水生生物の保全に係る水質環境基準の項目追加等について

(第1次報告)(案)に係る参考資料

参考資料目次

参考1	毒性評価文献を収集する生物種の範囲・・・・・・・・・・1
参考2	慢性影響について・・・・・・・・・・・・・・・・2
参考3	目標値検討に用いる影響内容と試験法等・・・・・・・・・3
参考4	毒性値の信頼性評価について・・・・・・・・・・・・5
参考5	水質目標値の導出手順について・・・・・・・・・・・16
参考6	「無影響導出値(魚介類)」の算出について ・・・・・・・18
参考7	無影響濃度(慢性影響を生じない濃度)の推定・・・・・・・19
参考8	ノニルフェノールの物性等について・・・・・・・・・・20

(参考1) 毒性評価文献を収集する生物種の範囲

「我が国に生息する有用動植物(魚介類)とその餌生物」のほか、毒性評価に係る内外の知見を可能な限り広く収集することとし、目標値の導出に利用する対象生物群を以下の通り設定する。

(1)淡水域

(魚介類)

- ① 我が国の淡水域に生息し、漁獲・放流あるいは養殖の対象となっている魚介類(魚類、甲殻類、貝類、藻類等)。
- ② その他、元来我が国に生息する水生生物で、かつ、通常の実験等に供される水生生物種 (例:化学物質の審査及び製造等の規制に関する法律(化審法)、農薬取締法及び OECD テストガイドラインの推奨種であるメダカ)

(魚介類の餌生物)

- ① 我が国の淡水域に生息している全ての生物のうち、上記魚介類を除く生物。ただし、魚類については、餌生物になっている種類もあるが、その実態が不明なこともあり、餌生物としては扱わない。
- ② その他、①に該当する生物の同属種、または、通常の実験等に供される魚類以外の種類 (例:化学物質の審査及び製造等の規制に関する法律(化審法)、農薬取締法及び OECD テストガイドラインの推奨種である緑藻)

(2)海域

(魚介類)

我が国の海域に生息し、漁獲・放流あるいは養殖の対象となっている魚介類(魚類、甲殻類、貝類、藻類等)。

(魚介類の餌生物)

- ① 我が国の海域に生息している全ての生物のうち、上記魚介類を除く生物。ただし、魚類については、餌生物になっている種類もあるが、その実態が不明なこともあり、餌生物としては扱わない。
- ② その他、①に該当する生物の同属種

(参考2)慢性影響について

1. 慢性影響について

水生生物の世代交代を考慮した、個体群の存続への影響を慢性影響とする。

- ① 主な影響内容とエンドポイント:成熟、繁殖、増殖、交尾、胚と稚仔の生残・死亡、成長(生長)等に対する NOEC 及びこれに準ずる影響内容とエンドポイント
- ② ばく露期間(試験期間):対象生物の寿命あるいは世代交代の期間を超える期間の試験は慢性影響を判定する試験として位置付ける。また、世代交代あるいは個体群を維持するために重要な成長段階への影響を捉えるための試験は慢性影響に対する試験とし、それに要する期間をばく露期間とする。これには、魚類では胚から稚魚、未成熟から成熟・産卵にいたる期間以上、ミジンコ類では14日間以上(繁殖)、その他、カゲロウ類・トビケラ類等の水生昆虫や貝類等については成長や繁殖等への影響が認められる期間以上が該当する。ただし、藻類に対する急性、慢性影響の考え方は統一した見解が得られていないことから、ばく露期間は急性影響と同様の72~96時間とする。

2. 急性影響について

水生生物の生物寿命を考慮した上で、比較的短期間に生じる個体の生存に関わる影響を急性影響とする。水質目標値の導出においては、急性影響をそのまま用いることはしないが、慢性影響を捉えるための情報として用いる。

- ① 主な影響内容とエンドポイント: 死亡に対する LC₅₀、孵化阻害、遊泳阻害、増殖阻害、 生長遅延等の EC₅₀ 及びこれらに準ずる影響内容とエンドポイント
- ② ばく露期間(試験期間):藻類は 72~96 時間、甲殻類・魚類及びその他の生物(動物) は 48~96 時間のばく露期間を要する試験とし、それ以上のばく露期間の試験においても、対象生物の寿命、世代交代期間等を勘案し、急性的な影響と判断された場合には急性影響として扱う。

(参考3) 目標値検討に用いる影響内容と試験法等

水生生物保全に係る水質環境基準での類型区分において、特に産卵場及び感受性の高い幼稚 仔等の時期に利用する水域については、より厳しい目標をあてはめることがあり得る。目標値 の検討が、水生生物の成長段階毎に分けて行われることを考慮し、成長段階毎の影響内容と試 験法の整理を行う。

また、水生生物保全に係る水質環境基準の目的は個体群の存続に対する影響(慢性影響)を防止することであるから、慢性影響を生じない濃度(無影響濃度)が得られる試験法を「水生生物保全に係る水質環境基準の標準試験法」として位置付け、これら試験法により得られた無影響濃度を優先する。なお、それ以外の試験法ついては「その他の試験法」として位置付け、試験法の信頼性及び目標値導出への利用可能性を個別に検討することとする。

各成長段階で用いる試験法を下表に示した。なお、表に示した影響内容や試験法は目標値の導出に用いるデータを検討する際の基本情報となるが、目標値導出手順の見直し等により改訂があり得るものである。

「水生生物保全に係る水質環境基準の標準試験法」

	「小工工物休工に味る小貝塚児荃竿の保竿武獣広」						
水域	生物	成長段階	影響内容	試験法			
	魚	胚~稚魚	①死亡、ふ化、成長、 繁殖 ②死亡、ふ化、成長、 繁殖	①OECD TG210: Fish, Early-life Stage toxicity Test ②ISO 12890: Water quality - Determination of toxicity to embryos and larvae of freshwater fish - Semi-static method			
	介類	成体	死亡、成長・生長、 行動(忌避を含む)、 繁殖	_			
淡水		全成長段階 成熟·産卵個体		_			
	餌生物	①全成長段階 ② 幼 生 ~ 成 熟·産卵個体	①藻類の生長②藻類の生長③ミジンコ類の繁殖④ミジンコ類の繁殖	①OECD TG201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test ②ISO 8692: Water quality - Freshwater algal growth inhibition test with unicellular green algae ③OECD TG211: Daphnia magna Reproduction Test ④ISO 10706: Water quality - Determination of long term toxicity of substances to Daphnia magnaStraus (Cladocera, Crustacea)			
	魚	胚~幼稚仔	死亡、ふ化、成長・ 生長、繁殖への有害 影響	_			
海	介類	成体	死亡、成長・生長、 成熟への有害影響	_			
水		成熟·産卵個 体、全成長段階		_			
	餌生物	全成長段階	藻類の生長	ISO10253: Water quality. Marine algal growth inhibition test with <i>Skeletonema costatum</i> and <i>Phaeodactylum tric rnutum</i>			

幼稚仔:成体と同じ体形や機能等を有しない成長段階(例えば、魚類では後期仔魚まで) 成体:幼稚仔以後で性成熟前まで、魚類では稚魚期から抱卵していない成魚の期間

「その他の試験法」

水域	生物	成長段階	影響内容	試験法
		胚~前期仔魚	ふ化しない	OECD TG212 : Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages
	4	稚魚~未成熟	①死亡	①OECD TG203: Fish, Acute Toxicity Test,
	魚	魚	②成長	②OECD TG215: Fish, Juvenile Growth Test,
	介類		③成長	③ISO 10229: Water quality - Determination of the
淡	類			prolonged toxicity of substances to freshwater fish -
水水				Method for evaluating the effects of substances on the growth rate of rainbow trout[Oncorhychus
1				mykiss Walbaum (Teleostei, Salmonidae)
		幼生	①遊泳阻害	①OECD TG202: Daphnia sp., Acute Immobilisation
	餌			Test
	生		②遊泳阻害	②ISO 6341 : Water quality - Determination of the
	物			inhibition of the mobility of Daphnia magna Straus
		75 Ha les les	⊘− .	(Cladocera, Crustacea) - Acute toxicity test
		後期仔魚	①死亡	①海産魚類及び海産エビ類の急性毒性試験法
	魚	ミシス		(魚類仔魚期、エビ類ミシス期 第1版) (環
		ミンへ (エビ類)	②死亡	境省)
	介			
	類	稚魚	①死亡	①海産魚類及び海産エビ類の急性毒性試験法
海		ポストラーバ	②死亡	(案) (第1版) (環境省) ②同上
水		(エビ類)		
		幼生	①死亡	①海産動物プランクトン急性毒性試験(環境省
	餌		_	検討中)
	生	成体	②死亡	②ISO 14669: Water quality - Determination of
	物			acute lethal toxicity to marine copepods (Copepoda,
				Crustacea)

(参考4) 毒性値の信頼性評価について

1. 毒性データを収集する文献範囲

水生生物の毒性評価を行う毒性データを取得するための生態毒性情報源として、①生態毒性データベース、②有害性評価書及び③その他の生態毒性情報源(一般的な検索システム)を用いる。

【生態毒性データベース】

- ① 米国環境保護庁(US EPA)生態毒性データベース「AQUIRE」(AQUatic toxicity Information REtrieval))
- ② 欧州連合(EU)「IUCLID」(International Union Chemical Information Database)
- ③ 欧州産業界 ECETOC の水生生物毒性データベース(ECETOC Aquatic Toxicity: EAT)
- ④ 環境省(庁)生態影響試験報告書

【有害性評価書等】

- ① 環境省 化学物質の環境リスク評価(生態リスク初期評価)
- ② (独)新エネルギー・産業技術総合開発機構(NEDO) 化学物質の初期リスク評価
- ③ (独)産業技術総合研究所 詳細リスク評価書
- ④ OECD (経済協力開発機構) HPVC プロジェクト「SIDS」(Screening Information Data Set)
- ⑤ 欧州連合リスク評価書「EU-RAR」(European Union Risk Assessment Report)
- ⑥ 世界保健機関(WHO)「EHC」(Environmental Health Criteria)
- プ カナダ環境保護法優先物質評価書 (Canadian Environmental Protection Act Priority Substances List Assessment Report)

【その他の生態毒性情報源】

上述した生態毒性データベースや評価書に掲載されていない情報については、以下に示す一般の検索システムや資料も利用することとする。

- ① 科学技術振興機構(JST)文献検索システム(JDream II,検索データベース: JSTPlus, JST7580, JMEDPlus, MEDLINE)
- ② 国立情報学研究所 NII 論文情報ナビゲーター(CiNii)
- ③ 国立環境研究所所蔵マイクロフィッシュ資料
- ④ その他のインターネット検索 (Science Direct, BlackWell Synergy, SpringerLink 等)

原文における記載内容あるいは情報源に示されている供試生物や試験条件の情報を利用して毒性値の一次スクリーニングを行う。

2. 毒性データの一次スクリーニング

毒性値の信頼性は試験物質が妥当であるか、適切な試験方法を用いているかについて検討した上で、目標値導出への利用可能性を判断する。収集した毒性値の中には、信頼性の確認に必要な試験条件等の情報が少ないもの、要約あるいは引用として記載されているもの、

明らかに試験条件がテストガイドラインあるいは実水域での状況から逸脱しているものがある。これらの毒性値は、その後の水質目標値の検討に用いることができないと考えられるため、信頼性が確認できないものとして評価の対象としない。

毒性データの一次スクリーニングは、①試験物質と②試験方法の観点から原文記載内容に 基づき以下の項目で行う。

(1) 試験物質

- ① 純度、成分等の記載の有無:記載が無いものは用いない。
- ② 成分:調剤や混合物の場合は用いない。水質目標値の検討対象物質そのものが混合物の場合はこの限りではない。
- ③ 純度:80%未満で不純物等の成分が不明の場合は用いない。
- ④ 検討対象物質が混合物の場合、含まれる成分による毒性の相違や野外環境での分析 法等を十分考慮して、被験物質の妥当性を判断する。

(2)試験方法

- ① 環境省が実施する環境リスク初期評価において信頼性が低いとされたデータは用いない。
- ② テストガイドライン (別添) またはそれに準じた方法で行われた試験である場合: 試験条件が標準的な試験条件から大きく逸脱しているものは用いない。
- ③ テストガイドライン (別添) またはそれに準じた方法でない試験である場合:実水域での状況から極端に逸脱していると考えられるデータは用いない。
- ④ 試験物質の毒性に関与する条件が明らかな場合は、その条件(例えば、金属類での 硬度、アンモニアでの pH 等)が記載されていない毒性値は用いない。
- ⑤ 情報が極端に少ないあるいは米国環境保護庁生態毒性データベース「AQUIRE」に 収録されている毒性データは、試験方法、条件等の情報量を考慮して分類されたスコア (Document code¹) が、「中程度」(Moderate)、「不十分」(Incomplete) に該当するデータは用いない。

4. 毒性値の信頼性等の評価について

毒性値の評価は、その信頼性と水質目標値の検討への利用の適否について行う。

(1) 毒性値の信頼性

毒性値の信頼性は、答申参考資料に記載された「毒性試験結果の評価項目及び留意事項」を 踏まえて検討を行う。具体的には、テストガイドライン(別添)に準じた試験についてはガ イドラインの記載内容と比較して判断することとし、それ以外の試験については試験の妥当 性や毒性値の再現性、実水域での生息状況等から個別に判断する。

¹Document Code: 毒性データを得る上で重要と考えられる項目 (淡水 16、海水 15) について、それぞれスコアが付けられており、それらの合計値が 51 未満の場合は「不十分」 (Incomplete)、 $51\sim85$ は「中程度」 (Moderate)、86 以上の場合は「全て満たす」 (Complete)の 3 段階に分類されている。なお、スコアが最も大きな項目はばく露期間・エンドポイント(各スコア 20)である。

毒性値の信頼性評価は、一次スクリーニングを通過した毒性試験結果全てに対して、以下の判定基準で行う。

A 信頼性が高い

- ① 国際的なテストガイドライン(別添)に準拠した試験(GLPによる試験であることが望ましい)で、ガイドラインが定める試験の妥当性基準を満たし、試験条件等の逸脱はなく、再現性のよい試験で、試験結果は科学的に信頼できる。
- ② 国あるいは公的な機関により定められたテストガイドライン(別添)あるいはそれに準じた方法で行われた試験であり、試験条件はガイドラインと一部異なるものの、試験結果の算出法等信頼性を確認するために必要な情報は揃っており、再現性のよい試験が行われ、試験結果は科学的に信頼できる。

B 条件付きで信頼できる

B1 毒性値として信頼できる

- ① テストガイドラインまたはそれに準じた方法で行われた試験では無いが、試験方法、試験結果の算出法等信頼性を確認するために必要な情報は揃っており、また、対象物質の物理化学的特性を考慮して行われているなど、試験の再現性がある(あるいは、科学的に妥当である)と判断できる。
- ② 界面活性作用のある助剤を用いる試験については、テストガイドライン(別添)またはそれに準じた方法で行われた試験であり、毒性値が試験溶液の溶解度に比べて低く、かつ、使用量はテストガイドラインの規定値未満であり、そして助剤対照区において供試生物への影響がないと判断される。

B2 毒性を示す定性情報としては信頼できる

① 対象生物への毒性を表していると考えられるが、毒性値の不確実性は高い。 (テストガイドラインまたはそれに準じた方法で行われた試験であるが、助 剤濃度が OECD の試験法に関するガイダンス文書での許容濃度を超えてい る等、試験方法に問題がある場合が該当する。)

C 信頼性は低い

- ① テストガイドラインまたはそれに準じた方法で行われた試験であるがガイドラインの妥当性クライテリアを満たさない。
- ② テストガイドラインの推奨種以外の種を用いた試験で、試験条件やばく露方 法が当該種の我が国での生息環境(実水域)の状況から大きく逸脱している。
- ③ 試験対象物質の水中安定性や物理化学的特性を考慮していないなど、試験の手順が不適切である。

D 試験の信頼性を判断できる十分な情報がない

(2) 水質目標値の検討における利用の適否

利用の適否は、信頼性が確認された毒性値(A又はB1)から、答申参考資料改訂版の内容に基づき、該当する水域と類型における毒性値の利用可能性を試験方法、エンドポイント、ばく露期間、成長段階、試験物質の観点から、下記の判断基準により行う。

A: 利用できる

- ① 試験物質は水質目標値を検討する対象物質として妥当である。かつ、
- ② テストガイドラインまたはそれに準じた方法で行われた試験であり、エンドポイント、ばく露期間、成長段階等は該当する水域と類型における利用に適切である(表1)。又は、
- ③ テストガイドラインまたはそれに準じた方法で行われた試験でない試験であるが、 用いられている条件(水温、水質等)は我が国の実水域の状況と大きな相違はな く、エンドポイント、ばく露期間、成長段階等は、該当する水域と類型における 利用に適切である(表 1)。

B: 条件付きで利用できる

- ① 試験物質は水質目標値を検討する対象物質の一部であるが、対象そのものではない。
- ② 試験生物種あるいはその成長段階が検討対象として適当か否か十分判断できない。
- ③ 急性影響と慢性影響の区別が明確にできない試験内容であり、水域と類型における利用には考慮が必要である。

C: 利用できない

- ① エンドポイント、ばく露期間、成長段階等が水域と類型における利用に適切でない。
- ② 試験物質は水質目標項目の対象ではない。

なお、信頼性が「B1」と判定された毒性試験結果は、「A (利用できる)」とはしない。

水質目標値導出に用いることができる毒性値は、(A(利用できる))」と(B(条件付きで利用できる))」と判断されたものとする。

表1 一次スクリーニングの目安

生物等	項目	魚類	甲殼類	藻類	その他の生物
全生物	魚介類	我が国に生息している生物			
	餌生物	我が国に生息している魚類以外の生物	外の種類		
標準的な試験	成長段階	急性(短期)毒性)	テストガイドラインに記載	初期細胞数密度:	
法*での推奨	(試験魚の全	OECD 試験法等で定められた試験魚	された成長段階	OECD 試験法等で定	_
種	長、体重等)	の推奨全長の1/2~2倍の範囲	例)ミジンコ	められた初期細胞数	
		例:	幼体:生後 24 時間令以内	密度の 5 倍以内(ば	
		コイ:1.5~8.0cm	成体(未成熟個体):ばく	く露期間が4日の場	
		ヒメダカ: 1.0~4.6cm	露期間中に産仔することが	合は、初期細胞数密	
		ニジマス: 2.5~10cm	ない成長段階であること	度)	
		慢性(長期)毒性)テストガイドラ			
		インに記載された成長段階			
	試験環境(水	設定温度がテストガイドラインで定	設定温度がテストガイドラ	設定温度がテストガ	_
	温)	められた温度範囲から3℃以内の水	インで定められた温度範囲	イドラインで定めら	
		温である	から3℃以内の水温である	れた温度範囲から	
		例) コイ:17~27°C	例)ミジンコ:15~25℃	3℃以内の水温であ	
		ヒメダカ:18 ~ 28℃		る	
		ニジマス:10~20°C		藻類:18~27℃	
	試験環境(pH)	6~9		_	_
	試験環境(DO)	飽和度で 60%以上(ミジンコについて	は3 mg/L 以上)	_	
	エンドポイン	参考2【慢性影響について】に準ずる			_
	ト/影響内容				
	ばく露期間	参考2【慢性影響について】に準ず	参考2【慢性影響について】	72~96 時間	_
		১	に準ずる		
		急性(短期)毒性)48~96 時間	急性(短期)毒性)48~96		
			時間		
	密度(供試生物	試験物質の濃度低下が無く、DOが確	例)ミジンコ	_	_
	数)	保されるのであれば可	幼体:1頭未満/2mL、成		
			体 1 頭未満/ 4 mL		

生物等	項目	魚類	甲殼類	藻類	その他の生物
	毒性値	内挿により求められた毒性値であるこ	と。		_
それ以外	成長段階	幼稚仔: 仔魚期まで(Early life 試験 を含む) 未成魚: 稚魚期(ライフサイクル試 験を含む)	テストガイドラインに記載 された成長段階	初期細胞数密度:試 験期間中に十分増殖 できる初期細胞数密 度	テストガイドライ ンに記載された成 長段階
	試験環境(水温)	 当該生物或いはその同属種の我が国で 	」 の生息水温±3℃		
	試験環境(pH)	6~9		_	6~9
	試験環境(DO)	飽和度で 60%以上	和度で 60%以上		飽和度で 60%以上
	エンドポイント/影響内容	参考2【慢性影響について】に準ずる			
	ばく露期間	参考2【慢性影響について】に準ずる 急性(短期)毒性)48~96時間	参考2【慢性影響について】 に準ずる 急性(短期)毒性)48~96 時間	72~96 時間	参考2【慢性影響 について】に準ず る
	密度	試験物質の濃度低下が無く、DO が確保されるのであれば可	試験物質の濃度低下が無く、DOが確保されるのであれば可	_	試験物質の濃度低 下が無く、DO が確 保されるのであれ ば可
	毒性値	内挿により求められた毒性値であるこ	<u> </u>		

^{*:}ここでの標準的な試験法とは、別添に示した試験法を指す。

水生生物を用いた主な毒性試験法

- I 基本とするガイドライン(国際的なガイドライン等)
- (1)経済協力開発機構(Organisation for Economic Co-operation and Development: OECD)
- 1. OECD TG201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test
- 2. OECD TG202: Daphnia sp., Acute Immobilisation Test
- 3. OECD TG203: Fish, Acute Toxicity Test
- 4. OECD TG210: Fish, Early-life Stage toxicity Test
- 5. OECD TG211: Daphnia magna Reproduction Test
- 6. OECD TG212: Fish, Short-term Toxicity Test on Embryo and Sac-fry Stages
- 7. OECD TG215: Fish, Juvenile Growth Test
- 8. OECD TG221 : Lemna sp. Growth Inhibition Test
 - (2) 国際標準化機構(International Organization for Standardization: ISO)
- 9. ISO 6341: Water quality Determination of the inhibition of the mobility of *Daphnia magna* Straus (*Cladocera, Crustacea*) Acute toxicity test
- 10. ISO 8692 : Water quality Freshwater algal growth inhibition test with unicellular green algae
- 11. ISO 10229: Water quality Determination of the prolonged toxicity of substances to freshwater fish Method for evaluating the effects of substances on the growth rate of rainbow trout[Oncorhychus mykiss Walbaum (Teleostei, Salmonidae)
- 12. ISO 10253: Water quality Marine algal growth inhibition test with *Skeletonema costatum* and *Phaeodactylum tricornutum*
- 13. ISO 10706: Water quality Determination of long term toxicity of substances to *Daphnia magna*Straus (*Cladocera, Crustacea*)
- 14. ISO 12890 : Water quality Determination of toxicity to embryos and larvae of freshwater fish —Semi-static method
- 15. ISO 14442: Water quality Guidelines for algal growth inhibition tests with poorly soluble materials, volatile compounds, metals and waste water
- 16. ISO 14669: Water quality Determination of acute lethal toxicity to marine copepods (*Copepoda, Crustacea*)
 - (3) 海生生物テストガイドライン検討会
- 17. 海産魚類及び海産エビ類の急性毒性試験法(案)(第1版)
- Ⅱ 参考とするガイドライン (国あるいは公的な機関により定められたテストガイドライン)
- (4)経済協力開発機構 (Organisation for Economic Co-operation and Development: OECD)
- 18. OECD TG204: Fish, Prolonged Toxicity Test

- (5) 化学物質の審査及び製造等の規制に関する法律(化審法)
- 19. 藻類生長阻害試験
- 20. ミジンコ急性遊泳阻害試験
- 21. 魚類急性毒性試験
- 22. ミジンコの繁殖に及ぼす影響に関する試験(ミジンコ繁殖試験)

(6)農薬取締法

- 23. 魚類急性毒性試験
- 24. 魚類 (ふ化仔魚) 急性毒性試験
- 25. ミジンコ類急性遊泳阻害試験
- 26. ミジンコ類 (成体) 急性遊泳阻害試験
- 27. ミジンコ類繁殖試験
- 28. ヌマエビ・ヌカエビ急性毒性試験
- 29. ヨコエビ急性毒性試験
- 30. ユスリカ幼虫急性毒性試験
- 31. 藻類生長阻害試験

(7) 米国

1) Toxic Substances Control Act (TSCA) 及び Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)

32.	OPPTS 850.1010	Aquatic invetebrate acute toxicity, test, freshhwater daphnids
33.	OPPTS 850.1020	Gammarid acute toxicity test
34.	OPPTS 850.1025	Oyster acute toxicity test (shell deposition)
35.	OPPTS 850.1035	Mysid acute toxicity test
36.	OPPTS 850.1045	Penaeid acute toxicity test
37.	OPPTS 850.1055	Bivalve acute toxicity test (embryo larval)
38.	OPPTS 850.1075	Fish acute toxicity test, freshwater and marine
39.	OPPTS 850.1085	Fish acute toxicity mitigated by humic acid
40.	OPPTS 850.1300	Daphnid chronic toxicity test
41.	OPPTS 850.1350	Mysid chronic toxicity test
42.	OPPTS 850.1400	Fish early-life stage toxicity test
43.	OPPTS 850.1500	Fish life cycle toxicity

(850 シリーズに統合以前)

a) Toxic Substances Control Act (TSCA):

Code of Federal Regulations Title 40 Protection of Environment

- 44. § 797.1050 Algal acute toxicity test.45. § 797.1300 Daphnid acute toxicity test.
- 46. § 797.1330 Daphnid chronic toxicity test.
- 47. § 797.1400 Fish acute toxicity test.

- 48. § 797.1600 Fish early life stage toxicity test.
- 49. § 797.1930 Mysid shrimp acute toxicity test.
- 50. § 797.1950 Mysid shrimp chronic toxicity test.
- b) Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)
- 51. OPP 72-1 Freshwater Fish Acute-warm and coldwater species with TGAI or TEP(FIFRA 158.490)
- 52. OPP 72-2 Freshwater Invertebrate Acute TGAI or TEP(FIFRA 158.490)
- 53. OPP 72-3 Estuarine/ Marine Fish, Shellfish, Shrimp Acute using TGAI or TEP(FIFRA 158.490)
- 54. OPP 72-4a Freshwater or Marine/Estuarine Fish Early Life Stage Chronic Toxicity using TGAI or TEP(FIFRA 158.490)
- 55. OPP 72-4b Freshwater Invertebrate Life Cycle Chronic Toxicity using TGAI or TEP(FIFRA 158.490)
- 56. OPP 72-5 Full Fish Life Cycle TGAI(FIFRA 158.490)
- * TGAI= Technical Grade Active Ingredient TEP=Typical End-Use Product
- 57. SEP: Acute Toxicity Test for Freshwater Invertebrates (EPA-540/9-85-005;1985)
- 58. SEP: Acute Toxicity Test for Freshwater Fish (EPA-540/9-85-006; 1985)
- 59. SEP: Fish Life-Cycle Toxicity Tests (EPA-540/9-86-137; 1986)
- 60. SEP: Fish Early Life-Stage Test (EPA-540/9-86-138; 1986)
- 61. SEP: *Daphnia magna* Life-Cycle (21-Day Renewal) Chronic Toxicity Test (EPA-540/9-86-141; 1986)
- 62. SEP: Non target Plants: Growth and Reproduction of Aquatic Plants-Tiers 1 and 2 (EPA-540/9-86-134;1986)
- 63. SEP: Acute Toxicity Test for Estuarine and Marine Organisms (Estuarine Fish 96-Hour Acute Toxicity) (EPA-540/9-85-009, 1985)
- 64. SEP: Acute Toxicity Test for Estuarine and Marine Organisms (Shrimp 96-Hour Acute Toxicity Test) (EPA-540/9-85-01O, 1985).
- 65. SEP: Acute Toxicity Test for Estuarine and Marine Organisms (Mollusc 96-Hour Flow Through Shell Deposition Study) (EPA-540/9-85-011, 1985) /
- 66. SEP: Acute Toxicity Test for Estuarine and Marine Organisms (Mollusc 48-Hour Embryo Larvae Study) (EPA-540/1-85-012, 1985)
- *SEP: Standard Evaluation Procedure
- 2)米国材料試験協会(American Society for Testing and Materials: ASTM) ※近年公表されているガイドライン
- 67. E724-98 : Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos Four Species of Saltwater Bivalve Molluscs
- 68. E729-96 : Standard Guid for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians
- 69. E1191-97: Standard guide for conducting life-cycle toxicity tests with saltwater rmysids
- 70. E1193-97 : Standard Guid for Conducting Daphnia magna Life-cycle Toxicity Tests
- 71. E1218-97a: Standard guide for conducting static 96-h toxicity tests with microalgae

- 72. E1241-98 : Standard guide for conducting early life-stage toxicity tests with fishes
- 73. E1295-01 : Standard guide for conducting three-brood, renewal toxicity test with *Ceriodaphnia dubia*
- 74. E1415-91 : Standard guide for conducting static toxicity tests with Lemma gibba G3
- 75. E1440-91 : Standard guide for acute toxicity test with the rotifer *Barchionus*
- 76. E1463-92 : Standard guide for conducting static and flow-through acute toxicity tests with mysids from the west coast of the United States
- 77. E1562-00 : Standard guide for conducting acute, chronic, and life-cycle aquatic toxicity tests with polychaetous annelids
- 78. E1563-98 : Standard guide for conducting static acute toxicity tests with echinoid embryos

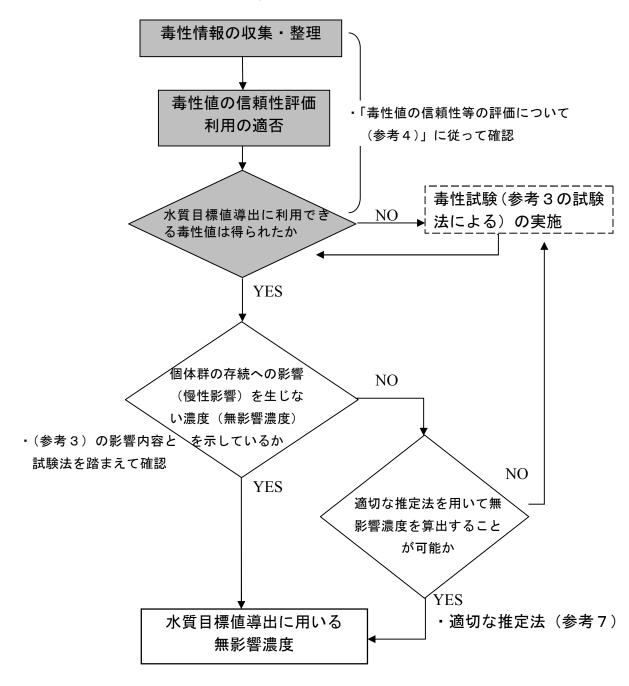
(8)カナダ

- 79. EPS1/RM/9: Biological Test Method: Acute Lethality Test Using Rainbow Trout
- 80. EPS1/RM/ 10: Biological Test Method: Acute Lethality Test Using Threespine Stickleback (Gasterosteus aculeatus)
- 81. EPS1/RM/11: Biological Test Method: Acute Lethality Test Using *Daphnia* spp.
- 82. EPS1/RM/21 : Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*
- 83. EPS1/RM/24: Biological Test Method: Toxicity Test Using Luminescent Bacteria
- 84. EPS1/RM/25: Biological Test Method: Growth Inhibition using a Freshwater Alga
- 85. EPS1/RM/26: Biological Test Method: Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods.
- 86. EPS1/RM/27 : Biological Test Method: Fertilization Assay Using Echinoids(Sea Urchins and Sand Dollars)
- 87. EPS1/RM/28: Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout)
- 88. EPS1/RM/37: Biological Test Method: Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, *Lemna minor*

(9) ドイツ連邦規格(Deutsche Normen)²

- 89. DIN 38412-11: German standard methods for the examination of water, waste water and sludge; Test methods using water organisms (group L); Determination of the effect on microcrustacea of substances contained in water (*Daphnia* short-time test) (L 11)
- 90. DIN 38412-33: German standard methods for the examination of water, waste water and sludge; bio-assays (group L); determining the tolerance of green algae to the toxicity of waste water (*Scenedesmus* chlorophyll fluorescence test) by way of dilution series (L 33)
- 91. DIN 38412-37: German standard methods for the examination of water, waste water and sludge Bio-assays (group L) Part 37: Determination of the inhibitory effect of water on the growth of

² ドイツ連邦規格 (Deutsche Normen) には、DIN (国家規格)、DIN EN (欧州規格のドイツ版)、DIN EN ISO (国家規格、欧州規格および国際規格の組合せ)、DIN ISO (DIN 協会が変更を加えずに採用した ISO 規格)、DIN VDE (ドイツ電気技術者協会の VDE 規格と全く同一内容の DIN 規格)、DIN IEC (DIN が変更を加えずに採用した国際電気標準会議の IEC 規格)がある。


⁽日本貿易振興機構 HPより、http://www.jetro.go.jp/world/japan/qa/export_12/04S-040009)

- bacteria (*Photobacterium phosphoreum* cell multiplication inhibition test) (L 37)
- 92. DIN EN ISO 10253: Water quality Marine algal growth inhibition test with *Skeletonema costatum* and *Phaeodactylum tricornutum* (ISO 10253:2006); German version EN ISO 10253:2006
- 93. DIN EN ISO 10712: Water quality *Pseudomonas putida* growth inhibition test (*Pseudomonas* cell multiplication inhibition test) (ISO 10712:1995); German version EN ISO 10712:1995
- 94. DIN EN ISO 20079: Water quality Determination of the toxic effect of water constituents and waste water on duckweed (*Lemna minor*) Duckweed growth inhibition test (ISO 20079:2005); German version EN ISO 20079:2006
- 95. DIN EN ISO 6341: Water quality Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) Acute toxicity test (ISO 6341:1996); German version EN ISO 6341:1996
- 96. DIN EN ISO 7346-2: Water quality Determination of the acute lethal toxicity of substances to a freshwater fish [*Brachydanio rerio* Hamilton-Buchanan (Teleostei, Cyprinidae)] Part 2: Semi-static method (ISO 7346-2:1996); German version EN ISO 7346-2:1997
- 97. DIN EN ISO 8692 : Water quality Freshwater algal growth inhibition test with unicellular green algae (ISO 8692:2004); German version EN ISO 8692:2004

(参考5) 水質目標値の導出手順について

水質目標値の導出は、専門家による科学的な妥当性の判断を踏まえて、以下の手順により行う。

手順1 水質目標値の導出に用いる無影響濃度の選定

手順2 無影響導出値(類型毎)の算出及び水質目標値の導出 餌生物 魚介類 水質目標値導出に用いる 水質目標値導出に用いる 無影響濃度 無影響濃度 種別無影響濃度(種別の最小値) 属別無影響濃度(属別の幾何平均値) ※慢性影響に対する標準試験法又はそれに準ず る試験法により求められた値を優先 代表種とその他の魚介類 の種別無影響濃度の比較 ・(参考6) の手順に 従い算出 属別無影響濃度の最小値 代表値 - 種間の感受性差(種比) 無影響導出値 (魚介類) 無影響導出値 (餌生物) 無影響導出値(魚介類)及び無影響導出値(餌生物)を 比較し、小さい方の値を採用 無影響導出值 (類型毎) 一般域の無影響導出値 < 特別域の無影響導出値 ・般域と特別域の無影 響導出値の比較 ①一般域の無影響導出値は その他の影響から推定された値 一般域の無影響導出値≥ ②特別域の無影響導出値は 特別域の無影響導出値 NO 慢性影響から得られた値 であるか YES 特別域の無影響導出値を -般域の無影響導出値を -般域の無影響導出値とする 特別域の無影響導出値とする ※公表されている各種科学文献に示された毒性情 報及び毒性値との比較を行い、専門家の観点から、 妥当な水準であるかの検証を総合的に行う。 水質目標値の導出

(参考6)「無影響導出値(魚介類)」の算出について

「無影響導出値(魚介類)」は、種別無影響濃度*の算出に用いた試験法の種類、試験の生物種、試験結果のばらつき、生物への作用特性や対象物質の蓄積性等を総合的に勘案し算出する。

1. 無影響導出値は、それぞれの水域での代表種*(ニジマス、コイまたはメダカ、マダイ)の種別無影響濃度と他種の種別無影響濃度を比較して求める。また、複数の代表種の種別無影響濃度があった場合は最小値を代表種の種別無影響濃度として採用する。

* 代表種: 代表的試験生物種

- 2. 種別無影響濃度が当該水域の代表種のみであった場合は、他の生物との感受性の相違(種比)として、係数「10」を適用する。
- 3. 代表種を含めた複数種の種別無影響濃度があり、かつ、代表種と他種の最小値の比が 10 未満(代表種の種別無影響濃度/他種の種別無影響濃度の最小値<10) の場合は、代表種の種別無影響濃度に係数「10」を適用する
- 4. 代表種を含めた複数種の種別無影響濃度があり、かつ、代表種と他種の最小値の比が 10 以上(代表種の種別無影響濃度/他種の種別無影響濃度の最小値≥10) の場合は、他種の種別無影響濃度の最小値に係数「1」を適用する。
- 5. 代表種の種別無影響濃度がなく、他種のみである場合は、さらに毒性データ等の検討を行い、 専門家の判断により係数を決定する。

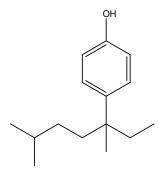
なお、係数については各種データが蓄積された段階で適宜見直すこととする。

(参考7) 無影響濃度(慢性影響を生じない濃度)の推定

水生生物保全に係る水質目標値の導出は、信頼できる試験より得られた慢性影響を生じない 濃度(以下、「無影響濃度」という。)を捉えることを基本とするが、信頼できる毒性値が得 られない場合は、原則として、参考3の「水生生物保全に係る水質環境基準の標準試験法(以 下、「標準試験法」という。)」を実施して毒性値を得ることとする。

現時点で標準試験法が確立されていない場合は、参考3に示した「その他の試験法」から得られた毒性値から無影響濃度を外挿する。

この判断は専門家により行うこととし、判断に際しては以下に示す事項に沿って検討を行う。


- ①無影響濃度を推定する際には、魚介類や餌生物への毒性の作用特性を踏まえる。
- ②「その他の試験法」から得られた毒性値から無影響濃度を推定する際には、国内外に生息 する近縁種(生物分類学的に科あるいは目)の無影響濃度とその他の試験法での毒性値の 比を利用することができる。
- ③また、近縁種の毒性値が得られない場合は、「その他の試験法」で得られた毒性値を「10」で除して無影響濃度を得ることができる。

(参考8) ノニルフェノールの物性等について

ノニルフェノールは、直鎖のノニル基、または分岐ノニル基がフェノール環に結合した環式有機化合物であり、示性式は $C_6H_4(OH)C_9H_{19}$ で示される。ノニルフェノールにはノニル基の分枝の違い及び置換位置の違いにより理論上 211 種の異性体が存在する。市販の分岐型ノニルフェノールの多くは、フェノールとプロピレン 3 量体とのフリーデルークラフト反応により合成され、主成分は分岐型 4-ノニルフェノールであり、その他に、2-置換体、3-置換体、2,4-ジノニル置換体などが含まれる。なお、本報告の文中及び表中の()内の数字は出典番号を示している。

1. 物理化学的特性について

本物質の構造を図1、物理化学的特性等を表1に取りまとめた。

4-(3,6-dimethylheptan-3-yl)phenol

図1 4(又はp)-ノニルフェノール(分岐型)の構造式の一例

表 1 物理化学的特性等

融点		約-8°C(1/2) ※1/※2		
沸点		293-297°C(3)%1, 293-297°C(4)%2		
比重		0.95g/cm ³ (20°C) (4) ½ 2		
蒸気圧		0.072 Pa(25°C,外挿値) (3)※1		
解離定数(pKa)		11.06(3)×1,10.7±1(5)		
log K _{OW}		$3.80 \sim 4.77(1/2) \times 1/2/(5),$		
水溶解度		6,237μg/L (pH7.0) (5)		
ヘンリー定数		0.111 Pa-m ³ /mol (6)		
生物分解性	好気的	BOD 0%(試験期間:2週間、被験物質:100ppm、活性汚泥:30ppm)		
		(7) ノニルフェノールで馴化した汚泥を用いた場合には、ノニルフ		
		ェノールは 40 日間で 78%が分解される(8)。		
	嫌気的	調査した範囲内では報告されていない(8)。		
化学分解性 加水分解性		一般的な水環境中では加水分解されない(8)		
生物濃縮性		環境中の水生生物相において、低 - 中程度 (7)		
土壌吸着性	·	_		

X1: CAS.84852-15-3、X2:CAS.25154-52-3

2. 水環境中での挙動

平成 14 (2002) 年度から平成 21 (2009) 年度に調べられた我が国の淡水域からは、最大で $8.4\mu g/L$ のノニルフェノールが検出され、検出下限値 $0.01 \sim 0.1\mu g/L$ の範囲の中での検出率は、各年度ともに 10%を超える。

環境中からは分岐型の4-ノニルフェノールの異性体が主に検出されている。(1)

ノニルフェノールは、約50年間にわたり、トリス(ノニルフェニル)フォスファイト (TNPP)、ノニルフェノールエトキシレート (NPnEO)類及びノニルフェノールーホルムアルデヒド縮合樹脂の原料として用いられている。ノニルフェノールは、プロピレンの三量体のノネンとフェノールの反応により工業的に合成され、そのうち、約6割が界面活性剤用途とされている。日本界面活性剤工業会ホームページによれば、2000年に日本では16,500tのノニルフェノールが生産され、そのうち、約56%に当たる9,276tが界面活性剤原料として、エチレンオキサイドを付加(ノニルフェノール1mol当たり平均約10molを付加)して、26,127tの非イオン界面活性剤ポリ(オキシエチレン)ノニルフェニルエーテル(以下、ノニルフェノールエトキシレート(NPnEO)という)が国内で生産されている。(1)

水環境中に検出されるノニルフェノールは、ノニルフェノールが排出されたものと、ノニルフェノールエトキシレートとして排出されたものが図2の分解過程を経て副生成したものとがある。

ノニルフェノールエトキシレート のアルキル基は分岐型であることか ら、微生物分解を受けにくく、生分 解はエトキシ基の側から進行する。

環境中に放出されたノニルフェノールエトキシレートは、好気性の環境条件下において、微生物の作用等によって段階的にエトキシ基が外れ、ノニルフェノールジエトキシレート(NP2EO)やノニルフェノールモノエトキシレート(NP1EO)が生成する。

ノニルフェノールジエトキシレート(NP2EO)やノニルフェノールモノエトキシレート(NP1EO)は、これま

での知見からは、嫌気的な状況が生じる環境下で、ノニルフェノールに分解されるものと考えられる。(1)

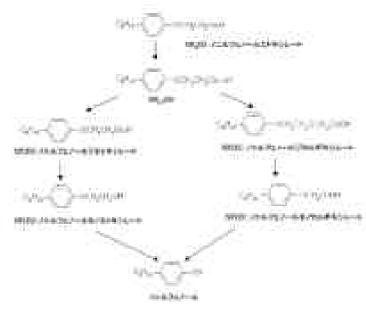


図2 ノニルフェノールエトキシレートの分解過程

ノニルフェノールエトキシレートの自然界での発生は知られておらず、全て人為発生源からのものである。 (2)

3. 化学物質排出把握管理促進法(化管法)による全国の排出量、化学物質審査規制法(化審法)による生産量

表 1 2004-2009 年度における化管法での排出量 (ノニルフェノール)

	届出					
	排出	出量(kg	/年)		移動量	(kg/年)
排出 年度	大気	公共用水域	土壌	埋立	下水道	当該事業所外
2009	501.3	2.1	0.0	0.0	0.2	39,206.2
2008	85.9	1.8	0.0	0.0	6.2	40,920.2
2007	234.9	8.6	0.0	0.0	1,900.2	55,496.0
2006	340.3	10.0	0.0	0.0	2,000.2	68,680.5
2005	783.8	5.0	0.0	0.0	2,700.4	75,890.2
2004	2,461.1	15.0	0.0	0.0	2,200.4	91,968.6

届出外(国による推計)				
排	出量(kg/	(年)		
対象業種	非対 象 業 種	家庭	移動体	
3,136.0				
2,426.0				
6.0				
27.0				
6,551.0				

総排出量(kg/年)					
届出排出	届出外排出量	合計			
503.4	3,136.0	3,639.4			
87.7	2,426.0	2,513.7			
243.5	0.0	243.5			
350.3	6.0	356.3			
788.8	27.0	815.8			
2,476.1	6,551.0	9,027.1			

表 2 2004-2009 年度における化管法での排出量 (ノニルフェノールエトキシレート)

	届出						
排出	技	非出量(kg/s	手)		移動量(kg/年)		
年度	大気	公共用水域	土壌	埋立	下水道	当該事業所外	
2009	371.2	28523.2	0.0	0.0	28290.1	177580.7	
2008	384	38825.6	0.0	0.0	40998.4	195236	
2007	1526.5	49238.8	0.0	0.0	50569.1	259843.4	
2006	1473.8	32113.4	0.0	0.0	54421.9	362849	
2005	4258.3	43552.5	0.0	0.0	74844.5	454343.4	
2004	5520.7	75201	0.0	0.0	68656.6	526227.6	

届出外(国による推計)					
技	非出量(kg/	年)			
対象業種	家庭	移動体			
127363	820773	46378			
177558	594238	51712			
252921	733039	37806			
116257	529052	42838			
87680	597134	63208			
290592	665238	71327			

総排出量(kg/年)						
届出排出	届出外排出量	合計				
28894.4	994514	1023408.4				
39209.6	823508	862717.6				
50765.3	1023766	1074531.3				
33587.2	688147	721734.2				
47810.8	748022	795832.8				
80721.7	1027157	1107878.7				

化審法の旧第三種監視化学物質として届出されたノニルフェノールの製造・輸入数量は 2006 年度では 9,480t、2007 年度は 8,619t である⁽¹⁾。

ノニルフェノールの生産量、輸出入量の推移を表3に示す。

表3 ノニルフェノールの生産量、輸出入量の推移

年	2002	2003	2004	2005	2006	2007	2008	2009
生産量(t) ^{a)}	17,000	17,000	17,000	17,000	8,000	8,000	8,000	6,000

注:a) ノニルフェノール生産量の推定値⁽²⁾

ノニルフェノールエトキシレートの生産量 $^{(3)}$ 、輸出量 $^{(3)}$ 、輸入量 $^{(3)}$ 、化審法に基づき公表された製造・輸入数量 $^{(4)}$ の推移を表 $^{(4)}$ に示す。

表 4 ノニルフェノールエトキシレートの国内生産量等の推移

年	2001	2002	2003	2004	2005	2006	2007	2008	2009
生産量(t) ^{a)}	22,318	23,129	17,586	11,685	6,949	8,204	1		
輸出量 (t) ^{a)}	8,088	11,175	7,135	3,317	2,507	2,372	_		
輸入量 (t) ^{a)}	224	497	0	363	16	88	_		
製造数量及 び輸入数量 の合計 (t) ^{b)}	c)	c)	_c)	c)	c)	6,462	6,844	5,482	5,326

注:

- a) ノニルフェノールエトキシレート純分換算
- b) 製造数量は出荷量を意味し、同一事業所内での自家消費分を含んでいない値を示す
- c) 旧第三種監視化学物質として平成 18 年 7 月 18 日に指定されたため、平成 17 年度以前のデータはない

出典)

物理化学的特性等

- (1) European Commission(2000): International Uniform Chemical Information Database IUCLID Data Set (CAS.84852-15-3)
- (2) European Commision(2000): International Uniform Chemical Information Database IUCLID Data Set (CAS.25154-52-3)
- (3) Howard, P.H., and Meylan, W.M. ed. (1997): Handbook of Physical Properties of Organic Chemicals, Boca Raton, New York, London, Tokyo, CRC Lewis Publishers: 1378.
- (4) O'Neil, M.J. ed. (2006): The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals. 14th Edition, Whitehouse Station, Merck and Co., Inc. (CD-ROM).
- (5) Roy F. Weston Inc. 1990. Determination of the vapor pressure of 4-nonylphenol. Final Report Study No. 90-047.

- (6) 経済産業省・環境省(2011): PRTR排出量等算出マニュアル 第4.1版
- (7) 経済産業省(旧;通商産業省) (1976):通商産業公報(1976年5月28日) [財団法人 化学物質評価研究機構: CERI 有害性評価書 ノニルフェノール CAS.25154-52-3 より]
- (8) 財団法人 化学物質評価研究機構: CERI 有害性評価書 ノニルフェノール CAS.25154-52-3

水環境中での挙動

- (1) 独立行政法人産業技術総合研究所(2004): 詳細リスク評価書(リスク評価書シリーズ3) ノニルフェノール
- (2) 環境省総合環境政策局環境保健部(2001): ノニルフェノールが魚類に与える内分泌攪乱作用の試験結果に関する報告(案)

化管法による全国の排出量、化審法による生産量

- (1) 経済産業省(旧;通商産業省) 化学物質の審査及び製造等の規制に関する法律(化審法)第二十三条第二項の規定に基づき、同条第一項の届出に係る製造数量及び輸入数量を合計した数量として公表された値.
- (2) 化学工業日報社(2004): 14504 の化学商品; 化学工業日報社(2005): 14705 の化学商品; 化学工業日報社(2006): 14906 の化学商品; 化学工業日報社(2007): 15107 の化学商品; 化学工業日報社(2008): 15308 の化学商品; 化学工業日報社(2009): 15509 の化学商品; 化学工業日報社(2010): 15710 の化学商品; 化学工業日報社(2011): 15911 の化学商品.
- (3) 日本石鹸洗剤工業会、日本界面活性剤工業会(2007): 2007 年度 P R T R 対象界面活性剤流通状 況調査報告書(平成 18 年実績調査結果)[環境省(2009): 化学物質の環境リスク評価第7巻]
- (4) 経済産業省 化学物質の審査及び製造等の規制に関する法律(化審法)第二十三条第二項の規定に基づき、同条第一項の届出に係る製造数量及び輸入数量を合計した数量として公表された値。