

プロフィール

馬上丈司(まがみたけし)

1983年生まれ

千葉大学法経学部総合政策学科 卒業

千葉大学大学院人文社会科学研究科公共研究専攻 博士後期課程修了 博士(公共学)

千葉エコ・エネルギー株式会社 代表取締役 株式会社ファーミゴ 取締役

- 一般社団法人ソーラーシェアリング推進連盟 代表
- 一般社団法人太陽光発電事業者連盟 専務理事
- 一般社団法人日本PVプランナー協会 専務理事
- 一般社団法人中部ソーラーシェアリングやろまい会 顧問
- 千葉市地球温暖化対策専門委員

八千代市環境審議会委員

ほか

千葉エコ・エネルギー株式会社 - 事業概要

- 2012年10月に**千葉大学発の政策系ベンチャー**として起業。
- ・ 太陽光発電、風力発電、小水力発電など幅広い再生可能エ ネルギー発電の事業化支援に関わり、国内外で累計2GW 以上のプロジェクトに関与してきた。
- 再生可能エネルギーの**事業開発、設計・施工、ファイナン** スからアセットマネジメントまで幅広い分野をカバー。
- ・ 現在は**営農型太陽光発電**(ソーラーシェアリング)の事業 **化支援や研究開発を事業の中心**としており、自社グループ 全体で6haの農場を管理している。

事業紹介1

ソーラーシェアリング/営農型太陽光発電

国内42都道府県+アジア3カ国で450件以上の営農型太陽光発電事業に関わっています。

自社保有設備の運営

- 千葉市大木戸アグリ・エナジー1号機
- 匝瑳飯塚 Sola Share 1~5号機スマート農業などと組み合わせた持続可能な 農業の研究・開発を行なっています。

事業化支援

- 事業開発支援
- 営農計画の策定支援
- 知見を有する者の意見書の発行
- 営農に適した設備設計の提案
- アドバイザリーサービス など

千葉市大木戸アグリ・エナジー1号機

太啓建設㈱浄水SS発電所

事業紹介②

研究・調査事業

大学、政府機関や地方自治体、 民間企業からの依頼による各種受託研究等を行っています。

近年の受託事業

■ 農林水産省 営農型太陽光発電システムフル活用事業

■農林水産省 地域資源活用展開支援事業

脱炭素・資源循環「まち・暮らし創生| FS委託業務 環境省

営農型太陽光発電設備下の収量特性研究

■ 三重大学大学院

生物資源学研究科 梅崎研究室

場所:千葉県匝瑳市 作物:大豆・麦

■ 千葉大学大学院

磯田研究室 園芸学研究科

場所:千葉県千葉市 作物:落花生

大木戸圃場 設備下の落花生

事業紹介③

技術開発事業

政府系研究機関や大学・企業との連携による 新たな技術等の開発に関わっています

■参画事業

2020年度 NEDO先導研究プログラム/新技術先導研究プログラム(エネ環)「農山漁村地域のRE100に資するVEMSの開発」

代表研究機関:国立研究開発法人・食品産業技術総合研究機構

共同研究機関:三菱電機株式会社開発本部

千葉エコ・エネルギー株式会社

ジオシステム株式会社

ホルトプラン合同会社

国立研究開発法人産業技術総合研究所

慶應義塾大学理工学部

早稲田大学理工学術院

東京大学生産技術研究所

京都大学工学研究科

電動農機具の実証試験

事業紹介4

海外事業

アジア圏を中心として、 再生可能エネルギーの普及拡大に向けた活動を行っています。

国際フォーラムへの登壇

■ 台湾や韓国などで開催された、再生可能エネルギーをテーマとした 国際フォーラム等に登壇して日本の取り組み事例を紹介しました。

韓国政府との事業協力協定

- 韓国政府グリーンエネルギー研究院及び 韓国営農型太陽光発電協会(KAVA)と の間で、営農型太陽光発電の普及拡大に 向けた事業協力協定を締結しました。
- 国際的な研究開発体制の構築を目指し、 各国政府との連携を進めています。

事業協力協定の締結式

理論と実践を積み重ねて社会を変えていく

営農型太陽光発電の概要

【特徴】

- ・ 農地に支柱を立てて太陽光発電設備を設置し、その下では 従来通りの農業生産を行っていく。
- 上記を前提として、**第1種農地や農用地区域内農地**などにおいても**太陽光発電設備を導入することができる**。

【目的】

- 当初は**売電収入による農業者の所得向上を図る**こと。
- ・ 現在は農業における再生可能エネルギー活用、地域の電源 としての活用、気候変動への適応やスマート農業との連携。

農業生産と太陽光発電が共存する環境

既存の農業機械体系に適合した設計が可能

畑作では多種多様な農産物の生産実績を蓄積

自社圃場で栽培した作物(2022年)

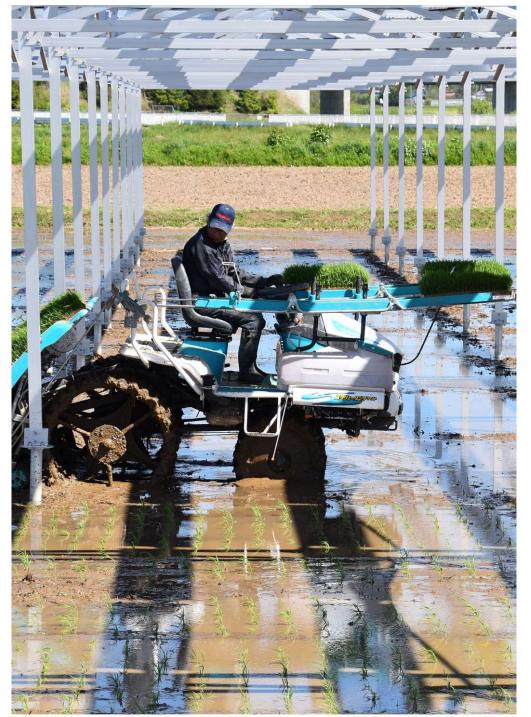
【遮光率48%】

- ナス (千両二号)
- サトイモ (土垂)
- ジャガイモ(はるか)
- サツマイモ (紅はるか)
- からし菜 (土気からし菜)
- ミニ白菜 (タイニーシュシュ)
- ・ショウガ
- 南天

【遮光率35%】

- 落花生 (ナカテユタカ)
- 黒大豆

【遮光率28%】


- イチジク
- ・ブルーベリー
- サクランボ

ほか

出荷・販売した農産物

水田でも導入が広がり多様な品種を生産

荒廃農地を再生した果樹栽培設備

営農型太陽光発電あるある

・ 農作物の生育や農作業に問題はないのか?

栽培する農作物、使用する農業機械などに応じて設備設計を変えていく ことで、そもそも大きな問題が起きないように設備を作っていきます。

・ 台風などの自然災害にどの程度耐えられるのか?

過去には、2019年の千葉県における**台風15号(最大瞬間風速57.5m/s**) **が弊社の設備を直撃**しましたが、**太陽光パネルが破損したり脱落するこ** とすらありませんでした。適切な設計と施工が重要です。

・ 太陽光発電設備の寿命はどれくらい?

近年では太陽光パネルのメーカー出力保証が25年程度となってきており、 設備全体では30年程度の運用が前提となっています。長寿命化と同時に 太陽光パネルの廃棄・リサイクル技術の開発も進んでいます。

私たちが営農型太陽光発電に取り組む理由 生きるために不可欠なエネルギーと食料を

持続可能な形で手に入れるため

農業に使われるエネルギー

ガソリン: 79万4,100kL

灯 油:54万4,600kL

轴:59万4,000kL

油:205万5,600kL

他石油製品:1万2,500kL

電 気:28億9,330万kWh

93.7%

6.3%

農業が消費するエネルギーの98%が化石燃料由来

重油消費量は国内の全産業部門中第2位

最終エネルギー消費量を電力量換算すると

約460億kWh

脱炭素化を迅速に進めなければ

日本の農業は持続不可能になる

相次ぐ電気料金の値上げ

2023年4月からの規制料金の値上げ幅

東北電力 32.94%

• 北陸電力 45.84%

• 中国電力 31.33%

• 四国電力 28.08%

• 沖縄電力 43.81%

電気代を「1円でも安く」と 言っているうちに、現実は その先へ至ってしまった。

今一度、何のために私たちは

再生可能エネルギーを導入してきたのか

エネルギー自給率を向上させようとしてきたのか

その意味を考え直していく必要があります

営農型太陽光発電の進化

2013年3月末に営農型太陽光発電の一時転用許可上の扱いが 整理され、黎明期・発展期を経て本格的な普及期へ。

- **営農型太陽光発電1.0**:発電設備からその下での農業生産 まで、全国で草の根の取り組みが始まった。
- ・ 営農型太陽光発電2.0:2018年5月に一時転用許可の期間 が延長され、第五次環境基本計画など政府の各種計画に営 農型太陽光発電が導入されるようになった。
- **営農型太陽光発電3.0**:社会課題を解決するツールとして の営農型太陽光発電が普及していく。

営農型太陽光発電1.0~黎明期~

営農型太陽光発電2.0~発展期~

営農型太陽光発電3.0の時代へ

農業者の所得向上を図る、耕作放棄地や荒廃農地を再生する と言った目線から、幅広い社会課題の解決に向けた貢献へ。

- 農業生産者の目線も多様化し、**遮光環境を活かした気候変** 動への適応策による収量確保の手段としての選択も。
- 脱炭素先行地域の中で営農型太陽光発電が選好されるよう になっており、地域の再工ネ電源確保の手段に。
- 世界的なエネルギー危機が進行する中で、**農業の電化と共** に電源として営農型太陽光発電の電気を活用することで持 続可能性を確保し、食料安全保障の達成にも貢献する。

営農型太陽光発電 × EVモビリティ による 都市近郊農村の低炭素化 & 農村BCP構築プロジェクト

プロジェクト実施体制

TOYOTA

トヨタ・モビリティ基金

プロジェクト実施支援

千葉エコ・エネルギー

大木戸地域をモデル事業化

つなぐファーム

農業者としてプロジェクトを実践

既存のプロジェクト

千葉市大木戸アグリ・エナジープロジェクト

01 自然エネルギー活用モデルの研究

自然エネルギーを創出するだけでなく、既存の農業施設への電力供給や、ドロー ンやEV、IoTセンサーなどの実践的活用の研究を行います。

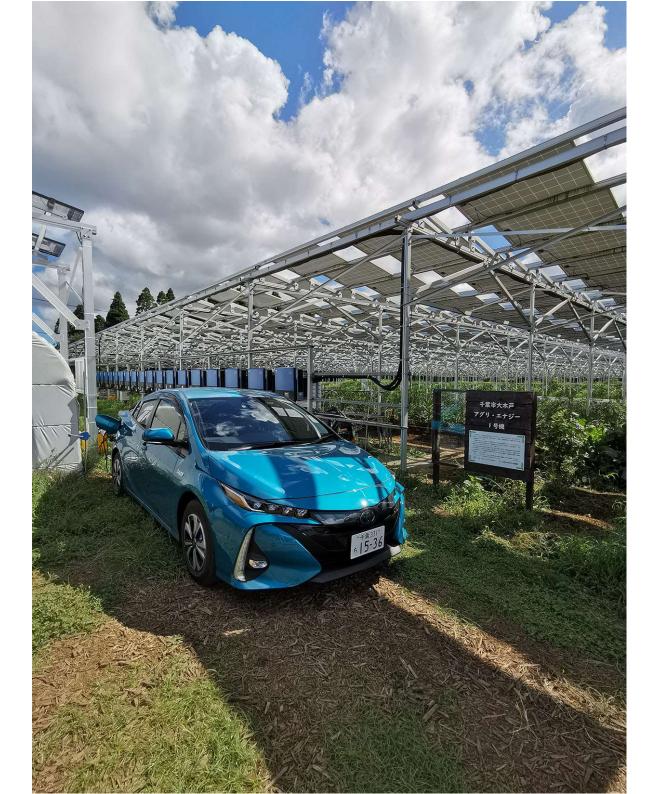
2018年度は、太陽光パネルで発電した電気を、充電式草刈機のバッテリーやパソ コンの電源として活用することが出来ました。

02 農業を化石燃料から解放する

農業におけるエネルギー収支の最適化を目指し、次世代農業を実践します。特に、 低炭素・循環型農業と、労働の集約化・生産性の向上に取り組むことで、未来の世 代が就農しやすくなるような環境と技術を開発します。

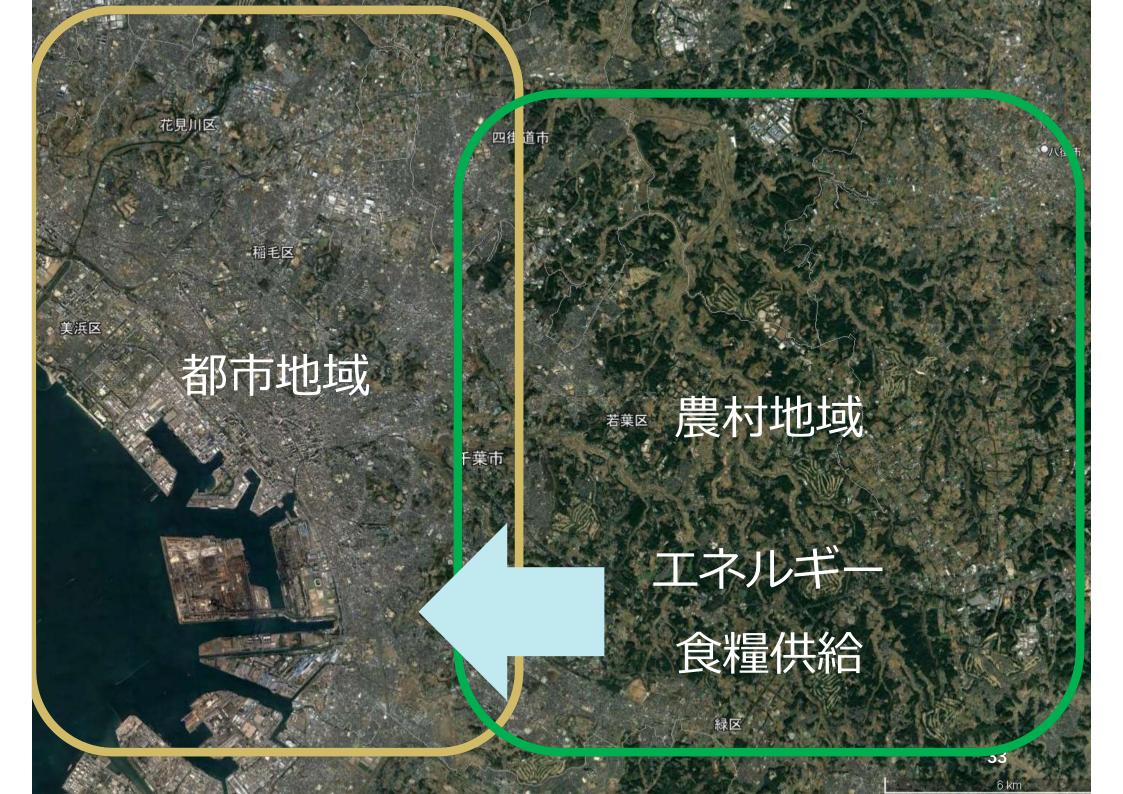
2018年度はリモコン重機による緑肥作物の刈り取り作業を実施し、大型農業機

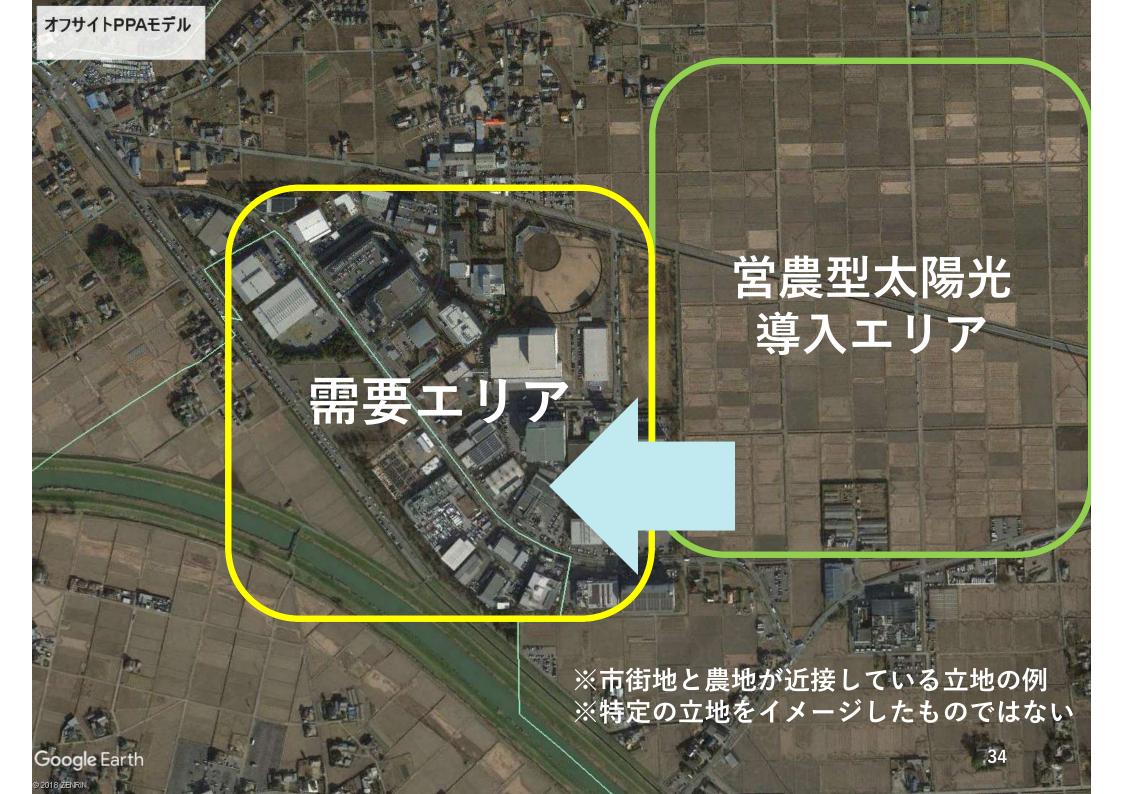
『永続地帯』を実現する


地域で得られる資源によって、その地域におけるエネルギー需要と食糧需要のす べてを賄うことができる、『永続地帯 (Sustainable Zone)』の実現を目指します。 2018年度は、1haの農地でニンニク以外にもサトイモ、サツマイモ、落花生、ニ ンジンなどを植え付けました。設備下で育てる作物は、設備下の遮光率に応じて選 定しています。また落花生は、干葉大学の作物学の研究室と共同研究を実施し、設 備による収量への影響を調査しました。

本プロジェクトの成果も踏まえ

全国の農村部でのモデル展開




太陽光発電により EV/PHEVを充電し 日常生活や農業に利用 農村の脱炭素化を推進

農業/農村における再エネ導入の課題

農家の所得向上による農業振興、再生可能エネルギー普及、 農業の脱炭素化など視点は多様化していくが担い手は誰か。

- 営農型太陽光発電は農業の長期的な継続が大前提となるエ ネルギー事業のため、**農業の担い手の存在が不可欠**。
- 再生可能エネルギー事業は、インフラ事業として**設備の安** 全性や事業の安定性を確保もすることも義務となる。
- 設備導入のための初期投資が大きく、**地域内で数億円単位 の投資を継続していけるだけの体制と覚悟**が必要。
- 地域の存続に向けた意志がなければ再エネは活用できない。

再生可能エネルギーの持続可能性

再生可能エネルギーであれば全て持続可能な事業というわけ ではないことへの理解が広まり、価値観の変化が生まれる。

- 山林を開発したり、農地を完全転用したりする太陽光発電 所は持続可能な再生可能エネルギーと評価できるのか。
- 単に太陽光発電の電気であることだけではなく、事業開発 から運用段階に至るまでの環境負荷、地域社会との共存、 事業スキームの安定性などを含めた評価が広がっていく。
- 農業と共存する**営農型太陽光発電の価値が高まる**一方で、 乱開発を抑制する仕組み作りも進めていく必要がある。

より持続可能な エネルギーはど ちらになるのか

歴史に学ぶ地域のエネルギー事業

1911年に旧電気事業法が制定された後、我が国では最盛期に 全国で828社の地域電力会社が存在していた歴史がある。

- 送配電の距離に限度があったこともあり、全国各地で**市町** 村単位での電気事業が次々と立ち上げられていった。
- その背景には「電気があれば豊かになれる」という確信が あり、農村でも**地元資本で数億円単位の投資**が広がった。
- 再生可能エネルギーのコストの大小だけを問うのではなく、 将来世代が今よりも豊かに暮らせる社会を作っていくとい う意志こそが最も重要である。

ご清聴ありがとうございました

【更に詳しい情報はこちらから】

Web : https://www.chiba-eco.co.jp/

Twitter : @Agrivoltaics_jp

Instagram : takeshimagami

Note. : https://note.com/greenshift/

Eng Blog : https://agrivoltaics-jp.blogspot.com/