

3R in Construction and Demolition Waste (CDW)

potentials and constraints

Sandra Spies

GTZ – German Technical Cooperation Division for Environment, Resource Efficiency and Waste Management

Agenda

- Definition of Construction and Demolition Waste (CDW)
- Relationship between the 3R concept and CDW
- Situation in Germany
- Examples in Asia
 - Indonesia
 - Thailand
 - India
- Possible applications
- Conclusion

Construction and Demolition Waste

 Construction waste: mainly leftovers from new construction materials (e.g. cut-offs, damaged materials), packaging waste, used materials during construction and all other wastes typical for activities on a construction site.

ner for the Future

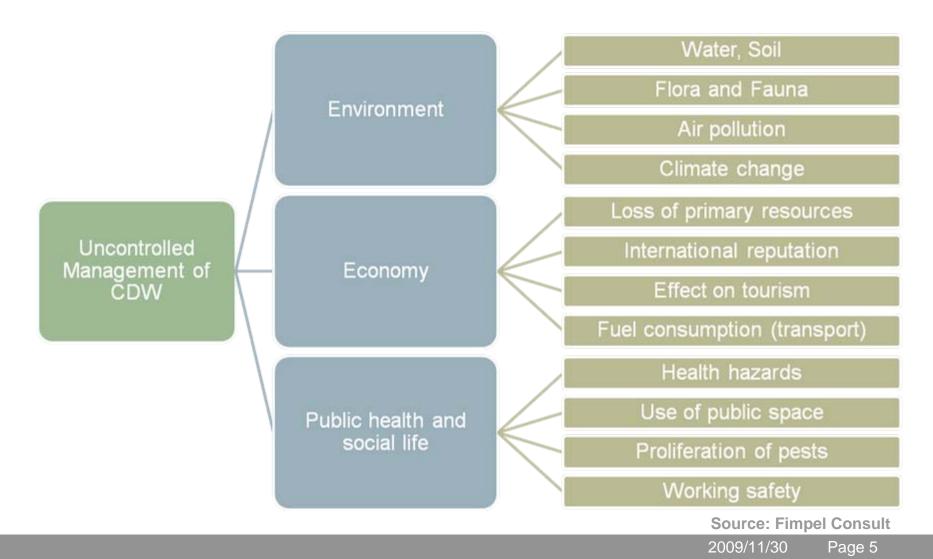
Construction waste

- **Demolition waste:** collection of all construction materials from a building, after removal of certain (hazardous) parts (e.g. asbestos, mercury containing parts, tar, PVC).
- DW is much larger in volume than CW.

Demolition waste

Facts around CDW

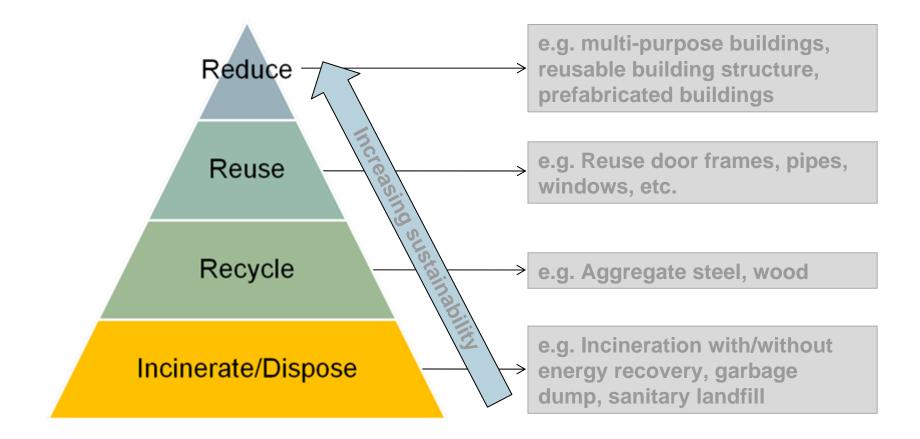
- Concrete is the second most consumed material after water and is the basis for the urban environment
 - Consumption worldwide:
 - 1950: less than 2 to 2.5 billion tonnes
 - 2006: between 21 and 31 billion tonnes
- CDW can constitute up to 50% of the MSW
- In many industrialized countries reuse and recycling of CDW is an integrated part of their SWM schemes and achieve recycling quotas of up to 90 % and more
- Countries such as the Netherlands and Japan achieve near complete recovery of waste concrete


CDW Recycling technology

2009/11/30	Page 4
------------	--------

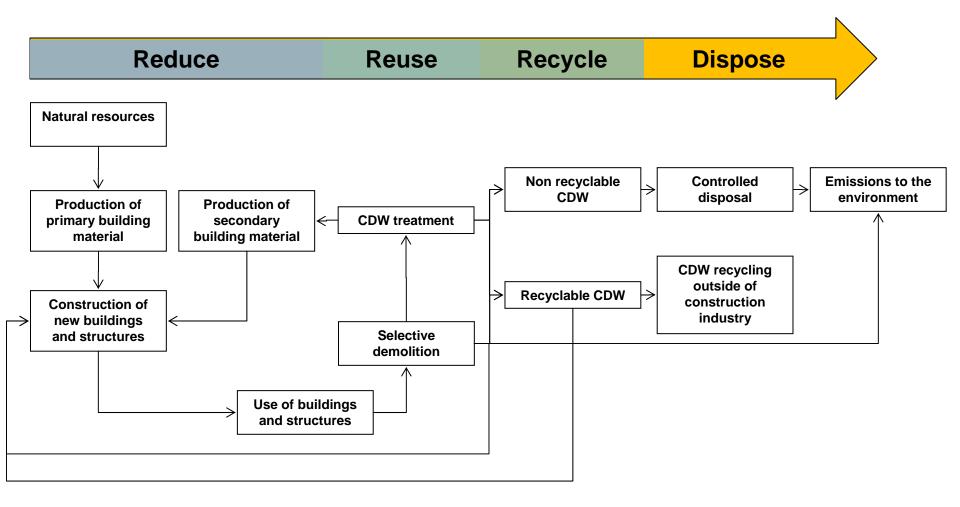
Negative Impacts of CDW (1)

Negative Impacts of CDW (2)


2009/11/30

Page 6

Solutions for CDW according to 3R



Preference ageregate bricated houses and trames

Close-loop solution for CDW

Economic advantages

Economic impulses →

tner for the Future

- Improvement of the income situation of the recycling industry
- More jobs for workers with low and high qualification levels
- Recovery of costs associated with transportation and tipping fees
- Good quality of waste materials stimulated by better prices

Reduction of disposal costs →

Less wastes end up in landfills, increasing lifetime and reducing costs

■ Conservation of natural resources →

- Return of waste materials into the materials' cycle
- Reduction of the dependency on primary materials

• Lower costs of new constructions \rightarrow

Lower prices than new materials

CDW Recycling

Environmental advantages

Natural resources →

 Less primary resources, smaller raw materials warehouse, lower landscape consumption

Reduction of CO₂-Emissions →

- Less production energy when recycling
- Smaller transport distances

• Elimination of illegal and unauthorised dumping \rightarrow

 Recycling discourages illegal dumping and reduces negative environmental effects upon groundwater, surface-water, air, flora & fauna and landscape

Improvement of air quality →

 Controlled disposal of non-mineral CDW means to be able to prevent ignition and incineration of e.g. rubber and plastic

Social and health advantages

Reduction of health hazards generated by illegal deposits \rightarrow

- Reduction of proliferation of pests if CDW is deposited on controlled sites
- Emissions into the air or leaching of toxic substances into the soil and/or groundwater affect the population
- Unstable dumps and deposits are dangerous for civilians and workers

• Reduction of health hazards generated by incineration \rightarrow

- Uncontrolled incineration of CDW can cause emissions of toxic compounds or substances such as dioxins
- Better use of public space →

rtner for the Future

 Lower growth rate of landfills and more space for productive uses, e.g. green or living areas

CDW Recycling

2009/11/30	Page 12
------------	---------

Instruments

- Life Cycle Analysis (LCA) \rightarrow consider each state of the product's life
 - environmental criteria: resource use, embodied energy, embodied pollution, recyclability, material efficiency, product life
 - Green Paper on Integrated Product Policy (IPP) → Producer Responsibility
- **Design and planning** \rightarrow considerations around new projects
 - resource saving, flexibility for future changes, durable and non-toxic products, recycled products, labelling of products, no overestimation of quantities, planning future deconstruction
- Tendering → clarify major requirements before beginning projects
 - certified contractors, minimize waste, management plans, payment on fulfilment
- During and after construction → waste minimization
 - organized site, supply just in time and with minimum packaging, separation of materials, appropriate disposal
- During renovation and deconstruction → waste minimization
 - licensed contractors, renovation or deconstruction plan, separation of wastes, controlled deconstruction

Prerequisites

■ Research and development →

- universities, research institutes and private companies
- Legislation and enforcement \rightarrow
 - legal framework, licensing, sanctions and fees
- Economic incentives to support the market \rightarrow
 - high landfill taxes, taxes for quarrying, import duties for raw materials, etc.

• Establishment of professional associations \rightarrow

 representation of members and industry in legislative venues; facilitation of interaction between members and organizations; provide information

Certification →

quality assurance

• Information exchange \rightarrow

workshops, seminars, training programmes to achieve progress

Promotion of CDW reuse and recycling \rightarrow

 gain general acceptance, e.g. campaigns, green procurement mandatory for government and communal buildings

Situation in Germany

- CDW recycling was introduced beginning the 1980s
- Generation (2007): 201.8 Mio.tons (57% of the total generated wastes)
 - 64 % soil from excavation, 25% mineral CDW, 8 % from road rehabilitation; 3 % construction waste
- Recycling rate (2007): 89.2 %
- Extensive legislation and administrative directives on reuse and recycling of CDW;
 - e.g.: source separation at construction and selective demolition are compulsory
- Extensive monitoring system on quality and quantities
 - self-commitment on achieving high recycling rates
- Decreasing CDW intensity (kg CDW / GDP)

CDW Container

2009/11/30	Page 15

Examples in Asia (1)

Indonesia

- Treatment, reuse, recycle of debris waste generated by the Indian Ocean Tsunami (around 854 000 m³)
- Common CDW
- Partnerships with the Ministry of Environment, local government agencies, civil society organizations, technology suppliers and other agencies
- ✓ DEBRI-Project (UNEP) with three key pillars:
 - ✓ (a) technology support
 - (b) capacity building
 - ✓ (c) economic instruments

Reparation of window frames and doors 2009/11/30

Page 17

Examples in Asia (2)

Thailand

- No legislation on CDW management
- No CDW recycling facility or CDW-disposal site in Bangkok
- Debris wastes from the tsunami were disposed in landfills
- Reusable items are removed and marketed by private companies
- ✓ 2007: Baseline study on quantities of CDW produced in Bangkok
- $\checkmark\,$ 2009: Estimation of CW generation and management in Thailand
- Joint project between Ministry of Environment and GTZ with recommendations on CDW management
- The Bangkok Metropolitan Administration plans CDW processing facilities and introduction of collection, transportation and disposal fees

Page 18

Construction activities after the tsunami

2009/11/30

Examples in Asia (3)

- India
- Manual on MSW Management includes a chapter on CDW but states that CDW is not reused or recycled in India
- TIFAC reports that some demolition contractors have recovery rates from 25% in old buildings to 75% in new buildings, but that these activities are not widely practiced
 - 18th November 2008: Constitution of Working Group on MSW, Plastic, Demolition and Packaging Waste with a Working Sub-Group on construction and demolition waste 16th April
 - ✓ Regular meetings: Nov. 2008, Jan. 2009, Apr. 2009

Construction activities after the tsunami

2009/11/30

Page 19

Possible applications

- Information exchange \rightarrow good practices of other countries
- Awareness campaigns
- Research and development technologies → waste mapping, standards
- Institutional and legal basis → consider participation of the industrial branch
- Required infrastructure → consider privatisation
- Strengthening the market → taxes on landfilling, importing raw material and quarrying virgin material, tax exemptions for recycled materials

Traditional construction with recycled materials

Conclusion

Reduction of energy consumption as well as of CO₂-Emissions

Production energy of recycled materials is considerably less than the energy used to produce and transport primary construction materials.

Reduction of environmental degradation

Illegal dumping of waste and excessive extraction of natural resources has negative environmental effects.

Reduction of health hazards generated by illegal deposits

Proliferation of pests can be reduced if CDW is reduced, reused, recycled and minimal quantities are deposited on controlled landfills

Improvement of air quality

Emissions due to production and uncontrolled disposal or burning are reduced.

Thanks for your attention!

Sandra Spies

sandra.spies@gtz.de www.gtz.de/solid-waste-management