2nd International Workshop on Sectoral Emission Reduction Potential

Energy Indicators and their Application to Sectoral Approach

Yukari Yamashita

The Institute of Energy Economics, Japan

Paris, 22nd October 2008

Overview

Energy Indicators

- enable assessment of economy-wide energy efficiency and carbon intensity
- give CO2 abatement potential

With Energy Indicators derived from sufficiently specific data, policy makers can

- indentify sectoral problems and solutions for emission reduction
- share concrete, efficient and global actions

International Efforts

- Indicator work done for G8 Gleneagles Action Plan by IEA (2006-2008 July)
 - "Worldwide Trends In Energy Use and Efficiency"
 - "Energy Use in the New Millennium"
 - "Tracking Industrial Energy Efficiency and CO₂ Emissions"
 - "Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels"
- Activities of international industrial associations (IAI, WBCSD, IISI, ICCA, etc.)

Afternoon session, today

- International cooperation (APP, APEC, EAS)
 - Sharing Best Practices
 - Setting target, making Action Plans
 - Collecting process/product level energy/emission data (APP)

The best indicators have direct link with "Best Practice"

 Iron & Steel / Cement; Penetration ratio of Best Available Technologies

Other indicators have some room for improvement to be linked with "Best Practice"

- Road Transport; Energy use per vehicle This indicator includes country-size difference, which is out of scope of comparable efforts
- Such "noise" can be cleared by taking a few steps further in data collection efforts.

Iron & Steel / Cement

- Penetration ratios of Best Available Technologies have been measured.
- Each countries' potential can be estimated by summing up potentials of Best Available Technologies to be installed to production process

Source: IEA, Worldwide Trends

Power Generation Sector

- Performed thermal efficiencies have been measured.
- In this presentation, proposed benchmark for 2030 is 50.9%, the efficiency of IGCC in ideal operation.
- However, thermal efficiencies are influenced by capacity factor of each plant.
- Removing this influence by data collection will make this indicator more comparable.

Coal thermal efficiencies (1960-2030)

Road Transport

- Energy per vehicle indicator have been derived from statistics.
- This indicator includes country-size difference.

Road Transport

- Vehicle-km correction has improved this problem.
- Removing yet remaining factors will further improve comparability of cross-country indicators.

Transport Sector Intensity

In this presentation, proposed benchmark for 2050 is set to lower the aggregate emission level of G7 below 50% of 2005 level.

Residential Sector

- Energy per capita indicator have been derived from statistics.
- This indicator includes diversity of climate and dwelling area size.

Residential Sector

- Climate and dwelling area corrected
- Removing yet remaining factors will further improve comparability of cross-country indicators.

Residential Sector Intensity

 In this presentation, proposed benchmark for 2050 is set to lower the aggregate emission level of G7 below 50% of 2005 level.

Commercial & Other Manufacturing

- Energy per sector GDP indicator have been derived from statistics.
- Room for further refinement with more information/data which are domestically available

- Some indicators successfully show "opportunity for emission reduction" to be realized by sharing Best Practice.
- Other indicators need some improvement in statistics to better illustrate relation with Best practice.
- This can be improved by taking a few steps further in data collection efforts.
- Data collection as below would be a great step forward:
 - Manufacturing: production index (e.g. IIP)
 - Power: capacity factor
 - Transport: historical vehicle km
 - Residential: number of household
 - Commercial: floor space

Japan's example

Improve efficiencies of appliances/facilities to the theoretical limit of technologies and introducing them as replacement whenever applicable.

Picture with full introduction of the World Best Available Energy Technologies

Household/Office Effort: 71 mil kl

- Display for TV, etc.
- All replaced by LC, PDP, OLED
- Server, storage, network appliances
- All appliances will be the most efficient models
- Efficient Water Heater
 - 0.7 mil units (2005) \rightarrow 34 mil units (2030)
- Improvement of lamps/FL & LED/EL promotion
- Further improvement of building/house insuration

Transport Effort: 29 mil kl

- Further improvement of fuel efficiency
- of automobiles (stock base)
- 3% improvement (1990-2005)
- \rightarrow 25% improvement (2005-2030)
- Faster penetration of Next Generation
- Vehicles (new car sales share)
 - 2% (2005) → 70% (2030)

Emission share of Industry, power and roadtransport sectors is forecasted to be 79% in 2020.