1	
2	優先評価化学物質 41 番「テトラエチルチウラムジスルフィド」
3	生態影響に係るリスク評価(一次)評価 II の進捗報告
4	
5	令和2年1月
6	
7	<概要>
8	○有害性評価について
9	生態影響に係る有害性評価値は、既存の有害性データから水生生物に対する予測無影響濃度を
10	(PNEC _{water}) 0.000028 mg/L(0.028 μg/L)を導出した。
11	また、底生生物に関しては予測無影響濃度(PNE $C_{ m sed}$)乾重量換算で $0.051~{ m mg/kg~dwt}$ (湿重量
12	換算 0.011 mg/kg wwt)を導出した。
13	
14	○暴露評価について
15	化審法の届出情報及び PRTR 情報等に基づく予測環境中濃度(PEC)の計算を行った。
16	本物質は化審法詳細用途#28-b(合成ゴム、ゴム用添加剤、ゴム用加工助剤(加硫促進剤、加硫
L 7	促進剤助剤(加硫活性剤))が製造輸入事業者より届出られている。当該用途は長期使用製品の使
18	用段階からの排出係数として水域 0.11、大気 0.01 が設定されているが、事業者へのヒアリングの
19	結果、ゴム製造の加硫促進の際に全て化学反応を起こし消失するため、長期使用製品の使用段階
20	からは排出されないとした。
21	
22	○リスク推計結果について
23	淡水域における排出源ごとの暴露シナリオによる評価及び様々な排出源の影響を含めた暴露シ
24	ナリオでは PEC が PNEC を超過する地点はなかった。
25	
26	<今後の対応について>
27	本物質は漁網防汚剤に用いられており、欧米や OECD 加盟国等のリスク評価で使用実績がある
28	数理モデル MAMPEC (Marine Antifoulant Model to Predict Environmental Concentrations)
29	を用いた濃度推計手法について検討を行っている。現在は濃度を推計する対象海域の設定方法に
30	ついて経済産業省、環境省及び NITE で調整中であり、調整を終え次第報告する。
31	なお、環境モニタリングに用いる分析法についても現在開発中であり、開発状況を踏まえなが
32	ら当該データのリスク評価への活用についても検討を行うこととする。

1 1. 評価対象について

2

表 1 評価対象物質の同定情報

評価対象物質名称	テトラエチルチウラムジスルフィド					
	(別名ジスルフィラム)					
構造式						
分子式	$C_{10}H_{20}N_2S_4$					
CAS 登録番号	97-77-8					

3 4

2. 物理化学的性状、濃縮性及び分解性について

56

表 2 モデル推計に採用した物理化学的性状等データのまとめ

表 2 モデル推計に採用した物理化学的性状等データのまとめ									
項目	単位	採用値	詳細	評価【で用 いた値(参 考)					
分子量	_	296. 52	_	296. 52					
融点	°C	71. 5 ¹⁻⁴⁾	測定値	71. 5 ¹⁻³⁾					
沸点	°C	5)	沸騰する前に分解すると推定	1521-3), 6)					
蒸気圧	Pa	4.2×10^{-4} 7)	MPBPWIN(v. 3. 20)による推計値	1. 4×10^{-5} ⁴⁾					
水に対する溶解度	mg/L	3. 82 ^{2, 3, 4)}	25℃での測定値を 20℃に補正し た測定値	9. 38)					
1-オクタ/ールと水との間 の分配係数(logPow)	1	3. 88 ^{2, 3, 6)}	測定値	3. 88 ^{2, 3, 6)}					
ヘンリー係数	Pa⋅m³/mol	<u>0. 033</u> ⁹⁾	蒸気圧と水溶解度からの推計値	6. 5 ⁷⁾					
有機炭素補正土壌吸 着係数(Koc)	L/kg	1.8×10 ⁴ 7)	KOCWIN (v. 2. 00) による推計値	1.8×10 ⁴ 7)					
生物濃縮係数(BCF)	L/kg	<u>230</u> 10)	カテゴリーアプローチによる推 計値	170 ⁷⁾					
生物蓄積係数(BMF)	_	1 ⁹⁾	logPow と BCF から設定	1 ⁹⁾					
解離定数 (pKa)	_	_	解離性の基を有さない物質	— ¹¹⁾					

※ 平成30年度第3回優先評価化学物質のリスク評価に用いる物理化学的性状、分解性、蓄積性等のレビュー会議(平成31年3月28日)で了承された値

8 会議 9 1) CRC

7) EPI-Suite (2012)

10 2) HSDB

8) MITI (1990b)

11 3) PhysProp

9) MHLW, METI, MOE (2014)

12 4) ECHA

10) NITE (2010)

13 5) OECD (2010)

6) USHPV (2009)

11) 評価 [においては解離定数は考慮しない

1415

7

	I	頁目	半減期 (日)	詳細
	大気における	る総括分解半減期	NA	
大気	機序別の	OH ラジカルとの反応	0. 041	AOPWIN (v. 1. 92) ¹⁾ により推計。反応速度定数の推定値から、OH ラジカル濃度を 5×10 ⁵ molecule/cm³として算出
	半減期	オゾンとの反応	NA	
		硝酸ラジカルとの反応	NA	
	水中における	る総括分解半減期	NA	
水中	機 序 別 の 半減期	生分解	10	分解度試験の HPLC 分解度に基づき設 定 ^{2).3)}
		加水分解	_	加水分解は重要な機序でない 4)
		光分解	_	直接光分解を受けにくい4)
	土壌における	る総括分解半減期	NA	
土壌	機序別の	生分解	10	水中生分解と同じと仮定
	半減期	加水分解	_	水中加水分解の項参照
	底質における	- る総括分解半減期	NA	
底質	機序別の	生分解	40	水中生分解半減期の4倍と仮定
	半減期	加水分解	-	水中加水分解の項参照

- ※ 平成30年度第3回優先評価化学物質のリスク評価に用いる物理化学的性状、分解性、蓄積性等のレビュー 会議(平成31年3月28日)で了承された値
- 1) EPI Suite (2012)
- 2) MITI (1990a)
- 3) MHLW, METI, MOE (2014)
- 4) HSDB

NA:情報が得られなかったことを示す

8

10

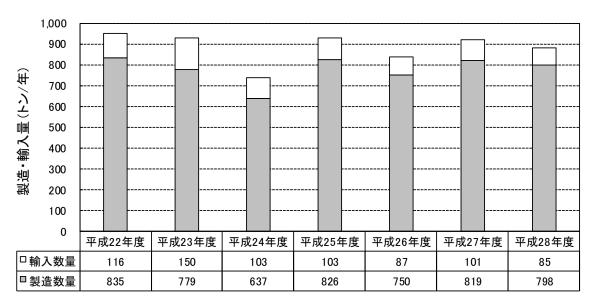
11 12

2

3

4

5


6

7

3. 排出源情報

本評価で用いた化審法届出情報及び PRTR 届出情報等は図 1、図 3及び表 4、表 5のとおり。製造・輸入量は横ばい(図 2:化審法届出情報)であり、PRTR 制度に基づく排出・移動量も平成 25 年度以降は横ばいである (図 3)。

1314

15 16

図 2 化審法届出情報

表 4 化審法届出情報に基づく評価Ⅱに用いる出荷数量と推計排出量

			平	成 28 年度
用途番号-				推計排出量
詳細用途	用途分類	詳細用途分類	出荷数量	(トン/年)
番号			(トン/年)	※()は、うち水域へ
				の排出量
	製造			0.0016 (0.00080)
		合成原料、重合原料、前駆重		
01-a	中間物	合体	1	0.00015 (0.00005)
		重合調節(停止)剤、重合禁止		
10-d	化学プロセス調節剤	剤、安定剤	521	0.060 (0.052)
	船底塗料用防汚剤、漁網用防			
17-c	汚剤	漁網用防汚剤	114	103 (103)
		バインダー成分(モノマー、プレ		
		ポリマー、硬化剤、硬化促進		
23-b	接着剤、粘着剤、シーリング材	剤、開始剤、カップリング剤)	6	0.0061 (0.000060)
	合成ゴム、ゴム用添加剤、ゴム	加硫促進剤、加硫促進剤助剤		
28-b**	用加工助剤	(加硫活性剤)	140	0.0028 (0.0014)
	その他の原料、その他の添加	その他の原料、その他の添加		
98-z	剤	剤	2	2 (1)
99-a	輸出用	輸出用	125	0 (0)
	計		909	105 (104)

※ 当該詳細用途については長期使用製品の使用段階が設定されているが、事業者に確認したところ、ゴム製造の加硫促進の際に全て化学反応を起こし消失することが判明したことから、当該ライフサイクルステージからの排出量は0とした。

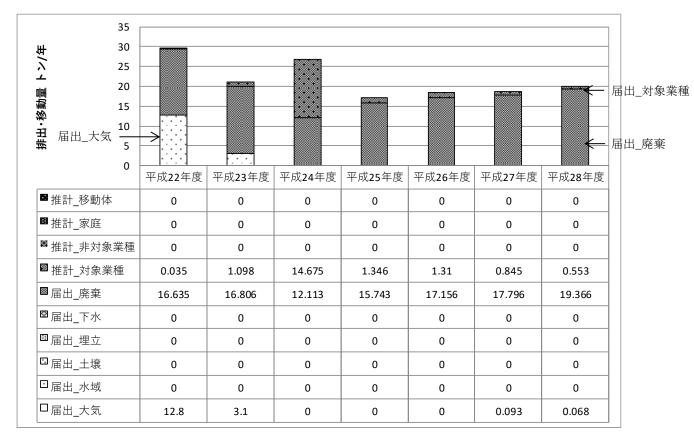


図 3 PRTR 制度に基づく排出・移動量の経年変化1

^{1 「}対象業種の推計」の値は平成24年度だけ他年度に比べて高い。これは平成24年度から推計手法が変わっ

表 5 PRTR 届出外排出量の内訳(平成 28 年度)

		年間排出量(トン/年)																					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
		のすそ切り以下対象業種の事業者	農薬	殺虫剤	接着剤	塗料	漁網防汚剤	洗浄剤・化粧品等	防虫剤・消臭剤	汎用エンジン	たばこの煙	自動車	二輪車	特殊自動車	船舶	鉄道車両	航空機	水道	オゾン層破壊物質	ダイオキシン類	低含有率物質	下水処理施設	合計
大	移動体											0	0	0	0	0	0		0	0			
	家庭		0	0	0	0		0	0		0							0	0	0			
分	非対象業種		0	0	0	0	0	0		0								0	0	0			
	対象業種(すそ切り)	0	0															0	0	0	0	0	0.553
	推計量	0.553																					0.553

4. 有害性評価

1栄養段階(一次消費者)に対する慢性毒性値($0.0056\,\mathrm{mg/L}$)が得られており、この値を種間外挿の UF「10」及び室内から野外への外挿の UF「10」で除し、 $0.000056\,\mathrm{mg/L}$ を得る。当該毒性値は設定値に基づくものであるため、半止水式(週 $3\,\mathrm{回換水}$)暴露における被験物質の減衰に関する不確実性を考慮し、専門家判断によりさらに UF「2」で除し、テトラエチルチウラムジスルフィドの PNECwater として $0.000028\,\mathrm{mg/L}$ ($0.028\,\mathrm{\mug/L}$)が得られた。

また、底生生物に関しては、水生生物に対する PNEC $_{water}$ から、平衡分配法により底生生物への PNEC $_{sed}$ を導出した。PNEC $_{sed}$ として乾重量換算で 0.051 mg/kg wwt)を得た。

表 6 有害性情報のまとめ

Mark Mark Co.								
	水生生物に対する毒性情報	底生生物に対する毒性情報						
PNEC	0.000028 mg/L	0.051 mg/Kg dwt						
キースタディの毒性値	0.0056 mg/L [1]							
不確実係数積(UFs)	200							
(キースタディの エンドポイント)	一次消費者(甲殻類)の繁殖・成 長に対する無影響濃度(NOEC)	(平衡分配法により計算)						

5. リスク推計結果の概要

5. 1 排出源ごとの暴露シナリオによる評価

表 7 PRTR 届出情報に基づく生態に係るリスク推計結果

	リスク懸念箇所数	排出源の数
水生生物に対するリスク推計結果	0	43
底生生物に対するリスク推計結果	0	43

たこと(アンケート調査に基づく方法)や、平成24年度はアンケートに基づく当該物質の排出量が高かったこと等が理由と考えられる。なお、平成24年度以降の当該物質の推計項目(「ゴム溶剤等」)に変更はない。

5.2 様々な排出源の影響を含めた暴露シナリオによる評価

2 3

1

表 8 PRTR 届出情報に基づく生態に係るリスク推計結果

PEC/PNEC 比の区分	水生生物	底生生物
1≦PEC/PNEC	0	0
0.1≦PEC/PNEC<1	0	0
PEC/PNEC < 0.1	3,705	3,705

4 5

6. 付属資料

6 6.1 選択した物理化学的性状等の出典

7

- 8 CRC: Haynes, W. M., ed. CRC Handbook of Chemistry and Physics. 90th ed., CRC Press, 2009-
- 9 2010.
- 10 ECHA: Information on Chemicals Registered substances.
- 11 http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances, (2018-08-10
- 12 閲覧).
- 13 EPI Suite (2012): US EPA. Estimation Programs Interface Suite. Ver. 4.11, 2012.
- 14 HSDB: US NIH. Hazardous Substances Data Bank. http://toxnet.nlm.nih.gov/cgi-
- 15 bin/sis/htmlgen?HSDB, (2018-08-10 閲覧).
- 16 MHLW, METI, MOE (2014): 化審法における優先評価化学物質に関するリスク評価の技術ガイ
- 17 ダンス, V. 暴露評価~排出源ごとの暴露シナリオ~. Ver. 1.0, 2014.
- 18 MITI (1990a): テトラエチルチウラムジスルフィド (被験物質番号 K-862) の微生物による分解
- 19 度試験. 既存化学物質点検, 1990.
- 20 MITI (1990b): テトラエチルチウラムジスルフィド 被験物質番号 K-862) の物理化学的性状の
- 21 測定. 既存化学物質点検, 1990.
- 22 NITE (2010): NITE. カテゴリーアプローチによる生物濃縮性予測に関する報告書, 2010.
- 23 OECD (2010): SIDS Initial Assessment Report, BIS(DIMETHYLTHIOCARBAMOYL)
- 24 DISULFIDE, 2010.
- 25 PhysProp: Syracuse Research Corporation. SRC PhysProp Database. (2018-08-10 閲覧).
- 26 USHPV (2009): U.S. Environmental Protection Agency Hazard Characterization Document,
- 27 SCREENING-LEVEL HAZARD CHARACTERIZATION, Thiuram Category, September,
- 28 2009.

29

- 30 6.2 選択した有害性情報の出典
- 31 [1] Van Leeuwen, C.J., F. Moberts, and G. Niebeek (1985) Aquatic Toxicological Aspects of Dithiocarbamates and Related Compounds. II. Effects on Survival, Reproduction and Growth of Daphnia magna. Aquat. Toxicol. 7:165-175 (ECOTOX No.11456)
- 34 注) ECOTOX No.: 米国環境保護庁生態毒性データベース ECOTOXicology knowledgebase(ECOTOX)での出典番号。
- 35 但し、データベースから該当番号の情報が削除されている場合がある。