

3R from Developing Countries' Perspectives and its co-benefits

Presented by: A.H. Md. Maqsood Sinha Waste Concern

Preparatory Meeting for the Inaugural Meeting of the Regional 3R Forum in Asia

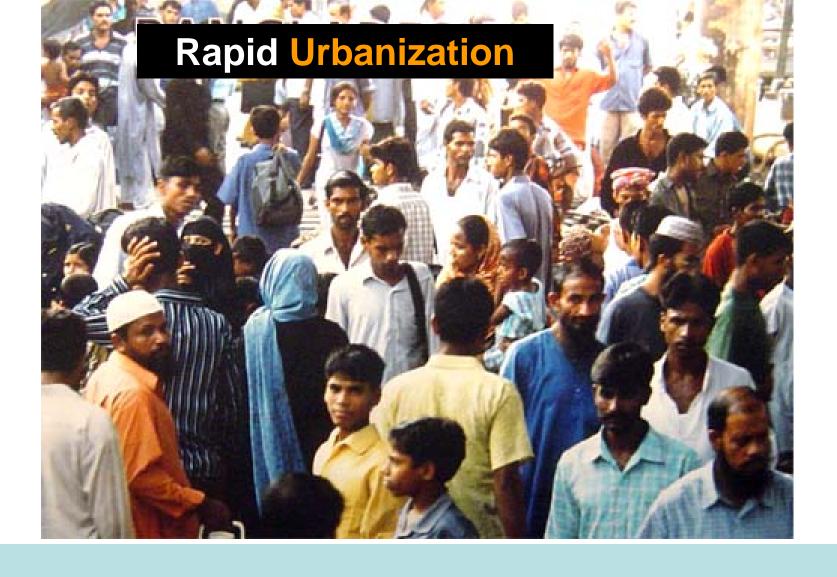
Tokyo, Japan
June 29 and 30, 2009

www.wasteconcern.org

Contents

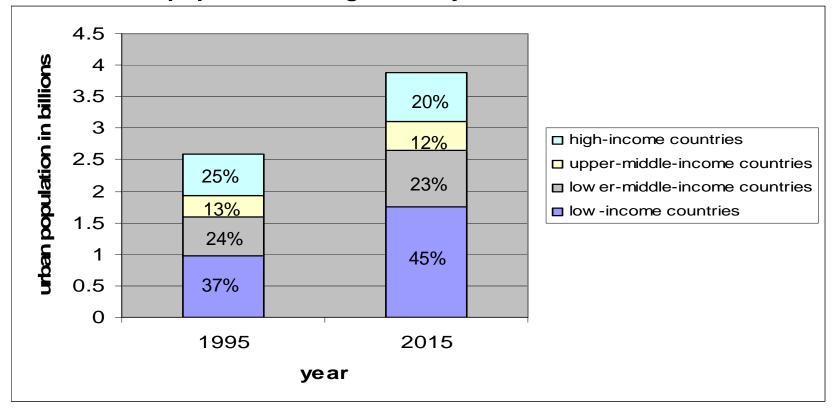
3R from Developing Countries' Perspectives and its co-benefits

- 1. Waste Situation in Developing Countries
- 2. Present practice in Developing Countries
- 3. Examples of 3R practice: Bangladesh experience
- 4. Co-benefits of 3R
- 5. Way Forward


Waste Situation in Developing Countries

Human activities create waste, which can pose risks to the environment and to public health, if not managed properly....

The developing countries as a whole is experiencing rapid urbanization, increasing population, industrialization and changing lifestyle and consumption patterns are resulting in the generation of increasing amounts new types of wastes in waste stream.


Waste management is mainly focused with end-of-pipe solution which is based on collection, transportation and disposal, where importance of 3R is missing.

Rapid Urbanization is taking place specially in low-income countries

Rapid Urbanization

Global urban population categorized by different economies

Global urban population categorized by of different economies (Schertenleib, 1992). Economics are divided according to 1996 GNP per capita: low income 785 US\$; low middle income 786-3115 US\$; upper middle income 3116-9635 US\$, and income > 9636 US\$

In 1992, 41% of the world population lived in urban areas In 2015, 60% of the world population will be living in urban areas and 68% of this urban population will living in the cities of low-income and lower middle income countries (schertenleib, 1992)

Relationship with Waste Generation Rate with Economic Growth

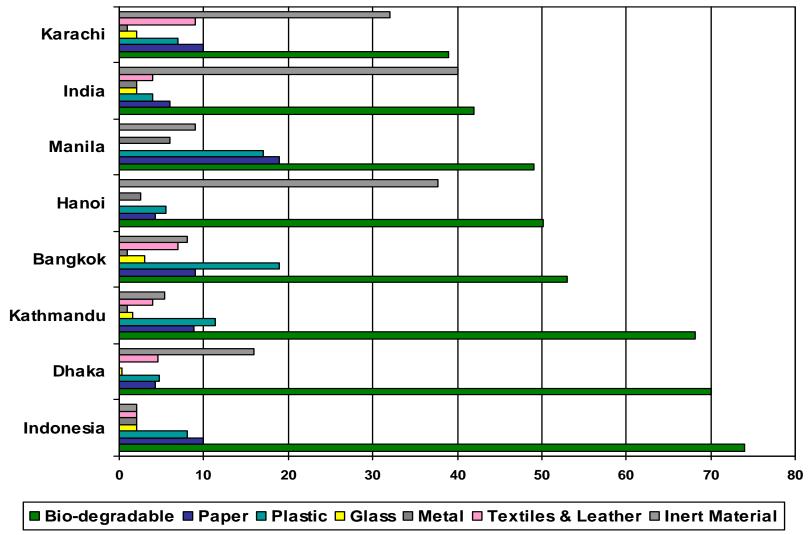
Waste generations rates of some Asian Countries, sorted by ascending Gross National Income (GNI)

Country	GNI	Waste generations (kg/capita day)	Reference
Nepal	240	0.2-0.5	(UNEP, 2001)
Cambodia	260	1.0	(Yem, 2001)
Lao PDR	290	0.7	(Hoornweg, 1999)
Bangladesh	370	0.5	(Hoornweg, 1999)
Vietnam	390	0.55	(Hoornweg, 1999)
Pakistan	440	0.6-0.8	(World Wildlife Fund, 2001)
India	450	0.3 -0.6	(Ahmed, 2000; Akolkar, 2001)
Indonesia	570	0.8- 1.0	(Mukawi, 2001)
China	840	0.8	(Hoornweg, 1999)
Sri Lanka	850	0.2-0.9	(Jayatilake, 2001; Hoornweg, 1999)
Philippines	1040	0.3 -0.7	(World Bank, 2001)
Thailand	2000	1.1	(Hoornweg, 1999)

GNI 2000 per capita in \$, based on Atlas Method, see http://www.worldbank.org/data/databytopic/class.htm

There is a link between growth in wealth and increase in waste — the more affluent a society becomes, the more waste it generates.

Relationship of GDP & Population with Waste Generation


GENERATION OF WASTE IS RAPIDLY INCREASING

Bangladesh Example

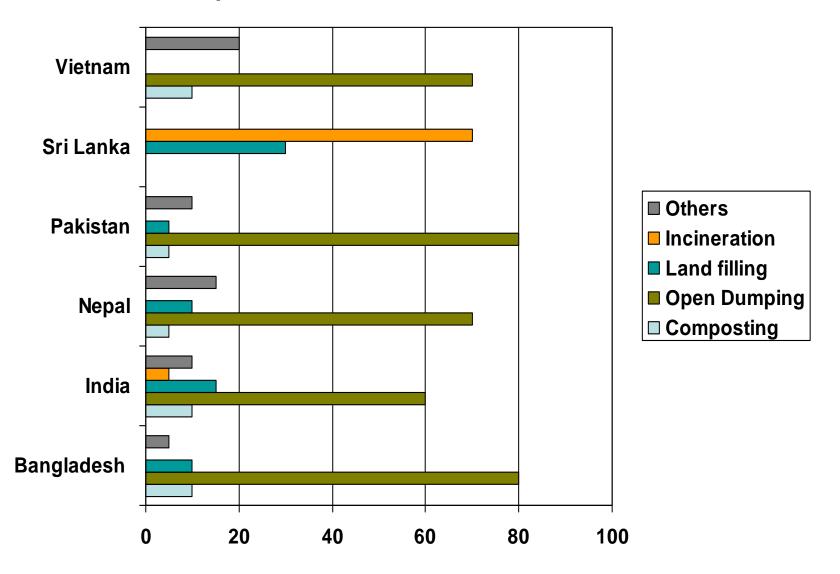
Year	Urban Population	Total Urban Waste Generation (Ton/day)	Per Capita Waste Generation Rate in urban areas Kg/cap/day	Per Capita GDP
1991	20.8 million	6493	0.31*	US \$ 220
2005	32.76 million	13,330	0.41**	US \$ 482****
2025	78.44 million	47,000	0.60***	>US \$ 1000

^{*} World Bank, 1998, *** Waste Concern, 2005, *** UMP, 1999, **** GOB, 2006

Typical Average Physical Composition of Waste in Urban Areas

Source: Zurbrugg, 2002

```
Waste Characteristic of Dhaka, Bangladesh

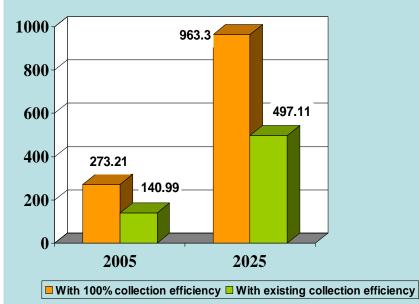

High organic matter >> (more than 70%)

High moisture content >> (more than 50%)

Low calorific value >> (less than 1000 Kcal/Kg)
```

PRESENT PRACTICE

Solid Waste Disposal Methods Practiced in Some Asian Countries



Source: UN 2000, Waste Concern 2009

- In developing countries municipal solid waste management costs consume 20%-50% of municipal revenues
- •In developing countries collection service level remain low with only **50%-70%** of resident receiving service.
- Land is scarce and expensive for many cities for land filling

PRESENT PRACTICE

Projection of Future Landfill Requirement for Bangladesh Acre Per Year (4 m deep landfill area)

PROBLEMS FROM PRESENT PRACTICE

Solid Waste Management is based on end-of-pipe solution which is only focused on collection, transportation and final disposal...

METHANE GAS
Bad Odor &
Green House
gas

LEACHATE
Polluting
Ground
& Surface Water

Open dumping practiced in most of the cities and towns, which is the cheapest and easiest solution for them...

Waste Recycling by Informal Sector

DIRECT SALE FOOD FROM THE FARMS DIRECT SALE MARKET **PROCESSING** &REMOLDING FACTORY ITINERANT BUYERS/ **FERIWALLA** WASTE HOUSEHOLDS MATERIALS DEALERS (TOKAIS) INTERMIDIATE WASTEBINS & REFUSE PROCESSING & COLLECTION SORTING CONTAINERS WASTE PICKERS (TOKAIS) INORGANIC WASTE FLOW FINAL DISPOAL SITE ORGANIC WASTE FLOW

Informal sector playing a vital role in resource recovery and recycling of waste for their survival.....

PRESENT 3R PRACTICE

Itinerant Buyers/ Feriwalla

Waste Pickers in the Collection Points

Waste Pickers in the Dumpsite

PRESENT PRACTICE

INFORMAL SECTOR INVOLVED IN RECYCLING INDUSTRIES

- In developing countries the informal sector plays a major role in recovering secondary materials.
- The world bank estimates that about 2% of the population in developing countries are scavengers whose livelihood consists in collection, selling recyclables materials.
- •According to Waste Concern study in 2005, the proportion of inorganic wastes recycled by informal sector in the urban cities/towns range between 3.89% -15 %, and approximately 15.29million USD\$ is being saved in Bangladesh through such recycling activities annually.

New Types of Waste Emerging in the Waste Stream

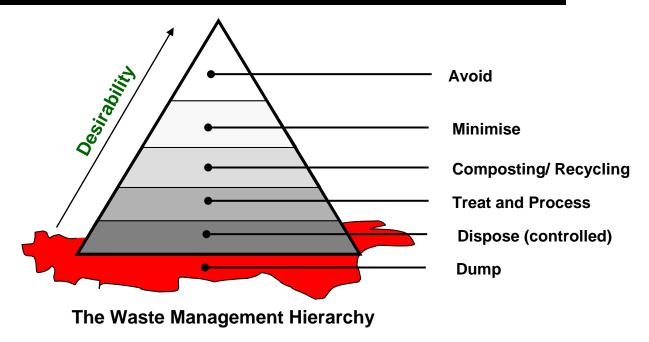
Rapidly changing consumption patterns are generating significantly increasing proportions of toxic chemicals in industrial waste, hazardous hospital waste, large quantities of electronic waste is a growing concern for developing countries

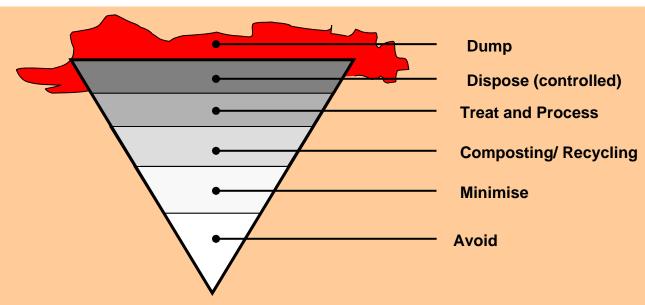
New Types of Waste Emerging in the Waste Stream

Industrial Waste

Untreated liquid and solid waste directly discharged in the water bodies, thus polluting the environment. Disposal of sludge from ETPs also becoming a major problem.

Ship Breaking Waste


- ☐ Extracted 1.2 million tons of scrap iron in 2004
- 20000-30000 workers (skilled, semi-skilled and unskilled)
- Active Yards: Out of 32 Yards, 26 Yards were active in April 2005.


Source: UNDP & ILO:2005

Problems Faced by Informal Sector

- Lack of awareness of environmental health issue,
- Lack of waste treatment and disposal facilities.
- Absence of technological know how,
- Lack of finance
- Lack of appropriate legislative support.

Strategy for Improvement (3R)

The Waste Management Hierarchy (Present Situation)

Examples of 3R practice: Dhaka experience CDM

Examples of 3R practice: Dhaka experience CDM

World's First Compost Plant Based on Carbon Trading Initiated by Waste Concern in Dhaka

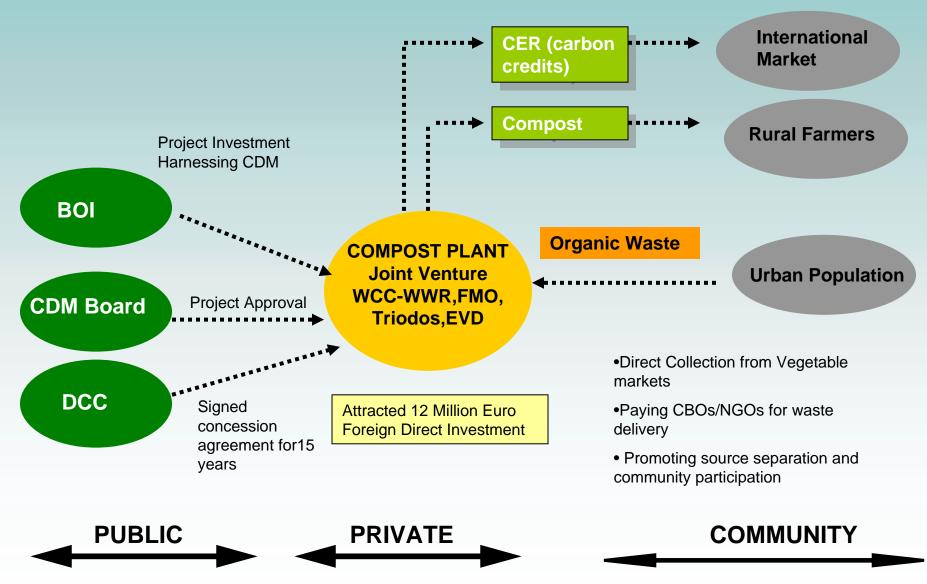
700 Tons/day Capacity Compost Plant at Dhaka of Waste Concern

Project based carbon trading (CER/VER) between industrialized and developing countries

Dutch Company WWR and Banks, FMO and Triodos

Industrialized

Emission reduction credits (CER)


CDM investment \$\$

Project Reducing GHG emissions in Dhaka

Examples of 3R practice: 700 ton/day Compost Plant in Dhaka

Using Public- Private and Community Partnerships Model

Examples of 3R practice: Dhaka experience CDM

UNFCCC/CCNUCC

CDM – Executive Board

AM0025 / Version 0 Sectoral Scope 1 FB 2

NOTE: The following project activities are required to make the PDD publicly available as per the guidance in paragraph 29 of the report of twenty seventh meeting of the Board:

1. those that use mechanical process to produce refuse-derived fuel (RDF) from waste and its use for energy generation.

Revision to the approved baseline methodology AM0025

"Avoided emissions from organic waste through alternative waste treatment processes"

Source

This baseline methodology is based on the proposed methodologies submitted for the project. "Organic waste composting at the Matuail landfill site Dhaka, Bangladesh," whose baseline study, monitoring and verification plan and project design document were prepared by prepared by World Wide Recycling B.V. and Waste Concern. It has been revised to include elements from the methodology for the "PT Navigat

Obtained UNFCCC approval on Sept 2005

Present Collection Practice

Parameters to be Monitored During Implementation

Weighing of Waste Input

Process Quality Control

Forced Aeration by Blowers to Provide Oxygen in the Compost Pile

Process Quality Control

Parameters to be Monitored During Implementation

Working Condition

Informal sector working in unsafe working condition

Informal sector working in safe working condition

Comparative Analytical Results of Fertilizer Samples

Name of Product : Waste Concern Jaiba Sar

Company:

উপাদান	অনুমোদিত মাত্রা	Analytical Results			Guaranteed
		BARI	BINA	SRDI	analysis
Physical Physical					
Colour	Dark grey to black		Very dark greyish brown	Dark brown	
Physical condition	Non-granular form		Soft body, Granular in size	Non granular	
Odour	Absence of foul odour		Not smell	Odour	
Moisture	Max. 15%	16.3	17.1	15.5	
Chemical				*	
pH	6.0 - 8.5	8.3	8.0	8.4	
Organic Carbon	10 - 25%	23.8	20.20	24.9	
Total Nitrogen (N)	0.5 - 4.0%	2.01	1.90	1.95	
C:N	Max. 20:1	11.8:1	10.63	12.8	
Phosphorus (P)	0.5 - 1.5%	1.7	2.2	1.25	
Potassium (K)	1.0 - 3.0%	2.68	2.52	2.60	
Sulphur (S)	0.1 - 0.5%	0.30	0.09	0.35	
Zinc (Zn)	Max. 0.1%	0.04	*	0.03	-
Copper (Cu)	Max. 0.05%	0.009		0.008	-
Arsenic (As)	Max. 20 ppm	19.3		*	
Chromium (Cr.)	Max. 50 ppm			20.2	
Cadmium (Cd)	Max. 5 ppm	3.81		2.28	-
Lead (Pb)	Max. 30 ppm	27.4		26.0	
Mercury (Mg)	Max. 0.1 ppm			*	
Nickel (Ni)	Max. 30 ppm	16.85		26.1	
Inert material	Max. 1%			2000	

^{*}Not analysed

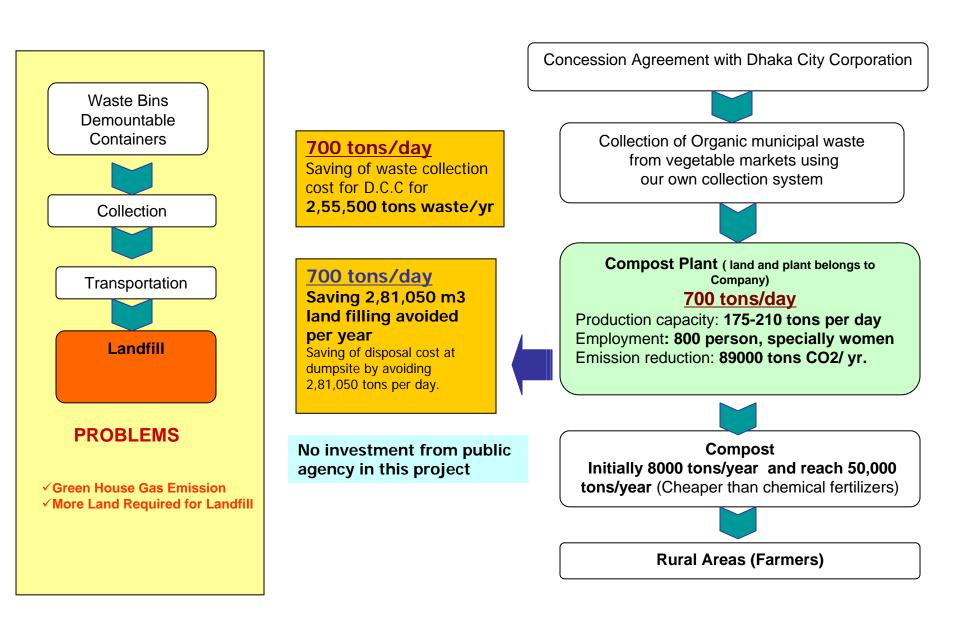

Complies with GoB Compost Standards of 2008

F:\FERTILIZER\26 th meeting\Analytical Result (Edited).doc

Quality Control

Quality Control Laboratory

FIELD TRIAL OF COMPOST PRODUCED BY WWR ON RICE FROM AUGUST TO NOVEMBER, 2008


FIELD TRIAL ON COMPOST

FIELD TRIAL OF COMPOST PRODUCED BY WWR ON RICE FROM AUGUST TO NOVEMBER, 2008 Reduces the use of chemical fertilizer 25-30 increased yield 30%

How the CDM project is implemented in Dhaka Using 3R Principle

Input

≻Collection

(Organic Waste From Markets)

➤ Saving DCC cost

Pro-poor element

➤ 700 tons/ day of waste collection Starting from 100 tons/day

➤ Job Creation 400 new jobs

Process

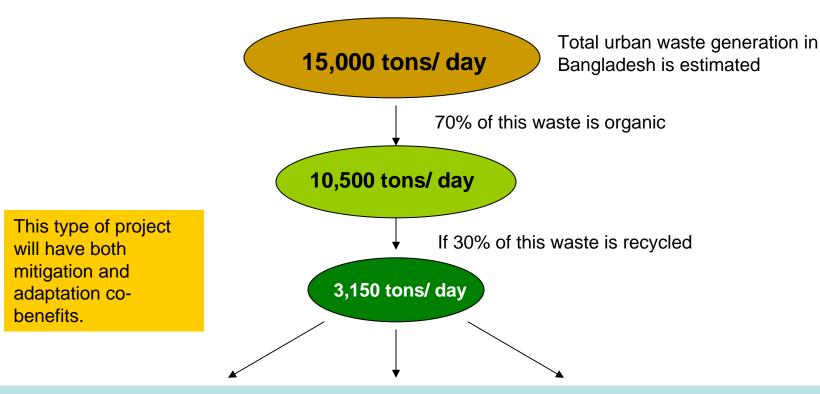
> Aerobic Composting

➤ Saving

Landfill Area

Pro-poor element

- ≻Creating 800 new jobs
- **≻**Focusing on Waste Pickers
- >Health Insurance
- **≻Daycare Center**
- >Free Meal


Output

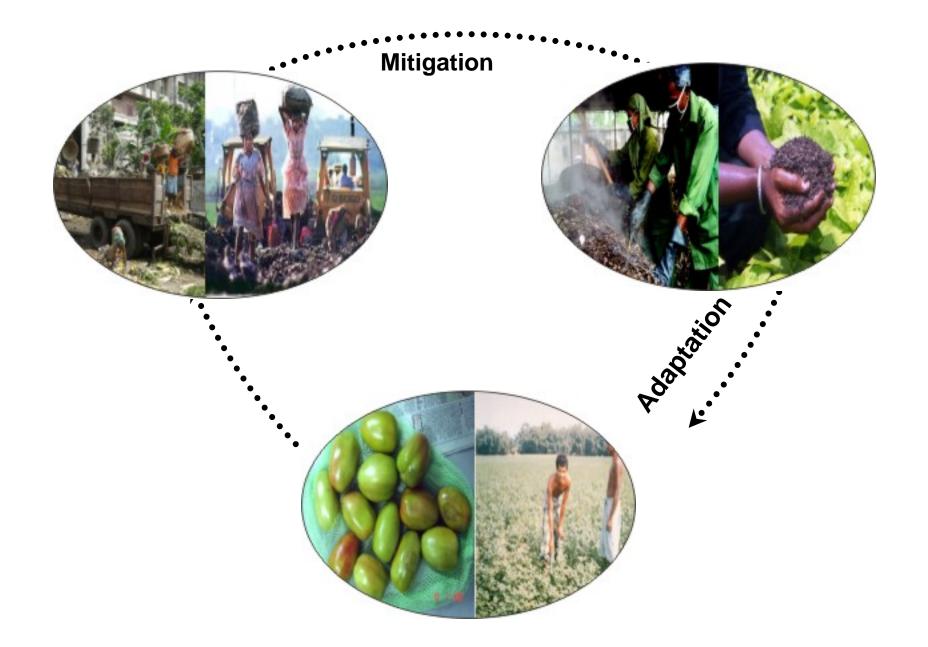
- **Compost** (50,000 tons/year)
- Carbon Credits
 (89,000 ton Co2e)
- ➤ Producing environment friendly product

Pro-poor element

- **≻**Cheaper
- **≻Less Irrigation**
- **≻Soil Quality Improved**
- **≻Higher Yield**
- >Leads to higher income

Potential of Scaling-up Waste Sector CDM Projects Using Programmatic Approach

402,000 tons CO2e/Yr. Emission reduction potential


236,250 tons/Yr. Organic Manure

3600 nos. new Jobs for the poor

Mitigation-Adaptation Loop

Global Impact International Reducing Green replication in Sri House Gas Lanka, Vietnam, **Local Impact Attracting Foreign** Direct Investment Complying with the (FDI) MDG **Promoting Public** Private and Reducing Solid Reducing Community Waste poverty by **Partnerships** Management creating jobs cost of for municipalities urban poor Enhances food security, promotes Improves the organic farming quality of life of **Co-Benefits** the city from the 3R **Based** Raises public awareness on Promoting Green **PROJECT** Solid Waste Jobs Management and recycling Reduce health hazards and 38 Replication in improves 20 towns of environment Bangladesh National Government includes the model in the policy (PRSP)

Way Forward

- ✓ Developing countries will positively gain from 3R initiative
- ✓ <u>Clear-cut policy package, incentives, guidelines</u> needs to be promoted for 3R in most of the developing countries.
- ✓ <u>Appropriate Technology</u> are expensive, which should be subsidized by rich developed countries (for example technology transfer in CDM projects).
- ✓ Easy financial support should be promoted by bank/ financial organizations and incentives should be extended to 3R projects.
- ✓ <u>Capacity building training programs and research</u> on 3R required for both public and private sector
- ✓ Role of Media needs be promoted to inform people and raise mass awareness on 3R.
- ✓ <u>Public-Private-Community Partnership</u> needs to be promoted to bring in investment in 3R projects.
- ✓ <u>Informal sector</u> should to be given special attention in 3R initiatives.

Thank You