Challenges and Opportunities in Agro-waste Management: An Asian Perspective

Prof. Dr. P. Agamuthu Institute of Biological Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia agamuthu@um.edu.my

Inaugural Meeting of First Regional 3R Forum in Asia 11-12 Nov 2009, Tokyo, Japan

Agricultural Waste Generation

•Globally, 998 million tonnes of Agricultural Waste is produced in a year.

• In Malaysia, 1.2 million tonnes of agricultural waste is disposed into landfills annually.

AgroWaste Generation in Asia

Country	Agricultural Waste Generation (kg/cap/day)	Projected Agricultural Waste Generation in 2025(kg/cap/day)
Brunei	0.099	0.143
Cambodia	0.078	0.165
Indonesia	0.114	0.150
Laos	0.083	0.135
Malaysia	0.122	0.210
Myanmar	0.068	0.128
Philippines	0.078	0.120
Singapore	0.165	0.165
Thailand	0.096	0.225
Vietnam	0.092	0.150

• An estimated 15% of total waste generation consists of AgroWaste (Hsing et. al. 2001).

AgroWaste Generation in Asia (cont'd)

Country	Agricultural Waste Generation Rate (kg/cap/day)	Projected Agricultural Waste Generation in 2025 (kg/cap/day)
Nepal	0.060	0.09
Bangladesh	0.04	0.09
Mongolia	-	0.09
China	0.12	0.135
Sri Lanka	0.03-0.14	0.150
Republic of Korea	0.15	0.210
Japan	0.17	0.195

• An estimated 15% of total waste generation consists of AgroWaste

AgroWaste Utilization

AgroWaste	Utilization	
Rice Husk Ash & Charcoal	 Additive in cement mixes Water glass manufacture Active carbon 	
Rice Husk	•Electricity production	
Banana Peel & Sugarcane fibers	Paper making pulp	
Oil Palm Empty Fruit Bunch (EFB)	Mulching, Organic Fertilizer	
Oil Palm stems, Rubber wood	ParticleboardsSoftwood furniture	
Onion skin, Groundnut husk	•Heavy metal removal	
Husk, Bagasse	•Mushroom cultivation	
Bagasse, Banana Fruit Reject	Ethanol productionAnimal feed	

AgroWaste Utilization (cont'd)

AgroWaste

Husk, Straw, Cow Dung

Utilization

- Biogas production
- Electricity generation

Sunflower stalk Corn Stalk Bagasse Fibers

Animal waste (dung)

• Reinforcement for thermoplastics

CompostFertilizer

Greenhouse Gas Emissions from Agricultural Sector

- Global mitigation potential is 5,500-6,000 megatons of CO₂e / year by 2030
- Carbon sequestration nearly 90% of this potential
- Potential to reduce methane (CH₄) emission from rice fields by China and India by 26%
- Up to 50% of emissions (1,100-3,000mt CO₂-eq/yr) can be mitigated by 2030 through soil carbon sequestration
- Potential to reduce emissions by 277 Mt CO₂-eq/year at carbon price of \$20 per ton, equivalent to benefit of \$5.5 billion a year

Source: Asian Development Bank, 2009

Biomass as an Alternative

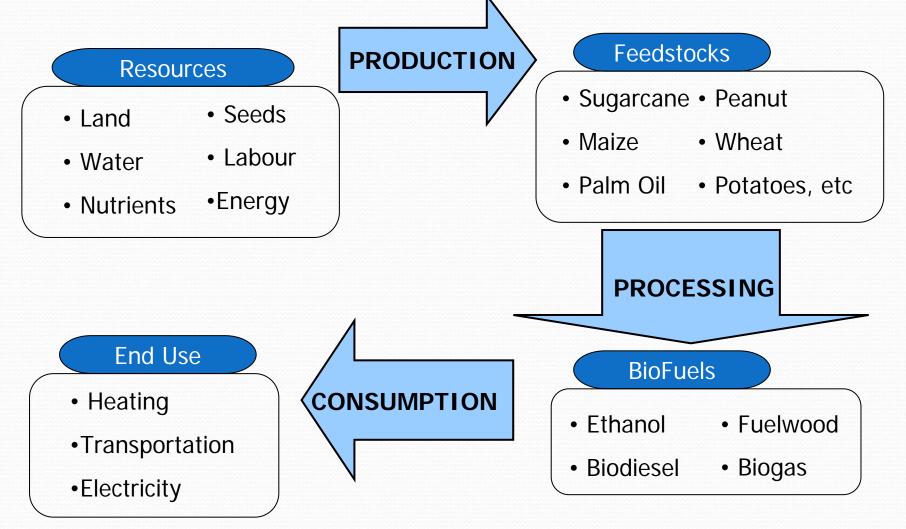
- Shifting of paradigm towards BIOMASS
 - Renewable energy
 - Sustainable
 - Environmentally friendly
 - Abundant
 - Untapped energy
- Uncertainties of BIOMASS
 - Technological proven ?
 - Economically feasible ?
 - Constant supply ? (quality and quantity)
 - Availability & distribution ? (worldwide)

Biomass utilization

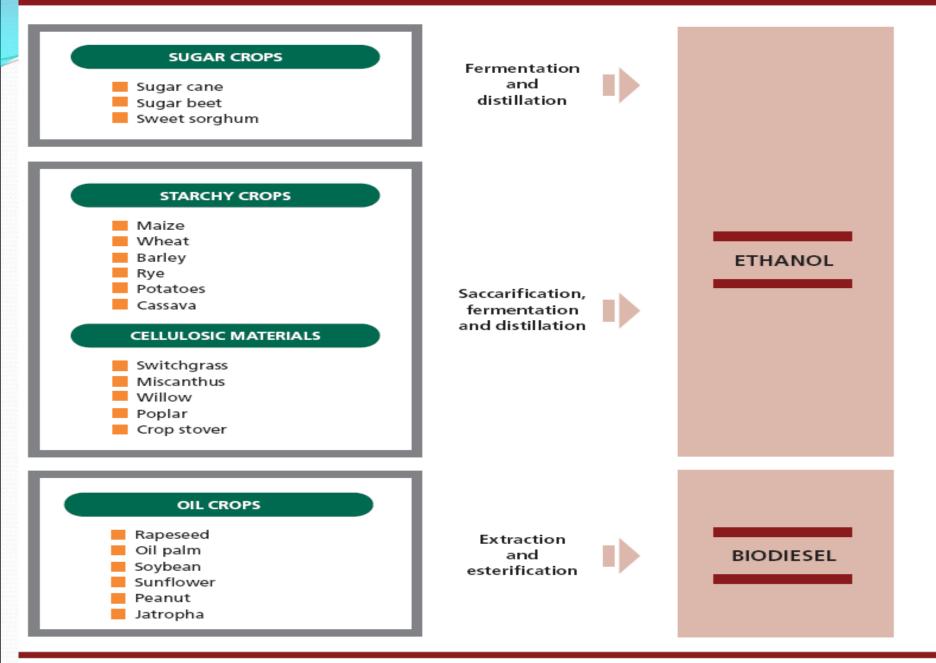
- Thermal conversion power/electricity generation
- Biological conversion CH₄ generation
- Biological Conversion Organic acids generation
 - acetic, propionic and butyric acids
- Biological Conversion Bioplastics
 - organic acids into poly-hydroxyalkanoates
- Biological Conversion Bio-compost
 - Good properties such as pH 6-8, C/N 20 and comply to USEPA standards

3R's AgroWaste Opportunities

- Heat Production *agricultural residues burnt as fuel
 -92% as thermal output (EIA 2008)
 - 12.9 and 14.6 million btu/tonne of agricultural residues
- Production of Cellulosic Ethanol as a Biofuel
- Biogas production as a substitute for cooking gas instead of fuel wood (in rural villages) and to meet urban demands for cooking biogas

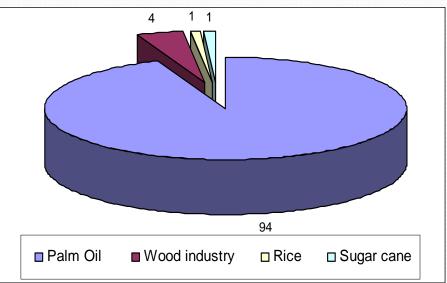

3R's AgroWaste Opportunities (cont'd)

- Compost production in efforts of sustainable farming


 organic fertilizers substituting chemical fertilizers
- Electricity Generation
- NCFR Non Conventional Feed Resources
 - cattle/livestock is fed straw, spent grains, and other agricultural waste
- AIBP- Agro Industrial By Product

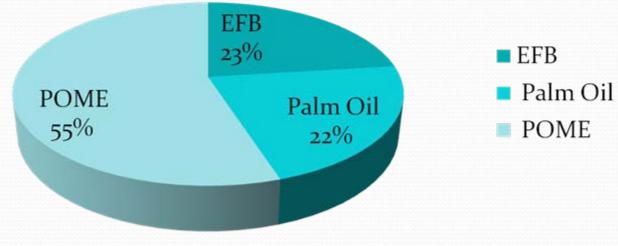
BioFuels : From PRODUCTION to CONSUMPTION

Conversion of agricultural feedstocks into liquid biofuels



Source: FAO.

Biomass resources from Agricultural residues

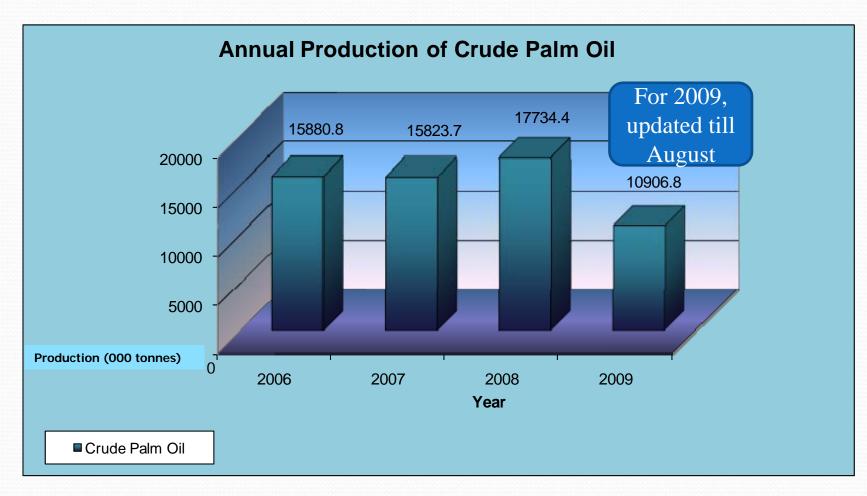

- Most abundant in Malaysia (> 70 million tonnes annually)
- Production of biomass throughout the year
 - high sunlight intensity/time and high rainfall
- Main contributor of biomass palm oil industry (in 2003)
 - 14 mil tonnes EFB
 - Palm oil mill effluent
 - 5 mil tonnes mesocarp fiber
 - 8 mil tonnes palm kernel shells
 - Palm kernel cake (residue)
- Ligno-cellulosic materials

Palm Oil Industry: A Case Study

- Malaysia is the largest producer of Palm Oil
- 18 million tonnes of CPO was produced in 2008.
- 18-22% Palm Oil
- 23 % is solid waste : Empty Fruit Bunches, EFB

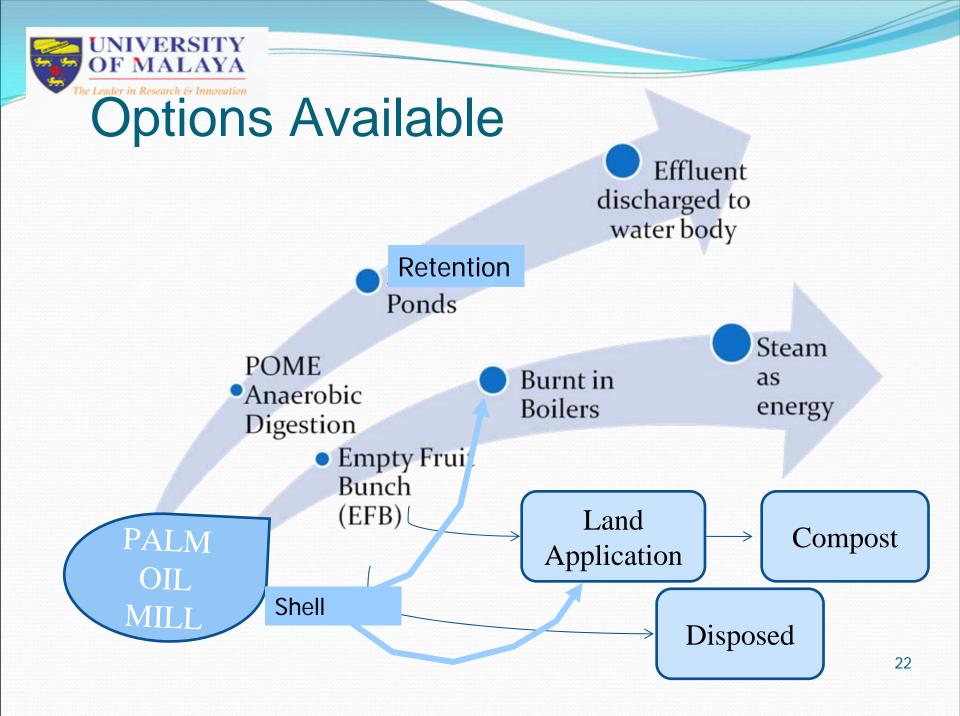
Palm Oil Production and Waste Generation

Oil Palm


Palm Oil Full Fruit Bunch (FFB)

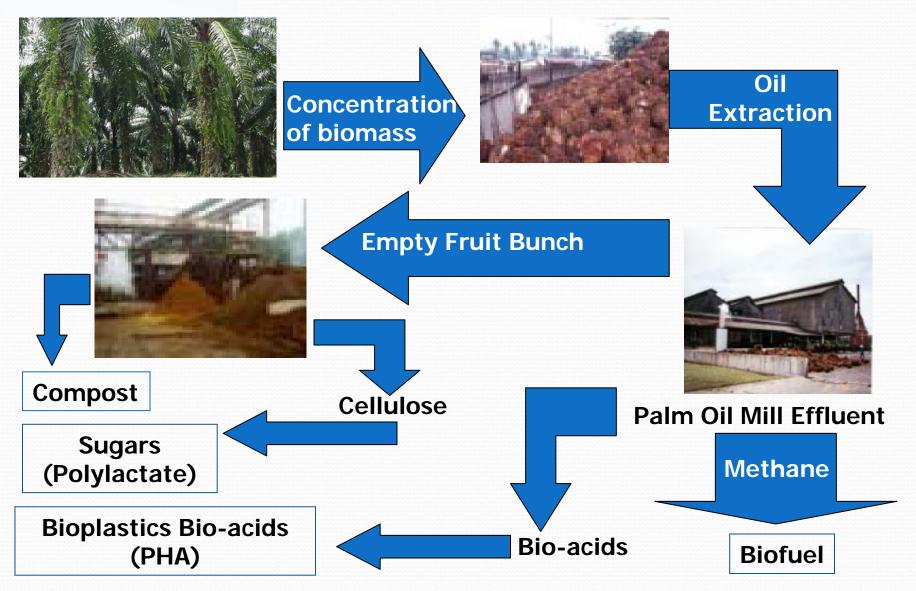
Application of empty fruit bunch (EFB) as covering material

Annual Production of Crude Oil


Where does all the waste go?

18 million tonnes

of Crude Palm Oil produced


2008

63 million tonnes of EFB & POME (waste)produced

Palm oil Industry: Towards Zero Emission

Summary

- With technology advancement and research findings, agricultural waste is <u>no longer an environmental issue</u> but a resource for energy production.
- '<u>Waste-to-Wealth'</u> perception of Agricultural Waste
- A tremendous potential in <u>improving the general state of</u> <u>sanitation</u>, positive environmental actions to <u>reduce GHG</u> <u>emissions</u>.
- Significantly <u>improve the crop yield, soil fertility</u>
- <u>Reduces the global dependence</u> on chemical fertilizers, fossil fuel, etc.

THANK YOU