E-0809 中国における気候変動対策シナリオ分析と国際比較による政策立案研究

(2) エアロゾル排出係数実測に関する研究

埼玉大学大学院理工学研究科 坂本 和彦

<研究協力者>

埼玉大学大学院理工学研究科	Ŧ.	青躍・岡本敬義・伊藤恒一・佐藤慎平
埼玉大学環境科学研究センター	姜	兆武
中日環境保護中心	薫	旭輝
大同市環境監測中心	白	文濤
中国環境科学研究院	王	偉

平成20~22年度累計予算額:10,940千円(うち22年度予算額:2,500千円) 予算額には、間接経費を含む。

[要旨]中国における温室効果ガス排出の現況と2030年の将来排出量推計に当たり、重要であり ながらデータが得られていない家庭厨房かまどでのバイオマス燃料排出係数を推定するために、 中国大同市の農家のかまど「カン」において、くすぶり燃焼、火炎燃焼時に排出される排ガス中 の微小粒子(2.5 µm以下)の希釈採取を行った。炭素分析中の炭化を補正できる熱光学式炭素分析 装置によりそれらの試料を分析した結果、排出される炭素粒子の大部分は有機炭素粒子(OC)で あり、ブラックカーボン(BCまたは元素状炭素(EC))粒子は非常に少なかった。また、ここで 排出されるBCは燃料の不完全燃焼により炭化されたChar-ECであり、高温燃焼によるガスから粒子 化されるスス、Soot-ECとは異なるものであることが分かった。さらに、ここで得られた結果は、 従来のバイオマス燃焼からのOC/BCの排出比とBC排出による温暖化への寄与の見直しが必要であ ることを示唆していた。

[キーワード] 温室効果物質、ブラックカーボン、バイオマス、炭素分析、中国

1. はじめに

地球温暖化の進展とともに、カーボンニュートラルなバイオマス利用による温暖化ガス排出抑 制が注目されている。しかし、バイオマス燃焼であっても、排出される燃焼排ガス組成により、 地球温暖化への影響の仕方は大きく異なる。例えば、燃焼時に大量のブラックカーボン(炭素と して考えた場合は元素状炭素EC)が排出されれば、太陽光を吸収し対流圏大気を暖めるため、温 暖化を助長することになる¹⁾。一方、吸湿性の極性有機粒子(炭素として考えた場合は有機炭素OC) が排出されれば、それらは雲粒の核ともなり²⁾、太陽光の散乱により地球冷却化に寄与する恐れが ある。

中国農村部では、寒冷な大陸性気候に対応したカンと呼ばれる特有の暖房方式が依然として用いられており(図1、図2³⁾)、この際に燃料として稲わら、トウモロコシの芯などといったバイオマス成分が用いられている。このカンは暖房用の用途以外にも、その熱を利用して調理用とし

ても用いられており、農村部における生活にとってなくてはならないものとして位置づけられて

いる。このように、中国農村部でまだ多くのバイオマス(農 業廃棄物等)が民生用燃料として利用されており、それらの 燃焼時に排出される粒子状物質の特性把握は、今後の地球環 境変化の予測に不可欠となっている。

そこで、本研究では、中国におけるトウモロコシの茎、芯 や稲わらなどの農業廃棄物であるバイオマス燃焼のカーボン ニュートラル性に関する基礎情報を収集するため、大同市近 郊の農村地帯の一般農家でカンを用いて、それらの農業廃棄 物を湿潤状態、乾燥状態で燃焼させ、排出される微小粒子(2.5 µm以下)を希釈捕集し、炭素分析中の炭化を補正できる熱光 学式炭素分析装置により炭素分析を行い、バイオマス燃焼に よる元素状炭素(EC)ならびに有機炭素(OC)といった成 分の排出挙動を把握した。

2. 研究目的

このサブテーマの研究目的は、中国におけるトウモロコシの茎や芯等の農業廃棄物であるバイ オマスの利用による温暖化ガス排出抑制効果の正確な予測に不可欠な、それらの燃焼排気粒子組 成、排出量に関する基礎情報を得ることである。具体的には、中国東北部における主要バイオマ ス燃料について、燃焼条件別に排気中粒子を採取し、人為的操作に伴う誤差(アーティファクト) を避けた炭素成分(EC、OC)分析を行い、そのデータ解析により温室効果に大きく影響する排出 BC(ブラックカーボン)組成をもとめ、それらの排出係数整備につながる情報を整理することで ある。

3. 研究方法

(1) 微小粒子の捕集方法

中国大同市郊外農村部のカンが用いられている一般家庭で、バイ オマスを燃焼させ、微小粒子の希釈捕集を行った。図2に示したカ ンの概念図から分かるように、カマドで燃焼させた排煙はカン内部 を通り、煙突を通過して屋外へと排出される。このため、実際に大 気中へ排出される成分を捕集するには、屋根に上り煙突近くで大気 捕集を行う必要がある。

図 3 NWPS-35HS

そこで、サンプリングに際しては、人への微小粒子曝露量測定用に開発されたミニポンプ(MP- Σ 500N(SHIBATA))と図3に示す個人用サンプラー(NWPS-35HS、対応吸引流量: 2.5 L/min) を用いて、PM_{2.5}(2.5 µmにおける粒子透過率が50%である分粒装置を用いて捕集された2.5 µm以 下の微小粒子)を35 mmφ石英フィルターにより捕集した。屋外では煙突近く、屋内ではカン燃焼 部から1 mほど離して捕集を行った。

(2) バイオマス燃料

中国東北部にてカンに用いる一般的な燃料として、トウモロコシの芯(図4)ならびに茎、稲

わら、コウリャンが挙げられるが、ここではそれらのバイオマス燃料を用いた。

図4 トウモロコシの収穫風景(左:農家の全景; 中央:奥から芯、脱穀後、脱穀前;右:脱穀後の芯(燃料)

(3) 燃焼条件

各燃料を使用する場合、乾燥した状態で用いるのが燃 焼効率も高く一般的だが、本研究では燃焼条件による排 出成分の相違を観察するため、以下のように各燃料に対 して条件を設定した。

- ・乾燥状態→乾燥させた燃料を燃焼させる方法。燃焼効
 率が高く、燃焼スピードが速い。また、煙の発生が少ない燃焼。
- ・湿潤状態→乾燥した燃料にあらかじめ水を掛けて、一 晩放置しておく。乾燥状態とは異なり、燻 り燃焼となる。

さらに、それぞれの燃料状態に対して、燃焼を制御す ることにより燃焼状態別による捕集の分類も行った(図 5参照)。

 ・燃焼始めまたは燻り燃焼→燃料から燃料へと火が燃え 移っている状態で、燃焼温度が低く、水蒸気を伴った 排煙が多く発生する燃焼状態。

(b)希釈捕集

図5 各燃料状態の燃焼プロセス捕集方法 (a)平成21年度実施方法、(b)平成22年 度実施方法

- ・火炎燃焼→燃料が炎を上げて燃焼している状態。燃焼温度が高く、排煙が少ない燃焼状態。
- ・燃焼終わり→火炎燃焼が納まり、鎮火するまでの状態。

なお、燃焼状態は[CO₂] / ([CO₂] + [CO])の濃度比が0.9以上を火炎状態、それ以下を燻り燃焼状態と分類した。

(4) サンプリング

・カン(燃料を燃焼口から入れるタイプ)

燃料の投入口が設けられていないため、燃焼中は送風機もしくは、煙突に取り付けられた換 気扇により空気が送り込まれ燃焼を促進させる。特に送風を行わない場合は、空気が不足気味 になり燃焼はくすぶり状態が維持される傾向にある。従って、燃料の消費が抑えられる。

・平成21年度

微小粒子のサンプリングは、煙突部に3台の捕集装置をセットして、直接捕集を実施した。な お、サンプリングに先だって、適切なサンプリング時間を決定するために、1分毎に3台のうち1 台のポンプのフィルターの色を観察し、捕集時間を調べた。検討の結果、5分以上を経過すると

ポンプ吸引力の低下が見出されたので、正確な捕集流量 が決められるようにするため、捕集時間を5分とした。

また、バックグラウンド大気の捕集として煙突からの 排煙の影響を直に受けないポイントで、排煙のサンプリ ングと同様の装置を用いて、6時間連続捕集を行った(図 6の後方)。

・平成22年度

図7に試料捕集時の様子を示す。煙突から排出された サンプル大気と希釈大気とをそれぞれ吸引速度の異な るミニポンプにより吸入し、マニホールド内で希釈した 大気をPM_{2.5}サンプラーによりサンプリングした。

図6 煙突からの排気粒子(手前)なら びにバックグラウンド大気の捕集(後 方の赤丸部分)

図7 煙突からの排気粒子の採取状況ならびに各種燃焼条件の測定装置の設置状況

試料採取中は、K熱電対(RX-450K(OMEGA))をカンの通気口の中心部に設置し、燃焼ガ ス温度をモニターした。また煙突出口に、排ガス測定装置(HT-1300N(ホダカテスト))を設 置し、燃焼排ガス(O₂、CO、CO₂)濃度をモニターした。熱線風速風量計(DT-8800(MK-scientific)) の設置位置が風速に与える影響について調査を行った。設置位置については、図7に示したよう に煙突出口から深さ30 cm、50 cmの位置に設置した。熱線風速風量計を煙突内部の位置を変化させ たが、どの地点おいても風速に大きな違いは見られなかった。そのため、今回のサンプリングでは煙突 の中心、深さ30 cmの位置で測定を行った。

燃料量の調整および希釈捕集を行うことにより、燃え始めから燃え終わりまで一貫して捕集を 行った場合でも、ポンプの吸引力が低下することなく捕集することができた。ここでは、2台の 希釈捕集装置をセットして、同時に捕集を行った。

また、燃料状態別(乾燥状態、湿潤状態)、燃焼状態別(燃え始め、火炎状態、燃え終わり) においては、2台は希釈捕集、1台は無希釈捕集で同時に60s(コウリャン乾燥状態、燻り燃焼を 除く)捕集を行った。

(5)炭素成分分析

炭素成分の分析は、フィルターの一部を8 mmφのポンチを用いてくり抜き、Carbon analyzer (DRI Model 2001 OC/EC Carbon Analyzer)を用いて行った。昇温プログラムはIMPROVE TOR プロトコ ル⁴⁾ (He中OC1: ~120℃, OC2: 120~250℃, OC3: 250~450℃, OC4: 450~550℃, He-O₂ (98:2) 中EC1: ~550℃, EC2: 550~700℃, EC3: 700~800℃)を用いた。

4. 結果と考察

(1) 炭素分析における分析誤差の回避

大気エアロゾル中の主要成分である炭素は、OC、EC、及び炭酸塩炭素 CC (Carbonate Carbon) の3種類に区別して分析される。ECには標準となる物質が存在しないので、OCとECとの区別は分 析法によって定義されているため、分析方法の異なる測定結果の相互比較が困難である。また、 分析方法によっては、OCとECの分離が不活性ガス中で温度のみにより行われているため、測定中 におけるOCのECへの炭化が生じてしまい、OCの過小評価、ECの過剰評価が問題となっていた。

温室効果に関わるエアロゾル粒子の測定においては、黒色炭素粒子(BC)または元素状炭素粒子(EC)分析においてHeなど不活性気体雰囲気中で試料からOCを熱分離し、残存炭素をBC/ECと

し、熱分離を施さない試料から全炭素TC を測定し、TCとECの濃度差をOCとするこ とが多かった。しかし、この方法では熱分 離される過程でOCの炭化が引き起こさ れ、BC/ECが過大に評価されるため、 BC/ECの光学的性質に着目して、図8に示 すように不活性気体雰囲気中で試料から OCを揮発分離する過程で熱分解・炭化さ れた量を、試料のレーザー透過光強度

(Laser Transmission) /反射光強度(Laser Reflection)の変化をモニターして補正する方法がとられるようになった。図88に
 IMPROVE (Interagency Monitoring of

PROtected Visual Environments) 法による測定例⁵⁾を示す。

この例では、He雰囲気中で昇温し、120℃、250℃、450℃、550℃までに揮散してくるフラクシ ョンをそれぞれOC1、OC2、OC3、OC4とし、酸素を加えて98%He+2%O₂とした時に酸化燃焼する 炭素をEC1、さらに700℃、800℃に昇温した時に燃焼するものをEC2、EC3としている。He雰囲気 中での炭化をレーザー光による反射光強度と透過光強度でモニターし続け、98%He+2%O₂雰囲気 550℃で測定開始時の反射光強度の値に戻るまでに燃焼した炭素を熱分解有機炭素POCとして補 正している。この補正方法が成立するためには、次の条件のいずれかを満たす必要がある:1)測 定中の熱分解により新たに生成するEC (POC)は、元々測定試料中に含まれているネイティブEC (NEC)よりは先に燃焼する、2)POCとNECのレーザー光に対する特性が等しい、言い換えれば POCとNECはすべて炭素換算で等しい透過係数(吸光係数)、反射係数を持っている。しかし、水 溶性有機炭素(WSOC)から生成したPOCはNECの燃焼開始後も残存すること等から1)の条件は成 立しない(Yang and Yu, 2002)⁶⁾し、POCとNECの吸光係数は異なっている(Birch, 1998)⁷⁾ことか ら2)の条件も成立しない。したがって、厳密な意味では、IMPROVE法を用いても、分析に伴う誤 差の補正は完全ではない。しかし炭素分析中の炭化によるBC/ECの過剰見積もりはOCとBC/ECの 単なる熱分離による分析に比べればかなり回避できると考えられ、以下ではIMPROVE法による分 析結果を議論する。

(2) Char-EC \geq Soot-EC

大気粒子中のいわゆる黒色の炭素粒子は その発生経路で光学特性も大きく異なり、熱 光学式炭素分析計で、有機炭素(OC)、元素 状炭素(EC)の詳細分析を行えば、図9に示 したようにバイオマス燃焼から発生する黒 色炭素Char-ECはEC1として、n-ヘキサンの高 温燃焼により発生させたSoot-ECは、主にEC2 として、carbon black はEC2とEC3として検出 されることが報告されている(Han et al., 2007)⁸⁾。このchar-ECは炭素分析データのEC1 から熱分解OC (POC)を減じたものであり、 低温における燃料の不完全燃焼により排出 され、粒子径がマイクロメーターレベルの大 きいものである。もう一方のSoot-ECは高温で 燃焼し、一度気化したガスの状態から粒子を 生成するものであり、ナノメーターサイズの 一次粒子ができ、それがさらに鎖状会合して サブミクロン程度の粒子になったもの考え られている。

これらのChar-ECとSoot-ECは光学特性、粒 径分布、親水性も異なり、大気中における寿 命や高度分布も異なる⁹⁰のでその分別分析は 重要である。しかし、これまではこれらの分 別測定がなされておらず、バイオマス燃焼時 の炭素粒子の排出特性についてもBCとして まとめて扱われているものが多い。そこで、

本研究では炭素成分分析中のOCの熱分解による炭化誤差の回避低減、ならびにChar-ECと

Soot-EC分別に留意して、中国山西省大同市郊外農村部におけるカンを用いて、バイオマスを燃焼 させてPM2.5を捕集し、その炭素成分分析を行った。 (3) バイオマス燃焼時の排出微粒子中の炭素組成

1) 直接捕集における炭素成分組成

稲わら、トウモロコシの茎、芯について、燃料の乾湿状態と燃焼状態を変化させて条件別に排 気粒子を直接捕集し、炭素組成の変化を調べた。捕集試料に対する炭素成分排出濃度の測定結果 を図10に、炭素成分の組成を100分率で図11に示す。

図10 直接捕集による燃料種別の炭素成分排出濃度の変化

これらの結果より、各燃料 ともに燃え始め状態にてOC1 とOC2が高濃度に排出されて いることが確認できる。火炎 燃焼に移行すると、その発生 量は格段に落ちるといった傾 向がどの燃料においても明瞭 に観察された。さらに、湿潤 燃料を燃焼させた場合、いわ ゆるくすぶり燃焼が継続し、 乾燥燃料を燃焼させた場合の 燃え始めと比較して、より高 濃度のOCが排出された。湿潤、

乾燥燃料いずれの場合も、炎をあげて燃焼する火炎燃焼に至ってからは、OC排出濃度にはほとん ど差が見られなかった。トウモロコシの芯を燃焼させた場合に排出される微小粒子中の炭素成分 分析結果を表1に示したが、ECの排出濃度は、OCの排出濃度と比較して1/30~1/400であり、全体 の排出粒子に占めるECの割合は著しく低かった。これは希釈なしでの直接捕集であるため燃焼時 に排出された極性のガス状有機成分のフィルターへの吸着も否定できず、希釈捕集した試料につ いての確認が必要である。さらに、Char-EC、Soot-EC成分に着目すると、希釈捕集したサンプル において、バイオマス燃焼成分により排出された黒色炭素はほとんどがChar-ECであった。

Char-ECとSoot-ECは、粒径分布、親水性や可視光の吸収特性が異なると推定されるため、バイ オマス燃焼により排出される黒色粒子が、Char-ECであるかSoot-ECであるかにより地球温暖化に 与える影響は変化する。バイオマス燃焼によって排出されるBCは少なく、炭素粒子の大部分が有 機粒子であれば、温暖化よりもむしろ冷却化に寄与する可能性すらある。よって、バイオマス燃 焼により排出される炭素成分を測定する際には、OCとECとし、ブラックカーボンを単にECとして 分類測定するのではなく、ここで示したように、Char-ECとSoot-ECを明確に区別して分析する必

					0	
	トウモロコシの芯 (乾燥)		トウ	トウモロコシの芯(湿潤)		
	燃え始め	火炎燃焼	燃え始め	火炎燃焼	燃え終わり	
OC	166	57	368	49	4.3	
EC	6.3	0.6	9.5	1.4	0.0	

表1 トウモロコシの燃焼状態別排出粒子の炭素成分分析結果(mg/filter)

要がある。

2) 希釈捕集による炭素成分組成

図7に示したように、粒子を除去した環境大気で排気ガスを5倍希釈してPM_{2.5}を採取した際の排 ガス組成の測定例を表2に示す。多くの例において、炎をあげて燃焼している場合であれば、CO とCO₂濃度の測定値からは、[CO₂] / ([CO₂] + [CO])の濃度比が0.9以上になっており、十分な火炎 燃焼状態に至っていたと考えられる。

燃料	燃焼状態	測定時間(S)	O ₂ (%)	CO(ppm)	CO ₂ (%)	CO ₂ /(CO+CO ₂)
		0	20.3	1001	0.4	0.80
<u>燃料</u> 稲わら(乾燥) トウモロコシ茎(乾燥)	燻り	30	19.7	2652	0.7	0.73
		60	19.2	3814	1	0.72
	火炎	0	18.1	1650	1.8	0.92
		30	18.1	1840	1.6	0.90
		60	制定時間(S)O2(%)CO(ppm)CO2(%)020.310010.43019.726520.76019.238141018.116501.83018.118401.6601862501.83020.211000.4302014600.56019.818100.6018.414111.53018.213611.66018.112891.6018.620071.33018.331421.56017.635732016.340293.83016.735373.46014.440464.1018.132381.63017.729131.96016.340293.8013.839244.13013.733254.3	0.74		
		0	20.2	1100	0.4	0.78
トウモロコシ茎(乾燥)	燻り	30	20	1460	0.5	0.77
		60	19.8	1810	0.6	0.77
	火炎	0	18.4	1411	1.5	0.91
		30	18.2	1361	1.6	0.92
		60	18.1	1289	1.6	0.93
		0	18.6	2007	39 1.6 07 1.3	0.87
トウモロコシ芯(乾燥)	燻り	30	18.3	3142	1.5	0.83
		60	17.6	3573	2	0.85
	火炎	0	16.3	4029	3.8	0.90
		30	16.7	3537	3.4	0.91
		60	14.4	4046	4.1	0.91
コウリャン(乾燥)	燻り	0	18.1	3238	1.6	0.83
		30	17.7	2913	1.9	0.87
		60	16.3	4029	3.8	0.90
	火炎	0	13.8	3924	4.1	0.91
		30	13.7	3325	4.3	0.93
		60	13.8	3162	4.1	0.93

表2 希釈捕集時の排ガス成分のデータ

図12に希釈捕集時のPM_{2.5}中の炭素成分組成を示す。図11の直接捕集と図12の希釈捕集と を比較した場合、OC1の割合が著しく低下し、OC3とOC4の占める割合が大きくなっていることが

分かる。直接捕集の場合にはフィルター に吸着していたガス状成分がOC1とし て検出されたが、希釈捕集ではその影響 が効果的に低減したものと推定される。 また、この結果より、中国北部における 家庭暖房のカンによりバイオマス燃焼 中に排出される微小粒子PM_{2.5}中のBC はそのほとんどがchar-ECであることが 分かった。

炭素成分分析中のOCのEC (BC) への 炭化を補正可能な IMPROVE法(図8) により求めた表3の希釈捕集時のPM_{2.5} 中の炭素成分分析値から計算される OC/EC (OC/BC)比は、およそ3:1~15:1 であった。しかし、この炭化が補正さ れていない場合はEC (BC)は POC と Char-EC濃度の和となるため、見掛 けのOC:EC (OC/BC)はおよそ3:1か ら5:1となる。これまで報告されている バイオマス燃焼からのOC/BC比は 3:1~6:1程度とされており^{10,11,12}、この

図12 希釈捕集時の排出粒子PM_{2.5}中の炭素成

表3 希釈捕集時のOC成分、EC成分排出係数 (mg/g)

	稲わら(乾燥)	トウモロコシ茎(乾燥)	トウモロコシ茎(乾燥)	コウリャン(乾燥)
OC1	49.5	0.7	5.1	0.3
OC2	75.1	8.2	6.2	3.9
OC3	37.0	10.1	7.4	6.5
OC4	5.2	5.4	5.1	4.7
POC	45.5	3.3	6.0	1.2
Char-EC	13.5	1.9	2.5	6.7
Soot-EC	0.5	0.0	0.0	0.1

範囲に含まれることが分かる。このことは、これまでのバイオマス燃焼から排出される粒子中の 炭素組成においては、BC排出量をかなり過剰に、OC排出量を過小評価している可能性が高い。さ らに先述の通りChar-ECとSoot-ECの光学特性、粒径分布、親水性などが異なるため、ここで得ら れたOC/EC(OC/BC)比ならびにChar-EC/Soot-EC比などの測定結果を踏まえて、バイオマス燃焼 からの温暖化への影響の程度を見直す必要がある。

5. 本研究により得られた成果

(1)科学的意義

中国大同市農村部の一般農家において、トウモロコシ等を燃料とするカンから排気粒子を希釈 捕集し、バイオマス燃焼時の排気粒子捕集中におけるOCのフィルターへの吸着に伴うアーティフ ァクトの影響を低減した。また、捕集粒子の炭素成分分析中のOCのEC(BC)への炭化を光学的 に補正可能なIMPROVE法により分析し、バイオマス燃焼により排出されるBCの多くは、Soot-EC ではなくChar-ECであることを明らかにした。これにより、分析誤差の影響を避けて、バイオマス 燃焼時の炭素成分の排出係数測定のための炭素成分測定手法を確立できた。 さらに、これまでバイオマス燃焼時の排気粒子中の炭素成分比、OC/BC比、はおよそ3:1~6:1程 度と報告されていたが、炭素分析中のOCの炭化による分析誤差を低減して測定された今回の OC/EC(OC/BC)比はおよそ3:1~15:1であり、これまでの報告ではバイオマス燃焼から排出される 粒子中の炭素組成において、BC排出量をかなり過剰に、OC排出量を過小評価している可能性が示 唆された。

(2) 環境政策への貢献

排気粒子中のブラックカーボンは、光学特性、粒径分布、親水性などが異なるSoot-ECとChar-EC として排出され、後者が主であることを明らかにした。また、これまでに報告されているバイオ マス燃焼由来大気粒子中のOC/BCの見積もりに対して、OCの過小評価ならびにBCの過剰評価の可 能性を指摘し、地球温暖化への寄与の予測精度向上に寄与する情報を提供できた。

6. 引用文献

- 1) Jacobson, M.Z. (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697.
- 2) Novakov, T., Penner, J.E. (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations, Nature, 365, 823-826.
- 3) 計文浩,野口孝博,西村伸也,月館敏栄,陸偉,羅玲玲,森下満,池上重康,岡本浩一 (2003) 瀋 陽市近郊農村住宅におけるカンの生活様式と空間構成,日本建築学会技術報告集,18,245-249.
- Chow, J.C., Watson, J.G. (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies, Atmospheric Environment 27A, 1185-1201.
- 5) DRI: DRI Standard Operating Procedure, DRI Model 2001 Thermal/Optical Carbon Analysis (TOR/TOT) of Aerosol Filter Samples Method IMPROVE_A, DRI SOP #2-216 (2005)
- Yang, H., Yu, J. Z. (2002) Uncertainties in charring correction in the analysis of elemental carbon and organic carbon in atmospheric particles by thermal/optical methods, Environ. Sci. Technol., 36, 5199-5204.
- 7) Birch, M.E. (1998) Analysis of carbonaceous aerosols: interlaboratory comparison, Analyst, **123**, 851-587.
- 8) Han, Y., Cao, J., Chow, J.C, Watson, J.G., An, Z., Jin, Z., Fung, K., Liu, S. (2007) Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC, Chemosphere, 69, 569-574.
- 9) Park, R.J., Kim, M.J., Jeong, J.I., Youn, D., Kim, S. (2010) A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia, Atmospheric Environment, 44, 1414-1121.
- 10) Streets, D.G., Yarber, K.F. (2003) Biomass burning in Asia: Annual and seasonal estimates and atmospheric emission, Global Biogeochemical Cycles, 17, doi:10.1029/2003GB002040.
- Bond, T.C., Streeets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., Klimon, Z. (2004) A technology-based global inventory of black carbon and organic carbon emissions from combustion, J. Geophys Res., 109, doi:10.1029/2003JD003697.

- 12) 外岡豊 (2007) 東アジア地域におけるエアロゾル成因物質の排出量推計,エアロゾルの大気環 境影響 (笠原三紀夫,東野達編), pp.262-276, 京都大学出版会.
 - 7. 国際共同研究等の状況

中日環境保護中心の薫旭輝博士、中国環境科学研究院王偉博士、大同市環境監測中心白文濤氏 らと大同の民家におけるカンを用いて、バイオマス燃焼時の排気粒子の捕集を行った。

- 8. 研究成果の発表状況
- (1) 誌上発表

なし

- (2) 口頭発表(学会等)
 - 1) 岡本敬義, Jiang, Z., 佐藤慎平, 関口和彦, Wang, Q., 坂本和彦:中国農村部のカンによるバイ オマス燃焼時に排出される微小粒子中の炭素成分の測定, 第27回エアロゾル科学・技術研究 討論会, pp. 87-88, 2010年8月.
 - 2) 伊藤恒一, 岡本敬義, Jiang Z., 関口和彦, Wang, Q., 坂本和彦:中国農村部のカンによるバイ オマス燃焼時に排出される微小粒子中の炭素成分の測定(2), 第51回大気環境学会年会, p. 334, 2010年9月.
- (3)出願特許
 - なし
- (4)シンポジウム、セミナーの開催(主催のもの) なし
- (5) マスコミ等への公表・報道等
 - なし
- (6) その他
 - なし