられる。原灰(CO₂固定量= 0kg-CO₂/t-灰)の鉛溶出量を基準値以下とするために必要なキレート添加率は4% 以上となっているが、CO₂固定化処理を行うことによって、固定量が約 50kg-CO₂/t-灰以上の場合、鉛溶出量を基準値以下とするためのキレート添加が不要とな った。
(3) 主灰の CO₂ 固定化による重金属類溶出量抑制効果

主灰の CO₂ 固定化処理前後の鉛溶出試験結果(環告 46 号法)と鉛含有量試験結 果(環告19号法)を図3-2-5に示す(鉛溶出量が定量下限値未満の場合は、下限 値の 50%の値で図示している)。

図 3-2-5 主灰の CO2 固定量による鉛溶出量の影響

主灰は CO2 固定化処理を行わなくても鉛溶出量は土壌環境基準値以下である が、飛灰と同様に CO2 固定量の増加に伴って鉛溶出量が減少しており、固定量が 多くなると定量検出下限値未満となっている。

一方の鉛含有量は CO2を固定化しても低減することができなかった。環告 19号 法による鉛含有量とは、1規定の塩酸に溶出する鉛の量を分析するものであり、全 含有量とは異なる。よって、環告13号や環告46号法の水による溶出試験では、鉛 溶出量の低減効果があるが、環告 19 号の塩酸による試験では炭酸化した鉛が溶解 したものと考える。

2-2. CO₂固定化処理灰の重金属溶出挙動

前述のように平成 29 年度の基礎試験で、主灰、飛灰ともに CO₂を固定化することで、それぞれ環告 46 号試験、環告 13 号試験における鉛溶出量が低減することを確認した。平成 30 年度は、CO₂ 固定化による長期的な鉛の溶出挙動について調査する目的で、pH 依存性試験⁸⁾を行った。

(1) 試験方法

試料 30g と溶媒 300mL (溶出液が所定の pH (5~12 程度) になるように pH 調整 剤を添加したもの、固液比=10) を 500ml 容器に入れ、 2 時間平行振とうした。振 とう後、3,000rpm で 20 分間遠心分離した後、上澄み液を孔径 1.0μm メンブランフ ィルターで減圧ろ過し、上澄み液の pH および鉛濃度を測定した。pH 依存性試験を 行った試料は、

① CO₂を固定化処理する前の主灰(以下、CO₂未固定化主灰)

② CO₂を固定化処理した主灰(以下、CO₂固定化主灰)

③ CO₂を固定化処理する前の飛灰(以下、CO₂未固定化飛灰)

④ CO₂を固定化処理した飛灰(以下、CO₂固定化飛灰)

の4種類を用いた。CO2を固定化した灰には、平成29年度の基礎試験結果から、灰250gにCO2濃度100%のガスを1.76L/minで60分間通気したものを用いた。

(2) 主灰の鉛溶出挙動

CO2 未固定化主灰と CO2 固定化主灰について、鉛溶出量の pH 依存性試験を実施 した結果を図 3-2-6 に示す(定量下限値(0.01mg/L)未満の結果は、定量下限値の 50%の値として図示している)。

図 3-2-6 pH 依存性試験結果(主灰)

pH 調整前の鉛溶出量は、CO₂未固定化主灰が 0.08mg/L (pH12.0)、CO₂固定化主 灰が 0.01mg/L 未満 (pH11.3) であった。pH 調整後の鉛の溶出挙動は、pH7~12 の範 囲では CO₂ 未固定化、固定化主灰ともに溶出量は基準値 (0.3mg/L) 未満であった が、pH6 以下となると溶出量が増加する傾向となり、pH5 の条件では CO₂ 未固定化 主灰が 4.0mg/L、CO₂ 固定化主灰が 2.4mg/L の基準値を超える鉛溶出量が確認され た。

CO2 未固定化、固定化主灰ともに pH 依存性の挙動は同様であるが、CO2 を固定 化することにより、鉛溶出量の抑制効果が認められた。

(3) 飛灰の鉛溶出挙動

CO2未固定化飛灰と CO2固定化飛灰について、鉛溶出量の pH 依存性試験を実施 した結果を図 3-2-7 に示す(定量下限値(0.01mg/L)未満の結果は、定量下限値の 50%の値として図示している)。なお、CO2未固定化飛灰では pH6 以下および pH11 以上での試験から、鉛溶出基準値が超過することが確認できたため、pH7~10 での 試験は省略した。

pH 調整前の鉛溶出量は、CO₂ 未固定化飛灰が 42mg/L (pH12.3)、CO₂ 固定化飛 灰が 0.01mg/L (pH10.2) 未満であった。飛灰は CO₂ を固定化することで鉛溶出量 が大幅に抑制されている。pH 調整後の鉛の溶出挙動は、CO₂ 未固定化飛灰では pH6 以下および pH11 以上のとき、CO₂ 固定化飛灰では pH6 以下および pH12 のと きにそれぞれ鉛溶出量が基準値を超過した。CO₂ 未固定化、固定化飛灰ともに pH に対し同様の挙動を示しているが、同じ pH での鉛溶出量を比較すると、アルカリ 側では CO₂ を固定化した飛灰のほうが鉛溶出量は少なくなっており、CO₂ 固定化 による鉛溶出量の抑制効果が認められた。

CO₂を固定化しても pH を変動させると鉛溶出量が基準値を超過することから、 CO₂を固定化した飛灰に対しても重金属固定化薬剤を少量添加しておくことが、長 期安定性を確保する上でも望ましいと思われる。但し、CO₂を固定化しない場合よ りも重金属固定化薬剤の添加量を削減する効果がある。

2-3. まとめ

- 飛灰に CO₂を固定化することで環告 13 号による鉛溶出量が減少し、重金属 固定化薬剤を使用しなくても鉛溶出量が基準値以下になることを確認し た。
- 主灰に CO2を固定化することで、飛灰と同様に環告 46 号による鉛溶出量が 減少した。しかし、環告 19 号による鉛含有量(塩酸に溶出する量)には抑 制効果がなかった。
- CO₂未固定化、固定化主灰ともに pH 依存性の挙動は同様であるが、CO₂を 固定化することにより、鉛溶出量の抑制効果が認められた。
- CO2を固定化しても pH を変動させると鉛溶出量が基準値を超過することから、CO2を固定化した飛灰に対しても重金属固定化薬剤を少量添加しておくことが、長期安定性を確保する上でも望ましいと思われる。但し、CO2を固定化しない場合よりも重金属固定化薬剤の添加量を削減する効果がある。

システム I で分離回収した CO₂の利用用途として、重曹を製造するシステムについて基礎試験を行い、試験結果を評価した。重曹は併設する焼却炉において、排ガス中の酸性ガス除去薬剤として使用することができる。

重曹製造の反応式を下記に示す。CO₂を苛性ソーダ(NaOH)に過剰に反応させると重曹(NaHCO₃)が生成する。

 $2NaOH + CO_2 \rightarrow Na_2CO_3$ (溶解)

Na₂CO₃ + CO₂ + H₂O → 2NaHCO₃↓ (沈殿)

炭酸ナトリウム(Na₂CO₃)と重曹の各温度における溶解度を図 3-3-1 に示す。

図 3-3-1 炭酸ナトリウムと重曹の溶解度曲線

重曹製造試験の条件は、炭酸ナトリウムの状態では全量溶解し、反応が重曹生成 まで進むと重曹の溶解度を超えて重曹が沈殿する条件で行う必要がある。一例とし て、図 3-3-1 に実施した試験条件での、炭酸ナトリウムおよび重曹の溶解量を示し た。試験では 3mol/L の苛性ソーダ水溶液を用いた。前述の重曹生成反応式より、苛 性ソーダ 3mol/L が CO₂ と反応して全量が炭酸ナトリウムに転換したと仮定すると、 炭酸ナトリウムは 1.5mol/L 生成する。この時の炭酸ナトリウム(106g/mol)の溶解 量は、1.5mol/L×106g/mol=159g/L=15.9g/100ml となる(図 3-3-1 青◇)。試験は 50~60℃で実施しており、この温度範囲では炭酸ナトリウムの溶解度曲線(図 3-3-1 青線)と比較して炭酸ナトリウムの溶解量は十分低く、全量が容易に溶解する。

さらに炭酸ナトリウムが CO2 と反応し、全量が重曹に転換したと仮定すると、重

曹は重曹生成反応式より 3mol/L 生成する。このときの重曹(84g/mol)の溶解量は、 3mol/L×84g/mol=252g/L=25.2g/100ml となる(図 3-3-1 赤○)。50~60℃での重曹の 溶解度(図 3-3-1 赤線)は 15g/100ml 程度であるので、炭酸ナトリウムから重曹に 反応が進み、溶解度を超えたものは析出する。(実際の現象では、重曹は過飽和で溶 解した状態となり、ある時点で急激に析出する。)

3-1. 重曹製造試験

(1) 試験方法

重曹製造試験装置のフローを図 3-3-2 に示す。試験に供する CO₂ ガスは、システ ム I 実証試験装置の CO₂ 膜分離ユニットで分離した CO₂ を含むスイープガスの排 気を分岐して真空ポンプを用いて引き抜いた。分離回収した CO₂ は高温で蒸気が多 く含まれているため、ガス冷却器を兼ねたドレンポットを設置して凝縮した水分を 除去しながら常温まで冷却した。重曹製造試験装置入口の CO₂ ガス流量は、フロー ト式流量計で測定し流量調整した。苛性ソーダ水溶液 200mL (3mol/L) を充填した インピンジャを恒温槽に入れて所定の温度に維持し、CO₂ ガスを供給して重曹を製 造した。インピンジャ出口ガス流量は、湿式ガスメーターで積算流量を測定した。 苛性ソーダ水溶液の温度は 50、55、60℃の 3 条件について実施した。

図 3-3-2 重曹製造試験装置フロー

(2) 試験結果

試験の様子(RUN1)を図 3-3-3 に示す。右の写真は過飽和となっていた重曹が急激に析出し、沈殿した状態である。

試験開始直後

沈殿物

図 3-3-3 重曹製造試験の様子

RUN2 試験における苛性ソーダ水溶液の pH の経時変化および、インピンジャ入 口と出口の CO₂ 通ガス積算量を図 3-3-4 に示す。苛性ソーダ水溶液の pH は CO₂ の 通ガスに伴って低下し、析出物が沈殿した時点(通ガス時間 75 分)では pH は 8.7 まで低下した。RUN1 および 3 も同様の pH 変化であった。各反応段階での pH の計 算値は次の通りである。

- 3mol/L 苛性ソーダ水溶液の pH=14
- 苛性ソーダが全量反応して炭酸ナトリウムが溶解している場合の pH=12.3
- 更に反応が進み、全量重曹が溶解している場合の pH=8.3

したがって、本試験の pH 変化より次のような反応が進んだものと推察される。

- ① 苛性ソーダは通ガス後 10 分間程度で炭酸ナトリウムにほぼ全量反応
- ② 並行して徐々に炭酸ナトリウムから重曹に反応が進む
- ③ 最終的に、75 分の時点で全量重曹まで反応が進む前に重曹が溶解度を超え過 飽和の状態から急激に析出

図 3-3-4 苛性ソーダ水溶液の pH および CO₂ 積算流量の経時変化(RUN2)

回収した沈殿物の分析結果を表 3-3-1 に示す。分析は二段階滴定法(ワルダー法 ⁹⁾)で測定した。全ての RUN で沈殿物の炭酸ナトリウムが約 90%と高く、重曹は 10%未満であった。一方、ろ液は重曹が 95%以上となっていた。

	成分	RUN1 RUN2		RUN3
沈殿	重曹	9.4%	9.9%	7.8%
物	炭酸ナトリウム	90.6%	90.1%	92.2%
ろ	重曹	95.5%	97.0%	96.9%
液	炭酸ナトリウム	4.5%	3.0%	3.1%

表 3-3-1 沈殿物とろ液の分析結果

沈殿物の重曹生成量が想定よりも低かったため、分析方法について確認を行った。 確認の結果、二段階滴定分析の前処理工程で沈殿物を 105℃で乾燥しており、この 時に重曹の多くが次式の反応により分解して炭酸ナトリウムが生成した可能性が高 いことが判明した。

 $2NaHCO_3 + Q = Na_2CO_3 + H_2O + CO_2$

重曹製造試験を再度行って、沈殿物が重曹であったことを確認する予定であった が、平成 30 年度のシステム I の実証試験が中断(CO₂分離膜の性能低下による)と なったため、再試験を行うことができなかった。 105℃で重曹が分解された可能性を確認するため、重曹試薬に水を添加して 105℃ で乾燥した場合と、40℃で減圧乾燥した場合を比較した。105℃で乾燥したものは、 重量が初期の 63%まで減量したのに対し、40℃で減圧乾燥したものは初期のほぼ 100%の重量であった。重曹が分解して炭酸ナトリウムに変化する場合、変化後の重 量割合は計算上 63.1%であるので、ほぼ全量が炭酸ナトリウムに分解されたと考え られる。また二段階滴定法分析による乾燥後の重曹割合は、105℃乾燥では 1.4%で あったのに対して、40℃減圧乾燥では 96.3%であった。したがって、重曹と炭酸ナ トリウムの溶解度を考慮すると、重曹製造試験で生成した沈殿物は、純度 100%に近 い重曹が生成していたものと推察できる。

試験における物質収支を表 3-3-2 に示す。

成分	条件等	重量	
苛性ソーダ	3mol/L	24g	
ж	200ml	200g	
重曹 (全量反応·理論値)	3mol/L	50.4g	理論値に対する 回収率
	RUN1 (液温 60℃)	16.0g	31.7%
重曹 (試験での回収量 [※])	RUN2 (液温 55℃)	18.9g	37.5%
	RUN3 (液温 50℃)	18.7g	37.1%

表 3-3-2 重曹製造試験時の物質収支

※試験での回収量(表 3-3-2)は全量重曹として計算

表 3-3-2 より、重曹回収率は 30~40%と低く、多くはまだ液に溶解した状態であったことがわかった。実用化に際しては、析出物を連続的に引き抜き、原料となる苛性ソーダと CO₂ も連続で供給することにより、重曹回収率は 100%に近づけることができると考える。苛性ソーダ水溶液の温度比較では、各 RUN での温度条件における重曹析出量は、温度が低い方が多くなる結果となった。

3-2. 重曹製造システムの FS

(1) 試算条件

重曹製造についての試算の前提条件を表 3-3-3 に示す。

項目	条件	ŧ	
年間ごみ処理量	14,000	t/年	
併設焼却炉	処理能力	50	t/日
	稼働日数	238	日/年
メタンガス化施設	処理能力	20	t/日
	稼働日数	350	日/年
	バイオガス発生量	150	m³N−dry/h
	バイオガス CH ₄ 濃度	52.5	%-dry
	バイオガス CO₂濃度	47.5	%-dry
CO ₂ 分離膜装置	分離性能(選択率)	999	CO_2/CH_4
	精製ガス CH₄濃度	90.0	%-dry
	CO2回収率	87.7	%
	C02回収量	62.5	m³N∕h

表 3-3-3 重曹製造システムの FS 試算条件

(2) メタンガス化施設での重曹製造可能量と併設焼却炉での需要量の比較

システム I で分離回収した CO₂の全量を用いて重曹を製造する場合、表 3-3-3 よ りバイオガス発生量 150m³N/h、CO₂ 濃度 47.5%、精製ガス CH₄ 濃度 90%から、回収 CO₂ 量は 62.5m³N/h となる。このとき、年間の CO₂ 回収量は

62.5[m³N/h]/22.4[m³N/kmol]×44[kg-CO₂/kmol]×24[h/目]×350[日/年]/1,000[kg/t]

=1,031[t-CO₂/年]

となる。この量の CO2 を用いて製造できる重曹は

1,031[t-CO₂/年]/44[kg-CO₂/kmol]×84[kg-NaHCO₃/kmol]

=1,969[t-NaHCO₃/年]

となる。メタンガス化施設に併設する焼却炉が 50t/日で、表 3-3-4 に示す条件で併 設焼却炉の酸性ガス除去薬剤として重曹を使用する場合、重曹の消費量は

 $12,000[m^3N/h] \times \{(300-30)[ppm] + (50-30)[ppm] \times 2\} \div 10^6 \div 22.4 [m^3N/kmo1]$

×84 [kg-NaHCO3/kmol] ×24 [h/日] ×238 [日/年] /1,000 [kg/t] ×1.2

=95.6 [t-NaHCO₃/年]

となる。したがって、分離回収した CO2 全量からの重曹製造量に対して、併設焼却 炉で使用する重曹消費量の割合は 4.9%となる。

併設焼却炉で消費する重曹を製造するために必要な苛性ソーダ量は以下のよう になる。

95.6 [t-NaHCO₃/年]÷84[kg-NaHCO₃/kmol]×40[kg-NaOH/kmol]=45.5[kg-NaOH/年]

項目		条	件
処理能力		50	t/日
稼働日数		238	日/年
排ガス量		12,000	m³N−dry/h
ᇓᄲᅿᄀᅆᆂ	HCI	300→30	ppm
酸性ガズ除去 S0x		50→30	ppm
重曹当量比		1.2	

表 3-3-4 重曹の酸性ガス除去薬剤使用条件

(3) CO₂ 排出量の試算

バイオガスから分離回収した CO₂を利用して重曹を製造し、併設焼却炉の酸性ガス除去薬剤として使用するシステムの CO₂排出量の試算を行う。従来システムにおいて、併設焼却炉で使用する酸性ガス除去薬剤として一般的に用いられている消石 灰を使用する場合、さらに重曹を使用する場合との比較を行った。各システムフロ ーを図 3-3-5 に、試算条件を表 3-3-5 に示す。

図 3-3-5 重曹製造システム及び従来システムのフロー

	項目		Ś	条件
年間ごみ処理量			14,000	t/年
併設焼却炉	処理能力		50	t/日
	稼働日数		238	日/年
	排ガス量		12,000	m ³ N−dry/h
	酸性ガス除去 S0x		300→30	ppm
			50→30	ppm
	消石灰当量比		1.5	
	 重曹当量比		1.2	
CO ₂ 分離膜装置	CO2回収量		62.5	m³N∕h
	CO ₂ 利用率		4.9	%
重曹製造装置	消費電力		1.0	k₩ ^{% 1}
CO₂排出係数	苛性ソーダ		0.56	$t-CO_2/t^{10)}$
	重曹		0.1	$t-CO_2/t^{10)}$
	 消石灰		0. 092	$t-CO_2/t^{11}$
	電力		0.579	t-CO ₂ /MWh

表 3-3-5 CO2 排出量の試算条件

※1:C02引き抜きファン 0.1kW、重曹スラリー排出ポンプ 1.5kW、負荷率 60%と仮定

分離回収した CO₂を利用した重曹製造システムにおいて、苛性ソーダに市販品を 用いる場合には、苛性ソーダの製造に係る CO₂排出量が上乗せされる。苛性ソーダ の CO₂排出係数は表 3-3-5 から 0.56t-CO₂/t-NaOH を用いる。NaCl の電気分解による 苛性ソーダ製造に必要な電力に再生可能エネルギーで発電した電力を用いる場合や、 廃アルカリを使用する場合には CO₂排出量はゼロと見なすことができる。

また、分離回収した CO₂から重曹を製造して酸性ガス除去薬剤として使用する と、重曹と酸性ガスとの反応により製造に使用した CO₂と同量の CO₂が発生し、焼 却炉排ガスと共に大気に放散される。

CO₂排出量削減効果としては、従来のシステムで使用していた酸性ガス除去薬剤の製造に係る CO₂排出量が減少したと計算される。酸性ガス除去薬剤としては、一般的に消石灰が用いられており、消石灰の使用量に CO₂ 排出係数(0.092 t-CO₂/t-Ca(OH)₂)を乗じた量が削減量となる。また、従来システムで重曹を使用している場合は、同様に重曹の使用量に 0.1t-CO₂/t-NaHCO₃を乗じた量が削減量となる。

消石灰の使用量は

 $12,000[m^{3}N/h] \times \{(300-30)[ppm] + (50-30)[ppm] \times 2\} \div 10^{6} \div 22.4 [m^{3}N/kmo1]$

×74 [kg-Ca(OH)₂/kmol] ×24 [h/ \exists] ×238 [\exists / \ddagger] /1,000 [kg/t] ×1.5

=105.3 [t-Ca(OH)₂/年]

となり、重曹の使用量は前述のように 95.6t-NaHCO₃/年となる。

以上より算出した値を用いて計算した CO₂ 排出量削減効果を表 3-3-6 に示す。従 来システムで消石灰を使用する場合は削減効果が得られず、19.1t-CO₂/年の増加とな った。従来システムで重曹を使用する場合、購入した重曹と酸性ガスとの反応時に 発生する 50.1t/年の CO₂ 量が削減され、この削減効果が大きく、30.8t-CO₂/年の削減 効果が得られる結果となった。

項目			各		C0 ₂ ‡	非出量	
消	消止。		苛性ソーダ使用量	45.5	t/年	+ 25.5	t -C0₂/年
石灰		a-2	消費電力量	5. 71	MWh/年	+ 3. 31	tC0 ₂ /年
便 用	削減分	b-1	購入消石灰量	105.3	t/年	▲9.69	t -C0 ₂ /年
					合計	+19.1	t -C0 ₂ /年
重	重 曹 增加分 使	a-1	苛性ソーダ使用量	45.5	t/年	+ 25.5	t -C0₂/年
世		a-2	消費電力量	5.71	MWh/年	+ 3. 31	t -C0₂/年
用	用	b-2	購入重曹量	95.6	t/年	▲ 9.56	t -C0₂/年
則减分	b-3	購入重曹 CO₂ 排出量	50.1	t/年	▲ 50. 1	t -C0₂/年	
					合計	▲ 30. 8	t -C0 ₂ /年

表 3-3-6 重曹製造システムの CO₂ 排出量

※項目欄の a-1~b-3 は図 3-3-5 中に記載した項目

(4) コストの試算

表 3-3-7 に重曹製造時のランニングコストについて試算した結果を示す。イニシ ャルコストについては、重曹製造装置の仕様を確定していないため試算を行ってい ない。

項目 単価		単価	各	旦里	CO₂排出量			
消	消	苛性ソーダ*	30	円/kg	94.9	t/年	+2,846 千円	/年
石 閏加分 灰	消費電力	15	円/kWh	5.71	MWh/年	+86 千円	/年	
使 用	削減分	購入消石灰	43	円/kg	105.3	t/年	▲4,528 千円	/年
						合計	▲1,596 千円	/年
重	重	苛性ソーダ*	30	円/kg	94.9	t/年	+2,846 千円	/年
一使	增加分	消費電力	15	円/kWh	5.71	MWh/年	+86 千円	/年
用	削減分	購入重曹	120	円/kg	95.6	t/年	▲11,474 千円	/年
						合計	▲8,542 千円	/年

表 3-3-7 重曹製造システムの CO₂ 排出量

※苛性ソーダは 48%溶液で購入する。購入量=45.5t-NaOH/年÷48%=94.9t-48%NaOH/年

重曹製造システムで増加するランニングコストとして、苛性ソーダの購入費と消 費電力があげられる。苛性ソーダは48%水溶液で購入し、水で希釈して3mol/L(12%) で使用するものとする。消費電力にはCO2膜分離ユニットで分離されるCO2を反応 器に吹き込むために使用するファンと、沈殿したスラリー状の重曹を排出するポン プの消費電力を見込む。重曹製造システムで製造した重曹を酸性ガス除去剤として 用いる場合、スラリーで噴霧することが可能である(一般的には粉体を噴霧するが、 その場合には脱水・乾燥工程が別途必要となる)。

ランニングコスト試算の結果、従来システムで酸性ガス除去剤に消石灰(高反応 消石灰、当量比 1.5)を使用する場合、重曹製造システムでは年間約 1.6 百万円のコ ストメリットが得られる。従来システムで重曹(当量比 1.2)を使用する場合と比較 すると、年間約 8.5 百万円のメリットが得られる結果となった。ランニングコスト の削減効果より、重曹製造システムの装置コストは、単純償却年数を 10 年とする と、消石灰購入品代替の場合には約 16 百円以下、重曹購入品代替の場合には 85 百 万円以下とする必要がある。

- バイオガスから分離回収した CO₂ を原料として重曹を製造する基礎試験を行った。得られた回収物の成分を分析した結果、炭酸ナトリウムが 90%程度、 重曹が 10%程度の混合物であり、想定よりも低い結果であった。これは分析の前処理工程における乾燥時に重曹が熱分解し、炭酸ナトリウムが生成したことによるものと思われ、実際には純度の高い重曹が生成していたものと推察された。
- バイオガスから分離回収した CO₂を原料として重曹を製造し、併設焼却炉に おける酸性ガス処理薬剤として使用した時の CO₂排出量は、年間ごみ処理量 が 14,000t の場合、従来システムで消石灰を使用している場合には 19.1t-CO₂/ 年増加し、重曹を使用している場合には 30.8t-CO₂/年排出が削減される結果 となった。重曹製造システムの原料に用いる苛性ソーダを、再生エネルギー を用いて製造することで、または廃アルカリを使用することで CO₂排出量の 削減効果は増加する。
- バイオガスから分離回収した CO₂を原料として重曹を製造し、併設焼却炉における酸性ガス処理薬剤として使用した時のランニングコストは、従来システムで消石灰を使用している場合には 1.6 百万円/年、重曹を使用している場合には 8.5 百万円/年のコストメリットが得られる結果となった。

4. 分離回収した CO2を用いたメタネーションシステムの検討

分離回収した CO₂利用用途の中で、大量の CO₂を利用することができ、技術が既 に確立されているメタネーション反応によるメタン(以下、合成メタン)を製造す るシステムについて検討した。

4-1. メタネーション反応による合成メタンの製造

バイオガスから分離回収した CO₂の利用用途として、大量の CO₂が利用可能で あり、製造および利用について既存技術で対応可能なメタネーションが注目されて いる。

メタネーション反応は CO₂と水素(H₂)から合成メタン(CH₄)を生成する反応 である。

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

CO₂と反応する水素が必要であるが、水素製造時のCO₂排出量をゼロにするため、 水素は再生可能エネルギーで発電した電気(以下、再生可能電力)を用いて、水の 電気分解で製造することが前提となる。このため、本技術は電力を水素やメタンな どのガスに転換する意味で「Power to gas」と呼ばれており、EUを中心に実証試験 が進められている。

さらに、水の電気分解に必要な電力と、最終的に得られた合成メタンを燃料とし てガスエンジンで発電したときに得られる電力を比較するとエネルギー効率が20% 以下と低いため⁵⁾、水の電気分解には再生可能電力の余剰分を用いることが本シス テムの必要条件と考えられる。

現在、九州地方や東北地方において、太陽光などの再生可能エネルギーにより発 電した電力の余剰が問題になっており、再生可能電力の増加とともに、今後更に余 剰電力は増加していくものと予想される。本技術は再生可能電力の余剰分の蓄電技 術としても期待されている。

メタネーションで製造した合成メタンは、ガスエンジンや燃料電池で発電する燃料用途の他に、精製して都市ガスに導管注入する用途がある。しかし現状の国内では、都市ガスの導管注入についての受入基準が厳しく¹²⁾、合成メタンの精製コストが高価となるため普及が進んでいない。このため、本試算ではバイオガスから回収した CO₂と、再生可能電力の余剰電力により水の電気分解で製造した水素からメタ ネーション反応より合成メタンを製造し、これをバイオガス中に含まれるメタンと 合わせてガスエンジンで発電するシステムについて検討を行った。

4-2. メタネーションシステムの検討条件

(1) システムフロー

バイオガスから回収した CO₂ を利用したメタネーションのシステムフローを図 3-4-1 に示す。バイオガスから CO₂ 分離膜設備で収した CO₂ と、水の電気分解で製 造した水素から、メタネーション反応により合成メタンを製造する。水の電気分解 設備には、アルカリ水電解方式、固体高分子電解質膜方式、高温水蒸気電解方式な どがあり、各方式において大型化の開発が進んでいる¹³⁾。この中で、本試算におい ては大型化しやすく、現状のイニシャルコストが最も安価であるアルカリ水電解方 式を想定している。

メタンガス化施設で発生したバイオガス中の CO₂ を CO₂ 分離膜設備で分離し、 メタン濃度が向上した精製ガスと合成メタンを混合してガスエンジンで発電するフ ローとした。

図 3-4-1 分離回収した CO2 を利用したメタネーションシステムフロー

(2) 検討条件

本検討における FS 試算条件を表 3-4-1 に示す。

項目			条件
年間ごみ処理量		14, 000	t/年
メタンガス化施設	処理能力	20	t/日
	稼働日数	350	日/年
	バイオガス発生量	150	m³N−dry/h
	バイオガス CH₄濃度	52.5	%-dry
	バイオガス CO₂濃度	47.5	%-dry
	ガスエンジン発電効率	38.0	%
C0 ₂ 分離膜装置	分離性能(選択率)	999	CO ₂ /CH ₄
	精製ガス CH ₄ 濃度	90.0	%-dry
	CO ₂ 回収率	87.7	%
	CO2回収量	62.5	m³N/h
メタネーション設備	製造原単位 ^{※1}	16.35	$kWh/m^3N-CH_4^{14)}$
	設備費 ^{※2}	234	万円/(m³N-CH ₄ /h) ¹⁴⁾
	年間運転管理費		設備費の 4% ¹⁴⁾

表 3-4-1 メタネーションシステム FS 試算条件

※1:単位メタン量を製造するために必要な投入エネルギー

※ 2 : 償却期間 20 年間

4-3. メタネーションシステムの FS

(1) マスバランス・エネルギーバランス計算

図 3-4-1 のフローに沿って、年間ごみ処理量が 14,000 トンの場合の、メタネーションシステムのマスバランスおよびエネルギーバランスを試算した結果を図 3-4-2 に示す。試算の根拠は平成 30 年度報告書⁶⁾ p.37 を参照されたい。

メタネーションシステムに投入する再生可能電力(1,022kW)に対する、ガスエ ンジンで発電した電力の内、分離回収した CO₂から製造した合成メタン由来の発電 電力(236kW)のエネルギー効率は 23.1%であり、再生可能電力を直接利用する場 合と比較すると大きく低下する。このことからも、先にも述べたように、本システ ムは余剰の再生可能電力を用いることが前提となる。

図 3-4-2 メタネーションシステムのマスバランス・エネルギーバランス

メタネーションシステムの CO₂排出量についての試算結果を表 3-4-2 に示す。メ タネーションシステムの年間運転日数は、表 3-4-1 より 350 日とする。

分離回収した CO₂は一旦合成メタンに転換されるが、ガスエンジンで再び CO₂と なるため、回収量と排出量は相殺される。合成メタンの製造に必要なエネルギーは、 再生可能電力を使用することを前提としているため、これに係る CO₂増加量はゼロ となり、メタネーションシステム全体では合成メタン由来の発電量に係る CO₂量が 削減されることとなり、1,148t-CO₂/年の削減効果が得られる結果となった。

	私 5				
項目		各量		C0 ₂ 排出量	
横加公	合成 CH₄ 製造電力	0	kW	±0	t-C0 ₂ /年
「「」」」」	合成 CH₄由来エンジン排ガス	62.5	m³N∕h	+1,031	t-C0 ₂ /年
当11年75	分離回収 CO2	62.5	m³N∕h	▲1,031	t-C0 ₂ /年
削减力	合成 CH₄由来発電量	236	kW	▲1,148	t-C0 ₂ /年
			合計	▲1,148	t-CO ₂ /年

表 3-4-2 メタネーションシステムの CO2 排出量

※電力の CO₂ 排出係数=0.579t-CO₂/MWh

- (3) システムのコスト
 - (3-I) イニシャルコスト

メタネーション設備のイニシャルコストは、表 3-4-1 より 234 万円/(m³N-CH₄/h) とする。メタネーションシステムは余剰の再生可能電力が発生している場合のみに 運転を行うため、稼働率によって設備のイニシャルコストは大きく影響される。表 3-4-3 に稼働率によるイニシャルコストを示す。

表 3-4-3 メタネーション設備のイニシャルコスト

設備稼働率	%	10	20	50	80
合成メタン量(平均)	m³N∕h	62.5	Ţ	Ţ	Ţ
合成メタン量(運転時)	m³N∕h	625.0	312.5	125	78.1
設備費	百万円	1, 463	731	293	183

(3-II) ライフサイクルコスト

合成メタン1m³N当たりの償却期間20年間の場合のライフサイクルコスト(LCC) は、表 3-4-1の製造原単位(16.35kWh/m³N-CH₄)、設備費(234万円/(m³N-CH₄/h))、 年間運転管理費(設備費の4%)から、以下のように計算される。

ランニングコスト分

16.35[kWh/m³N-CH₄]×余剰再生可能電力単価[円/kWh] イニシャルコスト分

234[万円/(m³N-CH₄/h)]÷稼働率[%]÷24[h/日]÷365[日/年]÷20[年] 運転管理費分

234[万円/(m³N-CH₄/h)]÷稼働率[%]÷24[h/目]÷365[日/年]×4[%]

図 3-4-3 に上記の式で計算した稼働率、再生可能電力単価による合成メタンの製造コストを示す。再生可能電力単価が高くなるほど、また設備稼働率が低くなるほど、合成メタン製造の LCC が高くなり、特に稼働率が低い条件では大きく上昇する。

図 3-4-3 合成メタンのライフサイクルコスト

一方、合成メタン1m³N当たりの発電量は、

35.8[MJ/m³N-CH₄]÷3.6[MJ/kWh]×発電効率[%]

であり、発電効率を 38%とすると 3.78kWh/m³N-CH₄となる。この発電電力を FIT 価格(39円/kWh)で売却できる場合は、39円/kWh×3.78kWh/m³N-CH₄=147円/m³N-CH₄以下の合成メタン製造 LCC で経済的に成立することになる。図 3-4-3より再生可能電力の調達単価が 5円/kWh の場合、メタン製造設備の稼働率が 37%以上であ

れば、合成メタン製造 LCC が 147 円/m³N-CH4以下となることが判る。しかし、合 成メタン由来の売電単価がごみ発電と同等の 13 円/kWh の場合は、合成メタン製造 LCC が 49 円/m³N-CH4 となり、再生可能電力調達単価が 3 円/kWh としても本シス テムは経済的に成立しない。

4-4. まとめ

- システム I で分離回収した CO₂の利用用途として、メタネーションシステム を適用した場合、年間ごみ処理量が 14,000t 規模の施設では CO₂ 排出量を 1,148t-CO₂/年削減できると試算された。但し、メタネーション設備で消費す る電力は CO₂ 排出量がゼロである再生可能電力とすることが前提である。
- メタネーションシステムを採算性のあるものとするためには、以下の条件が 必要であることがわかった。
 - ▶ 合成メタンによる売電単価を 39 円/kWh(FIT)とすると、合成メタンの製造コストを 147 円/m³N-CH4以下とする必要がある(発電効率 38%)
 - ▶ 上記の場合、余剰再生可能電力の調達価格を5円/kWhとすると、メタ ネーション設備の利用率を37%以上とする必要がある
 - ▶ 合成メタンによる売電単価が 13円/kWh(ごみ発電)の場合は、本システムは経済的に成り立たない

第4章 システムⅢ:併設焼却炉でのガスエンジン排ガスの有効利用システム

システムⅢでは、システムⅠで適用を検討した都市ガス仕様の国内製汎用ガスエ ンジンからの排ガス(以下、GE 排ガス)の有効利用について検討を行った。

GE 排ガス中の NOx 濃度は一般的に高く、排出基準を満足させるために触媒等に よる脱硝処理が必要な場合が多い。システムIIIでは GE 排ガスが、低い O2 濃度と高 い NOx 濃度である特性に着目した。GE 排ガスを併設する焼却炉内に吹込み、後述 する焼却炉における NOx 低減技術である排ガス再循環システム(以下、EGR)と同 等の効果を持たせることにより、GE 排ガスと焼却炉排ガスの NOx を効率よく同時 に低減させることが可能となる。また、焼却施設での低空気比燃焼化が図られて排 ガス量も低減でき、誘引通風機などの通風設備における消費電力低減による CO2 排 出量の削減と、脱硝薬剤使用量の低減による低コスト化を通じてコンバインドシス テムの優位性を高めることも可能となる。

EGR による NOx 低減メカニズムを以下に示す。

- O2濃度の低い焼却炉排ガスを循環させて焼却炉内に吹込み、炉内を撹拌・ 混合することによって均一な燃焼場とし、廃棄物焼却により発生した NOx とごみの乾燥・燃焼過程において発生する還元性ガス(NH₃・HCN など) を反応させ NOx を分解する。
- 燃焼空気量を低減することにより、還元性ガスの発生を促進し、NOxの生 成を抑制する。

着目した GE 排ガスの特性より、GE 排ガスの焼却炉内への吹込みが上述の EGR による NOx 低減効果と同様の効果を示すことが期待できる。

平成 29 年度は併設焼却炉での GE 排ガスの有効利用の可能性について検討する ことを目的として、燃焼シミュレーションと株式会社タクマ(本章では以下、当社) 所有の小型実験炉における実証試験および FS を行った。焼却炉への GE 排ガス吹 込みにより EGR と同様に NOx が低減し、EGR と同程度の NOx 低減効果を示すと いう結果を得た。

そこで平成 30 年度では、平成 29 年度の運転条件をもとに、さらに NOx 濃度と排 ガス量を低減させる運転条件を見出すことを目的とし、平成 29 年度と同様に燃焼 シミュレーションと小型実験炉における実証試験、および FS を行った。 1. 平成 29、30 年度の成果概要 ^{5), 6)}

1-1. NOx 濃度と排ガス量の低減効果を向上させる運転方法の検討

NOx 低減技術には、表 4-1-1 に示すように¹⁵⁾薬剤不使用の①排ガス再循環法(以下、EGR)、②燃焼制御法(低酸素燃焼(低空気比燃焼と同義)、炉内水噴霧)、薬剤を使用する③湿式吸収法、④無触媒脱硝法、⑤触媒脱硝法があり、GE 排ガス吹込みは①に相当する。

表 4-1-1 NOx 低減技術

薬剤	不使用	使用
NOv	① 排ガス再循環法 (EGR)	③ 湿式吸収法
NUX 低減方法	② 燃焼制御法	④ 無触媒脱硝法
	(低酸素燃焼、炉内水噴霧)	⑤ 触媒脱硝法

NOx 低減効果を向上させるのためには、GE 排ガス単独で吹込み方法を変更する 方法と GE 排ガス吹込みと②~⑤の方法を併用する方法とが考えられる。

当社では、EGR と低空気比燃焼を組み合わせた EGR システムとして運用しており、GE 排ガス吹込みでも EGR にならって低空気比燃焼を組み合わせたシステムとして検討を行った。

GE 排ガス吹込みと低空気比燃焼以外の上記②~⑤の方法を併用した場合も考え られる¹⁶⁾が、排ガス量の増加や設備の追加、薬剤使用量の増加、廃液処理などが必 要となり、本事業の本来の目的である CO₂排出量削減とコスト削減にはつながらな い。そこで GE 排ガス単独で吹込み方法変更によるさらなる NOx 低減を試みた。

排ガス量を低減させる方法として低空気比燃焼が考えられるが、前述のように GE 排ガス吹込みと低空気比燃焼を併用するシステムを採用している。さらなる排ガス 量削減のために、空気比をより下げることは可能であるが、燃焼が不安定となり CO 発生量の増加やその他の問題(たとえば、ボイラ水管の異常減肉)¹⁷⁾も生じる恐れ があることから、平成 30 年度の検討においても、空気比は平成 29 年度と同一とし た。

1-2. 燃焼シミュレーション

1-2-1. 目的

平成 29 年度は、併設焼却炉へ GE 排ガスを吹き込んだ場合の、焼却炉排ガスの性状変化(温度、NOx、CO、O₂など)を調べることを目的とし、燃焼シミュレーション(数値解析)を行い、従来燃焼方式や EGR との比較評価を実施した。

平成30年度は、平成29年度に得られた結果をもとに、

- ① NOx のさらなる低減効果が得られる運転条件を検討・評価すること
- ② 従来燃焼と EGR、GE 排ガス吹込みで結果を比較すること
- を目的とし燃焼シミュレーション(数値解析)を行った。

計算領域としては、燃焼シミュレーションの解析結果に対する検証を後述する当 社所有の小型実験炉で行うため、小型実験炉の炉形状を用いた。

1-2-2. 解析方法

(1) 燃焼シミュレーション概要

燃焼シミュレーションには汎用熱流体解析ソフトウェアを使用し、計算モデル等 の条件は表 4-1-2 とした。NOx 生成・消滅計算には、解析ソフトに搭載されている NOx モデルを用い, NOx 生成・消滅計算を以下の手順で行った。

- 燃焼シミュレーションを行う(NOx 生成・消滅計算は含まない)。
- 燃焼シミュレーションの結果における温度、O2濃度を用い、NOxの生成・ 消滅計算を行う(ポスト処理)。

廃棄物焼却における燃焼によって発生する NOx の 7~8 割は燃料中に含まれる N 由来の"Fuel-NOx"と言われており¹⁵⁾、この前駆物質となるものは NH₃ と HCN である。そのため、これら 2 物質からの NOx 生成を考慮するが、生成速度における定数は当社の納入施設及び小型実験炉の実績で得られた実測値に合うよう調整した数値を用いた。

項目	条件
解析ソフト	ANSYS CFX
次元	3 次元
時間	定常
乱流モデル	k-ε モデル
燃焼モデル	渦消散モデル
輻射モデル	離散伝達モデル(DT モデル)

表 4-1-2 計算モデル

(2) 燃焼シミュレーション条件

併設焼却炉へ GE 排ガスを吹込んだ場合の NOx 低減効果を比較評価するために、 従来燃焼と EGR における解析も行った。従来燃焼と EGR の燃焼計算条件は、都市 ごみの平均的な性状に対する当社の燃焼条件とした。

GE 排ガス吹込みの燃焼条件は、ごみ処理施設規模が 50 トン/日クラスのコンバインドシステム(メタンガス化施設+焼却施設)における GE 排ガス量と焼却排ガス量の比率から決定した。GE 排ガスの組成や温度は、システム I で精製したバイオガス(CH4濃度=90%-dry)を燃料とした場合の数値を用い、エンジンメーカへのヒアリング結果から設定した。

以下に具体的な設定条件について示す。

ごみ(燃料)性状条件

小型実験炉では、ごみの代替燃料として RDF を用いている。そのため、燃焼シミ ュレーションにおける燃料性状も RDF とした。燃料に用いた RDF の性状を表 4-1-3 に示す。

	項目	単位	性状
	水分	%-wet	50.6
	灰分	%-dry	9.1
燃料成分	可燃分		
	(揮発分+固定炭	%-dry	90.9
	素)		
	C	%-dry	50.16
	Н	%-dry	7.09
可做八式八	0	%-dry	32.18
可燃方成方	N	%-dry	0.84
	S	%-dry	0.04
	CI	%-dry	0.58
但	氏位発熱量	MJ/kg-wet	9.37
理論	랆燃焼空気 量	m ³ N/kg-wet	2.62

表 4-1-3 燃焼シミュレーションに用いた燃料(RDF)性状

② ガス条件(燃焼空気比, 吹込みガス性状)

燃焼シミュレーションにおけるガス条件を表 4-1-4 に示す(「吹込みガス」とは、 再循環排ガスまたは GE 排ガスを指す)。従来燃焼と EGR は、都市ごみの平均的な 性状に対する当社の燃焼条件とし、燃焼空気比と EGR の吹込みガス割合(炉出口排 ガス量に対する EGR ガス量比)を決定した。GE 排ガスを併設焼却炉へ吹込んだ場 合の条件の設定根拠は平成 30 年度報告書^の p.81~82 を参照されたい。

ĩ	頁目	単位	従来燃焼	EGR	GE 排ガス
一次	空気比	—	0.94	0.81	0.81
二次	空気比	—	0.6	0.46	0.39
全空	気比*1	—	1.54	1.32	1.32
空贫	気温度	°C	20℃(常温)	20℃(常温)	20℃(常温)
炉出口	排ガス量	m³N-wet/h	1700	1600	1600
吹込る	みガス量	m³N-wet/h	—	140	185 ^{**} 2
吹込み:	ガス割合 ^{※3}	%	—	9.0	12.0
吹込み	ガス温度	°C	—	140	300
	02	%-dry	—	8.5	12.0
吹込	C0 ₂	%-dry	—	10.9	5.9
ガス	N ₂	%-dry	—	80.6	82.1
性状	H ₂ 0	%-wet	—	44.8	7.3
	NOx	ppm-dry ^{%4}	—	50	250

表 4-1-4 燃焼シミュレーションにおけるガス条件

※1:再循環排ガスまたは GE 排ガスに含まれる酸素も加算した空気比

※2:施設規模 50 トン/日のコンバインドシステム(メタンガス化施設+焼却施設)において、GE 排ガス量と焼却炉排ガス量の比率から決定

※3: 吹込みガス割合=吹込みガス量×100/炉出口排ガス量

※4:02=12%換算値

③ ガス吹込み条件

平成 29 年度に行った燃焼シミュレーションの空気吹込み位置と評価を行う断面 を図 4-1-1 に示す。従来燃焼では、二次空気を乾燥段上のノズルと二次燃焼室の前 壁・後壁から吹込むものとした。EGR と GE 排ガス吹込みでは、二次空気を二次燃 焼室の左右壁から吹込むものとした。なお、「前後左右」は、焼却炉においてごみ流 れの上流から下流を見たときの方向を指す。

従来燃焼で二次空気の吹込み位置が EGR・GE 排ガス吹込みと異なるのは、これ までの小型実験炉での運転実績において、二次空気を左右壁から吹込む場合と比べ て、前壁・後壁から吹込む場合の方が NOx 濃度を低くできる傾向が見られたため である。

なお、後述する計算結果における排ガス中の濃度は炉出口断面で,温度は二次燃 焼室出口断面で評価した。

図 4-1-1 燃焼シミュレーションの空気吹込み位置と評価断面

平成 30 年度は、前述の目的(さらなる NOx 低減)を満たす GE 排ガスの吹込み 方法を見出すために、吹込み流速や吹込み位置を変えた場合の燃焼シミュレーショ ンを行った。各条件の吹込み流速や吹込み位置を表 4-1-5、図 4-1-2 に示す。平成 29 年度の吹込み流速を基準(以下、ケース 0)とし、同じ吹込み位置で吹込み流速 を遅くしたケース1と速くしたケース2を検討した。また吹込み位置を変化させた ケースとして、乾燥段上と後壁の右側から吹込むケース3(同径2本)、乾燥段上 中央と後壁の左右から吹込むケース4(同径3本)、乾燥段上と後壁右側、二次燃 焼室下部左側から吹込むケース5(同径2本、異径1本)の3ケースを検討した。 EGR と比較するために、EGR でも GE 排ガス吹込みと同程度の吹込み流速で燃焼 シミュレーションを行った。

EGR と GE 排ガス吹込みにおいて,一部のケースでは同じケースでも吹込みガ スの流速が一致しないが、これは小型実験炉で吹込みノズルに汎用の配管用鋼管を 利用することを考慮したためである。

					ケー	-ス			
	ノズル	0	1-1	1-2	2-1	2-2	3	4	5*
	本数 (本)	1	1	1	1	1	2 (同径)	3 (同径)	3 (同径 2 異径 1)
E G R	吹込み 流速 (m/s)	43	30	_	59	79	35	40	38 (25)
G E 排 ガ ス	吹込み 流速 (m/s)	48	20	32	56	79	41	42	40 (25)

表 4-1-5 各ケースの吹込み条件

※: 吹込みガス量の分配は

EGR で同径: 異径=3:1、GE 排ガス吹込みで同径: 異径=6:1 である。 表中括弧内の数字は異径ノズルの吹込み流速である。

図 4-1-2 吹込みガスの吹込み位置

(3) 燃焼シミュレーションの評価項目

評価項目を焼却炉出口における NOx 濃度、CO 濃度、O₂ 濃度、二次燃焼室出口温度(以下、温度)とし、これらを燃焼シミュレーションより求め、GE 排ガス吹込み方法による NOx 低減効果について評価を行った。また、GE 排ガス吹込みの結果を EGR と比較した。

NOx の生成・消滅機構は複雑であり、燃焼シミュレーションによる NOx 生成量 の絶対値はこれまでの経験より実測値と合致しないことが多い。そのため燃焼シミ ュレーションによる NOx 濃度の評価では、絶対値ではなく、相対的な視点で行っ た。

1-2-3. 解析結果

従来燃焼、EGR、GE 排ガス吹込みの燃焼シミュレーション結果を表 4-1-6 に示す。 温度以外は炉出口断面における平均値であり、温度は二次燃焼室出口断面における 平均値である(図 4-1-1)。

						蓛	4-1-6	然焼シミ	エレーショ	/ョン結:	果						
ц Ц	北油	従来				EGR							GE 排 ガラ	ス吹込み			
ц Ц	<u>⊅</u> #	燃焼	0	1	2-1	2-2	3	4	5	0	1-1	1-2	2-1	2-2	3	4	5
吹込み	, m		C V	00	E O	02	36	Ċ,	38	01	00	66	ΕC	02	11	ĊV	40
流速*	s /III		4°	00	<i>в</i> с	61	00	40	(25)	40	70	70	00	61	+	47	(25)
NOX	шdd	165	Ľ	7	09	09	σL	77	0 L	05	c u	30	01	60	00	00	60
濃度	-dry	C 0 -	00	5	60	60	2	:	77	с љ	с С	0	0/	0	90	20	ŝ
C0	шdd	+		.	ç	c	+	c	c	¢	-	+	L	o	-	+	+
濃度	-dry	-	+	-	S	V	-	v	V	V	_	-	n	0	-	_	_
02	%	o	L	L	L	L	L	Ц	Ŀ	L	L	L	L	L	L	U	L
濃度	-dry	0		n	0	n	0	0	n	G		0	n	n	0	n	0
排ガス			1 600	1 000	1600	1600	1000	1000	1 600	1 600	1600	1000	1 600	1 600	0031	1600	1000
₫₽₽		00/1	0001	0001	0001	0001	000	0001	000	0001	0001	0001	0001	0001	000	0001	0001
温度	S	890	880	890	860	870	880	890	006	850	006	880	850	840	890	890	910
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ず よ の ば に	て田文	(・ ・ ・	217 17 441	な油んも	И											

※表中括弧内の値は異径ノズルの吹込み流速である。

101/140

(1) NOx 濃度

図 4-1-3 に炉中心断面における NOx 分布を各検討ケースの一部を抜粋して示す。 濃度は青<緑<黄<赤となるように示している(以降の分布でも同じ)。従来燃焼で は一次燃焼室で NOx が高濃度で存在する領域(赤い部分)が目立つが, EGR と GE 排ガスでは赤い部分はなく,低空気比燃焼によって NOx 生成が抑制されていると考 えられる。EGR と GE 排ガス吹込みを比較すると、EGR の方で NOx が低濃度で存 在する領域(青い部分)が多い。この原因は、吹込みガスに含まれる NOx 濃度と O₂ 濃度と排ガス温度が EGR の方が低く、NOx 低減効果が強まったものと推察される。

図 4-1-3 炉中心断面における NOx 分布

図 4-1-4 に各ケースの NOx 濃度換算値(O2=12%)の計算結果を示す(図中の括弧

内の数字は吹込み流速である)。従来燃焼と比べ、EGR と GE 排ガス吹込みの両方の 場合で NOx 濃度が低下した。

EGR では、ケース0で NOx 濃度が最も低い結果となった。

GE 排ガス吹込みの場合では、ケース 0 と比べ、流速を向上させたケース 2 と複数個所から吹込むケース 3~5 で NOx 濃度が低い結果であった。したがって、吹込み流速を速くすること等によりさらなる NOx 低減効果を得られることが予測される。

EGR と GE 排ガス吹込みの両条件とも、ノズル1本で吹込みを行った場合(ケース 0~ケース 2)に、特定の吹込み流速で NOx 濃度が最も低くなったことから、NOx 濃度低減に対し最適な吹込み流速が存在する可能性が考えられる。

(2) CO 濃度

図 4-1-5 に炉中心断面における CO の分布を各検討ケースの一部を抜粋して示す。 従来燃焼では EGR と GE 排ガス吹込みと比べ一次空気量が多いので,一次燃焼室で CO の発生が抑制されている。すなわち、EGR と GE 排ガス吹込みでは、低空気比 燃焼により炉内が還元雰囲気となっていることを示している。表 4-1-6 に示したよ うに炉出口の CO 濃度は、従来燃焼では 1ppm-dry、EGR では 1~4ppm-dry、GE 排ガ ス吹込みでは 1~8ppm-dry であり(いずれも O₂=12%換算値)、それぞれのケース でばらつきがみられた。しかしこのばらつきは計算の誤差によるものと考えられる。 「ごみ処理に係るダイオキシン類発生防止等ガイドライン(環境省)」では、燃焼設 備として CO 濃度を 30ppm 以下(O₂=12%換算値の 4 時間平均値)とすることが記 載されている。燃焼シミュレーションにおいて炉出口の CO 濃度がすべてのケース で 10ppm-dry を下回ったので、安定燃焼がなされたといえる。

図 4-1-5 炉中心断面における CO 分布
(3) O2 濃度

図 4-1-6 に炉中心断面における O₂ 分布を各検討ケースの一部を抜粋して示す。 EGR と GE 排ガス吹込みでは一次燃焼室において極めて O₂ 濃度が低い領域(青い 部分)が見られた。このことから一次燃焼室で還元雰囲気が形成されたことにより、 還元ガスの発生が促進され、NOx 低減につながったと考えられる。

図 4-1-6 炉中心断面における O2分布

(4) 温度

図 4-1-7 に炉中心断面における温度分布を各検討ケースの一部を抜粋して示す。 従来燃焼と比べると、EGR と GE 排ガス吹込みでは 1200℃以上の領域が小さく、吹 込みガスにより炉内が撹拌されていることがわかる。二次燃焼室出口では、どのケ ースでも概ね 850℃~900℃であった。ばらつきは計算誤差によるものと考えられる。 EGR と GE 排ガス吹込みにおいて吹込み位置が同一のケース 0~2 を比較すると、 吹込み流速を向上させるほどガス温度が低下する傾向がみられた。

図 4-1-7 炉中心断面の温度分布

(5) 排ガス流量

排ガス流量は従来燃焼で 1,700m³N/h、EGR と GE 排ガス吹込みで 1,600m³N/h で あった。GE 排ガス吹込みと EGR はともに低空気比燃焼であるので、低空気比燃焼 による排ガス量削減が示された。このことから、排ガス量削減による排ガス処理系 統における動力の削減と、その動力削減による CO₂ 排出量削減が期待できる。しか し、前述のように、GE 排ガス吹込みにおける空気比は EGR に倣っているので、さ らなる排ガス量の削減は見込めない。

1-2-4. まとめ

燃焼シミュレーションによる解析結果より、GE 排ガスの吹込み流速を平成 29 年 度の流速よりも速くした場合と吹込み箇所を複数にしたケースの両方で、さらなる NOx 低減効果が示された。そのなかでもノズル1本で吹込み流速を速くしたケース 2 が最も NOx 低減効果があるとの結果を得た。

そこで、平成 30 年度の小型実験炉における実証試験では、燃焼シミュレーション 解析において NOx 低減効果がより大きかった GE 排ガスの吹込み流速を速くしたケ ース 2 の条件で試験を行うこととした。

1-3. 小型実験炉での実証試験

1-3-1. 試験目的

平成 29 年度は、燃焼シミュレーションの結果から、ガスエンジン排ガス吹込みシ ステムは排ガス再循環システム(EGR)と同様に NOx とガス量の低減が期待できた ことから、燃焼シミュレーションの解析結果を検証するため、小型実験炉において 実証試験を行い、ガスエンジン排ガス吹込み方式と従来方式や EGR システムとの 比較を行った。

平成 30 年度は、燃焼シミュレーションによる解析から、GE 排ガスを平成 29 年 度の吹込み流速よりも速い流速で吹込むことにより、さらなる NOx 低減が得られ る可能性が示されたことから、GE 排ガス吹込み流速を速くした条件で試験を行 い、GE 排ガス吹込みの燃焼シミュレーションの解析結果と比較評価を行った。ま た、参考として EGR でも吹込み流速を速くした試験を行った。なお、後述の EGR (ケース 2-1)、模擬ガス (ケース 2-1)、模擬ガス (ケース 2-1、2-2)の内容は、 前節の図表に示したケース名称の内容と同じである。

1-3-2. 試験方法

(1) 小型実験炉の燃料と燃焼条件

実証試験において燃料として使用した RDF の性状を表 4-1-7 に示す。RDF は同じ メーカから購入しているが、可燃性廃棄物を原料として製造しており成分が変動す るので、燃焼シミュレーションで用いた表 4-1-3 の燃料性状と異なる。しかし、前 述のように燃焼シミュレーションの解析結果は絶対値での評価ではなく、相対的な 評価を行うので問題がないと判断した。後述する平成 29 年度の従来燃焼 0、模擬ガ ス (ケース 0)、EGR (ケース 0) では RDF ()を、平成 30 年度の従来燃焼 1、模擬ガ ス (ケース 2-1)、EGR (ケース 2-1) では RDF ()を、従来燃焼 2、模擬ガス (ケース 2-2) では RDF ()を用いて実証試験を行った。

小型実験炉では一次空気量と二次空気量を燃焼シミュレーションと同じ値に調整 し、炉出口の O₂ 濃度が燃焼シミュレーションの計算結果と同じとなるように RDF の供給量を調節した。

			1	1 / KD			
				試	料		
	項目	単位	RDF (0)	RDF (0)	RDF ①	RDF2	計量方法
	r		-1*2	-2*2			
岈	水分	%-wet	46.2	45.6	42 5	45.0	JIS Z7302-3(1999)
料		,					と計算による
成 分	灰分	%-dry	10.61	13.55	8.7	6.5	JIS Z7302-4(2009)
	揮発分	%-dry	89.32	77.26	82.0	84. 1	JIS M8812(2006)-7
	C	%−dry	47.64	46.23	49.9	51.0	JIS Z7302-8(2002)
	Н	%−dry	6.94	6.62	7.0	7.3	JIS Z7302-8(2002)
	0	%−dry	32.77	31.66	32.9	33.4	計算による
	N	%−dry	1.18	1.09	1.1	1.3	JIS Z7302-8(2002)
可 쌩	全硫黄	%-dry	0.12	0. 10	0.1	0.1	JIS Z7302-7(2002)
分	(T • S)						
成 分	燃焼性硫黄	%-dry	0.10	0.10	0.1	0.1	JIS Z7302-7(2002)
	(B • S)						
	全塩素	%-drv	0.77	0.75	0.8	0.7	JIS Z7302-6(1999)
	(T · CI)	, ,					
	燃焼性塩素	%-drv	0 76	0 75	0.5	07	JIS 77302-6(1999)
	(B•CI)		0.70	0.70	0.0	0.7	010 27002 0(1000)
i	高位発熱量	MJ/kg-	21.0	19.6	20.8	21.8	JIS Z7302-2(2009)
但	氏位発熱量*1	MJ/kg-	8.58	8.80	10.9	10.9	-
理	論燃焼空気量	m ³ N/kg-	2.69	2.62	3.0	3.0	-

表 4-1-7 RDF 性状

※1高位発熱量(乾ベース)-25×(9×水素割合(乾ベース)+含水率(%))の計算値

※2同一ロットを2回測定した結果

(2) GE 排ガス

小型実験炉における実証試験では、CH4 濃度が 90%-dry のバイオガスを燃料とした GE 排ガスの利用ができない。そこで LPG を燃料とした燃焼排ガスを GE 排ガス の模擬ガスとして用いた。表 4-1-8 に示す LPG の燃焼排ガス性状は、CH4 が 90%-dry のバイオガスを燃料とした GE 排ガス中の O₂ 濃度と同じ濃度になる空気比で燃焼させた計算値である。実証試験では、図 4-1-8 と図 4-1-9 に示す熱風発生炉型 NOx 発生装置を用いて、燃焼シミュレーションで設定した模擬ガスの O₂ 濃度、NOx 濃度、温度、ガス量となるように調整した。各設定根拠は平成 30 年度報告書⁶⁾ p.98~99 を参照されたい。

		出估	模擬ガス	GE 排ガス
月 月	H	甲位	(LPG)	$(CH_4 = 90\% - dry)$
וואד איז	02	%-dry	12.0	12.0
	CO ₂	%-dry	5.9	5.5
吹込み	N ₂	%-dry	82. 1	82.5
リス住仏	H ₂ 0	%-wet	7.3	9.2
	NOx	ppm-dry ^{%1}	250	250
吹込みガス温度 ^{※2}		C°	300	300
吹込み排ガス量		m³N-wet/h	185	185

表 4-1-8 模擬ガスと GE 排ガスの性状

※1:02=12%換算値

※2: 吹込み位置における温度

図 4-1-8 熱風発生炉型 NOx 発生装置概略フロー

図 4-1-9 熱風発生炉型 NOx 発生装置外観

(3) 試験条件まとめ

試験の燃焼条件は従来燃焼、EGR、模擬ガス吹込みの3種類とした。表 4-1-9 に 3種類の試験条件における空気比と吹込みガス量、温度、組成を示す。EGR と模擬 ガスの結果を比較するために、全空気比を揃え試験を行った。

	項目	単位	従来燃焼	EGR	模擬ガス
一次空気	ī比	_	0.94	0.81	0.81
二次空気	ī比	_	0.60	0.46	0.39
空気温度	E	°C	外気温	外気温	外気温
全空気比	3 ^{**1}	—	1.54	1.32	1.32
吹込み力	『ス割合	%	—	9.0	12.0
吹込み力	「ス量	m³N-wet∕h	ń <u> </u>		185
吹込み力	Ĩス	_		0.04	0 12
換算空気	记比*2			0.04	0.12
吹込み力	「ス温度	°C	—	140	300
吹	02	%−dry	—	8.5 ^{**}	12.0
込 み	C0 ₂	%−dry	—	10. 9 ^{**} 3	5.9
ガス	H ₂ 0	%-wet	—	44. 8 ^{×3}	7.3
組	NOx	ppm-dry ^{%4}	—	50 ^{**3}	250
凤	N ₂	%-dry	—	Other	Other

表 4-1-9 試験条件

※1: 吹込みガスに含まれる酸素も加算した空気比

※2: 吹込みガス換算空気比

= {吹込みガス量×吹込みガス中 02 濃度(%-dry)÷21} ÷理論空気量

- ※3: 既存の運転データを参考にしシミュレーションで用いた数値
- ※4: 02=12%換算値

(4) 試験方法

図 4-1-10 に試験装置フローを示す。小型実験炉のストーカ式焼却炉に燃料の RDF を投入し、炉下部より一次空気を供給した。従来燃焼の場合には、乾燥段上(図 4-1-10 中※1)と二次燃焼室の前壁・後壁(図 4-1-10 中※2)から二次空気を投入した。

EGR の場合には、ろ過式集じん器(以下、BF)出口から一部引抜いた排ガスを再 循環ガスとし、乾燥段上から吹込み、二次空気を二次燃焼室の側壁から吹込んだ。 模擬ガスの場合にも EGR と同様に、熱風発生炉型 NOx 発生装置で生成した模擬ガ スを乾燥段上から投入し、二次空気を二次燃焼室の側壁から吹込んだ。

図 4-1-10 試験装置フロー

小型実験炉のモデルで行った燃焼シミュレーション解析結果と比較評価するため に、実証試験で炉出口ガス中の O₂ 濃度が表 4-2-5 に示した燃焼シミュレーション結 果と同様になるよう燃焼調整を行い、連続分析計を用いて BF 出口ガス中の NOx 濃 度、CO 濃度および炉出口 O₂ 濃度を分析した。そして BF 出口ガス中の NOx、CO、 O₂ 濃度が表 4-1-6 に示した燃焼シミュレーション結果と同様の傾向となるのかを調 べ評価を行った。測定項目は炉出口ガス中の O₂ 濃度と BF 出口ガス中の NOx 濃度、 CO 濃度、二次燃焼室出口ガス温度であり、図 4-1-10 に示した場所が測定箇所であ る。

BF 出口ガス中の NOx は NOx-O₂ 分析計(NOA7000、島津製作所)、CO は CO-CO₂ 分析計(CGT7000、島津製作所)、炉出口ガス中の O₂ 濃度は O₂ 分析計

(POT8000、島津製作所)を用いてそれぞれ測定した。測定したデータは10秒間隔でロガーに記録した。

炉出口の O₂ 濃度が設定値となるように、燃料の供給量を調整して小型実験炉の 運転を行ったが、燃料の供給過程でブリッジするなどし燃料供給量が変動したの で、炉出口の O₂ 濃度の測定値も変動した。そのため、炉出口の O₂ 濃度平均値を求 め設定値に近い 3 時間のデータを抽出しデータ分析に用いた。

二次燃焼室出口温度は左・中・右の3か所で測定を行っているが、測定値がほぼ 一致するので、以後のデータ分析では3か所の平均値を代表値としてデータ分析に 用いた。

1-3-3. 試験結果

(1) 試験結果

表 4-1-10 に評価データとして用いた区間における測定項目の平均値を示す。

BF 出口の NOx 濃度の平均値は、平成 29 年度の従来燃焼で 89 ppm-dry、平成 30 年度の従来燃焼 1 で 94ppm-dry、従来燃焼 2 で 106ppm-dry であった。EGR では平成 29 年度 (ケース 0) は 54 ppm-dry、平成 30 年度 (ケース 2-1) は 69ppm-dry であり、 模擬ガス吹込みでは、(ケース 0) は 55 ppm-dry、平成 30 年度模擬ガス (ケース 2-1) で 64ppm-dry、模擬ガス (ケース 2-2) で 58ppm-dry であった。以上から、模擬 ガス吹込みが EGR と同様に NOx 低減効果を示すことが明らかとなった。

模擬ガス吹込みでは、BF 出口 CO 濃度が低く抑えられており、EGR と同様に低 空気比燃焼が可能であることがわかった。また二次燃焼室出口温度についても、極 端な変動はみられなかった。したがって、模擬ガス吹込みでも EGR と同様に安定し た燃焼を行えることが示された。

4	平成 29 年度	(チース 0)	48	RDF(0)	ى ت	CC	c	>	L	0	0020	00/7		1000	
模擬ガス吹込。	0 年度	ケース 2-2	62	RDF(2)	20	00	c	5	1	0	VVVC	0000		910	
	平成 3	ケース 2-1	56	RDF(1)	۲J	04	¥ F	<u>+</u>	L	G	0000	0000		1020	
ìR	平成 29 年度	(ケース 0)	43	RDF(0)	ЕЛ	4C	c	'n	1	0	UULU	00/7		960	
EG	平成 30 年度	ケース 2-1	59	(1) LOF	UY	60	K F	<u>+</u>	1	0	0000	0007		1000	
	平成 29 年度	I	Ι	RDF(0)	Vo	80	-	א	L		VVVc	0000		940	
従来燃焼	0 年度	2	I	RDF(2)	106	001	-	_	٢	-	2600	00000		910	
	平成 30	.	I	RDF(1)	VU	94	Ļ	0	Ł	-	0000	0000		1060	
	単位		m/s	Ι		ppIII-ar y		ppili-ar y	,00 - Levis	%-ury				ပ	
	項目		吹込み流速	使用燃料	BF 出口	N0x 濃度 [%]	BF 出口	C0 濃度 [※]	百田可	0 ₂ 濃度	排ガス	流量	二次燃焼室	出口温度	平均値

表 4-1-10 測定項目の平均値

※:0₂₌12%換算値

114/140

(2) NOx 低減効果

前述のように、模擬ガスの吹込み流速を速くした場合(平成 30 年度ケース 2-1) でも従来燃焼と比較して NOx は低減したが、NOx 濃度に着目すると平成 29 年度 (55ppm-dry)よりも低い濃度ではなかった。

しかし、同じ燃焼条件である従来燃焼の NOx 濃度を比較すると、表 4-1-10 より 平成 29 年度は 89ppm-dry、平成 30 年度は従来燃焼 1 で 94ppm-dry、従来燃焼 2 で 106ppm-dry であり、NOx 濃度が上昇した。前述のように、廃棄物焼却で発生する NOx の 7~8 割は燃料由来の Fuel-NOx と言われており¹⁵⁾、燃料中の N 分の影響を 考慮する必要がある。

また、炉出口 O₂ 濃度が 8~15%では Fuel-NOx への転換率は 1.7~9.3%という報告¹⁸⁾もある。図 4-1-11 に炉出口 O₂ 濃度と Fuel-NOx 転換率の関係を示す(参考文献 18 から引用)。この 900℃の近似直線から求めた本試験における従来燃焼での転換率は 2.2%と求められる。

図 4-1-11 炉出口 O2 濃度と Fuel-NOx 転換率の関係(参考文献 18 から引用)

ここで転換率を 2.2%と仮定し、RDF の組成分析結果を用いて Fuel-NOx 濃度を算 出すると、平成 29 年度の従来燃焼で 22ppm-dry、平成 30 年度従来燃焼 1 では 30ppmdry、従来燃焼 2 では 35ppm-dry(いずれも O₂=12%換算値)となり、RDF 中の N 分 の変動により Fuel-NOx 濃度が上昇したといえる。したがって、本試験での NOx 低 減効果を比較評価するためには、このことを考慮する必要があり、NOx 低減効果の 評価は式(1)から算出した NOx 低減率を用いることとした。

NOx 低減率(%) =
$$\frac{(C_0 - C)}{C_0} \times 100$$
 … (1)

ここで、C₀: 同一燃料条件の従来燃焼における BF 出口 NOx 濃度換算値 (ppm-dry)、 C: 模擬ガス吹込みまたは EGR 時の BF 出口 NOx 濃度換算値 (ppm-dry) である。

図 4-1-12(a)に EGR における吹込み流速と NOx 低減率の関係を、図 4-1-12(b)に GE 排ガス(模擬ガス)における吹込み流速と NOx 低減率の関係を示す。

図 4-1-12 吹込み流速と NOx 低減率の関係

EGR と GE 排ガス(模擬ガス) 吹込みにおける NOx 低減率を比較すると、燃焼 シミュレーションでは EGR で 60~70%、GE 排ガス(模擬ガス) 吹込みで 40~50% であり、GE 排ガス(模擬ガス) 吹込みの方が劣る結果であった。一方で実証試験で はどちらも 30~40%程度であり、同等の NOx 低減効果であることが分かった。また GE 排ガス吹込みでは、吹込み流速を速くしたことにより NOx 低減率が向上した。

EGR では、NOx 低減率の値は異なるものの、燃焼シミュレーションと実証試験

の両方で吹込み流速を速くすると NOx 低減率が低下する傾向を示した。

GE 排ガス吹込みでも燃焼シミュレーションと実証試験で NOx 低減率の値は異なるが、吹込み流速を速くすることにより NOx 低減率が向上するという傾向は同じであった。

EGR と GE 排ガス吹込みで異なる傾向が見られた点に関して推察を試みる。NOx 低減には吹込みガスによる炉内の撹拌と還元ガスの巻き込みが関与していると考え られ、吹込み流速が炉内撹拌を、吹込みガスの流路断面積が還元ガスの巻き込みを 支配していると推測される。EGR と GE 排ガス吹込みのそれぞれで吹込みガス量は 一定であるので、図 4-1-13 に示すように流速を速くすることに伴い流路断面積が小 さくなる(破線の円から実線の円)。

図 4-1-13 流速向上と流路断面積の関係

EGR では、流速を速くしたことによる炉内撹拌効果の増加よりも流路断面積縮小による還元ガスの巻き込み量減少の影響が強かったので、NOx 低減率が低下したと考えられる。

GE 排ガス吹込みでは、EGR とは逆となり、NOx 低減率が向上したと考えられる。

1-4. 実証試験結果を踏まえた燃焼シミュレーションによる再計算

Fuel-NOx を考慮して NOx 低減率を評価すると、実証試験と燃焼シミュレーションで傾向が同じであった。そこで燃焼シミュレーション結果の妥当性を再度調べるために、平成 30 年度に小型実験炉で使用した燃料性状を条件とし再度燃焼シミュレーションを行い、平成 30 年度の実証試験結果と比較した。図 4-1-14 に吹込み流速と燃焼シミュレーションの結果を示す。

図 4-1-14 実証試験と燃焼シミュレーションの相関

燃焼シミュレーションと実証試験を比較すると、ともに吹込み流速を速くするこ とにより NOx 低減率が向上する傾向を示した。したがって、燃焼シミュレーション の妥当性が示された。

2. まとめ

平成 29、30 年度の燃焼シミュレーションと実証試験の結果から以下のことが示された。

- ・ GE 排ガスの吹込みは、EGR と同等の NOx 低減効果があり、GE 排ガスと燃焼 炉排ガスの NOx を同時に低減することが可能である。
- ・ GE 排ガスの吹込みは、EGR と同様に低空気比燃焼でも CO 濃度を低く抑える ことができ、燃焼炉排ガス量の低減が図れる。
- ・ GE 排ガスの吹込み流速を速くすることで、さらなる NOx 低減効果が得られる が、吹込みファンのコストや消費電力の増加について検討を要する。

第5章 システムの FS(CO₂排出量およびコスト試算)

本事業で提案する『高効率コンバインドシステム』を導入した場合の、CO₂排 出量とイニシャルコスト、ランニングコストを試算し、従来システム(『単純焼却 システム』、『従来コンバインドシステム』)との比較・評価を行った(図 5-1-1)。

実証試験の結果、高性能舶用天然ガスエンジンの発電効率が目標値に達しなか ったことと、試験に用いたエンジン機種は 800kW 機をベースとした 400kW 仕様の ガスエンジン発電機であり、後述の FS 条件の施設規模では部分負荷運転となり、 発電効率が低下するため、高性能ガスエンジンを適用した場合と他のケースとの比 較評価は行わず、第5章4節で別途評価を行う。

図 5-1-1 検討対象システムフロー

1. 従来の単純焼却システムとコンバインドシステムの試算条件

各システムの比較・評価のための試算に際して、中小規模の廃棄物処理施設を想 定し、表 5-1-1 に示す施設規模等の条件で試算を行った。表 5-1-1 に示している丸囲 み数字は、図 5-1-1 のフロー図中の数字に対応している。なお、メタンガス化施設 はエネルギー回収型廃棄物処理施設(交付率 1/2)の交付要件¹⁹⁾(施設規模 20t/日以 上、熱利用率 350kWh/t-ごみ以上)を満たしている。

熱利用率[kWh/t-ごみ] = バイオガス利用熱量 × 0.46^(※1) 投入ごみ量

= バイオガス利用量 [m³N-CH₄濃度 50%換算/年] × 17.9[MJ/m³N] ^(※2) × 0.46÷3.6[MJ/kWh] 投入ごみ量[t - ごみ/年]

- $= \frac{1,260,000[m^{3}N/年] \times 52.5/50.0[-] \times 17.9[MJ/m^{3}N] \times 0.46 \div 3.6[MJ/kWh]}{7,000[t-ごみ/年]}$
- = 432[kWh/t-ごみ]

※1:0.46は、発電/熱の等価係数

※2:17.9MJ/m³Nは、メタン濃度 50%時のバイオガスの熱量

		項目		従来 単純焼却	従来 コンバインド
应在地	1	搬入ごみ量	t/年	14,000	←
) 所来 初 加		ごみ中プラ割合	%	15.0	←
処理加設		施設処理能力	t/日	50	←
	8	焼却ごみ量	t/年	14,000	11,900
焼却施設		施設稼働日数	日/年	280	238
		施設処理能力	t/日	50	←
	2	直接焼却ごみ量	t/年	_	4,200
	3	選別対象ごみ量	t/年	—	9,800
	4	非ガス化対象ごみ量	t/年	—	2,800
	5	ガス化対象ごみ量	t/年	—	7,000
メタンガス化	6	発酵残渣量	t/年	—	4,900
施設	\bigcirc	バイオガス量	km³N/年	—	1,260
		バイオガス CH₄ 濃度	%	—	52.5
		施設稼働日数	日/年	—	350
		施設処理能力	+ / Æ		20
		(発酵槽入口)	۲/ म	_	20

表 5-1-1 各システムの CO₂ 排出量、コスト試算条件

2. 各システムの CO₂ 排出量の試算

以降に各システムにおける CO₂排出量の試算結果を示す。CO₂排出量に係る諸数 値は、株式会社タクマ(以下、本章では当社という)の実績または、検討結果によ るものである。

2-1.単純焼却システムの CO₂排出量

単純焼却システムの CO₂ 排出量を表 5-2-1 に示す。50t/日規模の単純焼却施設の 消費電力(プラント動力、建築動力、照明を含む)は、当社実績より 429kW とし、 焼却施設の稼働日数 280 日/年を乗じて求めた。

項目		各量	C02 ‡	非出係数	C0 ₂ 排出量	
増	プラ焼却	2,100 t/年	2.77	$t-CO_2/t$	5,817	t-CO2/年
加分	焼却施設 消費電力量	2,883 MWh/年	0. 579	t-CO ₂ /MWh	1,669	t-CO ₂ /年
				合計	7, 486	t-CO ₂ /年

表 5-2-1 単純焼却システムの CO2 排出量

2-2.従来コンバインドシステムの CO₂ 排出量

従来コンバインドシステムの CO₂排出量を表 5-2-2 に示す。焼却施設の消費電力 は、単純焼却システムに選別対象ごみクレーンの電力(5.0kW)を加えた 434kW に 施設の稼働日数 238 日/年を乗じて求めた。また、メタンガス化施設の消費電力は当 社実績より 132kW とし、施設稼働日数 350 日/年を乗じて求めた。

バイオガスの CH4 濃度が 52.5%の場合、ガスエンジン発電機の発電量は次式から 計算される。

バイオガス量[m³N/年]×バイオガス CH4 濃度[%]/50[%]×17.9[MJ/m³N]÷3.6[MJ/kWh] ×発電効率[%]÷1,000[kWh/MWh]

メタン濃度が 52.5%のバイオガスを燃料としたガスエンジン発電機の発電効率は、 33%程度であり、年間の発電量は 2,171MWh となる。

表 5-2-1、5-2-2 より従来コンバインドシステムの CO2 排出量は、単純焼却システムと比較して、年間 849 トン削減される。

項目		各量		C02 ‡	非出係数	C0₂排出量					
	プラ焼却	2, 100	t/年	2.77	$t-CO_2/t$	5, 817	t-CO ₂ /年				
増 加 分	焼却施設 消費電力量	2, 479	MWh/年	0.579	t-CO ₂ /MWh	1, 435	t-CO ₂ /年				
,,	メタンガス化施設 消費電力量	1, 109	MWh/年	0.579	t-CO ₂ /MWh	642	t-CO ₂ /年				
削減分	ガスエンジン 発電量	2, 171	MWh/年	0.579	t-CO ₂ /MWh	▲1,257	t-CO2/年				
					合計	6, 637	t-CO ₂ /年				

表 5-2-2 従来コンバインドシステムの CO2 排出量

2-3.高効率コンパインドシステム システム Iの CO₂排出量

システム I で都市ガス仕様の汎用ガスエンジンを適用した場合の CO₂ 排出量を 表 5-2-3 に示す。システム I の CO₂ 排出量は平成 31 年度の試験条件であるガス圧力 を上げた条件で試算している。

バイオガスの圧力は従来コンバインドでは 3kPa 程度であるが、汎用ガスエンジンでは 340kPa(G)まで昇圧するため、ガス昇圧装置の消費電力が 2.2kW から 18.0kW へ増加する (+15.8kW)。また、CO₂分離膜設備の前後でバイオガスの加温・加湿必要な電力が約 11.2kW 必要であるため、合計 27kW の消費電力増となり、施設稼働日数 350 日/年を乗じると年間 227MWh の消費電力量増となる。

一方、CO₂分離膜設備でバイオガスの CH4 濃度が 52.5%から 90%に向上するため、 汎用ガスエンジン発電機の発電効率が 33%から 38%に向上し、年間の発電量は 2,500MWh となる。

表 5-2-1、5-2-2、5-2-3 より、システム I (汎用ガスエンジン)の CO₂ 排出量は、 単純焼却システムと比較して、年間 908 トン、従来コンバインドシステムと比較し て年間 59 トン削減される。

項目		各量		C02 排	非出係数	C0 ₂ 排出量		
増加分	プラ焼却	2, 100	t/年	2.77	$t-CO_2/t$	5, 817	t-CO ₂ /年	
	焼却施設 消費電力量	2, 479	MWh/年	0.579	t-CO ₂ /MWh	1, 435	t-CO ₂ /年	
	メタンガス化施設 消費電力量	1, 109	MWh/年	0.579	t-CO ₂ /MWh	642	t-CO ₂ /年	
	C02 分離膜設 備消費電力量	227	MWh/年	0.579	t-CO ₂ /MWh	131	t-CO ₂ /年	
削減分	ガスエンジン 発電量	2, 500	MWh/年	0.579	t-CO ₂ /MWh	▲1,447	t-CO₂/年	
					合計	6, 578	t-CO ₂ /年	

表 5-2-3 システム I (汎用ガスエンジン)の CO2 排出量

2-4.高効率コンバインドシステム システムⅡ、Ⅲの CO₂ 排出量

システムⅡ、Ⅲを適用した場合の CO₂排出量を表 5-2-4、5-2-5 に示すが、試算根拠については、平成 30 年度の報告書を参照されたい。

項目		各量		C02 排	非出係数	CO2 排出量		
增 加 分	CO ₂ 固定化設 備消費電力量	44	MWh/年	0.579	t-CO ₂ /MWh	25.5	t-CO2/年	
削	主灰 C0₂ 固定量					▲ 32.0	t-CO₂/年	
減分	飛灰 C0₂ 固定量					▲15.5	t-CO2/年	
					合計	▲ 22.0	t-CO ₂ /年	

表 5-2-4 システムⅡの CO2排出量

	項目		各量		非出係数	CO2排出量	
增 加 分	GE 排ガス 昇圧ファン 消費電力量	44	MWh/年	0.579	t-CO ₂ /MWh	25.5	t-CO ₂ /年
削 減 分	既設 送風機類 消費電力量	141	MWh/年	0.579	t-CO ₂ /MWh	▲ 81.6	t-CO ₂ /年
					合計	▲ 56. 1	t-CO ₂ /年

表 5-2-5 システムⅢの CO2 排出量

2-5.高効率コンバインドシステム システム全体の CO₂排出量

以上で試算した各システムの CO₂排出量と削減効果をまとめると、図 5-2-1 のようになる。

高効率コンバインドシステム(汎用ガスエンジン)の CO₂ 排出量削減メリットが、 当初の目標値よりも減少しているが、これはシステム I の実証試験結果から主にバ イオガスを加圧条件としたことに伴う、ガス昇圧装置の消費電力増加によるもので ある。

図 5-2-1 各システムの CO₂ 排出量試算結果

3. 各システムのコストの試算

表 5-3-1 に示す条件を基に試算した各システムにおけるコストを以降に示す。表 5-3-1 に示した人件費、用役費、保守点検費、施設の建設単価については、環境省か ら報告されているデータ²⁰⁾⁻²³⁾を用いた。またガスエンジン発電機の保守点検費は、 メーカからのヒアリングの結果より、発電量あたりの単価を従来コンバインドのバ イオガス専用エンジンは 6 円/kWh、汎用ガスエンジンは 4 円/kWh とした。

	項目		従来 単純焼却	従来 コンバインド	高効率 コンバインド (汎用エンジン)
共通	人件費 20)	千円/t-ごみ	7.991	8.311	←
	用役費 21)	千円/t-ごみ	5.500	5.008	<i>←</i>
	保守点検費 21)	千円/t-ごみ	9.5	9.4	<i>←</i>
	買電単価	円/kWh	15	←	<i>←</i>
	売電単価(FIT)	円/kWh	_	39	<i>←</i>
焼却	建設単価 22)	百万円/t-ごみ/日	71.65	←	←
까만 마오	重金属固定化 薬剤費	円/kg	300	←	<i>←</i>
	尿素水費	円/kg	60	←	←
メタン	建設単価 ²³⁾	 百万円/t-ごみ/日	_	49.67	
施設	ガスエンジン 保守点検費	円/kWh	_	6	4

表 5-3-1 各システムのコスト試算条件

3-1.単純焼却システムのコスト

単純焼却システムのイニシャルコスト、ランニングコストを表 5-3-2、5-3-3 に示 す。施設建設費の自治体負担額は、循環型社会形成推進交付金の活用を前提とし、 焼却施設は交付金の対象を建設費の 80%(プラント部分)とし、単純焼却システム の交付率は対象額の 1/3 とした。ランニングコストの各係数は、施設の稼働率が考 慮されていないため、年間の運転日数を 365 日で計算している(以降の各システム も同様)。

単純焼却システムの10年間を対象としたライフサイクルコストは、6,823百万円 /10年となる。

項目		各量		係数	イニシャルコスト		
増加分	焼却施設 建設費	50 t/日	71.65	百万円/t/日	3, 582	百万円	
	焼却施設 交付金対象額		80	%	(2,865	百万円)	
	焼却施設 交付金額		1/3		▲ 955	百万円	
				自治体負担額	2, 627	百万円	

表 5-3-2 単純焼却システムのイニシャルコスト

表 5-3-3 単純焼却システムのランニングコスト

項目		各量		係数		ランニングコスト	
増加分	人件費	50	t/日	7.991	千円/t	1, 458	百万円 /10 年
	用役費	50	t/日	5.500	千円/t	1, 004	百万円 /10 年
	保守点検費	50	t/日	9.5	千円/t	1, 734	百万円 /10 年
					自治体負担額	4, 196	百万円 /10 年

3-2. 従来コンバインドシステムのコスト

従来コンバインドシステムのイニシャルコスト、ランニングコストを表 5-3-4、 5-3-5 に示す。単純焼却システムと同様に、焼却施設は交付金の対象を建設費の 80% (プラント部分)とし、メタンガス化施設は 100%としている。コンバインドシステ ムは高効率原燃料回収施設となるため、交付率は対象額の 1/2 となる。

従来コンバインドシステムの 10 年間を対象としたライフサイクルコストは、 6,792 百万円/10 年となる。単純焼却システムと比較すると、メタンガス化施設の施 設建設費が 993 百万円増加するが、交付率が 1/3 から 1/2 へ上がるために、イニシ ャルコストの自治体負担額は 19 百万円の増加に留まる。ランニングコストは 50 百 万円/10 年のコストが削減されており、バイオガス発電の売電収入からメタンガス 化施設関係の用役費と保守点検費を差し引いた金額に相当しているものと思われる。

	項目	各量		係数	イニシャノ	レコスト
	焼却施設 建設費	50 t/日	71.65	百万円/t/日	3, 582	百万円
	焼却施設 交付金対象額		80	%	(2,866	百万円)
増加	焼却施設 交付金額		1/2		▲1,433	百万円
分	メタンガス化施設 建設費	20 t/日	49.67	百万円/t/日	993	百万円
	メタンガス化施設 交付金対象額		100	%	(993	百万円)
	メタンガス化施設 交付金額		1/2		▲ 497	百万円
				自治体負担額	2, 646	百万円

表 5-3-4 従来コンバインドシステムのイニシャルコスト

表 5-3-5 従来コンバインドシステムのランニングコスト

項目		名	各量		係数		ランニングコスト	
	人件費	50	t/日	8.311	千円/t	1, 517	百万円 /10 年	
增 加 分	用役費	50	t/日	5.008	千円/t	914	百万円 /10 年	
	保守点検費	50	t/日	9.4	千円/t	1, 715	百万円 /10 年	
					自治体負担額	4, 146	百万円 /10 年	

3-3.高効率コンパインドシステム システム I のコスト

高効率コンバインドシステム システム I (汎用ガスエンジン)のイニシャルコ スト、ランニングコストについて、従来コンバインドシステムとの差額を表 5-3-6、 5-3-7 に示す。システム I のコストは平成 31 年度の試験条件であるガス圧力を上げ た条件で試算している。

CO₂分離膜設備のイニシャルコストには、CO₂分離膜装置本体以外にバイオガスの膜被毒成分を除去する高次脱硫装置、バイオガス加温・除湿装置他を含んでいる。

システム I (汎用ガスエンジン)では、平成 31 年度の実証試験結果から、当初 の想定よりも膜エレメント本数が大幅に増加し、またバイオガス中の膜被毒成分を 除去するための高次脱硫装置が追加されたことにより、従来コンバインドシステム と比較して、10 年間を対象としたライフサイクルコストは 1 億 360 万円/10 年の増 額と、大幅にコスト増となった。

	項目	各量	係数	イニシャルコスト
増加	C0 ₂ 分離膜 設備	一 式		79.4 百万円
加分	C0₂分離膜 設備交付金額		1/2	▲39.7 百万円
削	ガスエンジン 発電機差額	一 式		▲30.0 百万円
減分	ガスエンジン 発電機交付金額		1/2	15.0 百万円
			自治体負担額	24.7 百万円

表 5-3-6 システム I (汎用ガスエンジン)のイニシャルコスト

項目		各量		係数		ランニングコスト		
増加	C0₂分離膜設備 消費電力量	227	MWh/年	39	円/kWh	88.5	百万円 /10 年	
分	C0₂分離膜設備 メンテ費	_	式			149.0	百万円 /10 年	
削	ガスエンジン 売電量差額	329	MWh/年 ^{※1}	39	円/kWh	▲128.3	百万円 /10 年	
减分	ガスエンジン メンテ費差額					▲ 30. 3	百万円 /10 年 ^{※2}	
					自治体負担額	78.9	百万円 /10 年	

表 5-3-7 システム I (汎用ガスエンジン)のランニングコスト

※1: 高効率コンバインド(汎用ガスエンジン)(2,500MWh/年)と従来コンバインド(2,171MWh/年)との差

※2: (2,171MWh/年×6円/kWh-2,500MWh/年×4円/kWh) ×10年

3-4.高効率コンバインドシステム システム Ⅱ、Ⅲのコスト

システム II、IIIを適用した場合のイニシャルコストを表 5-3-8、5-3-9 に、ランニ ングコストを表 5-3-10、5-3-11 に示すが、試算根拠については平成 30 年度の報告書 を参照されたい。

システム II での 10 年間を対象としたコスト削減量は 10.0+▲27.0=▲17.0百万 円/10 年となり、システム III では 16.0+▲35.2=▲19.2百万円/10 年のコスト削減 となる。

	項目	各量	係数	イニシャルコスト
増加	CO₂固定化設備	一式		20.0 百万円
加分	CO ₂ 固定化設備 交付金額		1/2	▲10.0 百万円
			自治体負担額	10.0 百万円

表 5-3-8 システムⅡのイニシャルコスト

表 5-3-9 システムⅢのイニシャルコスト

	項目	各量	係数	イニシャルコスト
増	GE 排ガス 吹込み設備	— 式		32.0 百万円
加 分	GE 排ガス 吹込み設備 交付金額		1/2	16.0 百万円
			自治体負担額	16.0 百万円

表 5-3-10 システムⅡのランニングコスト

項目		各量		係数		ランニングコスト	
増 加 分	C0₂分離膜設備 消費電力量	44	MWh/年	15	円/kWW	6.6 百万円 6.6 /10 年	
削 減 分	重金属固定化 薬剤削減額	11.2	ton/年	300	円/kg	▲33.6 百万円 /10 年	
					自治体負担額	▲27.0 百万円 /10 年	

表 5-3-11 システムⅢのランニングコスト

項目		各量		係数		ランニングコスト	
增 加 分	GE 排ガス 吹込み設備 消費電力量	44	MWh/年	15	円/kWh	6.6	百万円 /10 年
出山	既設 送風機類 消費電力量	141	MWh/年	15	円/kWh	▲21.2	百万円 /10 年
_削 減 分	焼却炉 尿素水削減額	22.3	t/年	60	円/kg	▲13.4	百万円 /10 年
	ガスエンジン 尿素水削減額	12.1	t/年	60	円/kg	▲7.3	百万円 /10 年
					自治体負担額	▲35.2	百万円 /10 年

3-5.高効率コンバインドシステム システム全体のコスト

以上で試算した各システムのコスト削減効果をまとめると、図 5-3-1 のようになる。

高効率コンバインドシステム(汎用ガスエンジン適用)のコストが従来コンバ インドシステムよりも増加しているが、これはシステム Iのガス昇圧装置の消費電 力増加に伴う売電収入の減少と、膜エレメント本数増加と高次脱硫装置追加に伴う コスト増加によるものである。

なお本システムが普及して CO₂分離膜エレメントが量産された場合、膜エレメ ントコストを本試算の 30%程度まで低減することが可能であり、この場合は単純 焼却システムと比較して、高効率コンバインドシステム(汎用ガスエンジン適用) では 5 千 6 百万円/10 年のコスト削減が期待できる。

図 5-3-1 各システムのコスト試算結果

4. 高性能舶用天然ガスエンジンの評価

高性能舶用天然ガスエンジンの発電効率が実証試験では目標値に達しなかった ことと、試験に用いたエンジン機種は 800kW 機をベースとした 400kW 仕様のガス エンジン発電機であり、今回の FS 条件の施設規模では部分負荷運転となり、発電 効率が低下するために他のケースとの比較評価は行わなかった。

今回の実証試験2で得られた発電効率は39%(着火用パイロット燃料油の熱量 を考慮すると38%)であるが、将来的にエンジン過給システムの改良や弁閉止タ イミングの最適化等により+4%程度の発電効率の改善を目指している。図5-4-1に 高性能ガスエンジンと他社製品の発電効率を示す。高性能ガスエンジンは既存の他 社製品と比べて高い発電効率であるため、本エンジンを適用することによって CO₂ 排出量の削減と売電収入の増加によるコスト削減が期待できる。

一方、ガスエンジン発電機は部分負荷運転では発電効率が低下するため、本エ ンジンを定格負荷で運転できる施設規模について検討する。本エンジンの定格メタ ン消費量は、表 2-4-4 より 104m³N-CH₄/h となる。今回の FS 条件の施設規模(年間 ごみ処理量 14,000ton)でのメタン発生量は表 5-1-1 より以下の通りとなる。

1,260km³N/年÷350 日/年÷24h/日×52.5%-CH₄=78.75m³N-CH₄/h

したがって、本エンジンが定格負荷で運転できる施設規模は以下の通りとなる。 14,000ton/年÷78.75m3N/h×104m3N/h≒18,500ton/年

図 5-4-1 高性能舶用天然ガスエンジンの発電効率

第6章 成果と課題

1. 成果と課題

平成 29 年度から 31 年度(一部を令和 2 年度に実施)の本事業における各提案シ ステムの開発項目と目標に対する成果を示す。CO₂ とコスト削減量の値は年間ごみ 処理量が 14,000 トンの場合の試算値である。

- (1) CO₂分離膜を適用した高効率バイオガス発電システム(システムI)
- ア) CO₂分離膜の最適運転条件の基礎試験、実証試験1
 - 目標:バイオガスを模擬した模擬ガスを用いた基礎試験と、南但広域行政事務組合のメタンガス化施設から発生する実際のバイオガスを用いた実 証試験1を行い、CO2分離膜システムの最適化を図る。
 - 成果:基礎試験と実証試験の結果から分離膜の CO2 透過速度依存式を導出 し、本依存式に基づいて実証試験装置の設計・製作を行った。実際の バイオガスを用いた実証試験の結果から、バイオガスのメタン濃度を 目標の 90%とするための運転条件を確認した。また、バイオガス中に 分離膜を被毒する成分が含まれていることを確認し、高次脱硫触媒を 用いることで、膜被毒成分の除去が可能であることを確認した。
- イ)高性能ガスエンジンの実証試験2
 - 目標:八戸市東部終末処理場から発生する消化ガスを用いて CO₂ 分離膜でガ スを精製し、高性能ガスエンジンの性能を確認する実証試験 2 を行い、 実用化規模における CO₂ 分離膜システムの最適化を図る。
 - 成果:明石市二見浄化センターでの予備試験において、予備試験の結果とシ ミュレーションによる計算値がほぼ同等であることが確認できた。ま た、八戸市東部終末処理場で実施した実証試験2において、高性能舶 用天然ガスエンジンの発電効率を確認した。

- ウ) CO2分離膜を適用した高効率バイオガス発電システムのフィージビリティスタ ディ(FS)
 - 目標: CO₂分離膜最適運転条件の基礎試験及び実証試験 1 および 2 の試験結 果を基に、本システムと従来システムの CO₂ 排出量及びコスト削減量 の比較を行う。
 - 成果:従来のコンバインドシステムと比較して、本システムを導入した場合、 汎用ガスエンジンを適用した場合は、CO2排出量の削減は可能であるが、 膜エレメント本数の増加と膜被毒成分除去のための高次脱硫装置の追 加によって、コストが大幅に増加する結果となったが、本システムが普 及して CO2 分離膜エレメントが量産された場合、膜エレメントコスト が低減でき、コストメリットを得ることが期待できる。

[汎用ガスエンジン適用の場合](従来コンバインドシステム比) CO2削減量=▲59t-CO2/年、コスト削減量=+103.6百万円/10年

課題:今回の評価・検証事業では、高性能舶用天然ガスエンジンの発電効率は 目標値に達しなかったが、エンジン過給システムの改良や弁閉止タイ ミングの最適化等により、発電効率の向上を図る必要がある。

- (2) 分離回収した CO2の灰への固定化システム(システム II)
- ア)分離回収した CO₂の灰への固定量の分析及び灰の重金属類溶出量の抑制効果の 確認、FS
 - 目標: 灰の CO₂ 固定化試験を行い、灰の CO₂ 固定可能量の分析と、固定化処理 後の灰の重金属類溶出量の分析と溶出挙動の確認を行う。また、試験結果 を基に、本システムの CO₂ 排出量及びコスト削減効果の試算を行う。
 - 成果: 灰の CO₂ 固定可能量を分析し、システム I で分離回収した CO₂ 量の約 5% が固定化できることを確認した。また固定化処理後の飛灰の重金属類溶出 量は、重金属固定化薬剤を添加しなくても埋立基準値以下となることを確 認した。さらに鉛溶出量の pH 依存性試験の結果からも、CO₂ を固定化す ることで溶出量の抑制効果があることを確認した。 CO₂ 削減量=▲22t-CO₂/年、コスト削減量=▲17.0 百万円/10 年
- イ)分離回収した CO₂を用いた重曹製造試験、FS
 - 目標:システム I の実証試験で分離回収した CO₂ を用いて重曹を製造する試験 を行い、その試験結果を基に、本システムの CO₂ 排出量及びコスト削減効 果の試算を行う。
 - 成果:重曹製造試験の結果、重曹の製造が可能であることがが示唆された。製造 した重曹を併設焼却炉の酸性ガス処理薬剤として消石灰の代替品として 利用した場合、ランニングコストの削減効果は得ることができるが、重曹 製造原料の苛性ソーダ製造に係る CO2 排出量により、本システムでは CO2 の削減効果が得られないことを確認した。 CO2 削減量=+19t-CO2/年、ランニングコスト削減量=▲16.0 百万円/10 年 ただし、苛性ソーダの製造に再生可能エネルギーを用いることや、廃アル
- ウ)分離回収した CO₂を用いたメタネーションシステムの検討、FS

カリを使用することで CO2 削減効果を得ることができる。

- 目標:分離回収した CO₂を利用してメタネーションにより合成 CH₄を製造し、 発電を行うシステムについて検討を行い、CO₂排出量及びコスト削減効果 の試算を行う。
- 成果:再生可能エネルギーを用いて、メタネーションシステムで製造した合成メ タンで発電を行うシステムを採算性のあるものとするための条件を明確 にした。 CO2削減量=▲1,148t-CO2/年

137/140

- (3) 併設焼却炉でのガスエンジン排ガスの有効利用システム(システム III)
- ア) 燃焼シミュレーション(数値解析)による排ガス性状の確認
 - 目標:株式会社タクマが所有する小型実験炉へ、ガスエンジン排ガスを吹き込ん だ場合の焼却排ガスの性状変化を、燃焼シミュレーションで評価し、従来 燃焼方式や排ガス再循環システムとの比較を実施する。またガスエンジン 排ガスの吹き込み方法による発生 NOx 量の影響を確認する。
 - 成果:ガスエンジン排ガスを併設焼却炉へ吹き込んだ場合、排ガス再循環システムと同様に低空気比燃焼が可能であり、ガスエンジンと焼却炉排ガスの NOx を同時に低減できることが示された。また、小型実験炉ではガス吹込みノズル1本で、吹き込み流速を速くした場合に NOx 低減効果が向上することが示された。
- イ)小型実験炉での実証試験による排ガス性状の確認
 - 目標:小型実験炉にガスエンジン排ガスを模した燃焼排ガスを吹き込み、焼却排 ガスの性状変化を分析し、前項で得られた燃焼シミュレーションの結果と 併せて、従来燃焼方式や排ガス再循環システムとの比較を実施する。
 - 成果:ガスエンジン排ガスの模擬ガスを小型実験炉へ吹き込んだ場合、燃焼シミ ュレーション結果と同様に低空気比燃焼が可能であり、模擬ガスと焼却炉 排ガスの NOx を同時に低減できることが確認された。また模擬ガスの吹 き込み流速を速くすることによって NOx 低減率が向上することを確認し た。
- ウ) ガスエンジン排ガスの有効利用システムの FS
 - 目標:燃焼シミュレーションと小型実験炉での実証試験の結果を基に、本システ ムの CO₂ 排出量及びコスト削減量の比較を実施する。
 - 成果:燃焼シミュレーションと小型実験炉での実証試験の結果、ガスエンジン排 ガスを併設焼却炉へ吹き込んだ場合、排ガス再循環システムと同等の効果 が得られることを確認した。 また、ガスエンジン排ガスの吹き込み流速を速くすることで NOx 低減効 果が向上することが示されたが、吹き込み用のファン動力が増加するため、 CO2排出量とコストが増加する。FS の結果、ガスエンジン排ガスの吹き込 み条件は平成 29 年度に実施した吹き込みが最も優れている。

【参考文献】

- 環境省:廃棄物処理技術情報、一般廃棄物調査結果、一般廃棄物の排出及び処 理状況等(平成18年度版)
- 環境省:廃棄物処理技術情報、一般廃棄物調査結果、一般廃棄物の排出及び処 理状況等(平成29年度版)
- 国立研究開発法人科学技術振興機構 低炭素社会戦略センター: CCS(二酸化炭素回収貯留)の概要と展望 -CO2分離回収技術の評価と課題-(平成 28 年 3月)
- 4) 国立研究開発法人科学技術振興機構 低炭素社会戦略センター: CCS(二酸化炭素回収貯留)の概要と展望(Vol.2) 膜による分離回収コスト及び貯留コストの評価と課題-(平成 29 年 3 月)
- 5) 環境省:平成 29 年度中小廃棄物処理施設における先導的廃棄物処理システム 化等評価・検証事業、「CO₂ 分離膜を適用した次世代低炭素型高効率バイオガ ス発電システム及びコンバインドシステム」成果報告書(平成 30 年 3 月)
- 6) 環境省:平成 30 年度中小廃棄物処理施設における先導的廃棄物処理システム 化等評価事業、「CO₂ 分離膜を適用した次世代低炭素型高効率バイオガス発電 システム及びコンバインドシステム」成果報告書(平成 31 年 3 月)
- 7) 稲村正博、宮田年彦、永美敏正、畦崎敏敬、谷口早苗:含イオウ悪臭物質のガスクロマトグラフ分析に関する一考察、鳥取県衛生研究所報、第21号、pp.62-69(1981)
- 8) 酒井伸一、水谷聡:廃棄物の溶出試験に関する研究、廃棄物学会論文誌、Vol.6、 No.6、pp.225-234、1995
- 9) 井上達也:化学分析における基礎技術の重要性(5)、THE CHEMICAL TIMES、 2006 No.2、pp.15-21(2006)
- NEDO: 化学工業製品におけるトータル・エコバランスの分析手法に関する調査(II)、1995.3
- 11) NEDO: 化学関連産業分野における CO2 対策技術評価法の調査、1992.3
- 12) 大阪瓦斯株式会社:「バイオガス購入要領」、平成27年4月1日改訂
- 13) 光島:水電解技術の現状と課題、水素エネルギーシステム Vol.36、No.1 (2011)
- 14) 柴田善朗: 我が国における Power to Gas の可能性、IEEJ、2015 年 12 月
- 15) 四阿秀雄、河野英樹、西山七郎、小沢敏朗:窒素酸化物の低減対策、清掃技報、
 第9号、pp.37-55(1984)
- 16) 劉安基、前田泰昭、池田有光、坂東博:ごみ焼却炉の燃焼改善による排ガス中のNOx, COの低減、大気環境学会誌、第30巻、第6号、pp.410-413(1995)
- 17) 基昭夫、占部武生、吉葉正行:低空気比燃焼による都市ごみ焼却炉燃焼室ボイ ラ水管の異常減肉、材料と環境、第47巻、pp.512-518(1998)

- 18) 安田憲二、大塚幸雄:都市ごみの焼却にともなう窒素酸化物の排出挙動、廃棄 物学会論文誌、Vol.8、No.5、pp.217-224(1997)
- 19) 環境省環境再生・資源循環局廃棄物適正処理推進課:エネルギー回収型廃棄物 処理施設整備マニュアル、平成26年3月、平成30年3月改訂
- 環境省:「生ごみ等の 3R・処理に関する検討会」(第6回)、参考資料 表 2、 (平成 18 年 3 月)
- 21) 環境省:「廃棄物系バイオマス利活用導入マニュアル」、表 6-5、pp.121、 (平成 29 年 3 月)
- 22) 環境省:「廃棄物系バイオマス利活用導入マニュアル」、図 6-2、pp.121、 (平成 29 年 3 月)
- 23) 環境省:「廃棄物系バイオマス利活用導入マニュアル」、図 6-3、pp.121、 (平成 29 年 3 月)