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2. 1 FEBHE

T2 Z v (EVELTR)

TEMETBIR &%, Fix OMIEZEA LT F 0k (Mo TAMIK) 23K Lz T7ay
7 (flocs) | &ZDEVIZHERE L TWARAEEBYEZ D, BLEIT 5 MEES KD E & 5
WL TEAYO T 0y 7 2R L, EOFRITHFERIIEE T 5, 207w v 7 OERSIITE
W, 2V HE, BB ThHDEnbILTn D, IEMHGRTIE., 2071y Z7EARE (floc
forming) % b DML DL PIEMEBRICEE T HZ ENTE D, RERL, 7 v /X
HOZHODT, 71y 7 OFITEEATOIUE, TR © R¥BiR & IR BE LT, B~
kS, TOREE —EIREDZENTEDLNLTH D, 780y 7 BREED 22T
RGN DI ~MT o 7o & & RIBIEHRICRE L, QBKE —FEICii S5, IEH 2T
75IRIE 1 mL 10" ~10° OMIE#HE CTHER LTS Y,

ARERRTIX, A b ET ETAGERMBKLEE > 2 —0 GEE L 72355 TE (RENGTE)
-, BRI E O R, V5B X 4000~5000 mg/L T, B ) A—H—%& iz
BEEEHIE OFE R, IHIREE po= 1451 glem’ TH o7, 4COHBIENICEIT 5 20 DT

T = a L CRE L. E R s=0.005 ([ZFEE L2 b 0 & FHGUE L Lz,
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2. 2 TERE-BERES T XDRES

AE AT A Y— (UP-200S, Dr. Hielscher #) | £'—X 3/l (£ —X b —#—11079-8,
Hamilton Beach #; ©— X7 7 v ¥ —uT-12, ¥4 7 v 78, H o7V r 79 v—
TK-AMS, # A 7 v 7 8)  FAMKKRE DA — (T25 KA, =L 7 haRL—%—
(Gene Pulser Xcell, BIO-RAD ) (2 1% F/AKRENGIEOMME & g (BL600, HrFLF
B) % AW REERRERC X 28 OB EE A G LTz,

Fig. 7 1213, Wefl « BERERNBEE Td - I8 T I BENIC X D Hfle & BEHRIC K B RS O
EEE R Uz, (GIREEIR %2 100 mL B — 5 —(Z280mL fx W H L, @HF KT A ¥ —
DFR— 2 OFEZFELD Fig B8 3 20 1 £ TALL, 0.5 s BB CHriseH L7z, iEo
RARHITIE200W T, 2D 20 ~ 100%., T 725 40 ~ 200W O] THRENFAIEETH 5,
AT S LTid, 77 P=40, 80, 120 W, FERRIHEFHE t =5, 15,35,60 s TEBREIT-T-,
B RBAERIL, 0.5 s FAHOWERF Do, EEOBRIERFM O L 70 s, BEER
B, 50 rpm CHERFEFRZ ATV, IHMEIGTE 7 1 v 7 O B QRS 22 L7z,

AT L OVEERE B R OFHImIL, L — Y — =3 20k /3 A I E (SALD2200, it f/ERTHY) |
BEMMEERIEE (FYF NV~ A 7 1 A3 —7 BA210E, BEFMEED . £/2M%E29 cm D7 27 Y

IWVEOEREE 2 I To B R L VAT - 7,
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2. 3 EEEHE (ER) B/KEORESL

Fig. 8 (21, AMFZEIZIB W TG - BUE L cEmEEEE L 2R, AT LR
NP 3.50 cm, B LIIHIAS 9.62 cm® T, FEHEIMEIC L HICEERE () & MERRBREIC &
DRI EEOMBENTIRETH 5, Z OBEEEHEE V& AW T Fig. 9 IR 27 49
(2 XV ET) pe=98 kPa TYHIEDAREENE (JEil) 217V, Bk E v O Z JIE LT,
JEAIZIE, U84 TRGRO3K (FALih 27 ¢ v & —H) % F\ 7z, Table | (ZI8AT O WM % 7
7,

Table 1  JEAT OYIEAE

ULEis TRG803K
B 7 [mm] 0.34
B [g/m’] 324
WAME [em’/em®/s] | 0.3 AR
SO HE AN
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2. 4 BEEEHERKEORHESL

IR (i) KTk, EHEELO B 77 0P L TER b TR %, £72F
7T o DIER ST AT o LV ARDE & XD TIT R A T Figs. 10, 11 1IR3 & 9 1ITHF
FFABE (SC-50H, BRI 1 CEIEEHE D 21T o7, X UHIZ, [/ pi=98 kPa ~
2 MPa TTEH Lictk, % B CTHEHEITET pp=10 ~ 50 MPa CilgmdEKIC CEHEET
W, BEEEEEVICRY 72 A YA =D I T — 27 ES L OREELAZRIE LT,

lu ? P E—
~h:EJEIE.I4:|:4:|:1"/'EE ~
EEERE
4 ER &G E
HEREs | [ FEFEEHN p, =2 MPa
ﬁ! EEIEA p21= 10 ~ 50 MPa
— K D) o8 —RAEE#E 9.62 cm?
a—Feb \EEHK( = 2) y
EX by 4l
Sy — o d A R
RHEBEELY E# TRG803K
XEEHR (AU ED s J)L4—8)
BHE < \iﬁﬁﬂ 0.3 cm3/(cm? = s) p
N
B#ET—7 - N =S
(Fr—H9BESDHE)

PC

Fig. 10 sk (s EEPE) 2l OB
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FEVERE T2, 7 — 7 G Z g (DS610, ¥~ MR & 2 VI3 aRANRAK 5
(FD-720, Kett ) (2 TRIE L7z, i, EREFBMEE (ICM-5000, AAETR) (2 THE
PELKR R D — 2 Rl OB TEERY Lz,

BeEEEEE
B EE R AR

Fig. 11 ik (Bt RE0TE
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3. MRLEBLR

3. 1 TARKFENGIROMA: - EEiELE

BERATTTA P — BE=X IV FANKEETFA Y — =7 bufb—ra v
2 & D FAKRBRENGIROMHE « BEfE i EZ2 R 72 & 2 A Fig. 12 (TR TRERZ2FER S b
L8902, WTHOHEZBNTHEIELZHEUICHRET 5 &ICED . 7ry 7z D H
OGRS PNEIER SN, FHOBS 2 B LG A ICHE R RN RO, £ 2Tl
U IR & SRR RR T K DR - BERE DR O A BT o T,

BEW OS2 40 W, FEIRFFZ 155 & U Tk - BEERIEEZIT > 2 GA D1HR 7 v
v 7 OG- R % Fig. 1312, £REFFM A2 R0 7 n vy 7 OmfEFE d O
ZAb% Fig. 14 1R L, BERBFICEY 7o v 7808 L, TO%BEEIEE1TH 2
ETT7R Yy IENPERT DL Enbnd, BRENFMEZRETDE, BB E\ITT 285, W
THUOLMETHHOEE 7 0 v 7 R Sz, MR - BEEERER O 7 1 v 713, 151K
FVBRERTv 7 BROLNLD, HFFHIEOMEICRE R R o7, L LR
b, —H, 7my 7 B L. ZORICEERE L TWD D, ERRFICHELLST VW &
PEIrEE NS,

2B DT T D L Ty ZIZHD A E R ORI 738N 2R T 3Bl S Tz,
HOHWRERBRZ1T O & RBREPE TE > T AREEREOBROBEIUIE ROER & 705 Z &
MEZ NS, A7 U —IZNaCl ZIRIMLT=& A, DA F 2 Th 5= DIEIRFHRICIE
(3 & A BB KAT S 720> T3 | RHAEA% O BERS 1Z KT 3 28 LB T, Fig. 15 1" 789
(SRR EE 2V L < AR L 72 9, Fig. 16 OEEMBIGTEN D, 70 v 7 OEREIC T T BT
MG & AN OERL RITAME T H 5,
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L RFEBRIZ K A T

- ERBNETRS
- BmE 20v99(ZRYiAEN
01 B4 50 rpm, 20 min | EUMSHRF D 1E
1
i%% 0.7 —
R
?%; 06 F R IERmmIc kL
0jn S -
£ o SR
B 0.5 " g st . i 1
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EE RS EIEARIMDERINR

b EE AL SR BiRBST—18m (0.1 M NaCl)
—>iE#

Fig. 16 H &% G & YEIRN o0 +8 e R A
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3. 2 BEE#E (KR

T BB (AR B R 24T O TR « it 7 0 B R B iR T 15 VR AR B IR AR E M 2 22 32 7
A THET 2O EERIEIC TIT > 7=, Fig. 17 ({233 X 902, RO & 72 2 186
WE O dgdv & BALIEREREH 72 0 ORI E v & ORRIL, BERA BT 2 2 &L O
L. Ml - BERS 7 1 2% 75U TIEARMST OG5 Ieik & Fik U ClE#his R Lz,
PEIBE LR CE IR RBRIC L 0 7 1 v 7 ITEY A E e WAL - 23Dy Tlx d 2 03 F
ET2ZERHALNTHY, IEBETUEROER E 2D 2 ENB X 6N, £Z T, EmLy
BELZ 0 PR OBHIRL - 2 BRE L2 & 2 A Fig 17 IR L 2 ICIEBRIHAE LS /M E
KTpole, TOT EMb, Wl - BEHEERIEICBO TIRIR - 2 A S 2 WA PLETH
Bk ERRAEBPTFROEEITIE, BRE L KL TRICE T 2 BEAE RS 72 & oxt
RPMETH D ERbhol, B, RENGIEZ BE A 5 2 & CTHESMEN B3
D2 ENMLNTEY D BEMICESTTHREN NS T ITAMERICE 2B L /SN
DEBEZBND, £7-, Fig. 17 T, BODBEABEA LR RZ R L7eh, EARRKRIZLD
FIRRZR VR IR CE D 2 L AR LTI Y | B - BEAE 7 1 & 21412 —fRAV 7RG TR LIRS
TEASINTWDIRMEZRIT D Z & THIRNARETH D,
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Fig. 17 T/RRRENGIE DY 2 H)
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3. 3 BEEEHE

Fig. 18 |21, KIEEFER DGR — 7 % 10 MPa CHIEEIEE LT A D 7r— 7 GKER
DFRERFEAC Z 7R LT, BB « s 77 1 & A 28 7o ih e Tk, RLBRIFRA] 1 43 TO— 7 GKERIZ
#7140 %, 1 FEEITHKI 30 %, 24 IE[HI T 27 % b 7o o7z, Z OFERIL, BIFHINOHEmKHETH
% 60 ~ 70 %ZENTENTEY | I THKEHEOBLENS bEDW D TH T,
BEALDORRE TEMEL T 5 & 99.3 %DHREA ER STV 5, EAEMMIIAPN 07K 5373 70
~80%THDHZLEEZRDELE, ZTD2T%E VIO TIRWEKREIX, HIZT vy 7 DRE
(2 & BIBIERL - D B FH/KSORL - R il OfFE K TE 1T T7e < HIIRNICE £ 5 KK bR E
ENTNDHZ LERLTND, RAFEDOIFIRIZOWTIE, 24 FEEOLIETEKERIL 41.4%
FTIERT L7z, E7 VRBIOEHEERIC LY REMNL AT T VT ORBGEIL 1| MPa f2EE
PSUBERKT 5 MPa F2E TR T 5 2 E N B L0 ¥ UBEEIC X B BRI EA K
TN Enbnol, LNLBRNE, RFELZHND Z LT, KVERHT, IV EKED
INSWEIRT — 7 DGO ND T LD, Bl - B 7 m A ik D 2 &L OBEEMEDHER S N
Too 72B. WP OFEBIT, Bk T DAME CTCORBIEIEET LV TH LHEIE Terzaghi——#%1b
Voigt BT V&AW TRDEHAEMBTHY, vy hOFERELE BIFIC—EHLTWD Z &
O KZFEOHER S AIRETH 5,

Fig. 19 1%, Fig. 18 (JEMIEIE A) LIZHE 2 2RI L 7= REVEE (EMEETE B) & A
WTAT S T2 EBFEIR TH 0 BE I O RETIFH & ) %2 280 ST 6 O G /KB ORI
Th b, BEWERSMC L 2B IDTNTHLID, WTHOSEIICB O THRLHEDTE
TR & bl U CHRE R G KRR T SR Sz, iRiE% 1T &L BEEER T Tom
VT IMEFITHAE L, GARENFZELLIBPDT L2 enbinsg, BEb Le X 912, M 1T
95 L B OERERFIC 7 7y ZIZHD AR ORI 723 2 A7 BE R D2 /NS 8
IZRRE LT, TR, BE T2 HER=RL -8R b E0, AHTHD & Hr
SNb,
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Fig. 20 (21X, FEHEE p BBK T — 27 OEMEKE RACKIZTHEL R LT, EHOHEM
& & BITHRKEKRRITTFE D L, W TR OENTRB O T B L7257 — 27 O J5
DPGIRIFIRIN OAFTer— 27 K0 BKEPRE AR LT, 2k, RUBBROLETH, &
KBEOELTFARD HiL, BEEOIERMRP MR I NI, ERENEZRELTLH2LT, &
RAHGKBEOIKRTDRRIADL Z L EHLNTH D,

LLEoD X 91z, 3B 22 DIBIROIRREIC X » THUKBI RN R 5 28, WO Sk
THRUHDOGE LD bEFE L EKREINNS LS 2D 2 LIIHFETH Y RKFEOH DT
ST,

Fig. 21 (203, B & W IREHEIT X 2 e - BERE R ER O B CEERE 7 v v 7 LS R EER O
TRRFENGROEB (GERE 7 M JICM-500, HAE 7)) GTEZ/R L2, HOBRE 72
v 7 R LAV OTIGIRIIRTEN TR Y (R REMNEE->TT7 0y 7 ZJE L T
L2 E0ND, —J, BEEEEZOBHEE T, MEMORPHR TE R, 20
TG, EMEEERIC I D BEDMR S RE SN D Z MR S, 72T VB
PEEBRI O b EEEIC X VIEMBE RN T 2 Z L BER SN TN D Z &M D, Mg o
FEKBRESNEKREOFE LWVERTICER > bD LB BND,
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HEEEEeE
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ABKE R [wit%]

100 I I I
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. BEET
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Fig. 18 MEEEHEIC X D T/ARRENGIROPLKZEHE)
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EKENKIBEICIET
_ 50F ‘ﬂ
o [EHDEMIZFE
40 | BKEFELIED |
EHEEREB
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BRKIRERIRDEREE

e e X :
Vac-High PC-Std. 15kV x 1000 20 pm 000424

BERRSEIZES | EEEE%&

- oOvy
BRRGEMEMNEFTFHST BMEMORKINERTEZL
BHEonvoE B BEEERICEYME DR HER
—-BKEDET
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3. 4 FRESEETILVORE

<HTHUEHEE T VPR >

ABFFE T, EVEERIEIC KV AEM R T v P OEL 2R DTz, EHES JOEHERIEIC L D
A ZE B D FRMT ST IEIZ DUV TLL FIZR T,

— MR EEIZ L D AT U — OBy B R I R & 2 e < EEHIE & 1250 D
T EMTE, AIEIEEHE, REILTENFITEBIT D Terzaghi OEHEHFRAEIE LT, &
iE Terzaghi 7 /VIC X VT S5, 7ok, EEWIRIZEHBWT, k07 U — 7 H8HEETE

TREEDPFET D HEICE. TREBE LB M TN D,

<fEIE Terzaghi &5 /L >?

JEBHEATH O & — 2 NER T, IR0 Tidre < BRI T LIEM T icB®) L, JEEIC X
S THEH SN DR O TR RO L OB ENRE & FEIROBENRE &L OREATRIND,
DX RRITBNTIE, MEE RTINS L UCEEEEE AV D & NEROHRAE L OVE
B OB B & filk 2 @8 RN & MBI S L DBIR, 36 K OBER Sefl 70 03 HME & 72
D, EREROMEGDLONREEL 722,

FERJIC K> TEL L&, Bl AT Fig. 22 127 X 9 ICEE SN2t m L HHl - 7=
HAT BTS2 72 0 O RS o (LB EE & U CRAT 2 Z 2ok, e sk
S, EFEERAZEET DI ENTE D,

JEREr— 27 WD & DAL @ (Fig. 22 ()W I 57— 7 fa ikt zs al B X, L& ol

BT DM %1 & D IRAR DO E AR AT D RENTHXEE u X, X TR Z &R
TE 5,

_ 1 _amd:_ 1 dp,
uop, 0w uop, 0w M
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T IS, polFEAREMEET . pLidiEETH 5,

APPLIED APPLIED
PRESSURE, p PRESSURE , p -
-~ (LZZZ2777777] w6 - 7222207
";_",_—'”f""“:'* ] & e . .
p = } ‘ w » .._?.._........_...-__
Bx ; souio| [ FI -
. LIQUID WLAPPARENT
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X=0 4 w=0 el "
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Fig. 22 (a) X JEIZ & (b) Pl

r— 7 NERE doll B DRI OB ITXQ)TE b,

oe adu
= 27 2
00, Jw @

2T, el IZERI, QITEBERHITH D, ek, BEEIEx ZHWD L RIKE L OEK
(CONWTOWEIANBEL 725, NDZQICRA LKA ZED,

06, Jdw\ wuop, ow
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I, IR OREE, py ZEEOERETH L, EREHHTOanEEEZ LD, —
&L, E7o, ZERLE e AEAREMIES pol6 L TEMERICH 2 LMET 2 & K@) IHE

EEB @) E 72D,
p. o’p de J’e
b= 2B g E=c 25 4
0, ° 0w’ * 00, ° 0w’ @
C=— ! )

uop,(—de/dp;)
Terzaghi 73382 [ER TR AU E AR 7 OB &) 2 B U EE AR x 2 AV TV D723, A(4)
Tl& Terzaghi D Z DR ENMEIES LTS, £, RB)THZOBND CAXEEEHEAEK

TH 5,
EIEEEIREL C. DEICEHPIARRE & & TR O E Vo 2 & & L, (@) & EEET

p —iE GEIEEH) O F Tl L. EEORTFRELETEHEELL U AL FO L 51

HBonsd,
A7V — RO

_ 2 2
U - L -L :l—exp(—ﬁ—‘%] (6)

P 73 E AR O [ 5

L, - = (2n-1)’z* i’C.6
U — 7
L - ; 2n-1)* { 4 ] @)

oo

Z 2T, Ly L LiEEnENEEN, KRG, JEE R0 — 7 B i iZgEKkmER.,
o AW RS DO B IAATE CTH D, EHEEL U, JEEBLAERZ 0, & THHIZ 1 & 72
5

40



TRIESE & E L T= Terzaghi-Voigt £ L >0

Terzaghi €7 /L Cld, KL AEED SIFHZFEBZ A7) 7 TR LTEY | BEUIREREES] p
IS 2 &L RIS p (SIS L7 RRE E ClRIMICIEMR SN D IEL TV D, Lo
L. FEBRICKRFREE DN ERME SN 5E1E. BRICH HREORERBNSLETH D, HMEHH
DOB/NEFRIZBIT DR THEEO Z DX ) LA n O—{EE 2 BB 5720, ZZRATEOWR
DISES] p DIAIMTENG L TR 2885y (—IRER) & RFRRIIICEN TR 55850 (=
WIEE L7037 V—TEE) OO0 b0 > TWd ERGE L, Fig. 23 IZRT L 21T, %
FOU)—TREE AT ey v aRy N EIFES LT Voigt BRETITEIL, Zh

A7) 7 Ul B 72 % Terzaghi B3 & & [EAIFE G L 72 DA Terzaghi-Voigt €7 /L Th 5,

(ps_ps.l)
T
_l1+e S
5™ NS
i
ELASTIC COEFF.E2b .

) \ 3
L | =
—— =

©
VISCOSITY. G o
— .

T (Ps~Ps.)

Fig. 23 JE#IZHT oL ARy —FET L
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Terzaghi-Voigt &7 /L Tld, FRERFE U TR D X HIZRS D,
A7 U =B DE

U, =(1- B){l -~ exp(— %2 i 25;2 % ]} +B{l —exp(-76,)} (8)

0

Y 73 E AR O T4

—(-B { ilzn - p{ (2”_i)2 7 2C‘9H+|3{1 expl-n8)} (9)

a)o

Z 2T, BIFEEEEICHT L RIEFEOEIS, nis U —7 O TEE 2R E (BT
IFOHEL) T D,

<HHIEHEET L >
—RICEEEBIT, EBR LW RET VL TH DHEIE Terzaghi £ 7 V&b 5 WITEE

Terzaghi-Voigt &7 /L TRk T& %, LA LANRE, FARENGR., ZoMIicb A A7 U7
ROBERE & W o TeBVAER OISR E F O BV EIE, B D, = VUi EORREET Vikk
TIX, FEORIEHEEEZ R L, (ERET NV COMPITMNRATRETH »72, £ Z T, Fig. 24
(7R HE IE Terzaghi & 7 /VIZ Voigt & 7 /b & 5 E ELAIZ 42458 L 7 & 1E Terzaghi—#% 1t Voigt

BT NERRR L, AEHEMNTICEA Lz, EHEER UL, kAo X rickasns,

uc:(l—isk{ St p{—(”‘_j) C‘9H+ZBk{1 X)) (10)

n=1 2 _1 a)o

IS, K EE. CAEELRERE. 6 ITEERFH. oy XHALWT RS O & A AFH
BEFEBEIINT 2457 V=T EEORIG, m 13457 V=7 OETHEE ZRIES (I
JERFIRI DML TH D,
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1
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|
T

TEXEN

Fig. 24 Terzaghi——f%{t Voigt &7 /v

BYREEIC 3495 7 U — 7 ENE, R0 HETS X Fig. 25 ZEKD X H12(1-U,) %6 DA
X7 7y N OEMENDRETE, FARRENGIROG S, BT TED 200,
WREEE TEEEBTHLERD D Z L N> T2, Fig. 25 AL, TAREGIEDE#E 2%
B A SRR T U ORRIFE (L E LR L7e, 48, A0 THURESE (k= 3) £ TEE
L. 74 97 4 U ZIC R OB EEERRESCS 7 V=T ERE W TRO IR TH Y |
7y FOFEBREEHEERS —HLTWDZ &b, KEREEZET /L TE 2 & S
%o Flo. —WPLMUKE TOREBEROES A B, By, B Z#MHITR L=, ADENREKD
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REL, —REBRREHEED 60 %o DD I EBbnrole, TOXIREMAT VD
FE 22 B2 ENT, T OMED LA n U— R ERICBEKR L TV D B2 b, 5%E
BRME L LA DR L OBMRIZOW TR AL B L 2 5, R EEEICKIT 57
— I ARZFEDET WAENTELLZ LIZE D  AHTEL TV HHE 2 OBESRIMFIZH T D
KERROHERIZHF G T2 b0 EHfFEND,

Fig. 26 (21X, 77— 7 DZERFKe,, £ GKER ORFEILIZHOWT, REMRERT —X %
7ry T, EHHEREET VICESSFRELZER TR L, F—27 DZREe, &5
AKFERIZZENRZENXAD, (12)TE I, X 10)D U, ORFFEILEZ WD &, ZREhofk
R LR CX 5, RIIRT LD ICERME S HREITIRFIC—HKLTEY ., X 10D
DNHSLWTTEARE 2 72 0 OVGTRIRTEIC 70 D 2 L0 b  THIE DB TN L 72 55512 b 18 H AT 68
T, AEEET ML BAKRFRZ TS 52 LN TE D,

£, =1- % (11)

100¢,,p
P+ (1 = &) ps (12)

Z 2T, an IFEALTEREE OB RATE, L. LIZZ NSRBI, RS PO — 2 5
S, PIIEHEOBEE, pXEKOERETH D,

RIZ, BT NVRUT L DT 2 6D | 1HIR DMK R 2 RN 5, AR U 72 it 15
ez, flix OFEVEE p, CHEmEESE LIZEROYEYEEL U, ORRFRFE{L 4 Fig. 27 128 LTz,
e ST BREICTEIR 7 — 7 133 LSRR S, TOMEMIE, JENRREWIZEH
ERRZ EnNbirg,
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Fig. 28 (2%, ETZ NRUT K DT CROT-BEHEEITKT 2 —KIEEORIG A &L kD
SIUKETORT V—THEEOEIE B (k=1,2,3) OEEENORFRER LIz, L
L 7RG TE Tl —IRIEBORIE AR b RE L, TOMEMITESOHEME & HITHE &
220~ TSRS LT RIEBEOEIG BUIEA OB E & IS ieote, 728,

ZREB L OHREE OEIEIIRD T/ NS ho iz,

Fig. 29 (213, iR D 72 D2 RAFE DB JEd L OVEA & L TR YT VI =7 A (PACI)
AW CREEE LT-{58 % 10 MPa CIHEHE LT7HA ORI EEBROEIG & Wil « BERELER
L72iBIRDFE R & OF TR Uz, 1GIRIRIE & OFRE XM T, ARFMLEE U 727513 = IRIER
DEE B VML, —REHEDOEEG ADBKEL o TWNDLZ b0 d, ZIUTEE L
HUZ L > THRBEERK ST o TWAED LHEZR SN D, b, BERZRML
Yaicid, ZRIEEOEIG B VNS, ZIRIEEOEIG B, REL ->TkY, HHK
FCHWVAALEE R 7 vy 7 BT 22O EBEPETLICS S RoTWHEDLE
bbb,
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Terzaghi-—#&{EVoigt ®FIL

C. ! BEEERM
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GRAPHICAL ABSTRACT

* Efficient deliquoring process  of
municipal activated sludge was pro-
posed.

* Low-pressure  filtration  combined
with flocculation led to high-rate
deliquoring,

« Expression combined with water
permeation resulted in high-degree
deliquoring.

* Relation between peorosity and com-
pressive pressure was described by
a power function.

* Cake moisture content was reduced
ta 31 wt¥ at expression pressuse of
15 MPa.
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The efficient deliquoring process has been developed for achieving high-rate and high-degree deliguor-
ing of municipal excess activated sludge, which exhibits relatively low dewaterability. In the method
developed, low-pressure filiration combined with floccuslation led to high-raie deliquoring of sludge due
to the formation of iarge flocs. Subsequently, ultrahigh-pressure expressior combined with water
permeation through the filter calke which promoted the re-dispersion of flocs in the cake resulted in
high-degree deliquoring of the cake. It should be noted that the moisture content in the compressed
cake was finally reduced to 31 wt¥ by expression eperation under action of an ulirakigh pressure of
15 MPa, This extremely low value of the cake meisture content implies that the liquid contained within
the microorganism cells was partially removed by the mechanical pressure when the ulteahigh pressure
is applied to the cake in the caurse of expression. The relation between the equilibrium porosity in the
cempressed cake and solid compressive pressure was empizically represented by a power function. The
kinetics of ultrahigh-pressure expressicn such as the time variation of the moisture content i the
compressed cake was accurately described by conibining the multi-stage creep model with the madified
Terzaghi model describing the primary consolidation.
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1. I[ntroduction
Sludge accounts for over 40% of industrial waste in Japan, and

thus it is of the utmost importance to reduce the waste volume as
much as possible from the viewpoint of increased transport costs,
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a serious shortage of the remaining landfill capacity, and more
severe environmental regulations, Deliquoring by mechanical
expression of residual sludge arising from wastewater treatment
has become increasingly jmportant owing to the relatively low
energy consumption compared to thermal drying which follows in
the process sequences. it is desirable to remove the maximum
feasible amount of liquid by mechanicat expression prior to drying
and incineration. There has been considerable research on the
expression mechanism of sludge in recent decades (Kawasali et
al., 1990b, 1996; Kang et al,, 1990a, 1990b; Yoshida, 1993; Chang
and Lee, 1998; Chu et al,, 1998; La Heij et al., 1996a, 1996b; Lee and
Wang, 2000; Mihoubi et al.,, 2003; Christensen and Keiding, 2007;
Huang et al., 2010; Grimi et al., 2010; Petryk and Vorobiev, 2013).
Amang them, Kawasaki et al. (1990Db, 1996) analyzed the expres-
sion characteristics of freezefthaw conditioned excess activated
sludge, and examined the effect of bound water, which cannot
be easily removed by mechanical expression, on the expression
performance. Kang et al. (1990a, 1990b) examined the role of
extracetlular polymer in expression of activated sludge, Chang and
Lee (1998) modified the conventional Terzaghi-Voigt model
(Shirato et al, 1974) by considering the ternary consolidation
appeared in the final phase of expression in order to accurately
evaluate the expression characteristics of sludge (Chu et al,, 1998).
However, there is not much information on expression character-
istics, especially cake moisture content, of excess activated sludge
under ultrahigh-pressure expression conditions more than 10 MPa
(Bergins, 2004; Venter et al, 2007),

Unfortunately, the deliquoring rate and moisture content of the
compressed calke produced by mechanical expression of biological
sludge are currently unsatisfactory. The relative effect of expression
pressure on decreasing moisture content of the compressed cake
and decreasing permeability is fundamental to develop a promising
deliquoring method. Although it is to be expected that the increase
i the expression pressure [eads to the decrease in the moisture
content of the compressed cake, the deliguoring rate is unsatisfac-
tory because of the formation of highly compactible filter cake (Tiller
and Yeh, 1987; Tiiler et al,, 1999). In contrast, whilst the deliquoring
rate is significantly improved with the advent of high-performance
polymer flocculants, the moisture content of the compressed cake is
insufficient due to the highly aggregated structure of flocs in the
cale. In any case, it is difficult to sufficiently reduce the sludge
volume at high rate.

In the present article, a deliguoring method which combined
reversible flocculation with ultrahigh-pressure expression is
developed as an innovative technigue to overcome the defects of

the conventional mechanical deliquoring methods, The effective-
ness of the method is examined from the viewpoint of the
achievement of high-rate and high-level deliguoring using excess
activated sludge discharged from a municipal waste water treat-
ment plant, and the kinetics of ultrahigh-pressure expression is
revealed on the basis of the multi-stage creep model combined
with the modified Terzaghi model.

2. Deliquoring process developed

The outline of the deliquoring process developed in this
research is schematically shown in Fig. t. Inorganic flocculants
are initially added to sludge to form large flocs, which enhance the
filtration rate in the subsequent low-pressure filtration. After cake
formation is completed in the filtration process, water permeation
through the filter cake is performed to re-disperse flocs in the cake
on the basis of the principle of reversible flocculation achieved
by washing out the flocculants. As a result, the cale structure
undergoes the substantial change, and thus the denser cake is
produced due to the floc breakage in the cake. Finally, the moisture
content of the compressed cake is dramatically reduced by
expression under action of ultrahigh pressure. Low-pressure
filtration combined with floccutation leads to high-rate deliquor-
ing of sludge, and ultrahigh-pressure expression combined with
water permeation through the filter cake results in the high degree
of deliquoring of the cake.

3. Experimental

3.1. Materials

The excess activated sludge employed was collected from the
aeration tank of the Ueda Sewage Treatment Works (Nagoya City,
Japan), and concentrated at 1.0 wi®% by decantation for 20 h in the
refrigerator lept at 278 K. True density of solids in the sludge
measured by the pycnometer was 1.45 x 10* kg/m?*, Polyaluminum
chloride (PACI, 250A, Taki Chem.) was employed as inorganic
flocculants. Water used in water permeation through the filter
cake was ultrapure, deionized water (minimum resistivity:
18 M£2 cm) prepared by purifying tap water through ultrapure
water systems equipped with both Elix-UV20 and Milli-Q
Advantage for laboratory use (Millipore Corp.).

. Low-pressure Water Utltrahigh
Flocculation . . pressure
filtration permeation -
eXpression

Floc in s]udge

Flocculant '
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Formation of large floc

e
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s

High-degree deliquoring

Fig. 1. Schematic view of deliquoring process developed.
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3.2, Experimental apparatus and technique

The excess activated sludge concentrated at 1.0 wt% by decan-
tation was flocculated with PACI by stirring at 308 rpm for 1 min,
The particle size distributions before and after fiocculation were
measured by a laser diffraction particle size analyzer (SALD-2200,
Shimadzu Corp.), The optimum dosage of PACI was determined
from the comparative evaluation of the mean specific surface area
size d..

Fig. 2(a) illustrates a schematic view of the experimental
apparatus used in low-pressure fiitration and water permeation
through the filter cake formed. A specially designed deliquoring
cell with an effective medium area of 9.6 cm® was utilized in this
research. The cell essentially consists of a stainless-steel cylinder
and stainless-steel top and bottem plates. A filter paper (No. 4A,
Advantec Toyo Corp.) with a retention size of 1.0 pm was used as a
filter medium. Low-pressure filtration was conducted in the dead-
end mode by using excess activated sludge of 83 g flocculated with
PACl under a constant pressure condition of 98 kPa adjusted
automatically by a computer-driven electrenic pressure regulator
by applying compressed nitrogen gas.

Once filtration is completed, the amount of water which is
equivalent to the volume of liquid contained in the filter cake
formed in low-pressure filtration is permeated through the flter
calke at the same constant pressue that one applied in low-pressure
filtration, in order to re-disperse flocs in the cake. The filerate in
low-pressure filtration and the permeate in water permeation

@ g
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i b = %
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i .
i Filter medinm -~ o eake
Nitrogen i
i Prerforated plate
i
m Reservoir
e
I S e
Personal Eleerronic
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Mechanical losd
Dial gauge
Piston ~|
Cell cytinder
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i
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Material testing maching
computer

Fig. 2. Schematic view of experimental apparatuses: (a) apparatus for low-pressure
filtration and water permeation through filter cake and {b) apparatus for ultrahigh-
pressure expression,

85

through the filter cake were collected in a reservoir placed on an
electronic balance connected to a personal computer to collect
and record mass vs. time data. The weights were converted to
volumes using density correlations. The amount of PACI contained
in the permeate obtained during low-pressure fltration and water
permeation was evaluated on the basis of the measurement of the
electrical conductivity using the electric conductivity meter {(DS-52,
Horiba, Ltd.). The difference of the size distributions of fiocs in the
cake between before and after water permeation was measured by
the laser diffraction particle size analyzer. The photomicrograph of
flacs in the cake was taken by Digital HF Microscope (VH-8000,
KEYENCE Corp.). The samptle for the floc analysis after cake forma-
tion was prepared by adding the filtrate {water in the case of
the cake after water permeation) to the cake and then by stirring at
100 rpm for 2 min. It should be noted that the stirring speed was
set to a lower level than that in flocculation in order to avoid
floc breakage,

The experimental apparatus used in ultrahigh-pressure expres-
sion is schemartically shown in Fig. 2(b). Once water permeation
was terminated, the top plate was removed from the deliguoring
cell and alternatively the movable piston equipped with a filter
paper of No. 4A as a filter medium was inserted in the cell cylinder.
The liquid was squeezed out of the cake through the top and
bottom flter media by application of a mechanical load through a
piston by using a material testing machine (SC-20H (MNS-01),
Tokyo Testing Machine Inc.}. The cake was consolidated at constant
pressures p. ranging from 98 kPa to 15 MPa. It was suggested that
the effect of the side wall friction in the deliquaring cell is
negtigible if the ratio of the cake thickness o cell cylinder did
not exceed 0.6 (Grace, 1953; Tiller and Lu, 1972). In this study, the
ratio of the cake thickness to cell cylinder is maintained at
relatively tow values ranging from 0.010 to 0.39 roughly in order
to justify the assumption that the side wall friction {s negligible,
The time evolution of the cake thickness during constant-pressure
consolidation of the calte was measured by a dial gauge fitted on
the cell cylinder since the displacement of the cel! cylinder was
equal to the amount of change in the cake thickness. it should be
also noted that the amount of ¢change in the cake thickness is equal
to the volume of liquid squeezed out of the cake per unit cross-
sectional area. The equilibrium state was considered to be estab-
lished when the reading of the dial gauge with the mirimum scale
value of 0.01 mm remained unchanged for 5h. The residual
moisture content in the compressed cake was measured using
an infrared-ray moisture meter (FD-720, Kett Electric Lab.) at the
end of consolidation in order to rate the degree of deliquoring on
the basis of the cake moisture content including liquid inside the
microorganism cells,

For comparison, a set of experiments where the flocculants
were not employed were also carried out, Additionally, expression
experiments were conducted at the same pressure as the one
employed in water permeation in place of water permeation
experiments.

4. Resuits and discussion
4.1. Flocculation

PACI was added to excess activated sludge at various values of
the ratio Ryof added aluminum to the solid mass in sludge, and the
particie size distribution was measured by the laser diffraction
particte size analyzer to evaluate the flocculation performance of
excess activated sludge. For laser diffraction measurements the
siudge flocculated with PACI was diluted by adding the aqueous
solution with the same PACI concentration in order to avoid the
floc breakage. The mean specific surface area size d, of particles
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is plotted against the additive ratio Ry of PACl in Fig. 3. Whilst d
initially increases with increasing Ry, it decreases by the excessive
addition of the flocculant. it is clear that the optimum dosage of
PACI where the value of d; reaches a maximum is obtained at Ry of
ca. 0.15. Thus, all experiments were carried out with this optimum
dosage of PACL In addition, it should be noted that inorganic
floccutants such as PACI form relatively fragile flocs compared with
organic flocculants,

4.2. Low-pressure filtration

Typical data aof low-pressure filtration of flocculated studge
conducted under the constant pressure condition of 98 kPa are
plotted in Fig. 4 as the form of the filtrate volume v per unit
mediwm area against the fltration time & For comparison, the
result for nen-flocculated sludge is also included in the figure. It is
obvious that the addition of PAC] brings about a remarkable
increase in the fiitration rate because of the formation of highly
permeable filter cake comprised of large flocs (Iritani et al,, 2011).
For instance, the filtration time is shortened by 23% to obtain
the filtrate volume v of Gom by the addition of flocculants.
This indicates that flocculation is extremely effective for the
improvement of filterability of activated sludge in low-pressure
filtration.

4.3. Water permeation through filter cake

Fig. 5 shows the variation with time & of the moisture content R
of the cake on the mass basis obtained from various operations to
demonstrate the significance of water permeation through the
filter cake. 1t should be noted that the moisture content of the filer
cake decreases pronouncedly in a relatively short time by per-
meating water through the flocculated filter cake, This implies that
the flter cake is efficiently compressed due to the re-dispersion
of flocs in the filter cake because the flocculants in the cake
are washed away by water permeation through the cake. Such
reversible flocculation leads to the significant reduction in the
moisture content of the cake. It is expected that the deliquoring of
flocculated cake is accelerated in the course of floc breakage
occurring during water permeation because the highly resistant
skin fayer is poorly formed next to the filter medium. In contrast,
when the expression operation of the Aocculated filter cake is
performed in place of water permeation through the flter cake,
there is a little reduction in the moisture content of the cake under
the same pressure condition (98 kPa) as that employed in
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Fig. 4. Relation hetween filtrate volume per unit mediunt area and fltration time
in low-pressure filtration,
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Fig. 5. Decrease in calke moisture content by water permeation through flter cake.

filtration, as shown in the figure. It takes long time to reduce the
moisture content of the cale in the course of expression when the
flocculants are not employed in low-pressure filtration,

Additionally, it should be stressed that ultrahigh-pressure
expression of the cake was impessible except for the cake
prepared by permeating water through the flocculated filter cake
because a part of the calee leaked out of the narrowest clearance
between the piston and cell cylinder. This is probably because the
muoisture content of the cake is significantly higher near the
surface of the filter cake formed in filtration. If elastic diaphragm
type of expression equipment which can withstand the vitrahigh-
pressure is available, a comparison of ultrahigh pressure expres-
sion behaviors between permeated and non-permeated cakes may
provide additional insights into the expression mechanisms.

The time variation of the amount of PACl contained in the
permeate obtained during filtration and water permeation was
measured in order to examine the role of water perimeation
through the filter cake. In Fig. 6, the aluminum concentration G,
is plotted against the permeate volume v per unit cross-sectional
area during GRltration and water permeation periods. The
aluminum concentration £, is kept at almost constant value
(1.5 x 1078 kg/m>) throughout the course of filtration. This con-
stant value nearly corresponds to the additive ratio Ry of aluminum
(0.15). Once filtration is foilowed by water permeation, the
aluminum concentration markedly decreases with the progress
of water permeation, indicating that a large part of PACI contained
in the cake is washed away.
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Fig. 7. Size distributions of flocs in cake prepared by dilferent operations,

Fig. 7 compares the size distributions of flocs in the cake
produced by different operations, where f is the frequency, and
dy is the diameter, Whilst the floc size in the Rocculated filter cake
is much larger than that in the non-flocculated cake, it pronounc-
edly decreases by permeating water through the cake and
approach the floc size in the non-flocculated cake. It is shown
from other experiments that the size distributions of flocs in the
flocculated and non-flocculated cakes are nearly identical to those
of flocs in the non-floccuiated and floceulated sludge, respectively.
Moreover, as for the effect of the osmotic pressure on the particle
size, preliminary data obtained in our laboratory indicates that the
particle size distribution of flocs in the sludge is nearly identical to
that of flocs in the sludge in which the solvent is replaced by water
through centrifugal decantation. Fig. 8 compares the photomicro-
graphs of flocs in the cake before and after water permeation
through the flacculated cake. 1t is obvious that large flocs produced
by PACI addition are re-dispersed by permeating water through
the flocculated calke.

4.4. Caoke moisture content attained by ultrahigh-pressure
expression

In Fig, 9, the final moisture content R, of the compressed cake

on the mass basis obtained by ultrahigh-pressure expression is
logarithmically plotted against the expression pressure p. during
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ultrahigh-pressure expression, where g 15 the total solid volume
per unit cross-sectional area, It is found that the increase in
the expression pressure results in the substantial decrease in the
moisture content of the compressed cake. Of particular impor-
tance is the surprising result that the moisture content of the
compressed cake is finally reduced to 31 wi% by expression under
action of an ultrahigh gressure of 13 MPa. This finding leads to
the surprising conclusion that the liquid contained within the
microorganism cells is partially removed by the mechanical
pressure when the ultrahigh pressure is applied to the compressed
cake in the course of expression. The experimental data shown in
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Fig. 9 are illustrated in Fig. 10 in the form of a plot of {100 R, )/R,
vs. P It is found that the plots show a linear relationship aver a
wide range of pressures,

In Fig. 11, w,,fwy is plotted against the reciprocal expression
pressure (1/p.), where w,, is the final wet cake mass per unit cross-
sectional area, corresponding the expression pressure, and wy is the
dry cake mass per unit cross-sectional area (Nakakura et al., 1995).
The final wet cake mass at the infinite pressure, which is related to
the amount of the bound water, has been frequently evaluated from
the ordinate intercept of the straight line of experimental data
(Kawasald et al, 1990a; Matsuda et al,, 1992), However, the plots
deviate from a linear relationship at more than 2 MPa pressures,
and thus it is essentiai to measure the moisture content of the
compressed cake from the real experiments in order to obtain the
cake moisture content attained by ultrahigh pressure expression,

Several types of expressions can be utilized to relate the
porosity £ or veid ratio e (the volume of liquid per unit volume
of solid) to the solid compressive pressure p. as follows {Tiller and
Cooper, 1962)

e=gp;* (M

e
€=T_‘-E=ED—'C¢IHPS (2)
where &, 4, Ep, and C, are the empirical constants. The Terzaghi-
Peclc Eg. (2) has been frequently employed in the analysis of
expression behaviors (Shirato et al., 1987; Iwata et al, 1991},

The porosity ¢ is related to the final moisture content R, by

¢ P:Re

f = T4 pRet p{100—Re)

3
where p; is the true density of solids, and p is the density of the
Hquid. It should be noted that the solid compressive pressure p
throughout the compressed cake is equal to the applied expression
pressure p. on the assumption that the effect of the side-wall
friction is negligible. Therefore, the data of R, vs. p. shown in Fig. 9
are converted into the data of e or £ vs. p; based on Eq, (3},

Fig. 12{{a) and (b)) shows the semi-logarithmic plot of e vs. p;
and the logarithmic plot of € vs. p,, respectively, As the liquid
contained within the microorganisim cells is partially removed in
the course of expression, e and ¢ are rated on dry solid basis of
microorganism cells for convenience, Whilst the semi-logarithmic
piot of e vs. p; cannot be represented by a linear refationship
described by Eq. (2), the logarithmic plot of £ vs. p; yields a straight
line over a wide range of pressures in accord with Eq. (1).
Therefore, the plot shown in Fig. 10 or Fig. 12(b) is available to
exammine the experimental data for ultrahigh-pressure expression
of municipal excess activated sludge used in this study.

4.5. Kinetics of wltrahigh-pressure expression

The semi-logarithmic plot af (1 -U.) vs. the consolidation time
. is available to evaluate the creep effect in the consolidation
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Fig. 12. Effect of solid compressive pressure on structure of compressed calte:
fa) relation between void ratio and solid compressive pressure and {b} refation
belween porosity ané solid compressive pressdre.
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process, where U is the average consolidation ratio indicating a
measure of the degree of consolidation and is defined by Shirato
et al. {1967, 1974)

Li—-L

LI

u 4}

where L;, L, and L, are the thicknesses of the compressed cake at
6.=0, 8., and oo, respectively, Tig. 13 depicts the typical results
obtained in the ultrahigh-pressure expression experiment con-
ducted at the pressure of 15 MPa. The plots can be approximated
by three straight lines connecting the different slopes except for
the very early stage of consolidation. The slope of the straight line
becomes smaller in the range of larger consolidation time. This
suggests that there exists a three-staged creep phenomenon with
the different values of the creep constant, Therefore, it is expected
that the experimental data are not able to be described by neither
the modified Terzaghi model {Shirato et al., 1967) nor the Terza-
ghi-Voigt model (Shivato et al, 1974).

The data indicated in Fig. 13 are illustrated in Fig. 14 in the form
of a plot of the average consolidation ratio U; vs, /8. The
experimental data are evaluated by the modified Terzaghi and
multi-stage Voigt combined model developed in order to describe
the multi-stage creep phenomenon. Accerding to the model, the
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Fig. 14, Typical results for variation of average consolidation ratio with
censolidation time.
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time evolution of U; is described as Iritani et al. {2010)

_ Li-L _ K r* izcegc
U[-h_me (I_;.EH B;\.){I—exp(—?x e

X
+ lE Bi{1 —exp(— b0}
g

5

where By and 1, are the creep constants of the kth stage creep, and
[ is the number of drainage surfaces. The term G, is referred to as
the modified consolidation coefficient and is defined by Shirato
et al, {1967}

1
T papd—de/dp,)

where p is the liguid viscosity, and « is the local specific flow
resistance of the compressed calce, Eq, (5) is derived based on the
assumption that C, is constant throughout the cake at any instant
during consofidation although this assumption is not strictly valid
(Shirato et al, 1967). Consequently, Eq. {5) may be used as an
approximation with a proper mean value of C, considered con-
stant, The model is made up of series combination of the Terzaghi
spring analogy and the multi-stage Voigt elements comected in
series. The first term in Eq, (5) represents primary consolidation of
filter calee based on the modified Terzaghi model, and the second
term evaluates multi-stage creep effects. This equation is basically
the same as the one for expression of agrofood presented by
Lanoisellé et al. (1996}, Grimi et al. (2010).

The solid line depicted in the figure represents the values
calculated by using Eq. (5). Fairly good agreement with the
experimental data can be obtained by accounting for the three-
stage creep phenomenon, The dotted line represents the contribu-
tion of each consolidation stage to the overall censolidation, It is
obvious that the fraction of the moisture removed during primary
consolidation, A, defined as {1-B~B>~B3), accounts for the greatest
proportion of consolidation, more than 60%, and that the fraction
of the moisture removed during the third creep period, Bs, is
extremely small,

The time variation of moisture content R of the compressed
cale on the mass basis is obtained from the time variation of the
cake thickness L based on the relation

100 —g)p
T (L—g)p + g

)]

¢

7}

In Fig. 15, R is plotted against the conselidation time &, during
ultrahigh-pressure expression for a variety of expression pressures
pe. The experimental data are obtained from Eq. (7), using both the
time variation of cake thickness L and the solid volume ¢up per unit
cross-sectional area measured with an infrared-ray moisture
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Fig, 5. Variation of calte moisture content with consolidation time.
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meter, It is abvious that the increase in the expression pressure p,
leads to a dramatic improvement in expression performance, The
solid lines in the figure are the calculations obtained from
Eq. (7). using the time variation of the cake thickness L calculated
from Eq. (5). The calculations compare favorably with the
experimental data.

in Fig. 16, the fractions, A, By, Bz, and Bs, of the moisture
remaval are plotted against the expression pressure p. The
fraction A constitutes the major portion of consolidation and
increases with increasing expression pressure p.. Conversely, the
fraction By decreases with increasing p. This implies that the
primary consolidation based on the Terzaghi spring analogy plays
& more important rale in controlling ultrahigh-pressure expres-
sion. The fraction B is kept at an almost constant value regardless
of the value of p,, and Bj is negligibly small.

The modified consolidation coefficient ¢, is plotted as a func-
tion of the expression pressure p. in Fig. 17. The coefficient C,
increases with increasing p., but C, is less affected by p. in the
pressure range above 5 MPa. This may be attributed to the high
compressibility of the cake in the ultrahigh-pressure range, as
expected from the definition of C, given by Eq. (6) (Iritani et al,,
2003, 2008).

In Fig. 18, a set of creep constants, i, #2. and s, are plotted
against the expression pressure p,, It can be seen that each creep
constant is maintained roughly constant irrespective of the
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Fig. 18. Effect of expression pressure on creep constants,

pressure p.. Each creep constant differs by more than one order
of magnitude, thereby indicating that the creep phenomenon
occurs in stages.

5, Conclusions

Ultrahigh-pressure expression combined with fioccutation has
been developed to achieve the high-rate and high-degree deli-
quoring of excess activated sludge, Flocculation of the sludge due
to PACI addition brought about a marked increase in the fltration
rate in low-pressure filtration. The moisture content of the
compressed cake was finally reduced to 31 wit¥% by expression
under action of an ultrahigh pressure of 15 MPa with the aid of
pretreatment by water permeation through the filter cake, sug-
gesting that the liquid contained within the microorganism cells
was partially removed by the mechanical pressure, It was found
from the analysis of ultrahigh-pressure expression that the equili-
brium porosity in the compressed cake was empirically repre-
sented by a power function of the solid compressive pressure over
a wide range of applied pressures from 0.5 to 15 MPa. Moreover, it
was shown that the complicated kinetics of ultrahigh-pressure
expression was accurately described on the basis of the medified
Terzaghi and multi-stage Voigt combined model.

Nomenclature

A ratio of primary consolidation to overall consclidation
B creep constant

Ca alwminum concentration in permeate (kg/m?)
C empirical constant in Eq. (2)

C, modified consolidation coefficient (m?/s)

dy diameter (m}

d, specific surface area size of particles (m)

Eq empirical constant in Eq. {2)

e void ratio of compressed cake

f frequency

i number of drainage surfaces

L thickness of cake {m)

Ly thickness of cake at &.=0 (m)

L. thickness of cake at f.=cc (M)

Pe expression pressure (Pa)

pr filtration pressure (Pa)

Pp water permeation pressure (Fa)

Ds solid compressive pressure {Pa)

R moisture content of cake on mass basis (wt¥)
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R. final moisture content of cake on mass basis (wt¥)

Ry ratio of added aluminum to solid mass in sludge

s mass fraction of solids in sludge

U average consolidation ratio

L filtrate volume per unit medium area (m?/m?)

Wog final wet cake mass per unit cross-sectional area, corre-

sponding expression pressure {kg}

Wy dry cake mass per unit cross-sectional area {kg)

@ specific flow resistance of compressed cake (m/kg)
& parosity of compressed cake

£ empirical constant in Eq. (1) (kg*fm?*s?h)

b creep constant {s~')

H liquid viscosity (Pa s)

7] time (s)

&, consolidation time (s)

A empirical constant in Eq. {1)

P density of liquid (kg/m*)

Ps true density of solids (kg/m?®)

aky total solid velume per unit cross-sectional area (m3fm?)
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Nomenclature
A = ratio of primary consclidation to overzall consolidation i-]
B = greep constant -]
C. = empirical constant in Eq. (6) -]
C, = modified consolidation coefhciens {m¥s]
d, = gpecific surface area size of particles 'm]
¢ = local void ratio of compressed cake (-]
-8 = empirical constant in Eq. (6) ]
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i = aumber of drainage surfaces [~}
L = thickness of compressed cake [m]
L, = thickness of compressed cake at fi,=0 [m}
L, = thickness of compressed cake at .= % [m]
Pe = applied expression pressure {Paj
Pe = applied filtration pressure {Paj
by = water permeation pressure {Pa]
n = local solid compressive pressure {Pa)
R = moisture content of cake on mass basis fwtss]
R, = equilibrium moisture content of cake on mass basis fwitdh)
R = ratio of added aluminum or polymer to solid mass in sludge [—]
s = mass fraction of solids in sludge [-]
u, = average consolidation ratio [~]
y = filtrate velume per unit effective membrane area [m])
« = local specific flow resistance of compressed cake fm/kg)
€ = local poresity of cake [-]
g = empirical constant in Eq. (2) [kgt-m~2.57%]
£, = equitibrium poresity of compressed cake -]
" = ¢creep constant [s~!]
u = liquid viscosity {Pa-s)
i} = time [s]
0 = consalidation time [s]
A = empirical constant in Eq. (2} -]
I = density of filtrate [kg/m?]
I2 = density of solids [kg/m?]
ty = total solid volume per unit cross-sectional area [mdfm?]
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Combined Effect of Reversible Flocculation and Ultrahigh Pressure in
High-Level Deliquoring Attained by Expression of Activated Sludge

Eiji Irrrant!, Nobuyuki KaTacirr!, Takuya Wasurzu!, Kuo-Jen Hwawe? and
Tung-Wen CHENG?

! Department of Chemical Enginecring, Nagaya University,
Luro-cho, Chikusa-ku, Nagaya-shi, Aichi 4648603, Japan

2 Department of Chemical and Materials Engincering, Tambkang University,
151 Yingzhuan Rd., Tamsui, New Taipei City 25137, Taiwan

Keywords:  Ultrahigh-Pressure Expression, Reversible Fiocculation, Deliquoring, Activated Sludge, Cake Moisture
Content

High-level deliquoring of excess musicipal activated sludge was accomplished by use of an inorganic {locculant,
polyaluminum chloride (PACI), and an organic polymer flocculant, Kurifix. The deliquoring process consisted of fl-
tration of flocculated sludge followed by ultrahigh-pressure expression combined with water permeation through the
filler cake, resulting in the re-distribution of flocs in the filter cake. Whereas the use of Kurifix increased the filtration
rate significantly more than PACI, it decreased the expression rate, porticularly at low expression pressure. As the ex-
pression pressure increased, the cake moisture content decreased more remarkably in the case of PACI compared with
Kurifix. Of particular interest is that an ultrahigh pressure of 50 MPa decreased the cake moisture content to 23.7 wt%
al the end of expression. The kinetics of ultrahigh-pressure expression such as the vartations with time of the average
consotidation ratio and average cake moisture content was well elucidated by considering a Terzaghi type of primary
consolidation foliowed by a mainly two-stage creep phenomenon, Consequently, the creep effect was marked in the
case of Kurifix, particularly at low expression pressure. Morcover, the modified consolidation coefficient increased with
the expression pressure and remained constant above a critical expression pressure, which depended on the locculant:
ea. 5 MPa for PACl and ¢a. 10 MPa for Kurifix.
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The batch sedimentation tests were conducted for the excess activated sludge treated by ultrasonication
and addition of sodium chloride, and the settling behaviors such as the sedimentation velocity, the sludge
valume, and the quality of the supernatant were examined for different values of the load power of ultra-
sortication, the sonication time, and the sodium chloride concentration. The ultrasonication pretreatment
significantly increased the sedimengation velocity in the initial stage of sedimentation, and the effect was
dramatically facilitated by the addition of sodium chloride evers when the effect was unnoticeable in the
pretreatment of the salt addition atone, The effect of uitrasonication was increased with increasing load
power and sonication time and found to be evaluated by the specific ultrasenic energy dissipated into a
liquid. The increase in the sedimentation velocity brought about by the praetreatment was caused by the
increase in the floc size, and the sedimentation velocity was related to the median diameter of flocs,
based on the Stokes law considering the effect of both the floc size and floc density. Morcover, the com-
bined pretreatment markedly reduced the sludge volume, as compared to the pretreatments of uitra-

Keywords:
Settling
Litrasonication
Salt addition
Activated sludge
Refllocculation

sonication atone and salt addition alone.

@ 2015 Elsevier B.V. All rights reserved.

1. Introduction

The activated sludge process is extensively used in the world as
the typical bislogical treatment of both wastewater and industrial
effluenis. A major issue of the operation of activated studge sys-
tems is the removal of biological solids from the liguid phase fol-
lowed by dewatering of these biosolids. Although settling is used
as the initial step to increase the solids content, poor settleability
of activated sludge is often problematic,

In many cases, chemical conditioning prior to solid-liquid
separation is used in order fo enhance the separation efficiency
[1]). Flocculation of activated sludge leads to organic colloids aggre-
gation, thereby improving the ability of sludge to settle [Z].
However, the use of chemical flocculants such as salts and
polyelectrolytes increases treatment costs and may also cause
secondary environmental pollution. Thus, it is necessary to reduce
the specific consumption of flocculants as much as possible.

Various physical and clhemical pretreatments, in which sludge
is disintegrated and microbial cells are destroyed, have been inves-
tigated to reduce the biosolids’ volume generated from wastewater
treatment plants, including ultrasonication [3-5], mechanical

* Carresponding author, Tel,: +B1 52 789 3374; fax: +81 52 789 4531.
E-mail oddress: iritani®nuce.nagoya-u.ac,jp {E. [ritani),

hep:f{dx.doi.orgl10.1016/jseppur.2015.02,028
1383-5866/€ 2015 Elsevier B.V. All rights reserved,

disintegration (mills, homogenizers, etc.) [6}, thermal hydrolysis
[7]. ozonation {8}, acidification [9], alkaline addition {10}, micro-
wave irradiation {11], and their combined treatments [12]. These
pretreatments enhance sludge biodegradability prior to anaerobic
digestion or recycling in aeration tank, Among them, ultrasonica~
tion is a particularly attractive method because it cannot cause
secondary environmental poliution as with other mechanical dis-
integration. However, these pretreatments frequently deteriorate
sludge settieability and filterability mainly due to the floc breakage
and the release of extracellular polymeric substances (EPS) from
cells [13-16].

While ultrasonication has been used for the dispersion or col-
lapse of flocculated particles in the liguid phase, Kakii et al. {17]
revealed a really challenging fact that activated sludge disrupted
by ultrasonication flocculated once again. This means that the
uftrasonic pretreatment appears promising also as a means to
improve the solid-liquid separation efficiency of activated sludge.
In fact, on the basis of the results of the sedimentation velocity,
capillary suction time {CST) and specific cake resistance in filtra-
tion, Feng et al. [18,19] indicated that ultrasonication with low
specific energy is effective for enhancing sludge settleability and
filterability. Vaxelaire et al. [20} reported based on the microscopic
observations that numerous filaments of filamentous bacteria were
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Nomenclature

G concentration of sodium chloride in sludge (M)

D fractal dimension for self-similar structure (-)

deg median diameter of Hocs (m}

dy floc diameter (m)

E specific ultrasonic energy dissipated into sludge (J/kg)

g acceleration of gravity (mjs%)

H height of interface plane between sludge and
supernatant (m)

Hp initial height of sludge (m)

Higeo interface height after 5 h (300 min) (m)

i ultrasonic power dissipated into sludge (W)

M mass of sludge sample (kg)

P load power (W)

r correlation coefficient {~)

SV sludge volume defined as ratio of interface height H to

initial height Hy (=)

siudge volume defined as ratio of interface height Hygg

after 5 h {300 min) o initial height Hy (=)

Ti turbidity index defined as the ratio of the turbidity in
the supernatant to the concentration of solids in sludge
represented by the same unit {mg/L) as the turbidity { -}

SVSD(]

t net ultrasonic exposure time (s)

tig sedimentation velocity during hindered settling peried
{m/s)

0 sedimentation time (3)

It viscosity of supernatant (Pa s}

cut by the ultrasonic pretreatment, leading to a better settling
behavior.

Some research has been dedicated to the role of salt addition to
the ultrasonicated sludge, Kakii et al. {17} reported that salt addi-
tion promoted refiocculation of ultrasonicated sludge. Yin et al.
[21] found that ultrasonic pretreatment of activated sludge from
petrochemical ptant reduced the necessary flocculant dosage by
approximately 25-50% because it decreased the specific cake resis-
tance in filtration. Likewise, Hakata et al. [22] reported that the
ultrasonic pretreatment with Al**-based coagulation improved
the permeate flux in microfiltration of municipal wastewater {reat-
ed by an activated sludge-lagoon process. in contrast, Feng et al,
[19] demonstrated that sludge suffered from ultrasonication and
cationic polymer addition provides no clear advantage over poly-
meric conditioning alone for improving sludge dewaterability.
Dewil et al. [14] reported that the required dosage of flocculant
increased proportionally with the level of uftrasonic energy to
reach the same dryness as the untreated cake in vacuurn filtration,
Therefore, it is of particular importance to reveal whether the com-
bined pretreatment of ultrasonication and flecculant addition is
effective for the improvement of solid-liquid separation efficiency
of sludge.

In the present article, the combined pretreatment of ultra-
sonication and salt addition is examined in order to improve the
solid-liquid separation efficiency. In particular, the paper
focuses on the synergy effect of ultrasonication and salt addition
on settling behaviors such as the sedimentation velocity, sediment
valume, and supernatant quality under various operationat condi-
tions of the ultrasonic power, sonication time, and added salt
concentration using excess activated sludge produced from muni-
cipal sewage treatment works.

2. Materials and methods
2.1. Materials

The excess activated sludge mixed liquor employed in this
study was sampled at the Uedz Sewage Treatment Works
{Nagoya City, Japan). The solid concentration ranged from 3.6 to
49 gfL, the mean value being 4.3 gfL, during the course of our
experimental work. The sludge was concentrated at 5.0 g/L by
decantation for 20 h in the refrigerator kept at 5 °C to minimize
change in its property, and used in the experiments within 4 days.
The true density of solids in the activated sludge measured by a
pycnometer is 1.45 x 10% kg/m® {23]. 1t is reported that the original
activated sludges contain approximately 6-7 kg bound water per
kg of dry solid mass {24]. The viscosities of sludge and supernatant

were measured by using a capillary viscometer. The concentrations
of Na" and ClI~ in the sludge were measured by an ion chromatog-
raphy system (Dionex ICS-1100/2100, Thermo Fisher Scientific Inc.,
USA). The electric conductivity was measured with a conductivity
meter (DS-52, Horiba Ltd., Japan). The zeta potential of particles
in the sludge was determined by a particie microclectrophoresis
apparatus (Model Mark If, Rank Brothers Lid,, UK), The properties
of the activated sludge used in the experiments are listed in
Table 1. Sodium chioride was employed as inerganic flocculants.

2.2, Experimental apparatus and technique

The ultrasonic apparatus employed was an ulirasonic
homogenizer (UP-200S, Dr. Hielsher GmbH, Germany) equipped
with a tip with an operating frequency of 24 kHz and a nominal
load power output ranging from 30 to 200 W. After the sludge sam-
ple was warmed to room temperature (20 °C), the ultrasonic tip
was immersed in the sample of 80 g to a depth of approximately
5 mm above the bottom of a 100-mL beaker. The sample was pro-
cessed with the tip for different total operating times by pulsed
ultrasonic irradiation in which one c¢ycle consisted of both the
operating time of 0.5 s and the downtime of 0.5 s in order to avoid
the rise in temperature as far as possible. Thus, levels of sonication
were varied by changing the load power and sonication time, The
ultrasonicated sludge was adjusted to a variety of salt concentra-
tions by the addition of the concentrated solution of sodium chlo-
ride, Thereafter, the sludge was conditioned by the rapid mixing at
a speed af 150 rpm for 3 min using an agitator (Three-One Motor,
BL 600, Shinto Scieatific Co., Lid., Japan) followed by the slow mix-
ing at a speed of 50 rpm for 20 min to allow reflocculation to oceur,
This agitation condition was determined based on the results
obtained for different agitation conditions.

Batch gravity sedimentation experiments were conducted using
vertical Plexiglass cylinder with 2.9-¢cm internal diameter and 20-
cm height in order to evaluate the settleability of the treated
sludge. The settleability was evaluated by three criteria: the
sedimentation velocity, the sludge volume, and the quality of the
supernatant, Once the treated sludge of 80 g (corresponding to

Table 1
Properties of activated siudge,

Activated sludge

oH 6.9
Viscesity {mPa s) 2462
Na* (mg/L) 25
CI- {mgfL} n
Electric conductivity {mS{m) 45.1

Zeta potential (mV) -26.9
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{c

Fig. 1. Photemicrograph of floe structure in ultrasonicated sludge (P= 350 W, t = 75 s): {a} untreated sludge, (b} sludge immediately after ultrasenication, (c) ultrasonicated
sludge after rapid mixing at 150 rpm for 3 min, (d) ultrasenicated siudge afier stow mixing at 50 rpm for 20 min, and (e) ultrasonicated sludge after siow mixing at 50 rpm for

30 min.

the initial height Hy of 12.0 cm) was gradually poured into a
graduated setting cylinder, the sedimentation experiment starts
and the sedimentation height H of the interface plane between
the top of settling bed suspension and the supernatant liquid
was recorded by taking the photographs with the lapse of the spe-
cified sedimentation time @ for 24 h. The liquid temperature was
almost kept constant (20°C). The experiments were conducted
more than twice in order to ensure the reproducibility of the
results. The sedimentation velocity up was determined from the
slope of the linear relationship between the sedimentation height
H vs. the sedimentation time ¢ during the initial stage of sedimen-
tation. The sludge volume SV defined as the ratio of the interface
height H to the initial height Hp was also determined for the speci-
fied sedimentation times,

After the sedimentation experiment is completed (0= 24 h), the
supernatant containing fine particles and macromolecules was
pipetted up to the surface of sedimented sludge. To evaluate the
quality of the supernatant, the turbidity and total organic carbon
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Fig. 2. Cumulative size distribution by vofume of flocs in ultrasonicated sludge
(P=150W, I=755).
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(TOC) in the supernatant were measured by the turbidimeter
(ODYSSEY DR2500 spectrophotometer, Hach Co., USA) and TOC
analyser (TOC-5050A, Shimadzu, Cerp. Japan), respectively. The
viscosity of the supernatant measured by using a capillary vis-
cometer was ca. 1 mPas, which was the same value as that of
water. The sediment was diluted with the filtrate obtained by fil-
tering the supernatant of the untreated sludge through a syringe
filter with a 0.45 um, pore diameter (cellulose acetate) to remove
any suspended solid particles, and then the photomicrographs of
flocs were taken (x 40) with the digital photomicroscape
(BA210EINT, Shimadzu Rika Corp., Japan). The floc size distribution
by volume and the median diameter were determined from the
feret diameters of at least 200 floc samples based on the photomi-
crographs. Alternatively, the floc size distribution was measured
using a laser diffraction particle size analyzer (SALD-2200,
Shimadzu Corp., Japan).

For comparison, the experiments were also carried out for the
untreated sludge and the sludges conditioned by ultrasenication
alone and salt addition alone, in addition to the sludge conditioned
both by ultrasonication and by salt addition,

3. Results and discussion
3.1, Microscapic observation and floc size measurement

In Fig. 1, the typical photomicrographs at 40x magnification of
floc structure in the ultrasonicated studge followed by different
mixing operations are compared with the photomicrograph of floc
structure in the untreated sludge. The corresponding cumulative
size distributions by volume of flocs are illustrated in Fig. 2, where
dris the floc diameter. The contrast between the floc size distribu~
tions shown in Fig. 2 and the photomicrographs shown in Fig. 1
reveals a better understanding of the change of floc structure
induced by ultrasonication. The size distributions are based on
the feret diameters measured from the photomicrographs of flocs
since the measurements obtained using a laser diffraction particle
size analyzer underestimates the real floc size probably as a result
of floc breakage caused by the introduction of the sample into the
measuring chamber. It should be noted that the particles less than
10 wm are ignored in the measurements because such small parti-
cles are mostly present in the supernatant after settling and have
little influence on the sedimentation velocity. The cumulative size
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distribution enables the volume median diameter of the flocs to be
determined. The median diameter of the initial flocs in the raw
untreated sludge is 220 pm (Fig. 2). As shown in Fig. 1{a), the acti-
vated sludge is considerably heterogeneous because it consists of a
targe number of different microorganisms. Immediately after ultra-
sonication with the load power P of 150 W and the net ultrasonic
exposure time t of 75 s, the flocs become much smailer than those
in the untreated studge due to floc disintegration (Fig. 1(a) and (b))
and the median diameter of flocs falis to 105 pm (Fig. 2}. Although
the size distribution of the disrupted flocs in the ultrasonicated
sludge remains almost unchanged by the following rapid mixing
at 150 rpm for 3 min (Figs. 1{c) and 2}, the flocs in the ultrasonicat-
ed sludge become significantly large after slow mixing at 50 rpm
for 20 min following the rapid mixing {Fig, 1(d)) and the median
diameter of flocs increased to a high value of 380 pm (Fig. 2).
The intracellular materials, such as proteins, and nucleic acids,
released during the breakup of the bacterial cells act as an excel-
lent flocculant. Bue to the presence of positive charges, these com-
pounds bind to the anionic sites of the bacteria and the
polysaccharides, resulting in reflocculation {25]. However, the slow
mixing of more prolonged period of 30 min following the rapid
mixing disintegrates the flocs in the ultrasonicated siudge
(Fig. 1(e}}. and the median diameter decreases to alimost the same
size {220 um) as that of untreated flocs (Fig. 2). This suggests that
the flocs enlarged by ultrasonication are likely to be disrupted. itis,
therefore, considered that the flec size is determined by a balance
of both the growth and erosion of flocs resulting from the shearing
action [17.25].

Fig. 3 shows the typical photomicrographs of floc structure in
the sludge obtained by the combined pretreatment of ultrasonica-
tion and salt addition. The sludge ultrasonicated during 75 s with
the power of 150 W was adjusted to the sodium chloride concen-
tration G of 0.1 M due to salt addition immediately after ultra-
sonication. Fig. 4 illustrates the corresponding cumulative size
distributions by velume of the flocs. Flocculation effect becomes
more conspicuous whea sodium chioride is added to the ulera-
sonicated sludge, Reflocculation of flocs disintegrated by ultra-
sonication occurs due to the action of sodium chloride once a
rapid mixing is conducted, and the floc size increases to the same
size as that of the untreated sludge (Figs. 3{a) and 4}. It should be
noted that the rapid mixing was carried out to mix the salt welt
with the sludge. The subsequent slow agitation for 20 min pro-
vokes the median size to further increase to 450 um {Figs. 3(b)
and 4). Although the slow mixing time is prolonged until 30 min,
the agitation does not cause significant disruption of the flocs
grown {Figs. 3{c) and 4). Hence, it is inferred that salt addition to
ultrasonicated sludge brings about not only the enlargement of
the floc size but also the increase in the floc strength. The results
obtained by the pretreatment of salt addition alone are also includ-
ed in Figs. 3(d) and 4. Of particular interest is that salt addition to
the ultrasonicated sludge greatly facilitates fleccuiation of activat-
ed sludge whereas the pretreatment of salt addition alone has little
effect on flocculation in the sodium chioride concentration of 0.1 M
(Fig. 3(b) and (d)). Consequently, it would be expected that the floc
coarsening [eads to the improvement of solid-liquid separation
efficiency of activated sludge. In arder to maintain the mixing con-
dition constant, the rapid mixing at 150 rpm for 3 min followed by
the slow mixing at 50 rpm for 20 min was adapted as the mixing
condition for flec growth in all our subseguent experiments.

3.2, Batch sedimentation curve
in the batch sedimentation tests, the overall settling behaviors

are examined by describing the sedimentation curve represented
as the form of the height H of the interfacial plane between the

sludge and the supernatant normalized by the initial height Hp
against the sedimentation time 4. Fig. 5 illustrates the batch
sedimentation curve of the sludge pretreated under various condi-
tions. Although the particles [ess than about 10 pm are mostly left
in the supernatant without settling out, a distinct sedimentation
interface of larger particles is observed. The sedimentation curve
is based on the time variation of the height H of this interface, It
is obvious that any sedimentation curve is roughly divided into
two periods: the hindered settling period in which the interface
between the studge and the supernatant descends at a constant
velocity depending on the sludge concentration and the subse-
quent sludge compression period in which the subsidence velocity
of interface declines gradually. The sedimentation behaviors under
various pretreatment conditions are compared from the viewpoint
of the sedimentation velocity t, during the hindered settling peri-
od and the sludge volume (SV), which is taken as a measure of
thickening degree during the sludge compression period. In the
untreated sfudge, the sedimentation velocity g is 0.24 mm/min
and the sludge volume SVago defined as the ratio of the interface
height Higo after 5 h {300 min) to the ipitial height Hg is 0.56, as
shown in Fig, 5(a). In the salt added sludge with the sodium chlo-
ride concentration C; of 0.1 M, the sedimentation velocity
increased to 2.1 times that of the untreated sludge and SVigg
reduced to 0.49. When the sludge is ultrasonicated during 75s
with the power P of 150 W, the sedimentation velocity increases
to 3.2 times that of the untreated sludge and 5V3p0 veduces fo 0.42,

The figure clearly indicates that the sedimentation efficiency is
surprisingly improved by adding the salt to the ultrasonicated
sludge. The combined treatment increases the sedimentation to
really 15.4 times that of the untreated sludge. The value of SVsqq
reduces to 0.31, and it takes only 27.4 min to attain the value of
SV3qp after 300 min obtained for the untreated sludge. It is demon-
strated that an extraordinary improvemnent of the settling efficien-
¢y of excess activated sludge is brought about by ultrasonically-
assisted flocculation based on the synergy effect of ultrasonication
and salt addition. [t {s suggested that the fragmentation of particles
caused by ultrasonication leads to the creation of more nuclei con-
tributing to the floc development, enhancing the interaction
between the particulates andfor the organic solutes and the salt
[22]. Thus, cations increased by the salt addition reduce the num-
ber of negative charges at the surface of particle fragments due to
charge neutralization, resulting in a marked flocculation effect.

Even though the sodium chloride concentration C; in the sludge
increases to 0.5 M, the sedimentation rate of the sludge treated by
salt addition alone is comparable with that of the studge with the
concentration of 0.1 M, as shown in Fig. 5{(b). However, the sludge
volume markedly decreases with the progress of sedimentation,
and SVagp decreases to 0,43 of a similar level to that of the sludge
ultrasonicated during 75s with the power P of 150 W. The salt
addition to the ultrasonicated studge increases the sedimentation
rate to 25.2 times that of the untreated sludge and 13.3 times that
of the sludge treated by the salt addition alone, and decreases 5Vygp
to 0.27. Therefore, it takes anly 6.2 min to attain the value of $Vago
after 300 min obtained for the untreated sludge, and thus the
sedimentation time is strikingly reduced in ca. one-fifty. This clear-
ly indicates that the combined treatment of ultrasonication and
salt addition is quite effective even under conditions of high salt
concentrations. However, it should be noted that it is preferable
to minimize the amount of salts added.

Fig, S(c) and (d)illustrates the batch sedimentation curves of the
sludge pretreated under different ultrasonication conditions from
the condition (P~= 150 W and ¢ = 75 s} tested in Fig. 5{a), Although
the flocculation effect becomes meore remarkable with increasing
power P and time ¢, it is considered desirable to minimize the ultra-
sanication exposure from an energy expenditure viewpoint.
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Fig, 3. Photomicrograph of floc structuse in sludge obtained by combined pretreatment of ultrasonication (P=150'W, (= 75 s) and salt addition (G, = 0.1 M): (a) sludge after
rapid mixing at 150 rpm for 3 min, {b) sludge after slow mixing at 50 rpm for 20 min, {c) sludge after slow mixing at 50 rpm for 30 min, and (d) sludge treated by sait addition

alone after stow mixing at 50 rpm for 20 min,
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Fig. 4, Cumulative size distribution by velume of flocs in sludge abtained by
combined pretreatment of ultrasonication and salt addition.

3.3. Effect of salt addition to ultrasonicated studge on sedimentation
rate and sludge velume

Fig. 6 expresses the effect of the sodium chloride concentration
C; in the ultrasonicated sludge on the sedimentation velocity ug
during the hindered settting period. It must be stressed, once again,
that the sedimentation velocity ug was determined from the slope
of the linear relationship between H and 0, as indicated by the dot-
ted lines in Fig. 5. Accordingly, the time interval of calculating ug is
different depending to pretreatment conditions such as ultra-
sonication and salt addition, In general, as uq increases, the time
interval of hindered settling becomes shortened. The unsonicated
sludge is used as a control. The increase in the sedimentation velo-
city with increasing saft concentration is insignificantly small for
the unsonicated sludge since the flocculation effect of the monova-
lent cation {Na*) is unnoticeable. However, the salt addition to the
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ultrasonicated sludge has a profound effect on the increase in the
sedimentation velocity. The sedimentation velocity markedly
increases with increasing salt concentration for the ultrasonicated
sludge. Considering that the amount of salt added to the sludge
should be minimized, it should be noted that ¢; of 0.1 M bave a
substantial effect on settling enhancemnent in this uitrasonication
condition (P=150W, t=75s). In Fig. 7, the sludge volume SVyqo
after 300 min is plotted against the sodium chloride concentration
G, in the sludge. The sludge volume gradually decreases as the salt
concentration increases, The sludge volume at the salt addition to
the ultrasonicated sludge reduces by more than 10% points than
that at the salt addition to the untreated studge, indicating the
noticeable effect of ultrasonication on the reduction in the sludge
velume.

3.4. Effect of ultrasonic energy in combined treatment on
sedimentation velocity and sludge volume

The effect of ultrasonic energy on the settling behaviors are
examined by canducting the batch sedimentation tests using the
sludge witrasonicated under conditions of the load power Pranging
from 50 to 200 W and the net ultrasonic exposure time f ranging
from 30 to 150 s. In order to examine the influence of ultrasonic
irradiation quantitatively, the net ultrasonic power is evaluated
by the ultrasonic power dissipated into z liquid not the load power
[26]. The correlation between the net ultrasonic power [ and the
load power P obtained for the same ultrasonic homogenizer as that
used in this study is given as [27]

I=0.0171P" £ 152 {40 < P < 200) (13

Thus, the effect of ultrasonication examined in this research is
reviewed in the light of the ultrasonic energy dissipated in the
sludge in order to comprehensively assess the effects of both the
ultrasonic power [ and ultrasonication time t. The specific ultrasonic
energy E dissipated into a liquid is defined by [25,27,28]

E=1It/M 2

where M is the mass of sludge sample.
Fig. 8 illustrates the plots of the sedimentation velocity ug dur-
ing the hindered settling period against the applied specific
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Fig. 8. Effect of specific ultrasonic energy on sedimentation velocity.

ultrasonic energy E. Since the salt added sludge with G of 0.1 M has
an adequate effect on the elevation in the sedimentation velacity
as shown in Fig. 6, the results for the sludge with G of 0.1 M are
compared with those for the saft non-added sludge in Fig. 8. The
sedimentation velocities for the salt added sludge are much higher
than those for the salt non-added sludge in any ultrasonic energy,
The increase in the sedimentation velocity with increasing ultra-
sonic energy is more profound for the salt added sludge. It should
be noted that the ultrasonication effect for the salt added sludge is
remarkable even in the low ultrasonic energy level. For instance, in
the salt-added sludge, the sedimentation velocity at £ of ca. 40}/g
corresponding to the condition of Pof 150 W and t of 75 s increases
to 15.4 times that of the untreated sludge, Considering that the
amount of sait and the uitrasonic energy should be minimized, this
condition is considered as a candidate for optimum conditions of
settling enhancement. Although the synergy effect of the pretreat-
ments of ultrasonication and salt addition on settling enhancement
was confirmed in this study, more multifaceted approach is
required for the optimization of the method. The sedimentation
velecity considerably increases also for the salt non-added sludge
when the specific ultrasonic energy E is increased to 80]/g.
However, as the floc disintegration was greatly accelerated at the
energies of more than 80]/g, a distinct settling interface was not
cbserved,

In Fig. 9, the sludge volume SV3qq after 300 min is plotted again-
st the specific ultrasonic energy E. The sludge volume decreases
with the increase in the specific ultrasonic energy. While the
sludge volumes for the salt added sludge are considerably lower
than those for the salt non-added sludge in any ultrasonic energy,
the decreasing rate becomes gradual with increasing specific ultra-
sonic energy for the salt-added sludge. The studge volume for the
sait added sludge with the sodium chloride concentration of
0.1 M was decreased from 0.49 for the unsenicated sludge to
.32 for the sludge conditioned with the specific ultrasonic energy
of 40 J/g.

Fig. 10 illustrates the turbidity index Tl {defined as the ratio of
the turbidity in the supernatant to the concentration of solids in
the sludge represented by the same unit (mgfL) as the turbidity)
and TOC in the supernatant against the specific ultrasonic energy
E for salt added (0,1 M) and non-added sludge samples. Although
the turbidity index T and TOC increase with increasing specific
ultrasonic energy E, the increase in the turbidity index TI reaches
nearly a plateau when the specific ultrasonic energy E exceeds
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€a. 40 ]/g. There is no distinct difference in the supernatant quality
between salt added (0.1 M) and non-added sludge samples.
Therefore, it is considered that ultrasonication particularly con-
tributes to high concentration of non-flocculated and non-settled
fine particles, and soluble organic matter in the supernatant, aris-
ing from the floc breakage {22,29], Althcugh the combined pre-
treaiment is extremely effective in sludge thickening, the quality
of the supernatant evaluated by turbidity and TOC was consider-
ably deteriorated when ultrasonication was incorporated in the
pretreatment. However, it would be expected that the ultrasonic
pretreatment enhances biodegradability of contaminated super-
natant prior to anaercbic digestion or recycling in aeration tank.

3.5. Relation between sedimentation velocity and floc size

It is well known that the sedimentation velocity of particles
strongly depends on its size. In Fig, 11, the sedimentation velocity
Uy during the hindered settling period is logarithmicaily plotted
against the median diameter dsg of flocs in the sediment. [t should
be noted that the particles less than about 10 pum are mostly left in
the supernatant without settling out. Consequently, the sedimen-
tation curve and the resulting sedimentation velocity are little
influenced by such small particles. Therefore, such particles are
ignored when the relation between the sedimentation velocity
and the median diameter of flocs is evaluated. Plots show
that the sedimentation velocity increases with the increase in
the median diameter of flocs. Plots can be approximated by the
straight line, as shown in the solid line in the figure, although there
is spme variation in the data, The value of slope is found to be ca.
1.65 (the correlation coefficient {30} r=0.91). According 1o the
Stokes law applicable to settling of very dilute suspension,
the sedimentation velocity increases directly with the square of
the particle diameter [31]. In the case of flocs, the floc density
decreases with the increase in the floc size [32}, and hence the
sedimentation velocity ug is represented as

Ug = (3

where D is the fractal dimension for a self-similar structure, g is the
acceleration of gravity, and p is the viscosity of the supernatant. The
fractal dimension D in Eq. (3) is determined from the slope of the
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Fig. 11. Relation between sedimentation velocity and median diameter of flocs in
sediment.

E. Iritani et al. /Separation and Purification Techinology 144 (2015) 177-185

regression line in Fig. 11 and found to be ca. 2.66. This value is plau-
sible because a lot of computer simulations show that the fractal
dimension D may range from less than 1.7 to 3.0, depending on
the condition of floc formation [33,34].

4, Conclusions

The effect of the pretreatments of ultrasonication and addition
of sodium chioride was examined by conducting batch sedimenta-
tion experiments and the measurements of the floc size for excess
activated studge. The sedimentation velocity in the initial period of
settling was increased due to the increase in the floc size with the
increase in the specific ultrasonic energy dissipated into a Hquid
through the increase in the load power or the sonication time,
The increase in the sedimentation rate was surprisingly noticeable
witen the sodium chloride was added to the ultrasonicated sludge.
The studge volume decreased significantly by the combined pre-
treatment of ultrasonication and salt addition.
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The effact of the pretreatment of ultrasonic irradiation on the daliquoring properties in expression was investigated by
using carrots as an example of vegetables. The results indicated that the ultrasonic pretreatment produced a noticeable
Irprovement in deliquoring behaviors such as the deliguoring rate and cake molsture content due to the physical dam-
age of cell tissue, although the carrots were maintained in the original shape before and after ultrasonic irradiation, The
time variation of the cake moisture content during the course of expression was well described by the three-stage creep
modef combined with the modified Terzaght moded, It was necessary to heat carrots above 50°C during ultrasonic irradia-
tion in crder to attain a desired effect in expression since carrots lost cell turgor pressure rapidly through B-elimination
reaction occurring at about 50°C, The ultrasonic pretreatment was well evaluated from the viewpoint of the ultrasonic
enargy dissipated in the sample. The cake moisture content after 24h from the beginning of expression dramatically
decreased from 69 to 47% by increasing the pressure from 0.5 to 10 MPa, indicating that the cake consisting of treated

carrots behaved as the compressible materfal In the expression operation,

Introduction

Deliquoring is a crucial issue in the food industry and
has been widely used in preserving food, food waste treat-
ment, dry food manufacturing, and boosting yield in juice
production (Gallego-Judrez et al, 2007}. The methods for
deliquoring may be generally classified into two main types:
mechanical and thermal deliquoring methods. Whilst ther-
mal deliquoring such as drying and evaporation can remove
any kind of moisture from the product, the major drawback
is its high energy requirement. Instead, mechanical deliquor-
ing such as expression and centrifugation can reduce energy
consumption dramatically compared to thermal deliquor-
ing, and thus it is a potential method as energy conservation
technology. Nevertheless, mechanical deliquoring is general-
ly unable to remove the moisture strongly attached to solids
and the moisture contained in solids. Particularly, it is often
difficult to dehydrate vegetables because of the existence of
hard plants cell walls. The high consolidation pressure is
required to destroy such hard ceil walls and to remove as
much of the moisture as possible from vegetables: for in-
stance, the pressure in the range 1-5MPa for carrots (Grimi
et al, 2010). Although consolidation mechanisms due to the
expression of cellular materials are extremely complicated, a
farge number of studies (Buttersack, 1994; Kawasaki er al,
1996; Lanoisellé et al., 1996; Rebouiliat et al., 1996; Kamst
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et al, 1997; Schwartzberg, 1997; Christensen and Keiding,
2007; Venter et al,, 2007) have so far been reported with the
consolidation model {Shirate et al, 1967, 1974} developed
for soils and mineral materials as a springboard.

Suitable sample conditioning processes prior to deliquor-
ing are frequently conducted to yield higher performance in
deliquoring of cellular materials by damaging the tissue. So
far, several treatments have been put forward as the pretreat-
ment or in combination: ultrasonic irradiation {Gallego-
Judrez et al., 2007; Garcia-Pérez et al,, 2009; Qzuna et al.,
2011; Ruiz-Hernando et al,, 2013) and microwave (Hu ef al.,
2006; Yu ef al., 2009) in mechanical separation and drying,
thermal treatment (Ruiz-Hernando et al, 2013), electric
field (Chen et al., 2011), pulsed electric field (Bouzrara and
Vorabiev, 2003; Grimi et al, 2007) and freezing-thawing
(Kawasaki ef al.,, 1996; Grimi ef al., 2010} in mechanical
separation, and radio frequency (Cohen and Yang, 1995) in
drying. Among them, ultrasonic irradiation is thought to
be a tool with a great potential as the pretreatment for cel-
lular materials and applied to several fields such as osmolic
dehydration (Cércel et al, 2007), extraction process (Riera
et al., 2004), studge disintegration (Erden and Filibeli, 2010),
and so forth. It is expected that the effect of ultrasonic irra-
diation is largely dependent on the process variables such as
sample temperature, ultrasonic power, and sonication time.

In the present article, carrot deliquoring due to expres-
sion is examined, and the effect of ultrasonic irradiation as
the pretreatment on deliquoring behaviors in expression is
investigated. The existing consolidation model is applied in
order to elucidate the consolidation kinetics in expression of
carrols pretreated by ultrasonic irradiation, The pretreatment
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performance is evaluated with varying the values of several
operating parameters such as sample temperature, ultrasonic
power, and sonication time. Moreover, the influence of con-
solidation pressure on the expression behaviors is exarained.

1. Experimental

1.1 Materials

Carrot (Daucus carola ssp. sativus) was selected as a
subject of the present study. Carrots of good quality were
purchased in the Nagoya University caoperative, stored in a
refrigerator at 52 1°C after they were sealed in plastic films
to avoid moisture loss, and used in the experiments within
a week of purchase. The production areas of carrots used
varied seasonally {Aichi, Aomori, and Holkaido areas), and
a set of experiments were carried out using the carrots har-
vested at the same area, After skin, top and bottom ends of
the carrots were removed, the carrots were cut into cubes
3mm per side by using a vegetable slicer, which can cut
into a minimum of 3mm dices, just before use. The true
density of solids was measared by a pycnameter. The initial
moisture content of carrots measured using an infrared-ray
moisture meter (FD-720, Kett Electric Lab.) was within
87-91 wt% on a wet basis. In order to diminish the effect
of impurity, the water used in the preparation of sample
was ultrapure, deionized water (minimum resistivity: 18 M
cm) prepared by purifying tap water through ultrapure
water systems equipped with both Elix-UV20 and Milli-Q
Advantage for laboratory use (Millipore Corp.).

1.2 Ultrasonic pretreatment

Fifteen grams of cubic carrots were placed into a 50mL
beaker, and 30mL of water was added. The beaker contain-
ing the sampie was placed in a water bath incubator (BT23,
Yamato Scientific Co., Ltd.) in order to keep the sample tem-
perature constant during the ultrasonic pretreatment. The ul-
trasonic apparatus was an ultrasonic homogenizer {UP-2008,
Dr. Hielsher GmbH) equipped with a probe with an operat-
ing frequency of 24 kHz and a load power ranging from 40 to
200 W. The ultrasonic probe was submerged in the sample to
a depth of 1¢m above the boltom of the beaker. The sample
was processed with the probe for the specified total operating
time by pulsed ultrasonic irradiation in which one cycle con-
sisted of both the operating time of 0.5 s and the downtime of
0.5 5 in order to avoid a rise in temperature, The temperature
inside of the sample was measured using a thermocouple
before and after sonication, and it was confirmed that the
temperature rise due to sonication was negligible. For com-
parison, the sample was prepared by heating in the water
bath incubator without sonication. The ultrasonic power dis-
sipated into a liquid was measured according to the method
of Koda et al. (2003). The ultrasonic power [ is given as

_(dr .
I—-[W]CPM 0

where T is the sample temperature, ¢ is the net ultrasonic
exposure time, C; and M are the heat capacity and mass of
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waler, respectively. The lerm dT/d¢ represents the rate of
increase in temperature. Accordingly, the ultrasonic power
I corresponding to a specified load power can be calculated
from the measurement of the initial temperature rise of
water under sonication by using a thermocouple.

1.3 Deliquoring due to expression

The expression experiments of treated and unireated carrots
were conducted using the so-called compression-permeabil-
ity cell (C-P cell) (Grace, 1953; Okamura and Shirato, 1955},
which comprised of a cell cylinder and a piston with a cross-
sectionat area of 9.62cm?, as an expression cell, as shown in
Figure 1. The sample was placed in the celi cylinder and the
movable piston was inserted in the cell. The liguid was then
squeezed out of the sample through the lop and bottom flter
cloths (TRG803K, Okayama Nakao Filter Media Corp} by
exerting a mechanical load through the piston by the use of
a material testing machine ($C-20H(MNS-01), Tokyo Testing
Machine Inc.). The semi-solid cake pre-consolidated in the
C-P cell under a pressure p; of 0.1 MPa was consolidated for
24 h at constant pressures p, ranging {rom 0.5 {0 10 MPa. the
time evolution of the cake thickness during constant pressure
consolidation of pre-consolidated cake was measured by a dial
gauge fitted on the cell cylinder, The residual moisture content
in the compressed cake was measured using the infrared-ray
moisture meter at the end of expression.

2. Results and Discussion

2.1 Effect of ultrasonicirradiation

Typical deliquoring behaviers due to expression of carrots
with and without the pretreatment of ultrasonic irradiation
are compared in Figure 2(a). Expression experiments are
conducted under the condition of the consolidation pressure
of 0.5MPa for the semi-solid cake pre-consolidated under
a pressure of 0.1 MPa, In the case of the treated carrots, ul-
trasound is irradiated for the net ultrasonic exposure time ¢
of 15min under the conditions of the load power P of 40W
and the sample temperature T of 50°C. The temporal varia-
tion of moisture content R of the compressed cake on the

Mechnnical foad

/-' Diul gauge
Piston
Lell eylinder

Perforated plate [ e e

b— litlter cloth

Material testing machine Persomi
cumputer

Fig. 1 Schematic view of expression apparatus
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Fig. 2 Effects of ultrasonic pretreatment

mass basis is plotted in the figure in the form of R against
\/ETC and 8., where 8, is the consolidation time. The time
variation of R is caleulated from that of the cake thickness L
based on the relation:

- 100(L ~w,)p @)
{L—aqg)p + wopy

where w, is the total solid volume per unit cross-sectional
area, p is the density of the liquid, and p, is the true den-
sity of solids. The decrease in the moisture content without
ultrasonic irradiation is insignificant and continues to de-
crease from 95 to 90% little by little over the 24h tested. In
contrast, the moisture content markedly decreases from 86
to 74% in 1 h in the case of carrots pretreated with ultrasonic
irradiation and reaches the low value of 69% in 24h tested.
It should be noted that uitrasonic irradiation as the pretreat-
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(a) Untreated with sonication

(b} Treated with sonication

Fig, 3 Photomicrographs of carrot surfaces

ment of expression produces a noticeable improvement in
deliquoring behaviors. Ultrasonic irradiation causes cavita-
tion in the liquid phase containing cubic carrots and brings
about hydro-shear strength and sonochemical eflects, lead-
ing to an improvement in expression properties synergisti-
cally. Whilst the carrots are maintained in the original cubic
shape before and after ultrasonic irradiation, the cell tissue
is subject to physical damage, as shown in the photomicro-
graph of Figure 3. This facilitates the deliquoring from the
cell interior due to mechanical expression following ultra-
sonic irradiation.

The time variation of the average consolidation ratio U
indicating a measure of the degree of consolidation is also
shown in the case of pretreated carrots in Figure 2(b} as the
form of U, against \/g_c and 4. It takes only 37.4min to at-
tain U, of 0.8. On the basis of the multi-stage creep model
combined with the modified Terzaghi model, the solid line
depicted in Figure 2(b) represents the values calculated by
(Lanoisellé ef al., 1996; Grimi et al., 2010; Iritani et al,, 2010).

-

k=1
i expd — (AN =-1)m? ' C.8,
~ (2N- nlz P 4 wi
K
+ Y Bill—exp(=n 8.} (3)
k=1
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where L, and L., are the thicknesses of the compressed cake
at 8.=0 and =, respectively, B, and r are the creep con-
stants of the k-th stage creep, i is the number of drainage
surfaces, and C, is the modified consolidation coeflicient
(Shirato et al., 1967). The solid line shown in Figure 2(a)
is the result of calculation derived by substituting the time
variation of L calculated from Eq. (3) inte Eq. (2). Fairly
good agreement with the experimental data can be obtained
by accounting for the three-stage creep phenomenon that
the value of K int Eq. (3) is 3. The contributions A (defined
as (1—B,—B;—B4)), B;, B, and B, of each consolidation
stage to the overall consolidation are 0,186, 0,259, 0.337, and
0.218, respectively. In contrast to the case of treated carrots,
the experimental data of U, for raw carrots are not shown in
the figure since it is impossible to determine the value of L.,
in Eq. (3) because of the gradually ever-changing cake thick-
ness,

2.2 Effect of temperature

The effect of temperature of a sample controlled during
ultrasonic irradiation on the deliquoring performance is
investigated by changing the temperature of the liquid in
the thermostat bath. The time evolutions of the moisture
content R of the cake are plotted in Figure 4 for the different
values of sampie temperature T in ultrasonic pretreatment
under the conditions of the load power P of 40W and the
sonication time ¢ of 15min. The data for carrots pretreated
at 40°C show a similar trend to those for untreated carrots,
and the ultrasonic pretreatment shows little improvement
in deliquoring due to expression, Even when ultrasonic is ir-
radiated with being heated to 47°C, the deliquoring behavior
is closely similar to that of carrots treated at 40°C until about
6 h after the onset of expression. However, shortly thereaf-
ter, the moisture content R begins to decrease abruptly and
eventually decreases to 70% range in 24h, In the case of
50°C, the moisture content R decreases rapidly from the be-
ginning of expression and f(inally reaches below 70% in 24 b,
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Fig. 4 Gifect of sample (emperatare in ullrasonic pretreatment on
time variation of cake moisture content in expression
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Thereflore, it is conciuded that the sample temperature plays
an extremely important role in accelerating the effect of ul-
trasonic pretreatment on the expression performance. It is
necessary to heat the carrot above a minimum temperature
threshold (arocund 50°C) in ultrasonic irradiation in order
to attain a desived effect in expression. The loosening of the
network of a cell wall biopolymer such as pectin, especially
in the middle lamella between adjacent cells, at elevated
temperature during ultrasonic irradiation may weaken the
cell wall strength. Several studies have reported that carrots
lose cell turgor pressure rapidly through thermal texture
degradation due to S-elimination reaction when the tissue
internal temperature reaches 50°C (Greve ¢f al, 1994; Sila
ef al., 2006; Day ef al., 2012). It is obvious that such changes
in pectin structure due to heating during ultrasonic ir-
radiation lead to a significant improvement in expression
performance obtained in this study, However, the expression
performance of carrots pretreated by heating alone without
ultrasonic irradiation is similar to that of raw carrots, as
shown in Figure 4, and therefore the ultrasonic treatment
in combination with heating is highly effective in improving
the expression performance,

2.3 Effect of sonication time

In Figure 5, the variations with time of the cake moisture
content R in expression are shown for the different values of
the sonication time ¢ in ultrasonic pretreatment under the
conditions of the load power P of 40 W and the sample tem-
perature T of 50°C. As the sonication time ¢ increases from 5
to 15 min, the cake moisture content R significantly reduces,
especially at comparatively-early times. However, a further
increase in the sonication time ¢ does not lead to a more sig-
nificant improvement in the expression performance.

2.4 Effect of ultrasonic energy
Figure 6 shows the variations with time of the cake mois-
ture content R in expression for the different values of the
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Fig. 7 Relation between load power and real power measured

load power P in ultrasonic pretreatment with the sonica-
tien time ¢ of 15 min and the sample temperature T of 50°C.
Although the load power P is increased from 40 to 200 W, a
further improvement in the expression performance is not
achieved by the increase in the load power, implying that
there is a limited effect of the load power in ulirasonic pre-
treatment under the conditions used.

In order to examine the influence of ultrasonic irradiation
quantitatively, the net ultrasonic power is evaluated by the
uitrasonic power dissipated into a liquid, not the load power
(Koda et al, 2003). The relation between the load power
P and the net ultrasonic power I measured is ilustrated in
Figure 7. Within the range of load power P tested, the refa-
tion is given as

I[=0.0171P' +15.2 (40< P <200) (4)
It has been reported that low density and long duration

sonication is more efficient than high density and short
duration in floc disintegration of biological sludge (Zhang
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Fig. 8 Contribution of specific ultrasonic energy to expression per-
formance

et al., 2007; Xie et al., 2009). Thus, the effect of ultrasonic
pretreatment examined in this research is reviewed from the
viewpoint of the ultrasonic energy dissipated in the sample
in order to comprehensively assess the effects of both the
ultrasonic power I and sonication time 1. The specific ultra-
sonic energy E dissipated into a Hquid is defined by (Erden
and Filibeli, 2010}

E=ItiwW (5

where W is the mass of sample.

For instance, the specific ultrasonic energy E is 1140kj/
kg in the ultrasonic pretreatment with the load power P of
40'W and the sonication time ¢ of 153 min shown in Figure 6.
Therefore, the expression behaviors were compared by vary-
ing the load power P and the sonication time ¢, keeping the
specific ultrasonic energy E approximately constant. The re-
sults for the time variation of the cake moisture content R in
expression are shown in Figure 8. The specific ultrasonic en-
ergy E is 1130k]/kg also in the ultrasonic pretreatment con-
ducted at p of 200 W and ¢ of 5min. The result is remarkably
similar to that obtained at the conditions of P of 40 W and ¢
of 15min. In contrast, when the load power P is reduced to
40'W, keeping the sonication time ¢ at 5min, a reduction in
cake moisture content R is severely deteriorated. For practi-
cal purposes, it is important to elucidate the dependence of
ultrasonic effect on the submergence depth of the ultrasonic
probe, the container size, and the sample amount.

2.5 Effect of applied consolidation pressure

It is vitally important to elucidate the influence of the ap-
plied consolidation pressure on the expression behaviors,
particularly in order to lower the cake moisture content as-
socialed with the elevated pressure. The time variations of
the cake moisture content R in expression are illustrated in
Figure 9 for the different values of the consolidation pres-
sure p,. As the pressure is increased, the lowering rate in R
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Fig. 10 Relation between cake moisture content at different consoli-
dation times and consolidation pressure

for treated carrots in an early stage remarkably increases and
the cake moisture content after 24h undergoes a marked
decrease. The cake moisture content R alter 24h dramati-
cally decreases from 69 to 47% by increasing the pressure
from 0.5 to 10 MPa. Thus, it is found that the cake consisting
of treated carrots behaves as the compressible material in
expression operation (Iritani et al,, 2007). In contrast, whilst
the expression performance is improved with increasing
pressure also in expression of raw carrots, the degree of
deliquoring is less marked than that for treated carrots and
the deliquoring rate is slightly improved particularly in early
times.

In order to compare the cake moisture content R more
clearly, the values of R at the consolidation time 8, of 1, 5,
and 24h are plotted in Figure 10 against the consolida-
tion pressure p,. Although the cake moisture content R for
treated carrots remarkably decreases with the increase in the
consolidation pressure, R at the consolidation time 6, of 5h
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is very close in value to that at 6. of 24 h for each pressure. It
should be noted that the cake moisture content R for treated
carrots at p, of 0.5MPa and &, of 1 h corresponds to that for
untreated carrots at p, of ca. 7MPa and 8, of 24h. Accord-
ingly, the use of ultrasonicated carrots in expression can sig-
nificantly shorten the consolidation time required to reduce
the cake moisture centent at lower pressures,

Conclusion

Liquid expression from carrots assisted with ultrasonic
pretreatments was conducted to investigate the promot-
ing effect of sonication on mechanical deliquoring of car-
rots, and the time variations of the moisture content in
the compressed cake were measured during the course of
expression conducted under the different values of applied
consolidation pressure. The deliquoring rate of carrots was
significantly enhanced by the pretreatment of ultrasonic
irradiation, and the moisture content in the compressed
cake was finally reduced to 47% at the pressure of 10MPa,
It turned out that the control of sample temperature was
of extreme importance in sonication as the pretreatment
and that the sample temperature should be kept to above
50°C. It was apparent from the model analysis that the
deliquoring behavior was markedly influenced by the creep
phenomenon. I was also found that the specific ultrasonic
energy dissipated in the sample by the sonication treatment
served as an indicator representing the degree of ultrasonic
prelreatment. The elevaled operaling pressure was highly ef-
fective in reducing the cake moisture content as the result of
the compressibility of the carrot cake.
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Nomenclature

A = ratio of primary consolidation to overall consolidation  [—}
B = cregp constant t—]
G, = modified consolidation coeflicient [m¥s]
C, = heat capacity of water {I{kg}
E = specific ultrasonic energy dissipated in sample [J#kp)
I = ultrasonic power dissipated into liquid [wi
i = number of drainage surfaces f=n]
L = thickness of cake [m}
L, = thickness of cake at 8, =0 [m]
L. = thickness of cake at 8, = 5a [m]
M = mass of water {kg}
P = load power (W}
)2 = pre-consolidation pressure [Pa}
P = consolidation pressure [Pa}
R = moisture content of compressed cake on mass basis ~ [wt%]
T = sample temperature {°C}
t = pet ultrasonic exposure time Is]
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U, = average consolidation ratio for]
W = mass of sample tkgl
7 = creep constant [57']
4 = gonsolidation time {s]
£ = density of fiquid {kg/m?]
£ = {rue density of sclids lkg/m?)
Wy = total solid volume per uait cross-sectional area [m*m?)
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Sludge accounts for over 40 percent of industrial waste in Japan, and thus it is of the utmost
importance to reduce the waste volume as much as possible. Dewatering by mechanical expression
of residual sludge arising from wastewater treatment has become increasingly important due to the
relatively low energy consumption compared to thermal drying which follows in the process
sequences. Unfortunately, the dewatering rate and moisture content of the compressed cake
produced by mechanical expression of biological sludge are currently unsatisfactory.

In this study, a dewatering method by ultrahigh-pressure expression of biological sludge assisted
with cell disruption and coagulation processes was developed as an innovative technique to
overcome the defects of the conventional mechanical dewatering methods. The moisture content of
the compressed cake was finally reduced to 27 wt% by expression under action of an ultrahigh
pressure of 10 MPa. This new method shortened the dewatering time of activated sludge compared
to the conventional method, and reduced the sludge volume by 99.3 %. The results derived from a
series of experiments attained the research goals from the viewpoint of both the dewatering rate and
the water content of the compressed cake. It was shown that the complicated kinetics of expression
of activated sludge under the ultrahigh-pressure conditions was accurately described using the newly
developed multi-stage creep model and that the model will be useful for evaluating the dewatering

performance under various operating conditions.
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