2016年度冬版L2-Tech水準表の主な変更点(別紙)ver.1.01

←新たに追加された設備・機器等

	No	1度 10度、体験学の							2016年冬版L2-Tech水 ²	16年冬版L2-Tech水準表(変更点:赤字)					
2016年度	2016年度		設備・機器等の 名称											定単位	その他
夏版	(素案)					条件	能力		名 称		条件	能力		名 称	
A-02-001	A-02-001		ターボル素機- HFCターボ冷凍機	・設備・機器等の名称の変更 ・原理・しくみの変更	・新た仁鉱売する自然冷様ター 水冷凍機と別するため ・同上(使用している冷燥の違い の説明を追加)	(項目多数のため皆略 ※2016年度夏 原L2-Tech水準表参照)	(項目多数のため省略 ※2016年度業 版L2-Tech水準表参照)			名称: ターボ冷凍機 原理・しくみ: 水を熱景としたヒートポンプ方式の冷凍機。	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素素)参照)	(項目多数のため省略 ※2010年度冬 版L2-Tech水準長(素素)参照)	-		名称: IFCターボ冷凍機 原理・しくみ: 無規能、圧縮機、凝集器、弁からなる。蒸発器内 の冷解を展発を世級短額内のパイプの中の循環ホ を冷やし、冷水として取り出して使用する機器 蒸乳した冷解は圧縮機で昇圧され、凝縮器内の冷 効かて凝縮され液体に戻る。HFC冷障を使用して いる。
A-02-003	A-02-004	産業・業務 (業種共 通)	空冷ヒートポンプチラー	・指標(測定単位)の追加	・COPと比較しIPLVのほうが、 より実用に近い測定単位となる ケースもあると判断したため (試験条件および計算方法も変更 となるが、準拠する規格は変更な		N/A	N/A	N/A	N/A	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素案)参照)	(項目多数のため省略 ※2016年度冬版L2-Tech水準表(素案)参照)	-		(項目多数のため寄稿 ※2016年度冬版L2-Tech 水準表(素素)参照)
A-06-004	A-09-004	産業・業務(集種共通)	高温水ヒートポンプ(水熱源・一 適式)	- クラス (条件) の追加 ・指標(試験条件) の追加 ・指標(計算方法) の追加	・当該クラスについて、一定の市 場別機が見込めることを確認でき たため ・クラス(条件)の追加に伴い、 それに対応する標準的な記録条件 を設定する必要があったため ・クラス(条件)の追加に伴い、 それに対応する標準的な計算方法 を設定する必要があったため		N/A	N/A	N/A	NA	水热源運転 70°C、50°C、38.6°C、50°C		-		計算方法: COP=のP COP:成績係数 の連絡能力(M) P立格消費電力(M) 試験条件: 成績係数(COP)の第出にあたっては、温水出口温度、熱源水入口温度、熱源水出口温度、温水出力 造験差が下のこおり設定することを条件とする。 温水出口温度:50°C 熱源水入口温度:50°C 温水出入口温度:50°C 温水出入口温度差:50°C
A-06-009	A-09-009	(業種共	蒸気再圧縮装置(その他熱源・循 環式)→ 蒸気再圧縮装置	・ 設備・機器等の名称の変更 ・ 原理・ しくみの変更	・当該設備・機器等の名称を、より標準的な名称に変更する必要があると判断したため、当該設備・機器等の原理・しくみについて、より正確な説明に変更する必要があると判断したため		-	kWh/kg		産業プロセス等で利用された排熱を回収し、 循環式の供給方式を用いるヒートポンプ。但 任の悪気を圧縮して再利用することで、ボイ 等の繁気を利用する設備・機器等の省エネ を実現可能。	版L2-Tech水準表(素案)参照)		kWh/kg		原理・しくみ 産業プロセス等で排熱を回収・再圧縮し、循環式 の供給方式を用いるヒートボンプ。低圧の振気を 圧縮して再発明することで、ボイラ等の蒸気を利 用する設備・機器等の省エネを実現可能。
A-07-001	A-10-001	産業・業務 (業種共 通)	ヒートポンプ給湯機(空気熱源)	・クラス(条件)の削除	・「循環保温」というクラス(条件)が業界標準でないことが確認 できたため		【加熱能力】 10kW以下 10kW超20kW以下 20kW超30kW以下 30kW超40kW以下 40kW超50kW以下 50kW超	-	年間標準貯湯加熱エネルギー消費効率	-	WA	N/A	N/A	N/A	NA
A-09-002	A-14-002	産業・業務(業種共通)	蒸気ポイラ(質流ポイラ)	・指標(試験条件)の変更 ・原理・しくみの変更	・指標の表記が不十分であると判断したため、 ・当該設備 機器等の原理・しく みについて、より正確な説明に変 更する必要があると判断したため		【類発量】 1500kgh以上3000kgh未満 3000kgh以上7200kgh未満 7200kgh以上	%		準拠する規格:JISB8222-1993 原理・レくみ: 機料の燃料を熱源として水を加熱して蒸気を 現生させ、その蒸気を他に供給する装置。引 型・軽量で、乗発用 - 産業用の幅広い乗機で 使用される。		【氨発量】 1500kgh从上 1500kgh以上2000kgh未満 3000kgh以上7200kgh未満 7200kgh以上	%		試験条件: JISB8222-1993および公益制団法人日本小型賞法 ボイラー協会が規定する「ボイラー性能表示基準値 展理・しくま: 展理・しくま: 展現・しくま: 成別の微矩を施源として水を加熱して蒸気を発生 させ、その蒸気を他に供給する装置。小型・軽量 で、空調用、業格用・産業用の幅広い業種で使用 される。
A-10-001	A-15-001	産業・業務(業種共通)	ガスエンジンコージェネレーショ ン	・ クラス (能力) の変更 ・原理・ しくみの追記	・500kW以下のクラスにおい て、用途等の違いがみられるケー スが多いことが判明したため ・当該投資機関等の原理・しく みについて、より正確な説明に変 更する必要があると判断したため		「映電出力」 35kWは下 35kW間500kW以下 500kW間750kW以下 750kW間100kW以下 1000kW間200kW以下 2000kW間300kW以下 3000kW間300kW以下	%		(項目多数のため省略 ※2016年度夏版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素素)参照)	「映電出力」 54W表書 5kW超10kW以下 10kW超25kW以下 25kW超25kW以下 25kW超50kW以下 50kW超50kW以下 750kW超70kW以下 100kW超70kW以下 100kW超200kW以下 300kW超300kW以下 300kW超300kW以下	%		Ę.

	No					2016年夏版L2-Te	ech水準表	-			2016年冬版L2-Tech水準	表(変更点	:赤字)	
2016年度	2016年度 冬版		設備・機器等の 名称							2			定単位	その他
A-10-003	(素案) A-15-003	産業・業務 (業種共 通)	燃料電池コージェネレーション	・原理・しくみの変更	・当該設備・機器等の原理・レく (項目多数のため略等 ※2016年度夏 みについて、より正確な説明に変 版12-Tech水準表参照) 更する必要があると判断したため	NE.27	%	名 称	原理・レくみ: ガス/石油/水素等を燃料とし、燃料電池方式 により発電し、その際に生じる廃熱を同時回 収する熱電供給システム。	条 作 (項目多数のため皆略 ※2016年度冬 版L2-Tech水準表(素案)参照)	€ <i>D</i>	単位 %	H 12	原理・しくる: ガスを燃料とし、燃料電池方式により発電し、そ の際に生じる原熱を同時回収する熱電供給システ ム。廃熱で再生る最大や温水、製造銀のプロ セス利用や、施設の空間・給温などに幅広く使用 される。
A-11-002	A-16-002	産業・業務 (業種共 通)	空気冷媒方式冷凍機	・クラス(条件)の追加 ・指標(試験条件)の追加	・当該クラスについて、一定の市 N/A 場別模が見込めることを確認でき たため ・クラス(条件)の追加に伴い、 それに対応する標準的な試験条件 を設定する必要があったため	NA	N/A	N/A	N/A	庫應量(有効容積):1300m3規模	-	-	成績係数 (COP)	試験条件: 成績係数(COP)の賃出にあたっては、海内温度、 課度量(有効容積)をそれぞれ以下のとおり設定 することを終たする。なお、削減する機器動力 も加味した混格消費エネルギーを用いる。 無内温度:60°C 課度量(有効容積): 1300m3規模
A-15-001	A-20-001	産業・業務 (業種共通)	and the same of th	・設備・機器等の名称の見直し・原理・しくみの変更	- 基本的な原理・しくみが異なる (項目多数のため省略 ※2016年度更 ものごとに設備・機商等を設定し、版L2-Tech水準数参照) たほうがよいと判断したため ・設備・機商等の見返しに伴い、 それに対応した説明に変更する必 要があると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	W	全損失	名称:変圧器 原理・しくみ: 電磁誘導を利用し、用途に応じて交流電圧を 発酵させるを置。低限年磁性体材料を使用す も低振失機能とする等、損失を低減する工夫 がなされている。	版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	w	全損失	本版集(中か年刊), 「SOURISME 名称: 油入製圧器 原理: しく名: 電磁調準を利用し、用途に応じて交流電圧を昇降 せせる装置、低限天戦性材料を使用する低調失 増速とする等、損失を促進する工夫がなされてい 3、クラフト紙・プレスボード等の絶縁物と絶縁 油にて構成されている。
A-15-001	A-20-002	産業・業務(業種共通)	変圧器→ モールド変圧器	・設備・機器等の名称の見直し ・原理・しくみの変更	・基本的な原理・しくみが異なる (項目多数のため省略 ※2016年度更 ものごと記憶・機関等を設定し 版L2-Tech水準美参照) たほうがよいと判断したため ・記録・機器等の見慮しに伴い、 それに対応した説明に変更する必 要があると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	W	全損失	名称:変圧器 原理・して為: 電磁器導を利用し、用途に応じて交流電圧を 昇降させる装置。低損失磁性体材料を使用す る低損失機関とする等、損失を低減する工夫 がなされている。	版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	W	全損失	名称:モールド変圧器 原理・してあ: 電磁器導を利用し、用途に応じて交流電圧を昇降 させる装置。低損失磁性体材料を使用する低損失 構造とする等、損失を低減する工夫がなされてい る。耐熱熱機能をコイルを構成し、エボキシ樹 踏でモールドされている。
A-16-001	A-22-001	産業・業務(業種共通)	窓ガラス Low-E複層ガラス(LE3+A12+FL3)	・設備・機器等の名称の見直し ・原理・レくみの変更	・基本的な原理・しくみが異なる Low-E機関ガラス(LE3+A12+FL3) ものごとに設備・機器等を設定し 新祭用 たほうがよいと判断したため ・設備・機器等の見直しに伴い、 それに対応した説明に変更する必 要があると判断したため		W/m2K	熱貫流率	名称: 窓ガラス 原理・しくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少ないエネルギーで空間を行うことができるようになる。 新熱・高度熱化で必要原発行の低減を行う ことによる削減ポテンシャルは大きい。			W/m2K	熱貫流率	名称:Low-E模層ガラス(LE3+A12+FL3) 原理・しくみ: 機関ガラスの中空階側のガラス面にLow-E全層膜 をコーティングすることで放射による熱移動量を 低減したガラス。動熱を行うことができるよう 少ないエネルギーで空間を行うことができるよう になる。
A-16-001	A-22-002		窓ガラス- 三層Low-E複層ガラス (LE3+Ar11+FL3+Ar11+LE3)	・設備・機器等の名称の見遠し ・原理・しくみの変更	- 基本的な原理・ しくみが異なる しか・三三層ガラス ものごとに設備・機器を設定し (LES+A/11+FL3+A/11+LE3) 数		W/m2K	熱賣流率	名称:窓ガラス 原理・しくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少ないエネルギーで空間を行うことがで きるようになる。 高断熱・高変熱化で冷暖房負荷の低減を行う ことによる削減ボデンシャルは大きい。			W/m2K	熱賈流率	名称:三原Low-E複層ガラス (LE3+A/11+LE3) 原理・レくま: 三層で構成される複層ガラスの中空層製のガラス 国にLow-全層製を出一ティングすることで放射 による熱移動量を低減したガラス。断熱を行うことによって、より少ないエネルギーで空間を行うことができるようになる。
A-16-001	A-22-003		窓ガラス 真空Low-E複層ガラス (LE3+Ar9+FL3+V0.2+LE3)	・設備・機器等の名称の見適し ・原理・しくみの変更	- 基本的な原理・しくみが異なる ものごと記憶・機両等を設定し (LE3+Ar9+FL3+V0.2+LE3) たほうがよいと判断したため - 設備・機両等の見慮しに伴い、 それに対応した説明に変更する必 要があると判断したため		W/m2K	熱貫流率	名称: 窓ガラス 原理・しく表: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少ないエネルギーで空間を行っことがで きるようになる。 高断熱・高速熱化で冷暖房負荷の低減を行う ことによる削減ボデンシャルは大きい。		-	W/m2K	熱貫流率	名称:真空Low-E被層ガラス (LE3+Ar9+FL3+V0.2+LE3) 原理・しくみ: 真空・しくみ: 真空ガラスとLow-Eガラスを組み合わせた複薄ガラスにすることで、放射による熱移動象を低減したガラス、断熱を行うことによって、より少ないエネルギーで空間を行うことができるようになる。
A-16-001	A-22-004	産業・業務(業種共通)	窓ガラス- アタッチメント付きLow-E増開ガ ラス(LE3-Arti-FL3(アタッチメ ント付き))	・設備・機器等の名称の見遠し ・原理・しくみの変更	・基本的な原理・しくみが異なる アタッチメント付きLow-E機関ガラスものごとに設備・機器等を設定し (LES+AKOF-LS (アタッチメント付きしながよいと判断したため き)) リフォーム用 要があると判断したため		W/m2K	熱貫流率	名称: 窓ガラス 原理・しくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、衝熱を行うことによって、 より少ないエネルギーで空間を行うことがで さるようになる。 高断熱・高遮熱化で冷暖房負荷の低減を行う ことによる削減ボデンシャルは大きい。		-	W/m2K	熱貫流率	名称:アタッチメント付きLow-E複覆ガラス (LE3+ArG+FL3 (アタッチメント付き)) 原理・しくみ: 機関ガラスの中空層側のガラス面にLow-E全属膜をユーティングすることで放射による熱移動量を 低速したガラス。アタッチメントにより、ガラス かつみを取存サッシに取り付けられるため、大 がかりな工事を必要としない。断熱を行うことによって、より少ないエネルギーで空間を行うことができるようになる。

	No		設備・機器等の				2016年夏版L2-T	ech水準表				2016年冬版L2-Tech水	≇表(変更点:赤ª	学)	
2016年度 夏版	冬版		と 名称								Х. М.		測定単位		その他
	(素案) A-22-005	産業・業務	窓ガラス→	・設備・機器等の名称の見直し	・基本的な原理・しくみが異なる	条件 直空ガラス (TF3 + V0 2+FL3)	能力	単位 W/m2K	名 称	名称:窓ガラス	条件 リフォーム用	能力	単 位 W/m2K 勢1		名称: 真空ガラス (LE3 + V0.2+FL3)
				・原理・しくみの変更	ものごとに設備・機器等を設定したほうがよいと判断したため、 ・設備・機器等の見直しに伴い、 それに対応した説明に変更する必 要があると判断したため	リフォーム用				原理・しくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少ないエネルギーで空間を行うことがで きるようになる。 高新熱・高速熱化で冷暖房負荷の低減を行う ことによる削減ボデンシャルはえぎい。					原理・しくみ: 2枚のガラスの間に真空層を設けることで、熱移動量を低減したガラス。断熱を行うことによって、より少ないエネルギーで空間を行うことができるようになる。
A-16-001	A-22-006		窓ガラス- 現場施工型後付けLow-E模層ガラ ス(FL6+A12+LE5)		・基本的な原理・しくみが異なる ものごとに設備・機器等を設定し たほうがよいと判断したため ・設備・機器等の見返しに伴い、 それに対応した説明に変更する必 要があると判断したため			W/m2K	熱貫流率	名称: 窓ガラス 原理・しくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少ないエネルギーで空間を行うことができるようになる。 高新絵・高速熱化で冷暖房負荷の低減を行う ことによる削減ボテンシャルは大きい。			W/m2K 熱到		名称:現場施工型後付けLow-E複層ガラス (FL6+A12+LE5) 原理・レくみ: 既存の窓ガラスの上からLow-Eガラスを貼ること で放射による熱移動量を低減するガラス。断熱を 行うことによって、より少ないエネルギーで空調 を行うことができるようになる。
A-16-001	A-22-007		窓ガラス- 薄型Low-E模層ガラス (LE3+Kr4+FL3)	・設備・機器等の名称の見直し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものことに設備・機関等を設定し たほうがよい半新したため ・設備・機関等の見返しに伴い、 それた対応した説明に変更する必 要があると判断したため			W/m2K	熱貫流率	名称: 窓ガラス 原理・レくみ: 窓ガラスによる断熱は「受動的空間技術」と も呼ばれており、断熱を行うことによって、 より少なり江ネルギーで空間を行うことがで きるようになる。 高無熱・高速熱化で冷暖房負荷の低減を行う ことによる削減ボデンシャルは大きい。			W/m2K 熱到		名称:薄型Low-E模層ガラス(LE3+Kr4+FL3) 原理・しくみ: 模層ガラスの中空間側のガラス固にLow-E金属膜 セコーティングすることで放射による熱等動量を 低減したガラス、アタッチメントを使用せずにガ ラス部分のみを成存サッシに取り付けることがで きる。断熱を行うことだよって、より少ない工来 ルギーで空間を行うことができるようになる。
A-XX-XXX	A-02-002	産業・業務 (業種共 通)	自然冷媒ターボ冷凍機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬月 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-05-001	産業・業務 (業種共 通)	間接気化式冷却器	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 下ech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-21-001	産業・業務 (業種共 通)	蒸気駆動圧縮機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-21-002	産業・業務 (業種共 通)	熱回収式ねじ容積形圧縮機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-13-001		真空管形集熱器 (強制循環型太陽 熱給湯器用)	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-06-004		木質ベレット直焚き吸収冷温水機 (二重効用)	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-13-002	産業・業務 (業種共 通)	平板形集熱器(強制循環型太陽熱 給湯器用)	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-07-001	産業・業務 (業種共 通)	パッシブ地中熱利用システム	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-12-001	産業・業務 (業種共 通)	ハイブリッド給湯システム (業務 用)	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)		2016年度 版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
A-XX-XXX	A-24-001	産業・業務 (業種共 通)	業務用衣類洗濯乾燥機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 冬版 Tech水準表 Tei (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)
3-XX-XXX	B-04-001	産業(業種 固有)	遠心脱水型コンテナ(容器)洗浄 乾燥機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 (2 冬版L2- 下ech水準表 Ter (素案)参 (3	版L2- ch水準表	(2016年度冬版L2-Tech水準表(素案)参照)

	No						2016年夏版L2-T	ech水準表				2016年冬版L2-Tech水海	^主 表(変更点:赤字)	
2016年度 夏版	2016年度 冬版	区分	設備・機器等の 名称								2 & #	プラス	測定単位 名 3	そ の他
B-XX-XXX	B-05-001	産業(業種 固有)	内部熱交換最適化蒸留システム	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)		平度 (2016年度冬版L2-Tech水準表(素案)参照) ^華 表
B-XX-XXX	B-07-001	産業 (業種 固有)	熱回収式工業用繼編物乾燥機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	案)参照)	(2016年度 冬版L2- Tech水準表 (素案)参 (素案)参	
B-XX-XXX	B-08-001	産業 (業種 固有)	熱回収式工業用纖編物熱処理機	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 冬版L2- Tech水準表 (素案)参 (素案)参	準表
C-01-001	C-01-001	運輸	乗用車・内燃機関自動車(ガソリ ン・ディーゼル車)→ ガソリン・ディーゼル車 (乗用	・設備・機器等の名称の変更	・当該設備・機器等の名称を、よ り標準的な名称に変更する必要が あると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	km/l	燃費	名称: 乗用車・内燃機関自動車(ガソリン・ディーゼル車)		(項目多数のため省略 ※2016年度冬版L2-Tech水準表(素案)参照)	km/l 燃費	名称: ガソリン・ディーゼル車(乗用車)
C-01-002	C-01-002	運輸	南川車・重量車・内燃機関自動車 (ディーゼル車/天然ガス車)→ ディーゼル・天然ガス車(商用 車・重量車)	・設備・機器等の名称の変更	・当該設備・機器等の名称を、よ り標準的な名称に変更する必要が あると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	km/l	燃費	名称: 商用車・重量車・内燃機関自動車 (ディーゼル車/天然ガス車)	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素案)参照)	(項目多数のため省略 ※2016年度冬版L2-Tech水準表(素案)参照)	km/l 燃費	名称: ディーゼル・天然ガス車(商用車・重量車)
C-02-001	C-02-001	運輸	乗用車・ハイブリッド車→ ハイブリッド自動車(乗用車)	・設備・機器等の名称の変更	・当該設備・機器等の名称を、よ り標準的な名称に変更する必要が あると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	km/l	燃費	名称: 乗用車・ハイブリッド車	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素案)参照)	(項目多数のため省略 ※2016年度冬版L2-Tech水準表(素案)参照)	km/l 燃費	名称: ハイブリッド自動車(乗用車)
C-02-002	C-02-002	運輸	商用車・重量車・ハイブリッド車 → ハイブリッド自動車(商用車・重 量車)	・設備・機器等の名称の変更	・当該設備・機器等の名称を、より標準的な名称に変更する必要が あると判断したため	トラクタ以外	区分1 区分2 区分3 区分4 区分5 ※区分は省エネルギー法による	km/l	燃費	各称: 商用車・重量車・ハイブリッド車	トラクタ以外	区分1 区分2 区分3 区分4 区分5 ※区分は省エネルギー法による	km/l 燃費	名称: ハイブリッド自動車(商用車・重量車)
C-03-001	C-03-001	運輸	乗用車・電気自動車→ 電気自動車(乗用車)	・設備・機器等の名称の変更	・当該設備・機器等の名称を、よ り標準的な名称に変更する必要が あると判断したため	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	(項目多数のため省略 ※2016年度夏 版L2-Tech水準表参照)	Wh/km	交流充電電 力消費量	名称: 乗用車・電気自動車	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素案)参照)	(項目多数のため省略 ※2016年度冬版L2-Tech水準表(素案)参照)		電電 名称: 電気自動車(乗用車)
D-01-002	D-01-003	家庭	ヒートポンプ式温水床暖房	・クラス(能力)の追加	- 当鉄クラスについて、一定の市 場所模が見込めることを確認でき たため		【加熱能力】 3.6kW 4.0kW 4.5kW 5.0kW 6.0kW 6.7kW 7.0kW 11.8kW	-	成績係数 (COP)	(項目多数のため省略 ※2016年度夏原L2- Toch水準長参照)		【加熱能力】 3.6kW 4.0kW 4.5kW 5.0kW 6.7kW 7.0kW 8.7kW 11.6kW	- 成績係要 (COP)	枚 (項目多数のため省略 ※2016年度冬版L2-Tech 水準疫(素素)参照)
D-05-001	D-05-001	家庭	太陽熱集熱圏対応型エコキュート	- 指標(試験条件)の追加 - 指標(計算方法)の追加	・試験条件について、 別SC9220-2011と比較し、より実 用に近い路線条件であると増加したため(ただし、当該試験条件に、 えため(ただし、当該試験条件で、 よる性能を全人とでもの別分をいてめのがかないため、既存の試験条件も維持している) ・試験条件の変更に伴い、それに 別だした計算方法を設定する必要 があるため	N/A	N/A	N/A	N/A	N/A			温効率(解 計算方法:

	No						2016年夏版L2-T	ech水準表						2016年冬版L2-Tech水	準表(変更)	点:赤字)	
2016年度	2016年度 冬版	区分	設備・機器等の 名称										クラス		1	制定単位	その他
夏坂 D-15-001	(素案)	家庭	窓ガラス(家庭用) Low-t値開ガラス(LE3+A12+FL3) (家庭用)	- 設備・機器等の名称の見直し - 原理・しくみの監更	- 基本的な原理・しくみが良なる ものごとに設備・機能等を設定し たほうガネルと判断したため ・設備・機能等の原産しに伴い、 それに対応した説明に変更する必 要があると判断したため	<u>多</u> 件 Low-E機関ガラス(LE3+A12+FL3) 新築用	能力 -		名称		t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	築 併	-	能力		名 称 熟責滋辛	名称:Low-E模層プラス(LE3+A12+FL3)(家庭 用) 原理・しくる: 模型プラスの中空間側のガラス面にLow-E全層膜 セコーティングすることで放射による熱移動量を 低温にカラス。断熱を行うことによって、より 少ないエネルギーで実際を行うことができるよう になる。主に住宅等に導入されている。
D-15-001	D-16-002	家庭	窓ガラス(家庭用)- 三層Low-E模層ガラス (LE3+Ar11+FL3+Ar11+LE3)(家 庭用)	・設備・機器等の名称の見適し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごと記憶機・機器等を設定し 応導力がよいと判断したため ・設備・機器等の見遠しに伴い、 それに別応した説明に変更する必 要があると判断したため	(LE3+Ar11+FL3+Ar11+LE3) 新築用		W/m2K	熱貫流率	名称: 窓ガラス(家庭用) 原理・しくる 窓ガラスは単板ガラスと複層ガラスに大別で さ、複像ガラスは単板ガラスを破ガラスから成 りその間(中空間を設けたもので、単板ガラス 力にかに開熱性能が高い、機関ガラスの部場、 の不活性ガスの封入、真型に等がある。 LOWモ ガラスに、LOWモ 全線展型コーティ ングすることで設計伝統による熱移動量を低 流したガラスであり、複像ガラスにすること でより効果的になる。 見空ガラスは、機関ガラスにすること でより効果的になる。 の2mmの真を関となっているカラスであ る。真定層が熱のに導と対流を防ぎ、コー がえることで高断的性能を実現する。ガラス が見るのことで高い動性性を実現する。ガラス が見るのことで高い動性性を実現する。が が見るととで、電機ガラスの化が関係の の厚みを取るで、電機ガラスの化が に関係が に	t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				W/m2K	熱質滋率	名称:三剛Low-E製開ガラス (LE3+Ar11+FL3+Ar11+LE3)(家庭用) 原理・レイネ: 三層で構成される範囲ガラスの中空層側のガラス 面にLow-全層側をエーティングすることで放射 による熱等制量を成果したガラス、鬼ガラスによっ断熱は「受動的空間技術」とは呼ばれており、断熱を行うことによって、より少ないエネルギーで空間を行うことができるようになる。主に住宅等に導入されている。
D-15-001	D-16-003	家庭	窓ガラス(家庭用) - 真堂(zow-E模層ガラス (LE3+Ar9+FL3+V0.2+LE3)(家庭 用)	・設備・機器等の名称の見直し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごとに設備・機器等を設定し になっかよいと判断したため ・設備・機器等の息感しに伴い、 それに対応した説明に変更する必 要があると判断したため	(LE3+Ar9+FL3+V0.2+LE3)		W/m2K	熱實流率	名称: 窓ガラス(家庭用) 原理・しくみ 窓ガラスに単板ガラスと複層ガラスに大別で を、複質ガラスは単板ガラスとは変数の更終ガラスから成 リその間に中空層を設けたもので、単板ガラ スに比ぐ断熱性能が落い、機関ガラスの断熱 しいモ・ガラスの断熱 にいモ・台裏原と一ティー・ヤ空層へ の不活性ガスの封入、真型に等がある。 しいモ・ガラスは、しい・全線医フーティー ングすることで放射伝統による熱移動量を 域したガラスであり、複関ガラスにすること でより効率的になる。 真空ガラスは、機関ガラスの中空層部が の2mmの真空層となっているガラスである る。真空間が熱のに導と対域を妨ぎ、3カー 炉えることで高断熱性能を実現する。ガラス 炉えることで高断熱性能を実現する。ガラス 炉えるととで高断熱性能を実現する。ガラス の厚みを発えずに関層ガラスの代替商品(仮存 住宅対応)として注目されている。	\$ 5 Mg Et :				W/m2K	熱質滋率	名称:真空Low-E機関ガラス (LE3+Ar9+FL3+V0.2+LE3)(家庭用) 原理・しくお: 夏也ガラスとLow-Eガラスを組み合わせた機関ガ ラスにすることで、放射による無移動量を低減し たガラス・断熱を行うことによって、よりかない 工名ルギーで変数を行うことができるようにな る。主に任宅等に導入されている。

	No						2016年夏版L2-Te	ch水準表	_		2016年冬版L2-Tec	水準表(変更	点:赤字)	
2016年度	2016年度 冬版	区分	設備・機器等の 名称								クラス		則定単位	その他
夏版	(素案)					条件		単位			条 件 能 力		名称	
D-15-001	D-16-004	家庭	窓ガラス(家庭用) - アタッチメント付きLow-毛護層ガ ラス(E3+Ar0+FL3(アタッチメ ント付き))(家庭用)	・設備・機器等の名称の見直し ・原理・しくみの変更				W/m2K	熱質流率	名称: 窓ガラス(家庭用) 原理・しくね 窓ガラスは単板ガラスと複層ガラスに大別でき、複層ガラスは英数枚の単板ガラスと複形が カナスは単板ガラスは複数枚の単板ガラスから成り りその間に中空層を設けたもので、単板ガラ では、変形である。 しのW-E ガラスは、LOW-E 企画機をコーナー グすることで送射伝統による熱を動量を でより効果的になる。 裏空ガラスは、機関ガラスの中空層部が 0.2mmの東空層となっているガラスであ あ、真空間が無めに伝導と対流を防ぎ、コー ディングにいるして呼ば、コー ディングにいるして場と対流を防ぎ、コー ディングにいるして場と対流を防ぎ、コー ディングにいるして場に機関ガラスの中空層部が の厚えを表皮がは関射が成射を 別えることで高断熱性能を実現する。ガラス の厚えを表皮がは関射が成射を かの見えを表皮がは関射が成射を かの見えを表皮がは関射が成射を かの見えを表皮がは関射が成射を かの見えを表皮がは関射が成射を かの見えを表皮がは関射が成射を かの見えを表皮がは関射が成射を がしたいたしては関射が成射を がしたいたしたが には、 には、 には、 には、 には、 には、 には、 には、	リフォーム用 -	W/m2K	熱賣流率	名称:アタッチメント付きLow-E機関ガラス (LES+Ad-FLS (アタッチメント付き))(家庭 用) 原理・しくみ: 機関ガラスの中空開倒のガラス面にLow-E企業順を セコーティングすることで設計による熱移動量を セニーディングすることで設計による熱移動量を 低減したガラス,アタッチメントにより、ガラス 野分の永を配子ッシに取り付きわるため、大 がかりな工事を必要としない。新熱を行うことに よって、より少ないエネルギーで空間を行うこと ができるようになる。主に住宅等に導入されてい る。
D-15-001	D-16-005	家庭	思ガラス(家庭用)→ 真空ガラス(LE3+V0.2+FL3) (家庭用)	・設備・機器等の名称の見直し ・原理・レくみの変更	・基本的な原理・しくみが異なる ものごとに設備・機器等を設定し たきつがよいと開催したため ・設備・機器等の見返しに伴い、 それに対応した機器で設定に変する必 要があると判断したため			W/m2K	熱質流率	名称:窓ガラス(家庭用) 原理・しくみ 窓ガラスと単板ガラスと複層ガラスに大別 窓ガラスと単板ガラスと複層ガラスに大別 さ、複層ガラスは最安枚の単単ガラスから成 リモの間に中空層を設けたもので、単歩ガラ 大に比べ無格性能が高い。機圏ガラスの断熱 性能改善が送してはLow-モゲ、中空層へ の不活性ガスの刻入、真空化等がある。 しいモガラスに、Low-モ (のまた)、20年で全 選込しカプラスですることで放射伝統による熱移動量を にしたプラスであり、模関ガラスでも となりが観点がよる。 第空ガラスは、40年で全 第空ガラスは、40番が、10年であり、20mの東空層となっているガラスであ あ、真空増が熱の伝導と対策を防ぎ、コーディングしているLow-E(仮路制度が放射を 別えることで高端断性能を実現する。ガラス の厚点を変えずに関東ガラスの代替際派(依存 住宅対応)として注目されている。	リフォーム用 -	W/m2K	熱震滋辛	名称:東空ガラス(LE3+V02+FL3)(家庭用) 原理・しくみ: 2枚のガラスの際に真空層を設けることで、無移動 量を低減したガラス、窓ガラスによる断熱は「要 動的空間転相」とも呼ばれており、断熱を行うこ とこって、より少ないエネルギーで空間を行うこ とことができるようになる。主に住宅寺に導入され ている。

	No						2016年夏版L2-Tech水準表		2016年冬版L2-Tech水 ²	≜表(変更点	:赤字)	
2016年度	2016年度 冬版		設備・機器等の 名称	変更・追加の概要							定単位	その他
24.141	(高麗) D-16-006	家庭	受力ラス(寮庭用) - 現場施工取役付けtow-E機関ガラ ス(FL6+A12+LE5)(寮庭用)		・基本的な原理・しくみが異なる ものごとに影像・細胞等を設定し たほうがよいと判断したため ・設備・機器等の見返しに伴い、 それに対応した説明に変更する必 更があると判断したため		单位 名 W/m2K 熱實源	名称: 窓ガラス(家庭用) 原理・しくみ 窓ガラスは単板ガラスと復開ガラスに大別で を、棚層ガラスは複数枚の単板ガラスから成り けるの間で中間を設けたらので、単年ガラス に比べ断熱性能が高い。機層ガラスの断熱 性能改善方法としてはい四年化・中空層・ の不活性ガスの封入、真空化等がある。 しの生ガラスは、しかに全角膜をコーティ メクすることで放射性気能にある熱移動車を低 減したガラスであり、機層ガラスにすること でも対象学的である。 真空ガラスは、機関ガラスの中空層部が の2mmの裏空間となっているガラスであ あ。真空層が熱の佐場と対域を防ぎ、コー ディングレいるもの些に保険制度が放射を 抑えることで高断熱性能を実現する。ガラス の募系を変えずに複層ガラス化が可能である にとから、既存単板ガラスの代替商品(既存 住宅対応)として注目されている。	据力	- 12	名 称 熱質流率	名称:現場第工型操作けLow-E模層ガラス (FLG+A12+LES)(家庭用) 原理・しくみ 原名の窓ガラスの上からLow-Eガラスを貼ること で設計による影移動量を低減するガラス。断熱を 行うことによって、より少ないエネルギーで空間 を行うことができるようになる。主に住宅等に導 入されている。
D-15-001	D-16-007	家庭	窓ガラス(家庭用) - 薄型Low複磨ガラス (LE3+Kr4+FL3)(家庭用)	・設備・機器等の名称の見遠し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごと記憶・振器等を設定し 定さがないと対断したため ・設備・服器等の見感しに伴い、 それに対応した説明に変更する必 要があると判断したため	薄型Low-E被用ガラス(LE3+K/4+FL3) リフォーム用	W/m2K 熱質流 ¹	原理・しくみ 窓ガラスは単板ガラスと観層ガラスに大別で き、披層ガラスは複数枚の単板ガラスから成 リセの間に中定層を設けたもので、単板ガラス 人に大断熱性能が高い。披層ガラスの断熱 性能改善方法としてはLOWE-LOW で、単板ガラ の不完性ガスの封入、真空化等がある。 LOW モガラスは、LOW を高額数を1一マーングすることで放射任鉄による熱終動車を低 減したガラスであり、披層ガラスにすること でより効果的になる。 裏空ガラスは、披層ガラスのマ空層部が 0.2mmの裏空間となっているガラスであ る。真空層が熱の伝導と対域を防ぎ、コー ディングレいるもの一に便能制度が放射を 抑えることで高部熱性能を実現する。ガラス の第4を変えても関手が、大が一様である にとから、既存単板ガラスの代替商品(既存 住宅対応)として注目されている。		W/m2K	熱貫流率	名称:薄型Low-E装層ガラス(LE3+Kr4+FL3)(家庭用) 原理・しくお 機関ガラスの中空層側のガラス面にLow-E全層膜 をコーティングすることで放射による熱移動量を 低減したガラス。アタッチメントを使用せての ラス部分のみを版サケンを応用付けることがで さる。断熱を行うことによって、より少ないエネ ルギーで空間を行ってといって。
D-15-002	D-16-008	家庭	窓- Low-E模層ガラス・樹脂サッシ	・設備・機器等の名称の見遠し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごとに設備・機器等を設定し たほうがよいと判断したため ・設備・機器等の見返しに伴い、 それに対応した説明に変更する必 更があると判断したため	(項目多数のため省略 ※2016年度夏 - 版L2-Tech水準表参照)	W/m2K 熱實流 ¹	(名称: 窓 原理・しくみ: 窓は部材部分のサッシと窓ガラスで構成され ており、サッシは金属製(主じアルミ)、樹脂 製、木製に分類される。 樹脂サッシは、アルミサッシに比べ熱に導率 がお1000分の1 の根間を採用したサッシで ある。また、室内側の結算の発生の経域や断 熱性の向上を目的にアルミ製(室外側)と樹脂 製(室内側)を一体化したアルミ樹脂機合サッ ンもある。		W/m2K	熱貫流率	名称:Low-E模爾ガラス、物版サッシ 原理・レくみ 模層ガラスの中空層側のガラス面にLow-E全属膜 をコーディングすることで設計による熱彩動量を 位派とレガラスと、機能製のサッシを組み合わせ た窓。
D-15-002	D-16-009		窓− Low-E復層ガラス・アルミ樹脂複 会サッシ		・基本的な原理・しくみが異なる ものごとに設備・機関等を設定し たほうがよいと呼称したため ・設備・機関等の見感しに伴い、 それに対応した場所に変更する必 更があると判断したため	(項目多数のため省略 ※2016年度夏 - 版L2-Tech水準長参照)	W/m2K 熱質流	日 名称: 窓 原理・しくみ: 窓は部材部かのサッシと窓ガラスで構成され ており、サッシは全属製(主にアルミ)、機能 製、木製に分類される。 機能サッシは、アルミサッシに比べ熱に弾・ が約1000分の1の機能を採用したサッシで ある。また、室内側の結婚の発生の解や断 熱性の向上を目的にアルミ機能観気に向りを中心 からなる。		W/m2K	熱質流率	名称: Low-E模層ガラス・アルミ樹脂複合サッシ 原理・しく為 複層ガラスの中空層側のガラス面にLow-E全属隊 をコーティングすることで放射による熱移動量を 低速したガラスと、アルミ樹脂複合サッシを、アルミ製 (宣外側)と開発機(全)、アルミ製 (宣外側)と開発機(を)、アルミ製 (世)、アルミ製(世)、アルミ製 (世)、アルミ製(世)、アルミ、アルミ製(世)、アルミ、アルミ、アルミ、アルミ、アルミ、アルミ、アルミ、アルミ、アルミ、アルミ

N	lo						2016年夏版L2-Te	ch水準表	-			2016年冬版L2-Tech水:	举表(変更点:赤字·)	
2016年度	2016年度 多版	区分	設備・機器等の 名称								2	ラス	測定単位		その他
夏版	◆ AX (素案) D-16-010	**	立砂窓→	・設備・機器等の名称の見直し	甘土から原理 しょう お思ちる	条 件 (項目多数のため省略 ※2016年度夏	能力	単位	名 称 熱貫流率		条 件 (項目多数のため省略 ※2016年度冬	能力	単位名		称:三層Low-E複層ガラス・樹脂サッシ
D-15-002	D-16-010	N.E.	本・三扇Low-E模層ガラス・樹脂サッシ		・ 命予かな水理としての方点なっ ものごとに設備・機器等を設定したほうガネルと判断したため ・ 設備・機器等の変直しに伴い、それに対応した説明に変更する必 要があると判断したため			w/m2K	热 臭源学		(項目が成がたり開始、次の10年後で 版L2-Tech水準表(素素)参照)		W/m2K M:sq.2	原産	か:二郎LOW-七号度カフス・包飾リック 理・しくみ: 層で構成される視層ガラスの中空層側のガラス にLow-と金属機をコーティングすることで放射 よる熱移動量を配収したガラスと、機能製の ッシを組み合わせた窓。
D-15-002	D-16-011	家庭	窓→ 三層Low-E複層ガラス・アルミ樹		・基本的な原理・しくみが異なる ものごとに設備・機器等を設定し	(項目多数のため省略 ※2016年度夏 版I2-Tech水準売参照)	-	W/m2K	熱貫流率		(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素案)参照)	-	W/m2K 熱實法	充率 名	称:三層Low-E複層ガラス
			脂養合サッシ		たほうがよいと判断したため ・投資・機器等の見返し作い、 それた対応した説明に変更する必 要があると判断したため					原理・しくみ: 窓は部材部分のサッシと窓ガラスで構成され でおり、サッシは含量製(生にアルミ)、樹脂 製、本製に分類される。 樹脂サッシは、アルミサッシに比べ熱伝導率 が約1000分の1の樹脂を採用したサッシで ある。また、室内側の結算の発生の軽減で動性のカーを目的にアルミ製(室外側)と樹脂 製度内側を一体化したアルミ樹脂製金が シもある。				三直に複サ側	理・レくみ: 層で構成される複層ガラスの中空層側のガラス にLOW-E全属膜をコーティングすることで放射 よる熱移動量を低減したガラスと、アル三樹脂 合っからないアルミウを組み合わせた窓。アルミ樹脂 カッシは、アルミ砂 室外側、と樹脂製(室内))のサッシを室内側の結實の発生の軽減や断熱 の向上を目的に一体化したものである。
D-15-002	D-16-013	家庭	京。 真空ガラス・機能サッシ	・設備・機器等の名称の見直し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごと記憶・機器等を設定し たほうがよいと判断したため ・設備・機器等の見返しに伴い、 それに対応した説明に変更する必 要があると判断したため	真空ガラス(LE3+V0.2+FL3) リフォーム用		W/m2K	熱貫流率	名称: 窓 原理・しくみ: 窓は部材部分のサッシと窓ガラスで構成され ており、サッシは全国製造にアルミ、樹脂 数、本製に分類される。 樹脂サッシは、アルミサッシに比べ熱伝導率 が約1000分の1の樹脂を採用したサッシで ある。また、室内側の結算の発生の軽減や断 熱性の向上を目的にアルミ製(室外側)と樹脂 製室(肉側)を一体化したアルミ根瘤強合サッ シもある。	(項目多数のため省略 ※2016年度冬 版L2-Tech水準表(素素)参照)		W/m2K 熱質》	原 2 ¹	称:真空ガラス・樹脂サッシ理・レくみ 理・レくみ 吹のガラスの間に真空層を設けることで、熱移動 を低減したガラスと樹脂サッシを組み合わせた。。
D-15-002	D-16-014	家庭	窓・ 真空ガラス・アルミ機能複合サッ シ	・設備・機器等の名称の見直し ・原理・しくみの変更	・基本的な原理・しくみが異なる ものごと記憶・機器等を設定し たほうがよいと判断したため ・設備・機器等の息返しに伴い、 それに対応した説明に変更する必 要があると判断したため	真空ガラス(LE3 + V0.2+FL3) リフォーム用		W/m2K	熱質流率		(項目多数のため省略 ※2016年度冬 版L2-Tech水準長(素紫)参照)		W/m2K 熱質》	原 2: 量 み 製 便	称: 真空ガラス・アルミ・樹脂複合サッシ 理・レくみ 奴のガラスの際に真空層を設けることで、熱移動 を低減したガラスとアルミ樹脂複合サッシを組 合わせた窓・アルミ樹脂複合サッシは、アルミ (室外扇)と樹脂酸(室内側)のサッシを室内 の結算の発生の影響やや断熱性の向上を目的に一 化したものである。
D-XX-XXX	D-01-002	家庭	地中熱ヒートポンプ冷温水システム (ハイブリッド式)	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 冬版L2- 下ech水準表 (素案)参 (素語	_2- 水準表	2016年度冬版L2-Tech水準表(素案)参照)
D-XX-XXX	D-02-004	家庭	ヒートポンプ冷温水システム	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 冬版L2- 下ech水準表 (素案)参	.2- 水準表	2016年度冬版L2-Tech水準表(素案)参照)
D-XX-XXX	D-16-012	家庭	五層Low-E複層ガラス・樹脂サッシ	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため	N/A	N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 冬版L2- 下ech水準表 (素案)参 (素系	_2- 水準表	2016年度冬版L2-Tech水準表(素案)参照)
D-XX-XXX	D-17-003	家庭	真空断熱材	・設備・機器等の追加	・個社、または業界団体より追加 提案があり、L2-Tech水準表へ掲 載することが妥当と判断したため		N/A	N/A	N/A	N/A	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度冬版L2-Tech水準表(素 案)参照)	(2016年度 冬版L2- 下ech水準表 (素案)参 (素系)	_2- 水準表	2016年度冬版L2-Tech水準表(素案)参照)

	No							2016年夏版L2-T	ech水準表				2016年冬版L2-Te	ch水準表(変更点	〔: 赤字)		
2016年	度	016年度 冬版	区分	設備・機器等の 名称								2			定単位	その他	
夏筋	((素案)					条件	能力	単位	名 称		条件	能力	単 位	名称		
E-01-00	1 E-0	01-001		固体酸化物形燃料電池(SOFC) 設備	・クラス(能力)の追加	・当該クラスについて、一定の市 場規模が見込めることを確認でき たため		【出力】 200kW以下	%	発電効率	(項目多数のため省略 ※2016年度夏版L2- Tech水準表参照)	-	(出力) 200kW以下 200kW超250kW以下	%	発電効率	(項目多数のため省略 ※2016年度冬版L2-Tech 水準表 (素素) 参照)	
E-04-00	1 E-04		エネルギー転換	温水熱源小型パイナリー発電設備	・原理・レくみの変更 ・クラス(能力)の変更	・当該設備・機両等の原理・しく みについて、より正確を起明に変 更する必要があると判断したため ・500以外末期のプラスにおい て、用途等の以があられるケー スが多いことが判明したため		[出力] 200kW未満	%	送電端発電効率	原理・レくお: 温水の熱エネルギーを熱交換器(蒸発器)を 介して低海点の作動媒体(二次媒体)に伝え、これを沸騰させた蒸気でタービンを駆動 する発電方式。		旧出力 3.00KW以下 3.00KW銀石 6.5KW銀石5,0KW以下 45.0KW銀石5,0KW以下	%		理理・しくる: バイナリー発電は、水よりも満点の低い二次関体 を使うので、より低温の地熱流体での発電に適し ており、地熱流体で温められた二次開体の蒸気で タービンを回じて発電する。モークには水久総石 同期モータを使用している。仕組みとしては、生 屋井から地熱流体を取り出し、地路水体で二次原体 保を温め、蒸気化し、二次関体の振気でタービンを 空間を世界電子のる。二次関体の振気でタービン を記を世界電子のる。二次関体の振気でタービン で調本では、凝細部できたに戻し、発電し終わった 二次原体は、凝細部で液体に戻し、循環ボンプで 再度、無浄器に送る。温水無原小型パイナリー発 電は、無源として温水を利用する。	