平成 26 年度

環境研究総合推進費補助金 次世代事業 総合技術開発報告書

廃棄物ガス化発電技術の高効率化の実証

3J132001

平成 27 年 3 月

株式会社 神鋼環境ソリューション 田頭 成能

補助事業名 環境研究総合推進費補助金次世代事業 (平成 25 年度~平成 26 年度)

所管 環境省

総事業費 59,663,517 円(平成 25 年度~平成 26 年度の総計)

国庫補助金 25,858,000円(平成 25 年度~平成 26 年度の総計)

研究課題名 廃棄物ガス化発電技術の高効率化の実証(3J132001)

- 研究事業期間 平成 25 年 7 月 1 日~平成 27 年 3 月 31 日
- 研究代表者名 田頭 成能(株式会社 神鋼環境ソリューション)

目次

総合技術開発報告書概要	1
本文	
第1章 事業の目的と目標	6
1.1 社会的背景	6
1.2 処理対象物、施設規模	8
1.3 本事業により開発する技術がもたらす効果	10
1.4 達成目標	10
第2章 開発した技術の詳細	11
2.1 発電方式	11
	12
2.3 カスエンシンの要求事項	14
茶り寺、計除内容	1 5
 第3年 武殿内谷 91 ガフ化改産プロセフの急速化 	10 15
3.1 万人化成員プロピスの設題化	15
3.1.2 実証施設の概要と試験に用いたごみの特性	15
3121 フランス 実証設備	10
3.1.2.2 酸素・水蒸気ガス化改質設備	18
3.1.3 ガス化炉の効率アップ	22
3.1.3.1 OFA 概要	22
3.1.3.2 木質チップガス化試験結果	24
3.1.3.3 RDF ガス化試験結果	28
3.1.3.4 まとめ	30
3.1.4 ガスの改質	31
3.1.4.1 SYNGAS 発熱量	31
3.1.4.2 SYNGAS 中タール、チャー濃度	35
3.1.4.3 冷ガス効率	36
3.1.4.4 まとめ	37
3.2 ガスエンジン試験	38
3.2.1 概要	38
3.2.2 adapt engineering 社の概要	38
3.2.3 実証試験用ガスエンジン	38

3.2.4 天然ガスによる試運転	. 44
3.2.4.1 試運転概要	. 44
3.2.4.2 試運転結果	. 46
 3.2.5 模擬ガスによる試験運転 	. 47
3.2.5.1 試験概要	. 47
3.2.5.2 試験結果	. 49
3.2.6 まとめ	. 54
3.3 ガス処理プロセス	. 55
3.3.1 ガスエンジンからの要求値	. 55
3.3.2 ガス処理プロセスに導入するガス組成と処理プロセス検討	. 56
3.3.3 まとめ	. 62
第4章 開発した技術がもたらす効果	. 63
4.1 プロセス計算前提条件	. 63
4.2 発電効率、送電効率の試算条件	. 65
4.3 発電端効率、送電端効率の試算結果	. 67
4.4 まとめ	. 69
第5章 まとめ	. 70
第6章 事業概要図	. 71
第7章 英文概要	. 72
参考文献	. 73
添付資料	. 74
添付資料① 天然ガスを用いたガスエンジンの性能試験結果	. 74
添付資料② 模擬ガスを用いたガスエンジンの性能試験結果	. 79
添付資料③ 発電効率、送電効率試算結果詳細	. 88
研究発表	. 95

環境研究総合推進費補助金次世代事業総合技術開発報告書概要

- 研究課題名
 : 廃棄物ガス化発電技術の高効率化の実証
- 研究番号 :3J132001
- 総事業費 : 59,663,517 円 (平成 25 年度~平成 26 年度の総計)
- 国庫補助金 : 25,858,000 円(平成 25 年度~平成 26 年度の総計)
- 研究期間 : 平成 25 年 7 月 1 日~平成 27 年 3 月 31 日
- 研究代表者名 : 田頭 成能(株式会社 神鋼環境ソリューション)

事業の目的

地球温暖化対策としての二酸化炭素削減、ならびにエネルギー源の多様化の要請により、 廃棄物等からのエネルギー回収が求められており、特に高効率での発電技術が重要となっ ている。しかしながら、日本国内においては、例えば一般廃棄物は年間約34百万トンが熱 回収処理(焼却処理)の対象になっているが、20%を超える発電効率の施設は主に300ト ン/日以上の規模であり、大都市のみにしか立地していない。

廃棄物は地域で集積し地域で処理する方が収集運搬費用が少なく効率的であるが、現在のBTG(ボイラー、タービン、発電機)を前提としたプロセスでは発電効率(送電端効率)の向上に限界があるため、小型・分散型で高い発電効率が得られるプロセスの開発・実用化が望まれている。

本事業は、廃棄物をガス化改質して得た合成ガス(Synthesis gas、以下単に SYNGAS とする)を利用して、小規模でも高い発電効率を確保できるガスエンジンを利用した高効 率発電プロセスを実証することを目的とし、発電効率は、100t/日~200t/日規模で、送電端 効率 27%を目標とする。そのために必要な下記技術検討を実施する。

- ・ガス化炉におけるガス化効率アップ
 - 流動床ガス化炉においては砂層上面に空気を供給する OFA (Over Fire Air) によるガス化効率の向上効果を確認する。
- ・プラズマ改質、酸素・水蒸気改質の効果検証

ガスエンジン稼働に必要な最低限の SYNGAS 発熱量を確保しつつ、SYNGAS 中に含まれるタール・チャーを低減するための高温改質方法を検証する。

- ・実証試験結果に基づく全体プロセス設計 SYNGAS をガスエンジンに供給可能な性状にするための ガス処理プロセスを提案する。
- ・設計したプロセスにおける送電端効率の試算
 本事業で検証した内容に基づき 100t/日炉の送電端効率を試算する。

開発した技術の詳細

本事業における処理対象物としては、一般廃棄物を乾燥させたごみの他に、木質バイオマス、植物油の搾りかす等のバイオマス系廃棄物、また紙やプラスチック類を選別し破砕したフラフ状の廃棄物再生燃料(RPF)などを対象とし、低位発熱量は4,000~5,000kcal/kgとした。

廃棄物処理施設における発電プロセスの多くは、廃棄物を焼却した際に発生する熱で発 生させた蒸気を蒸気タービンに供給して発電する方法を採用している。蒸気タービンは規 模が小さくなるにつれて発電効率が低下するという特性を持ち合わせているため、一般の 廃棄物処理施設においては小規模の発電施設が少なくなっている。蒸気タービン以外の発 電方式では、ガスタービンやガスエンジンなど内燃機関を活用した発電方式があるが、そ の中でガスエンジンは小型でも比較的発電効率が低下しにくいという特性をもつため小規 模施設での発電効率の向上に寄与できるものである。施設規模が大型であればガスタービ ンを選択することも可能であるが、小規模施設では、発電効率の面でガスエンジンの方が 有利である。ごみ処理量 100-200t/日規模を想定した場合、複数台のガスエンジン併設が発 電効率の面で優位であると判断できる。

一方、ガスエンジンを使うためには、次の大きな制約がある。

① ガスエンジンを駆動させるために最低限必要なガス発熱量を確保する必要がある。

- ② ガスエンジンの前処理部でのトラブルを避けるために、許容されるタール濃度がある。
- ③ エンジンオイルの汚染や機器の腐食を避けるための制限値がある。

これらの制約条件をクリアするために、プロセス側で必要な対策を取る必要がある。今 回対象とする処理物は廃棄物であるため、生成した SYNGAS には様々な微量物質が含まれ、 ガス量やガス組成の変化にも対応する必要がある。触媒を使ってタール分を改質する低温 改質方法も研究開発されているが、これら微量物質による被毒の懸念があること、また、 SYNGAS に含まれるダストを高温で除去することに高いハードルがあると考え、本事業で は高温改質方法を選択した。なお、改質方法としてはプラズマ改質と酸素・水蒸気改質の 2つの方法を検討し、その性能を確認した。

本事業においては、前記のとおりガスエンジンを発電機として活用することを前提としている。欧州のガスエンジンメーカにおいては、廃棄物や木質バイオマス等から得られた

比較的発熱量の低いガスを燃料にしたガスエンジンの開発および実用化が進められている ため、今回の実証事業を進めるにあたり、欧州のガスエンジンメーカ数社から得られた情 報をもとに、ガス化改質の性能やガス処理の目標設定を行った。ガス発熱量としては 4.6MJ/m³N以上(かつ水素濃度 40vol%以下)を目標とし、それを満足するための改質方法 およびガス処理プロセスを選定することとした。

まず、ガス化改質プロセスの最適化のために、本事業では下記の内容を実施した。

① ガス化炉の効率アップ

当社ではフランスの企業と共同でガス化改質プロセスの研究開発を2012年から実施してきた。本事業では、ガス化炉のガス化効率を改善するために、従来はフリーボードに供給していた燃焼空気の替わりに、砂層上部に向かって燃焼空気を吹き込むOFA 空気を新たに設置してガス化効率が向上できるのかを確認するために試験を実施した。

② プラズマ改質

フランスの実証設備において、空気ガス化とプラズマ改質の組み合せによるガスエンジン発電の適用性について検証した。

③ 酸素·水蒸気改質

神鋼環境ソリューションの試験設備において、酸素・水蒸気および空気を組み合せ たガス化改質によるガスエンジン発電の適用性について検証した。

- これらの実証試験の結果以下のことがわかった。
 - ・灰分を含む廃棄物を対象とした場合、ガス化効率の向上に OFA が有効である。
 - ・空気プラズマ改質ではガスエンジンが安定して稼働するために必要なガス発熱量の確保が難しい。酸素と水蒸気でガス改質した場合、SYNGASの発熱量を向上させることが可能であるが、酸素と水蒸気の製造にはコストがかかるため、できる限りガス化剤に空気を使用し、補助的に水蒸気と酸素を使用することが望ましい。
 - ・今回の試験より、ガス化剤中の空気の割合を 50%程度にすることでガスエンジンの 要求下限値を満たすことが可能であることが分かった。

また、実証試験の結果をもとに、下記を実施した。

- 値擬ガスを使ったガスエンジン試験
- ② 100t/日炉プロセスによる送電端効率の試算

その結果、6~10MJ/m³Nのガスによりガスエンジンが安定して動作することを確認するとともに、実用機を想定した100t/日炉プロセスで27.3%の送電端効率が得られる見込みを得た。

今回の事業では、ガスエンジンでの発電に加え、ガス化改質プロセスから排出される チャー(すす)の燃焼熱で蒸気を発生させ、蒸気タービンでも発電するプロセスを想定 した。このプロセスの実用化にためには、チャー(すす)の燃焼やハンドリング等についての検討が課題として残った。

開発した技術がもたらす効果

本事業では、酸素、水蒸気および空気を組み合わせたガス化剤でガス化し最低限必要な ガス発熱量を確保するとともに、高温改質でタールを低減し、実証試験を通じて得られた データをもとに改質後のガスをガスエンジンに適用できるプロセスを構築した。その結果、 100t/日規模の施設でも高い送電端効率が達成できる見込みを得ることができ、分散型小規 模発電施設の実現に向けた一つの提案をすることができた。今回の試算結果では、酸素、 水蒸気、空気を適切な割合で混合させたガス化剤でガス化改質するプロセスが、ガス発熱 量、送電端効率の観点から望ましく、その場合の送電端効率は 27.3%と試算された。

図 発電端/送電端効率 試算結果

環境政策への貢献

本事業を通じて、中小規模の廃棄物処理施設での発電効率の向上に貢献できるプロセス を提案することができた。日本では、例えば一般廃棄物においては、発熱量の高いごみも 発熱量の低い厨芥類などと混合されて処理されることが多いが、ごみの発熱量に応じた最 適な処理プロセスを選択することでより効率的な廃棄物処理ができると考える。特に発熱 量の高いごみに対しては、今回提案したような高効率発電プロセスを適用することが可能 であると考える。

開発した技術の事業化の可能性

今回開発したプロセスは、流動ガス化炉と高温改質を組み合わせガスエンジンで発電す るものである。送電端効率は従来の20%未満から27%を超えるレベルまで改善できること が示唆された。今回の試算の結果、100t/日規模(4,400kcal/kg)の施設で5,805kWの送電 量が見込まれ、ごみ1トンあたり1,392kWの送電が可能となる。売電単価15円/kWhを前 提とすると、ごみ1トンあたり約20,000円の売電収入が見込まれる。100~200t/日規模の 一般廃棄物での維持管理費は、おおよそ12,000円から15,000円程度であり、売電収入で 維持管理費が賄え経済的にも成り立つ可能性のあるプロセスであることが示された。今回 提案したプロセスが実用化できれば、小規模高効率発電施設として社会に大きく貢献する ものである。

以上より、本技術は地球温暖化対策としての二酸化炭素排出量削減、およびエネルギー 源の多様化の要請に基づく、廃棄物等からのエネルギー回収効率向上に貢献できる技術で あり、今後我が国で期待される地域分散型でロバストなエネルギー供給構造に寄与できる ものである。 第1章 事業の目的と目標

1.1 社会的背景

地球温暖化対策としての二酸化炭素削減、ならびにエネルギー源の多様化の要請により、 廃棄物等からのエネルギー回収が求められており、特に高効率での発電技術が重要となっ ている。

しかしながら、日本国内にあっては、例えば一般廃棄物は年間約34百万トンが熱回収(焼 却)処理されているが、例えば20%を超える発電効率の施設は、主に300トン/日以上の規 模であり、大都市のみにしか立地していない。一般廃棄物の発生量を図1.1-1に、焼却施設 の処理能力と余熱利用状況を図1.1-2に、発電効率を図1.1-3に示す。

廃棄物は地域で集積し地域で処理する方が収集運搬費用が少なく効率的であることから、 小型で高い発電効率の施設が望まれている。その条件での高効率発電技術として、小規模 でも高い発電効率を確保できるガスエンジンを利用した分散型での高効率発電技術が求め られており、技術的に実現できれば普及が期待される。

出典:環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課、「日本の廃棄物処理 平成 25 年度版」 p.6、<u>http://www.env.go.jp/recycle/waste_tech/ippan/h25/data/disposal.pdf</u>

図 1.1-1 一般廃棄物発生量と処理方法

出典:環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課、「日本の廃棄物処理 平成 25 年度版」p.21 <u>http://www.env.go.jp/recycle/waste_tech/ippan/h25/data/disposal.pdf</u>

図 1.1-2 焼却施設の処理能力別余熱利用状況(平成 25 年度実績)

出典:環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課、「日本の廃棄物処理 平成 25 年度版」p.22 <u>http://www.env.go.jp/recycle/waste_tech/ippan/h25/data/disposal.pdf</u>

図 1.1-3 ごみ焼却施設の発電効率(平成 25 年度実績)

1.2 処理対象物、施設規模

処理対象物としては、一般廃棄物を乾燥させたごみの他に、木質バイオマス、植物油の 搾りかす等のバイオマス系廃棄物、また紙やプラスチック類を選別し破砕したフラフ状の 廃棄物再生燃料(RPF)などを対象とする。参考として、RPFの生産実績を図 1.2-1 に、RPF の品質を表 1.2-1 に、バイオマスの発生量を図 1.2-2 に示す。

本事業における対象規模としては、現在、高効率発電が難しく発電プラントの割合が少ない100~200t/日規模を対象とする。

出展:一般社団法人日本 RPF 工業会 HP、<u>http://www.jrpf.gr.jp/</u>

図 1.2-1 RPF 生産実績

口匠/车级		RPF			测中卡计	
回貝/守枫	КРГ-соке	А	В	С	測足力法	
高位発熱量	33 以上	25 以上	25 以上	25 以上	JIS	
MJ/kg					Z7302-2	
水分	3 以下	5 以下	5 以下	5 以下	JIS	
質量分率(%)					Z7302-3	
灰分	5 以下	10 以下	10 以下	10 以下	JIS	
質量分率(%)					Z7302-4	
全塩素分	0.6以下	0.3 以下	0.3を超え	0.6 を超え	JIS	
質量分率(%)			0.6以下	2.0 以下	Z7302-6	

表 1.2-1 RPF の品質

出展:一般社団法人日本 RPF 工業会 HP、<u>http://www.jrpf.gr.jp/</u>

2. バイオマスの賦存量と利用可能量

出典:農林水産省、平成25年 バイオマス活用推進会議 http://www.maff.go.jp/j/biomass/suisinkaigi/06/pdf/sankou1.pdf

図 1.2-2 バイオマス量

1.3 本事業により開発する技術がもたらす効果

本技術は、地球温暖化対策としての二酸化炭素排出量削減、およびエネルギー源の多様 化の要請に基づく廃棄物等からのエネルギー回収効率の向上などの社会的な要請に沿った 技術である。特に中小規模の廃棄物処理施設における発電効率の向上に貢献できる技術で あり、今後我が国で期待される地域分散型でロバストなエネルギー供給構造に寄与できる ものである。

1.4 達成目標

本事業では、廃棄物をガス化改質して得た合成ガス(Synthesis gas、以下単に SYNGAS とする)を利用して、高効率で安定的に発電できることを検証することを目標とする。発電効率は、100t/日~200t/日規模で、送電端効率 27%を目標とし、そのために必要な下記技術検討を実施する。

- ・ガス化炉におけるガス化効率アップ 流動床ガス化炉においては砂層上面に空気を供給する OFA (Over Fire Air) によるガス化効率の改善効果を確認する。
- ・プラズマ改質、酸素・水蒸気改質の効果検証 ガスエンジン稼働に必要な最低限の SYNGAS 発熱量を確保しつつ、SYNGAS 中に含まれるタール・チャーを低減するための高温改質方法を検証する。
- ・フランス実証試験結果に基づく全体プロセス設計 SYNGAS をガスエンジンに供給可能な性状にするためのガス処理プロセスを 提案する。
- ・設計したプロセスにおける送電端効率の試算 本事業で検証した内容に基づき100t/日炉の送電端効率を試算する。

第2章 開発した技術の詳細

2.1 発電方式

廃棄物処理施設における発電プロセスの多くは、廃棄物を焼却した際に発生する熱で発生させた蒸気を蒸気タービンに供給して発電する方法が採用されている。蒸気タービンは 規模が小さくなるにつれて発電効率が低下するという特性を持ち合わせており、そのため 一般の廃棄物処理施設においては、小規模の発電施設が少なくなっている。

蒸気タービン以外の発電方式であるガスタービンやガスエンジンの適用範囲および発電 効率を図 2.1-1 に示す。ガスエンジンは、小型でも比較的発電効率が低下しにくいという特 性をもつため、ガスエンジンが適用できれば小規模施設での発電効率の向上に寄与できる ものである。施設規模が大きい場合はガスタービンの選択肢もあるが、小規模施設を想定 した場合は発電効率の面でガスエンジンの方が有利である。ごみ処理量 100-200t/日規模を 想定した場合、複数台のガスエンジン併設が発電効率の面で優位であると判断できる。

「ZEB 実現に向けたエネルギーの面的利用について」

出典:コージェネレーション財団 <u>http://www.ace.or.jp/web/chp/chp 0040.html</u>

図 2.1-1 ガスタービン、ガスエンジンの適用範囲および発電効率

2.2 改質方式

一方、ガスエンジンを使うためには、次の大きな制約がある。

① ガスエンジンを駆動させるために最低限必要なガス発熱量を確保する必要がある。

② ガスエンジンの前処理部でのトラブルを避けるために、許容されるタール濃度がある。

③ エンジンオイルの汚染や機器の腐食を避けるための制限値がある。

これらの制約条件をクリアするために、プロセス側で必要な対策を取る必要がある。 プロセスを検討するにあたり、タールを如何に低減させるかという課題がある。タールを 低減させるため、いくつかの改質方法が提案されているが、主な方法としては高温改質と 触媒等を活用した低温改質が挙げられる。表 2.2-1 にそれらのメリット、デメリットを、図 2.2-1 に高温改質の概念図を、図 2.2-2 に低温改質の概念図を示す。

今回は、処理対象物として廃棄物を想定しているため、触媒等を活用した低温触媒の採用においては、様々な微量物質による触媒被毒の懸念があること、また、ガス中に含まれるダストが多いため触媒前でダストを除去する必要があるが、タールやチャーを含んだガスを高温でろ過することに高いハードルがあること、などから低温改質については、まだ研究が必要な段階であると判断し、今回は高温改質を選択した。

改質方法	高温改質	低温改質
原理	・ガス化炉で生成したガスを部分	・触媒を使いタールを分解させ
	燃焼し温度を高温化。	る。
	・温度を上げることでタール分を	
	低分子化する。	
メリット	・低温改質のような被毒や詰まり	・高温改質のようにガスを燃焼
	等の懸念はない。	させないため、ガスの発熱量は
		高い。
デメリット	・ガスを燃焼させるためガス発熱	・ガスに含まれる硫黄等による
	量が低下する。	被毒などによる性能低下。
		・ダストが多い場合は、事前に
		ダストを除去する必要がある。

表 2.2-1 改質方法の比較

出典:Gas cleaning downstream biomass gasification Status Report 2009、p.14 http://www.ecn.nl/docs/library/report/2008/e08078.pdf

出典:戦略的創造研究推進事業:CREST研究報告書、p.12 <u>http://www.jst.go.jp/kisoken/crest/research/s-houkoku/13 01.pdf</u>

図 2.2-2 低温改質の概念図

高温改質においても幾つか方法が考えられるが、本事業においてはプラズマ改質と酸素・水蒸気改質の2つの方法を検討し、その性能を確認した。それぞれの改質方法の概要を表 2.2-2 に示す。本事業では、プラズマ改質を使ったガス化改質試験をフランスの実証設備で、酸素・水蒸気ガス化改質方式については、神鋼環境ソリューション技術研究所のガス化試験設備を活用して実施した。詳細は後述する。

改質方法	プラズマ改質	酸素・水蒸気改質
原理	・発電した電力でプラズマを発生	・酸素ガスによる燃焼熱で改質
	させ改質炉の温度を上げる。	炉の温度を上げる。
メリット	・燃焼熱によらずプラズマの熱で	・酸素と水蒸気のバランスを変
	温度を上げるため、ガス発熱量の	えてガスの発熱量を調整でき
	低下が抑制される。	る。
		・水蒸気によるチャーの改質も
		期待できる。
デメリット	・発電した電力を使用する。	・酸素および水蒸気を発生する
		ためにエネルギーを使う。

表 2.2-2 各改質方法の概要

2.3 ガスエンジンの要求事項

本事業においては、前記のとおりガスエンジンを発電機として活用することを前提としている。欧州のガスエンジンメーカにおいて、廃棄物や木質バイオマス等から得られた比較的発熱量の低いガスを燃料にしたガスエンジンの開発および実用化が進められているため、今回の実証事業を進めるにあたり、欧州のガスエンジンメーカ数社から得られた情報をもとに、ガス化改質の性能やガス処理の目標設定を行った。ガス発熱量としては4.6MJ/m³N以上(かつ水素濃度40vol%以下)を目標値とし、それを満足するための改質方法およびガス処理プロセスを選定することとした。

第3章 試験内容

- 3.1 ガス化改質プロセスの最適化
- 3.1.1 概要

ガス化改質プロセスの最適化のために、本事業では下記の内容を実施した。

① ガス化炉の効率アップ

当社ではフランスの企業と共同でガス化改質プロセスの研究開発を2012年から実施してきた。本事業では、ガス化炉のガス化効率を改善するために、従来はフリーボードに供給していた燃焼空気の替わりに、砂層上部に向かって燃焼空気を吹き込むOFA空気を新たに設置してガス化効率が向上できるのかを確認するために試験を実施した。

② プラズマ改質

フランスの実証設備において、空気ガス化とプラズマ改質の組合せによるガスエン ジン発電の適用性について検証した。

- ③ 酸素・水蒸気改質 神鋼環境ソリューション技術研究所のガス化試験設備において、酸素・水蒸気および空気を組合せたガス化改質によるガスエンジン発電の適用性について検証した。
- 3.1.2 実証施設の概要と試験に用いたごみの特性
- 3.1.2.1 フランス実証設備
- (1)設備概要

実証試験には、フランスのアキテーヌ地域圏ランド県のモルセンクスにある当社実証設備を使用した。設備の所在地を図 3.1.2.1-1 に、外観を写真 3.1.2.1-1 に示す。

図 3.1.2.1-1 実証設備の所在地

写真 3.1.2.1-1 実証設備の外観

実証設備のプロセスフローを図 3.1.2.1-2 に、設備の概要を表 3.1.2.1-1 に示す。設備は、 前処理された試料を重機で供給し、ガス化改質するものである。ガス処理としてはバグフ ィルタが設置されており、そこで灰や生成されたすすなどを除去後、SYNGAS を燃焼処理 する方式となっている。試験用の試料としては木質チップおよび RDF(木質、紙プラのフ ラフ混入)を対象とした。RDF は、収集した廃棄物をパートナーであるフランス企業が保 有する破砕分別施設で前処理して製造されたものである。

定格能力	800kg/hr
対象物	・木質チップ
	• RDF
ガス化方式	流動床式ガス化炉
改質方式	空気プラズマ方式
ガス冷却方式	間接熱交換方式
ガス処理方式	バグフィルタ

表 3.1.2.1-1 実証設備の概要

(2) 試験に用いたごみの特性

フランスで流通している木質チップ、および RDF を使って試験を実施した。RDF は、 木質系廃棄物や紙及びプラごみを前処理したものを使用した。前処理は、破砕、磁選、非 鉄選別、風力選別により行われている。

今回の試験で使用したごみの組成および外観を表 3.1.2.1-2 に示す。

	1			
			木質チップ	RDF
	可燃分	wet%	$75.4 \sim 85.5$	64.9~90.1
三成分	水分	wet%	$14.3 \sim 24.1$	5.2~6.4
	灰分	wet%	$0.2 \sim 0.5$	$3.5 \sim 29.9$
	С	dry%	$50.8 \sim 53.9$	38.9~44.2
	Н	dry%	$5.7 \sim 7.1$	$5.5 \sim 6.1$
元表细成	Ν	dry%	0.04~0.3 未満	$1.5 \sim 2.5$
儿茶祖戌	S	mg/kg dry	$72 \sim 822$	1,376~7,500
	Cl	mg/kg dry	74~1,109	2,183~13,100
	0	dry%	37.9~43.0	21.6~42.6
╓ᇉᇗᆂᆿ	MJ/kg	wet base	13.0~16.1	16.3~17.0
心心无然里	kcal/kg	wet base	3,100~3,850	3,900~4,060
	紙	wet%	_	8.5~14.5
	プラスチック	wet%	_	5.3~9.0
物理組成	木	wet%	_	77.3~81.5
	金属	wet%	_	0.1 未満~2.2
	不燃物他	wet%	_	0.1 未満~0.5
	外観			

表 3.1.2.1-2 木質チップ、RDF 分析結果

※木質チップの分析値は平成24年度当社過去分析値を含む

3.1.2.2 酸素・水蒸気ガス化改質設備

(1) 設備概要

当社研究所(兵庫県神戸市西区)のガス化試験設備に改質炉を増設し試験を実施した。 設備の外観を写真 3.1.2.2-1 に、設備フローを図 3.1.2.2-1 に示す。ガス化炉および改質炉に 空気、酸素、水蒸気を供給可能な構造となっている。ガス化剤である空気、酸素、水蒸気 の供給は、酸素と不活性ガス(窒素および水蒸気)の構成比率を一定として、①100%空気 によるガス化改質、②空気と酸素・水蒸気を 50%:50%(体積比)供給によるガス化改質、 ③酸素・水蒸気のみによるガス化改質、の3条件の試験を行った(図 3.1.2.2-2)。空気でガ ス化すると空気に含まれる窒素によりガスの発熱量は低下する。酸素・水蒸気でガス化す ると、SYNGAS 中の窒素を減らせることから SYNGAS の発熱量を高く維持でき、ガスエ ンジンへの適用性が高まる。

写真 3.1.2.2-1 設備外観

図 3.1.2.2-1 設備フロー図

(2) 試験に用いたごみの特性

本試験においては、試験設備の設置場所からくる制約上、実ごみを使用しての試験が実施できなかった。そのため、実ごみの発熱量や組成を踏まえて模擬ごみを作成し、試験を 実施するものとした。

模擬ごみの発熱量および組成は、フランスで使用した RDF、当社保有の RDF やバイオマス系廃棄物の発熱量や分析値を参考に決定した。各ごみの発熱量比較結果を図 3.1.2.2-3 に示す。これらの低位発熱量は、概ね 4,000~5,000kcal/kg の範囲にある。

今回の試験に使用した模擬ごみの組成を表 3.1.2.2-1 に示す。低位発熱量は実ごみの範囲 内である 4,400kcal/kg であり、本試験で得られた結果は、実ごみでのガス化改質プロセス の検討にも十分活用できると考えている。

図 3.1.2.2-3 実ごみと今回試験で使用した模擬ごみの発熱量の比較

名称			模擬ごみ
	可燃分	wet%	94.4
三成分	水分	wet%	5.0
	灰分	wet%	0.6
元素組成	С	dry%	52.4
	Н	dry%	6.2
	Ν	dry%	0.2
	S	dry%	0.1
	Cl	dry%	0.0
	0	dry%	40.7
低位発熱量	MJ/kg	wet base	18
	kcal/kg	wet base	4,400

表 3.1.2.2-1 使用した模擬ごみの組成

3.1.3 ガス化炉の効率アップ

平成25年度にフランスの実証設備において、流動床炉で効率よくガス化するために、通常フリーボード部に供給していた燃焼空気を砂層直上に供給する「OFA(Over-Fire Air)吹込み装置」を追加設置し、ガス化が促進されることを確認した。また、現象の理解のために、ガス化空気全量を砂層流動空気から供給し、空気供給場所がガス化効率に与える影響についての確認試験も併せて実施した。

3.1.3.1 OFA 概要

これまでフリーボード部に供給していた燃焼空気の位置をより砂層(通常珪砂を使用) に近づけた。概要を図 3.1.3.1-1 に示す。目的は、砂上面に浮遊するチャー(固体炭素分) と空気との反応効率を上げ、ガス化効率を上げることにある。今回の試験では、木質チッ プと RDF の 2 種類の試料に対して、ガス分析をガス化炉出口部で実施し、その効果を検証 した。

ガス化炉出ロガスの低位発熱量(以下 LHV)は、測定した CO、H₂、CH₄、C₂H₄、C₂H₆ の濃度およびそれらの低位発熱量¹⁾より計算した。タール(分析時に凝縮した成分、ベンゼ ン、トルエンを含む)濃度はガスサンプリングによる分析結果²⁾を引用、チャー濃度はガス 化炉出ロでの等速吸引によるダストサンプリングが難しかったため、バランス計算から求 めた値を使用している。

図 3.1.3.1-1 OFA 概要

3.1.3.2 木質チップガス化試験結果

木質チップを試料に OFA 供給の効果を確認した。表 3.1.3.2-1 に運転条件および得られ た結果を示す。また、ガス化炉出ロガスの LHV、タールおよび濃度の比較を図 3.1.3.2-1 に、炭素分の配分比率を図 3.1.3.2-2 に示す。これらの結果から、OFA の供給により、チャ ー(固体炭素)がガスおよびタールに転換したことが確認された。

冬件			フリーボード	OFA	
			空気供給	供給	
		★砑ゴぃ→改劫旦	MJ/kg	10.0	10.1
Ē	式料	小貝ナツノ光松里 	(wet base)	13.8	16.1
		木質チップ供給量	kg/h	700	700
ታם	がまた	砂層部	-	0.26	0.21
Ŧ		ガス化炉全体	-	0.30	0.25
	砂層部		C	750	752
温度		フリーボード部	C	875	833
		ガス化炉出口	C	859	808
		СО	dry%	12.3	14.4
ガ		H_2	dry%	6.3	9.5
人化	ボフ	$ m CH_4$	dry%	3.8	4.7
炉出		C_2H_4	dry%	0.9	1.5
		C_2H_6	dry%	0.0	0.1
	LHV	$MJ/m^{3}N$ -dry	4.1	5.5	
租成	組成 タール		g/m ³ N-dry	15.7	24.1
チャー		g/m ³ N ⁻ dry	83.5	65.5	

表 3.1.3.2-1 運転条件およびガス分析結果

図 3.1.3.2-1 フリーボード空気および OFA の効果比較(木質チップ)

図 3.1.3.2-2 炭素配分比率(木質チップ)

次に、空気供給場所の影響を理解するため、空気を全量砂層流動空気として供給する試験を実施した。ただし、空気を全量砂層流動空気から供給すると、砂層温度が 800℃以上の高温となり、通常使用している珪砂が焼結する可能性があったため、今回の試験では高温時でも焼結しにくいオリビン砂を用いた ³⁾。使用したオリビン砂は SIBELCO 社製 VANGUARD(主成分: MgO 49%、SiO₂ 42%、Fe₂O₃ 7%)である。粒度は珪砂との密度の差を勘案し、珪砂使用時と同等の流動状態となるように選定した。

木質チップを試料に、ガス化空気を流動空気+OFA、もしくは全量流動空気で供給し、 効果を確認した。運転条件および得られた結果を表 3.1.3.2-2 に、ガス LHV、チャーおよび タール濃度の結果を図 3.1.3.2-3 に、また、この条件における炭素分の配分比率を図 3.1.3.2-4 に示す。

空気供給場所を「流動空気+OFA」から全量流動空気とすることで、砂層温度が上昇し、 フリーボード部およびガス化炉出口部の温度が低下した。また、タール濃度の上昇とチャ ー濃度の低下が確認できた(図 3.1.3.2-3)。

これらより、ガス化反応の促進のためには、空気供給位置を砂層近傍もしくは砂層部と すること、および砂層を高温化すること(チャー等のガス化反応速度上昇)の2点が重要 であると考えられる。

なお、全量流動空気を用いた運転時でも、オリビン砂は良好な流動状態を維持していた。

条件			オリビン	オリビン	
				流動+OFA	流動のみ
		★厨工汕司路劫旦	MJ/kg	150	150
	式料	小貝ナツノ九秋里	(wet base)	15.9	15.9
		木質チップ供給量	kg/h	700	700
ידי	ケモ	砂層部	-	0.19	0.26
2		ガス化炉全体	-	0.26	0.26
		砂層部	C	771	802
温度		フリーボード部	C	875	800
		ガス化炉出口	C	855	785
		СО	dry%	15.6	14.7
ガ		H_2	dry%	8.4	9.1
人化	ボフ	$ m CH_4$	dry%	4.4	4.7
炉出		C_2H_4	dry%	1.0	1.7
		$\mathrm{C_{2}H_{6}}$	dry%	0.0	0.1
		LHV	$MJ/m^{3}N$ -dry	5.1	5.6
組成		タール	g/m ³ N-dry	25.6	33.0
チャー		g/m ³ N-dry	53.7	20.8	

表 3.1.3.2-2 運転条件およびガス分析結果

図 3.1.3.2-4 炭素配分比率(木質チップ)

3.1.3.3 RDF ガス化試験結果

木質チップと同様に、空気の供給位置を変更して OFA の効果を検証した。試験条件お よび得られた結果を表 3.1.3.3-1 に、ガス LHV、チャーおよびタール濃度の結果を図 3.1.3.3-1 に、また、この条件における炭素分の配分比率を図 3.1.3.3-2 に示す。

木質チップの時と同様に、OFA 供給によりチャー(固体炭素)が減少し、ガス LHV お よびタール濃度が増加しており(図 3.1.3.3-1)、ガス化反応が進んだことが確認された。

条件			フリーボード	OFA	
				空気供給	供給
		PDF 杂刻号	MJ/kg	165	16 5
Ē	式料	NDF 光然里	(wet base)	10.5	10.0
		RDF 供給量	kg/h	700	700
קים	新モ	砂層部	-	0.22	0.22
Ŧ		ガス化炉全体	-	0.27	0.27
		砂層部	C	768	786
温度		フリーボード部	°C	914	865
		ガス化炉出口	C	896	846
		СО	dry%	10.8	10.7
ガ		H_2	dry%	9.7	8.6
人化	ボフ	$ m CH_4$	dry%	4.3	4.5
炉出		C_2H_4	dry%	1.2	1.8
		$\mathrm{C}_{2}\mathrm{H}_{6}$	dry%	0.1	0.1
	LHV	$MJ/m^{3}N$ -dry	4.7	5.0	
祖成	超成 タール		g/m ³ N-dry	24.7	29.6
	チャー		g/m ³ N ⁻ dry	96.9	88.6

表 3.1.3.3-1 運転条件およびガス分析結果

図 3.1.3.3-1 フリーボード空気および OFA の効果比較(RDF)

図 3.1.3.3-2 炭素配分比率(RDF)

一方で、試料に RDF を用いた場合は、RDF 中に含まれる砂礫や不燃物等のために、砂 層中のオリビン砂濃度を適切に維持することが困難であった。RDF 処理時の流動空気圧力 と RDF 累積処理量を図 3.1.3.3-3 に示す。数時間での RDF 処理で流動空気圧力が上昇した。 流動空気圧力の上昇は、もともとガス化炉内にあるオリビン砂に加え、RDF 中の不燃物に 由来する珪砂等が炉内に堆積していることを示す。 すなわち、RDF 処理の場合は、砂層中のオリビン砂の純度が保てない可能性が高く、オリビン砂の使用を前提とした砂層の高温化は難しい。よって珪砂を用いて、フリーボード 空気よりも砂層近傍に空気が供給できる OFA を活用するのが望ましいと考えられる。

3.1.3.4 まとめ

- ガス化炉フリーボード部に供給していた燃焼空気を砂層直上の OFA とすることで、チャー(固体炭素)が減少し、ガス LHV およびタール濃度が増加した。OFA を全量流動空気に供給して砂層を高温化すると、さらにチャー濃度の減少、ガス LHV およびタール濃度が増加した。
- ガス化効率の改善のためには、空気供給位置を砂層近傍もしくは砂層部とすること、 砂層を高温化することの2点が重要である。
- 木質チップのような灰分が少ない廃棄物を対象とする場合は、焼結しにくいオリビン 砂を用いて全量流動空気によるガス化が望ましいと考えられる。
- RDFのように、砂層中に堆積するような灰分を多く含む廃棄物を対象とする場合には、 砂層中のオリビン砂の純度を保つことが難しいため、通常の硅砂を用いて OFA を活用 するのが望ましいと考えられる。

3.1.4 ガスの改質

ガス化炉で生成されるガス中にはタールやチャーが含まれている。これらをガス化させるために「プラズマによる改質」と「酸素+水蒸気による改質」の2通りの改質方式で試験を行った。まずは、ガスエンジン発電に適用可能かどうかを評価するために、生成ガスの発熱量での評価を行った。

ガス化改質により生成した SYNGAS によるガスエンジンでの発電が目的であるため、試験結果について SYNGAS の発熱量に加え SYNGAS 中のタール濃度、チャー濃度および冷ガス効率についても評価した。

また、SYNGASの発熱量に対して、欧州のガスエンジンメーカと実証試験結果をもとに した技術検討を継続して実施してきた。当初、4MJ/m³Nを目標値としていたが、継続した 技術検討の結果、4MJ/m³Nあればガスエンジンは稼働するが発電効率等の性能保証等がで きるレベルでないことがわかり、SYNGAS発熱量の目標値を4.6MJ/m³Nと改めた。

SYNGAS 発熱量	ガスエンジン動作状況
4.6MJ/m ³ N以上	保証範囲
$3.5 \sim 4.6 MJ/m^{3}N$	発電効率など保証範囲外
3.5MJ/m ³ N以下	稼働しない

表 3.1.4-1 SYNGAS 発熱量とガスエンジン動作状況

3.1.4.1 SYNGAS 発熱量

ガス分析で得られた SYNGAS 組成および各成分の発熱量 ¹⁾から、単位流量当たりの発熱 量を算出した。

① 空気ガス化プラズマ改質試験

空気ガス化+プラズマ改質により得られた SYNGAS の発熱量の結果を図 3.1.4.1-1 に示す。ここで運転酸素比とは原料の完全燃焼に必要な酸素量に対して、どの程度の比率の酸素を供給したかを示す指標であり、ガス化剤に空気を使用した場合では空気比と同義である。

本結果より、運転酸素比を低くすることでSYNGAS発熱量は増加することが確認できた。 しかしながら、ガス化剤に空気のみを用いた運転では、ガスエンジンの要求下限値である 4.6MJ/m³N以上の発熱量を得ることが難しいことが分かった。

図 3.1.4.1-1 運転酸素比と SYNGAS 発熱量(空気ガス化+プラズマ改質)

2 酸素・水蒸気、空気による流動ガス化改質試験

そこで、SYNGAS の発熱量を高めることを目的に、酸素/水蒸気を用いたガス化改質を実施した。なお、今回の試験においては、3.1.3 項で効果が確認された OFA によるガス化を実施している。

結果を図 3.1.4.1-2 に示す。ガス化剤に酸素と水蒸気を使用して SYNGAS の窒素濃度を 低下させることで、SYNGAS の発熱量を向上させることが可能であることが確認された。

しかし酸素と水蒸気の製造にはコストがかかるため、できる限りガス化剤に空気を使用 し、補助的に水蒸気と酸素を使用することが望ましい。今回の試験より、ガス化剤中の空 気の割合を 50%程度にすることでガスエンジンの要求下限値を満たすことが可能であるこ とが分かった。

図 3.1.4.1-2 運転酸素比と SYNGAS 発熱量(酸素・水蒸気、空気ガス化改質)
次に、酸素・水蒸気と空気を用いたガス化改質における SYNGAS 組成を図 3.1.4.1-3 (H₂ 濃度)、図 3.1.4.1-4 (CO 濃度)、図 3.1.4.1-5 (CH₄ 濃度)に示す。H₂: CO は空気のみの ガス化の場合はともに 10~15%程度とほぼ 1:1 であるが、酸素・水蒸気ガス化の場合は H₂ が 20~30%となったのに対し、CO は 15~20%程度と、H₂のほうがやや多くなり、CH₄ は酸素比が高くなると濃度が低下する傾向が確認された。また、いずれの条件においても、 H₂濃度は 40vol%以下であり、ガスエンジンの要求値を満たすことがわかった。

図 3.1.4.1-3 H₂ 濃度(酸素・水蒸気、空気ガス化改質)

図 3.1.4.1-4 CO 濃度(酸素・水蒸気、空気ガス化改質)

図 3.1.4.1-5 CH4 濃度(酸素・水蒸気、空気ガス化改質)

3.1.4.2 SYNGAS 中タール、チャー濃度

SYNGAS 中のタール濃度の結果を図 3.1.4.2-1 に示す。タール濃度は運転酸素比が高いほど低くなることが確認できた。

図 3.1.4.2-1 SYNGAS 中のタール濃度

SYNGAS 中のチャー濃度の結果を図 3.1.4.2-2 に示す。チャー濃度も運転酸素比が高いほど低くなることが確認できた。

図 3.1.4.2-2 SYNGAS 中のチャー濃度

3.1.4.3 冷ガス効率

ガス化改質の効率を評価するため冷ガス効率について評価した。ここで、冷ガス効率は (SYNGASの化学エネルギー(発熱量))/(原料の化学エネルギー(発熱量))であり、 ガスエンジンでの発電量に直接影響するパラメータである。

運転酸素比と冷ガス効率の相関を図 3.1.4.3-1 に示す。冷ガス効率 50~65%程度と運転酸素比との相関はなくほぼ一定となった。水蒸気の添加により $C + H_2O \rightarrow CO + H_2$ の水性ガス化反応による冷ガス効率の増加も期待されたが、図 3.1.4.3-1 の結果からは、これらの反応の影響は小さいと推測される。

図 3.1.4.3-1 冷ガス効率と運転酸素比の相関

3.1.4.4 まとめ

- ▶ ガス化剤に空気のみを用いたプラズマ改質においては、ガスエンジンの要求下限値である 4.6MJ/m³N以上の発熱量を得ることが難しいことがわかった。
- ガス化剤に酸素と水蒸気を使用して生成ガス中の窒素濃度を低下させることで、生成 ガスの発熱量を向上させることが可能であるが、酸素と水蒸気の製造にはコストがか かるため、できる限りガス化剤に空気を使用し、補助的に水蒸気と酸素を使用するこ とが望ましい。今回の試験より、ガス化剤中の空気の割合を50%程度にすることでガ スエンジンの要求下限値を満たすことが可能であることが分かった。
- 運転酸素比が高いほどタール濃度は低くなることが確認できた。冷ガス効率は運転酸素比によらずほぼ一定となった。また、タール濃度、チャー濃度等、プロセス設計に必要なデータを得た。

3.2 ガスエンジン試験

3.2.1 概要

当社が想定するガス組成を模擬したガス(以下模擬ガス)によるガスエンジンの稼働お よび性能を確認するために、ガスエンジン試験業務を担う adapt engineering 社にて実証試 験を行った。

3.2.2 adapt engineering 社の概要

adapt engineering 社は、1993 年にガスエンジンの試験機関としてドイツのテューリン ゲン州ノルドハウゼンに事務所を設立した。所在地を図 3.2.2-1 に示す。試験業務の他に、 ガスエンジンの部品設計および新型ガスエンジンの開発業務も担う。従業員数は 35 名。

図 3.2.2-1 adapt engineering 社所在地

3.2.3 実証試験用ガスエンジン

実証試験用ガスエンジンには、MAN 社の E0826E を採用した。外観を図 3.2.3-2 に、仕様を表 3.2.3-1 に示す。E0826E は天然ガスを燃料とするガスエンジンであるが、本実証試験の燃料(模擬ガス)は水素分を多く含むため、圧縮時の異常燃焼を避けるため、燃焼室を図 3.2.3-3 のように改造して実施した(圧縮比 9.25)。

図 3.2.3-2 MAN E0826E 外観

衣 3.2.3 1 リスエノソノロ(

型式	E0826E
エンジン回転数	1,500 rpm
ボア	108mm
ストローク	125mm
排気量	$6.9~\mathrm{L}$

図 3.2.3-3 燃焼室改造前後(左:改造前、右:改造後)

図 3.2.3-4 改造後の燃焼室

ガスエンジン実証試験設備フローを図 3.2.3-5 に、試験装置の外観を図 3.2.3-6 に示す。 天然ガスによる試運転および模擬ガスによるガスエンジン試験を行うために、燃料ライン を切り替えられるようバルブ(図 3.2.3-7)を設けた。模擬ガスは 3 個の減圧弁を通じて、燃 料タンク圧力(100bar)からガスエンジン仕様圧力(60mbar)に減圧される。天然ガスおよび 模擬ガスは、ミキサー(図 3.2.3-8)で空気と混合され、ガスエンジンへ供給される(図 3.2.3-9)。

今回の試験では、機械効率を測定し、そこから発電効率(機械効率×0.95)を計算で求めた。

図 3.2.3-6 実証試験装置外観

図 3.2.3-7 燃料ライン切り替えバルブ

図 3.2.3-9 ガスエンジン入口部

図 3.2.3-11 点火コイルと点火プラグ

図 3.2.3-10 点火制御ユニット

3.2.4 天然ガスによる試運転

3.2.4.1 試運転概要

今回、模擬ガス用にシリンダーヘッドにある燃焼室の形状を変更したため、模擬ガスによるガスエンジン試験の前に、本来の燃料である天然ガスでガスエンジンが運転できるか確認した。試運転に用いた天然ガスの組成を表 3.2.4.1-1 に、試運転条件を表 3.2.4.1-2 に示す。

天然ガス	分析値		
CH_4	04.0 1.0/		
$(35.82 \text{ MJ/m}^{3}\text{N})$	94.0 001 %		
C_2H_4			
(59.06. MJ/m ³ _N)	2.9 V01 %		
C_3H_8			
(91.25 MJ/m ³ _N)	0.55 V01 %		
C_4H_{10}	0.17		
(118.62 MJ/m ³ N)	0.17 V01 %		
N_2	1.4 vol %		
CO_2	0.78 vol %		
O ₂	0.03 vol %		
低位発熱量	$36.0 \mathrm{MJ/m^{3}N}$		

表 3.2.4.1-1 天然ガスの組成

No.	実施内容
RUN1	所定の着火タイミング(4°CA~28°CAまで4°CA刻み)において、空気比
	1.0 でガスエンジンがノッキングするか確認する。
RUN2	所定の着火タイミング(4°CA~28°CAまで4°CA刻み)において、排ガス
	中の HC 濃度が 1.0 g/m ³ N(失火の判断基準)になるまで空気比を調整し、失火
	点を確認する。
RUN3	所定の着火タイミング(4°CA~28°CAまで4°CA刻み)において、排ガス
	中の NOx 濃度が 0.94 g/m ³ N(日本の規制値)となるよう空気比を調整し、その
	際のガスエンジンの性能を確認する。
RUN4	所定の着火タイミング(4°CA~28°CAまで4°CA刻み)において、排ガス
	中の NOx 濃度が 0.50 g/m ³ N(ドイツの規制値)となるよう空気比を調整し、そ
	の際のガスエンジンの性能を確認する。
RUN5	所定の着火タイミング(4°CA~28°CAまで4°CA刻みにおいて、空気比
	1.2 (空気比の下限と上限の中間値)におけるデータ取得。

表 3.2.4.1-2 試運転条件(天然ガス)

※CA=Crank Angle シリンダーのピストンの上死点を基準とし、そこから度単位で表したエンジンの回転角度。

3.2.4.2 試運転結果

各 RUN において得られた結果にもとに作成した性能曲線を図 3.2.4.2-1 に示す(各 RUN の試験結果は添付資料参照)。図 3.2.4.2-1 に示す領域が運転可能な範囲であることを確認した。

図 3.2.4.2-1 出力および機械効率分布(燃料: 天然ガス)

3.2.5 模擬ガスによる試験運転

3.2.5.1 試験概要

所定の低位発熱量となるよう CO、H₂、CH₄、CO₂、N₂を混合したガス(模擬ガス)を 作成し、ガスエンジンが起動すること、および運転範囲と性能を確認した。作製した模擬 ガスの組成を表 3.2.5.1-1 に、試験条件を表 3.2.5.1-2 に示す。模擬ガスの組成は、ガスエン ジンの性能・運転に大きな影響を与える水素濃度を実証試験の結果と同レベルにあわせ、 その上で CO や CH₄等の可燃成分と不活性ガスの比率を調整することでガス発熱量をあわ せた。

	世版ガフタ	甘気まり	世版ガマの	実証試験で得られた
	候擬ノス①	候郷ノ人と	候畑ノス③	SYNGAS 組成範囲
СО	35 vol %	28 vol %	21 vol %	$14\sim 20 \text{ vol }\%$
H_2	35 vol %	28 vol %	21 vol %	17~31 vol %
$ m CH_4$	5 vol %	4 vol %	3 vol %	3∼8 vol %
不活性ガス	25 vol %	45vol %	55 vol %	41~47 vol %
低位発熱量	$10.0 \text{ MJ/m}^{3}\text{N}$	8.0 MJ/m ³ N	6.0 MJ/m ³ N	$5\sim 9~{ m MJ/m^{3}N}$

表 3.2.5.1-1 模擬ガスの組成

表 3.2.5.1-2 試験条件(模擬ガス)

対象	No.	実施内容				
	RUN6					
		て、空気比 1.0 でカスエンシンかノッキンクするか確認する。				
		所定の着火タイミング(4°CA~32°CA まで 4°CA 刻み)におい				
	RUN7	て、排ガス中の NOx 濃度が 0.94 g/m ³ N(日本の規制値)となるよう				
		空気比を調整し、その際のガスエンジンの性能を確認する。				
$(10 M J/m^{3}N)$		所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	RUN8	て、排ガス中の NOx 濃度が 0.50 g/m ³ N(ドイツの規制値)となるよ				
		う空気比を調整し、その際のガスエンジンの性能を確認する。				
		所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	RUN9	て、排ガス中の NOx 濃度が下限になるまで空気比を調整し、その				
		際のガスエンジンの性能を確認する。				
	DIDI10	所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	KUNIU	て、空気比 1.0 でガスエンジンがノッキングするか確認する。				
		所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	RUN11	て、排ガス中の NOx 濃度が 0.94g/m ³ N(日本の規制値)となるよう				
		空気比を調整し、その際のガスエンジンの性能を確認する。				
$28MJ/m^{3}N$		所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	RUN12	て、排ガス中の NOx 濃度が 0.50 g/m ³ N(ドイツの規制値)となるよ				
		う空気比を調整し、その際のガスエンジンの性能を確認する。				
		所定の着火タイミング(4°CA~32°CAまで4°CA刻み)におい				
	RUN13	て、排ガス中の NOx 濃度が下限になるまで空気比を調整し、その				
		際のガスエンジンの性能を確認する。				
③6MJ/m ³ N	RUN14	4 CAを変化させてガスエンジンの性能を確認する。				

3.2.5.2 試験結果

各 RUN において得られた結果にもとに作成した性能曲線を図 3.2.5.2-1~図 3.2.5.2-5 に 示す(各 RUN の試験結果詳細に関する図表は添付資料参照)。

- > 空気比 1.0 の運転においても明確な失火領域が確認できなかった。
- > 天然ガスでの運転と比べて、運転範囲が広くなることを確認した。
- ▶ ①10MJ/m³N、②8MJ/m³Nの模擬ガスにおいては、着火タイミング16°CAにおいて 効率が高くなる結果となった。また③6MJ/m³Nの模擬ガスにおいては、今回の試験条件においては、着火タイミング24°CAで効率が最も高くなった。
- 実用機においては、得られる SYNGAS の発熱量に応じて今回と同様の事前試験を行え ば、安定して稼働するか、効率が高くなるクランクアングルの最適点等についての事 前検討が可能であることが確認できた。
- > 模擬ガスの発熱量によって効率に大きな差は生じないことを確認した。

図 3.2.5.2-2 出力および機械効率分布(②8MJ/m³N)

図 3.2.5.2-3 性能線図(③6MJ/m³N)

図 3.2.5.2-4 発電効率比較(16°CA)

図 3.2.5.2-5 発電効率比較(24°CA)

3.2.6 まとめ

- 天然ガスを燃料とするガスエンジンを、水素を多く含む模擬ガス用に燃焼室を改造して試験を実施した。圧縮比は 9.25 として実証試験を実施した。
- 空気比 1.0 でノッキングを起こさないこと、いずれの条件においてもガスエンジンが失 火しないことを確認した。
- > 天然ガスでの試運転と比べて、運転範囲が広くなることを確認した。
- 今回は模擬ガスによる小型エンジン(定格 75kW)での試験であったため発電効率は 27~31%程度と低めの結果となった。実機規模のエンジン(~1000kW クラス)では メーカーでの検討により、34.8%程度の効率が得られる見込みである。

- 3.3 ガス処理プロセス
- 3.3.1 ガスエンジンからの要求値

ガスエンジンで安定して発電するためには、ガス中に含まれる各種微量成分を除去する 必要がある。仏) Eneria 社と米) Dresser-Rand 社(旧:西)Guascor 社)からの情報をもと に、ガス処理プロセスにて対応すべき項目として表 3.3.1-1 の項目を抽出した。

表 3.3.1-1 ガス処理プロセスにて対応する項目とガスエンジン要求値

	ガスエンジン要求値
チャー/ダスト	5µ m以上の粒子は許容できない
タール	ベンゼン環 2rings 〈1000mg/m ³ _N 3rings 〈10mg/m ³ _N 3rings以上は 許容できない
HCI	<10ppm
H₂S	<300ppm
NH ₃	<10ppm
Si	$< 1.0 \text{mg/m}^3$ _N
相対湿度	<60%

3.3.2 ガス処理プロセスに導入するガス組成と処理プロセス検討

次に、3.1.2.1 項のフランス実証設備(以下、当設備で実施した試験を「実証試験」と記 す)で得られた結果に基づき、ガス処理プロセスの設計条件を決定し、またその処理に必 要な除去機構を決定した(表 3.3.2-1)。ガス中の微量成分濃度、除去機構の決定根拠につい ては、次頁以降に示す。

	設計条件	除去機構
チャー/ダスト	10~60g/m ³ N (50%平均体積粒子径 0.7~1.2 µm)	バグフィルタ
タール	数百~8,000mg/m ³ №	オイルスクラバ
HCI	200 ppm	水スクラバ
H₂S	200 ppm	除去不要(ただし水スクラバで同時に捕集される)
NH ₃	300 ppm	水スクラバ
Si	1mg/m ³ N	除去不要(ただしバグフィルタで捕集される)
相対湿度	冷却/再加熱温度に依存	冷却→再加熱で10℃の温度差を設ける (40℃冷却→50℃再加熱で相対湿度60%)

表 3.3.2-1 ガス中微量成分に対する設計条件および除去機構

①チャー/ダスト

チャー・ダスト濃度は図 3.1.4.2-2 に示すように 10~60g/m³N 程度であることから、ガス エンジンの前で除塵する必要がある。実証試験ではバグフィルタでチャー・ダストを除去 しており、実用化施設においてもバグフィルタを採用するものとして排ガス処理プロセス の検討を行った。バグフィルタで捕捉された灰に対して行った示差熱分析による発火点の 測定、粒度分布/比表面積の測定結果を表 3.3.2-2 に示す。灰の発火点は運転条件によらず 400~450℃程度であり、通常のバグフィルタ運転温度では発火の可能性がないことが確認 されている。

捕集したチャーは回収し、燃焼炉にて焼却処理を行うことで顕熱を回収するものとした。

	21	
分析項目	単位	分析結果
発火点	C	400~450
粒度分布	μm-50%体積粒子径	0.7~1.2
比表面積	m²/g	18~69

表 3.3.2-2 実証試験 チャー分析結果

2タール

実証試験におけるタール組成分析結果を表 3.3.2-3 に示す。タール濃度が低い場合は、タールはベンゼン環 1ring がほとんどであるが、タール濃度が 3,000mg/m³N-dry 程度になる とベンゼン環 2rings 以上のものが増加している。よって、特に 2rings 以上を確実に除去す るためにオイルスクラバを設けることとする。オイルスクラバ(図 3.3.2-1)設置により、特 に 2rings 以上の分子量が大きなタールを除去することで、ガスエンジン仕様を確実に満足 することが可能となる。

合計タール濃度	mg∕m³ _N −dry	1,443	3,519	4,356
ベンゼン環 1ring	mg/m³ _N -dry	1,439	2,859	3,588
2rings	mg∕m³ _N −dry	4	457	609
3rings	mg∕m³ _N −dry	0	118	113
4rings	mg∕m³ _N −dry	0	85	45
5rings	mg∕m³ _N −dry	0	1	0

表 3.3.2-3 実証試験 タール組成

出典: DAHLMAN 社 HP

http://www.royaldahlman.com/renewable/home/tar-removal/olga-technology/

3HCl /H2S /NH3

実証試験におけるガス中 HCl、H₂S、NH₃の分析結果を表 3.3.2-4 に示す。今回の分析において HCl、H₂S の発生量は少ないが、処理対象の RDF 組成によりこれらの値は変化すると想定されるため、ガス処理プロセスではそれぞれ最大 200ppm を見込むものとした。NH₃は分析結果の差異が大きいが、測定結果の平均を考慮してこちらは 300ppm 程度が発生するものとした。

除去機構は、これら 3 成分がともに水溶性の成分であるため、水スクラバが適切である と判断した。水スクラバの薬液の種類と除去率の一例を図 3.3.2-2 に示す。HCl および H₂S は酸性であるため、溶液を NaOH とすることで 95%以上の除去が可能になる。NH₃はアル カリ性であるため、溶液を H₂SO₄とすることで 95%以上の除去が可能になる。

			RDF				
			バグフィルタ前		バグフィルタ後		é
			1	0	1	0	3
(-	タール タール露点)	g/Nm ³ -dry (°C)	-	-	5.2 (102℃)	I	2.8 (85°C)
	HCI	mg/Nm ³ -dry	«O.3	9.1	«0.2	<0.2	17.1
害成分	NH ₃	mg/Nm ³ -dry	38	16	42	25	491
微量有	H ₂ S	mg/Nm ³ -dry	12	0	13	12	32
	Si	mg/Nm ³ -dry	5.0	0.9	0.3	0.2	0.5

表 3.3.2-4 実証試験 ガス分析結果

ガス名	分子式	洗浄液	除去効率	
アンモニア	NHA	H2O	85~95%	
	NH3	H2SO4	95~99%	
ちルル主		H2O	95~98%	
塭10小菜	nci	NaOH	95~98%	
コッ化水素	HE	HzO	95~98%	
ノノロ小米		NaOH	95~98%	
硫酸ミスト	H2SO4	H2O	90~95%	
臭化水素	HBr	H2O	85~90%	
		NaOH	85~90%	
15×18-	CI2	H2O	~20%	
塩菜ガス		NaOH	95~99%	
一戒火政共		H2O	50~80%	
二致16%.典	302	NaOH	95~99%	
一酸ル安主	NOs	H2O	_	
—政16至莱	INU2	NaOH	~30%	
碎化水丰	Has	NaOH	95~99%	
W.IL/N¥	H25	NaCIO	95~99%	
メチルメルカプタン	CH3SH	NaOH	~30%	
メデルメルカノタン	Crison	NaCIO	85~95%	

出典:株式会社協立製作所 HP、<u>http://www.kyoritsu-yes.co.jp/product/kougai/nwo.html</u>

図 3.3.2-2 水スクラバによる除去率の一例

4Si

発生濃度が低く、かつバグフィルタでダストとともに除去されるため、特段の対応は不 要と判断した。

⑤ガス中相対湿度

ガスエンジンからの要求値は相対湿度 60%以下である。よって、ガスエンジンに導入す る前にガス処理の過程で減温して水分を凝縮/除去し、再加熱を行って相対湿度を 60%以下 にする必要がある。ここでは、40℃程度に減温した後に 50℃程度に再加熱することで、相 対湿度を 60%程度とするようにした。 3.3.3 まとめ

これまでの検討に基づき設計したガス処理プロセスを図 3.3.3-1 に示す。まずバグフィル タにてダストの除去を行い、その後オイルスクラバにてタール成分の除去を行う。次に、 水スクラバにて減温による排ガス中の水分除去と、HCl/H₂S/NH₃の除去を行う。最後に相 対湿度 60%程度となるように加温した後に、ガスエンジンにガスを導入する。これらのプ ロセスにより、ガスエンジンによる安定した発電が可能になるものと考える。

図 3.3.3-1 ガス処理プロセス

第4章 開発した技術がもたらす効果

4.1 プロセス計算前提条件

これまでの検討結果に基づき、廃棄物ガス化発電プロセスの経済性を評価するためにプロセス計算を実施した。計算に使用した廃棄物組成を表 4.1-1 に示す。

名称			廃棄物
三成分	可燃分	wet%	83.0
	水分	wet%	8.6
	灰分	wet%	8.4
元素組成	С	dry%	52.2
	Н	dry%	6.1
	N	dry%	1.4
	S	dry%	0.1
	Cl	dry%	0.1
	0	dry%	30.9
低位発熱量	MJ/kg	wet base	18.4
	kcal/kg	wet base	4,400

表 4.1-1 想定廃棄物組成

想定する実機プロセスフローを図 4.1-1 に示す。廃棄物をガス化炉に投入し、改質炉、 No.1 ボイラ、ガス洗浄を経たガスをガスエンジンに導入して発電する(No.1 ガス化発電ラ イン)。バグフィルタで捕集されたチャー(未反応炭素)は後段の燃焼炉にて焼却し、ガス エンジン排気とともに No.2 ボイラにて顕熱を回収する。NO.1 ボイラと NO.2 ボイラで発 生した蒸気により蒸気タービンで発電する(NO.2 焼却発電ライン)。

計算に使用した前提を表 4.1-2 に示す。目標炉内温度は実証設備と当社ガス化実験設備における温度と同等に設定した。ガス化剤も実証設備と当社ガス化実験設備における結果を 鑑み、①空気 100%、②空気 50%+酸素・水蒸気 50%、③酸素・水蒸気 100%とした。

必要な空気比は炉内温度目標値とガス化剤の組成から計算した。ただし、今回の試算は 100t/日であり、実証設備や当社ガス化実験設備よりも大型であるため、炉からの放熱量低 減が見込まれる。そのため、今回試算した空気比は、実証設備や当社ガス化実験設備にお ける結果より若干低いものとなった。

ガス化剤に水蒸気を使用する場合は、発生した蒸気タービンの抽気蒸気を用いることとした。その場合は常時炉内に水蒸気を投入するため、それを補うためにボイラへ補給水を 必要量投入するものと考え計算を行った。

処理規模		t/日炉	100	
温度	砂層	C	750	
	ガス化炉出口	C	900	
	改質炉出口	C	1,000	
使用 ガス化剤	①空気 100%			
	②空気 50%+酸素・水蒸気 50%			
	③酸素・水蒸気 100%			

表 4.1-2 プロセス計算 前提条件

4.2 発電効率、送電効率の試算条件

発電効率、送電効率試算の前提となる発電量、場内消費電力量の試算条件を表 4.2-1 に示 す。ガスエンジンの発電効率については、欧州のガスエンジンメーカに検討を依頼し、そ の結果から 34.8%とした。蒸気タービンでの発電量は、蒸気条件 450℃×6MPa の条件で試 算した。なお、蒸気タービンは抽気タービンとし、ガス化炉に供給する蒸気は蒸気タービ ンからの抽気により得るものとして計算した

また、ガスエンジンからは 90℃の温水が回収できる。この熱量を有効に活用するために、 回収した温水にて①ボイラ給水加熱を行う、②ボイラ給水加熱で取りきれなかったガスエ ンジン温水廃熱を活用して低温熱源でも発電可能な ORC(Organic Rankin Cycle)ユニッ トを用いて発電する、こととした。ORC ユニットは神戸製鋼製 MB-70 とした。ORC 概略 フローを図 4.2-1 に示す。

場内消費電力量は当社検討により下記にて試算した。

- ・ファン消費電力を風量、設計圧力より計算
- ・PSA 酸素発生装置を前提とし、0.4kWh/m³N-O2の消費電力が必要として試算
- ・その他汎用機器の消費電力として 72kWh/ごみ t を計上

項目	試算条件				
発電量	ガスエンジン	:発電効率 34.8%として試算			
	蒸気タービン	:当社設計標準により試算 蒸気条件:450℃×6MPa			
	ORC	:ガスエンジン回収温水量より試算 神戸製鋼製 MB-70 を想定			
		(詳細は添付資料③参照)			
場内消費 電力量	ファン	:風量、圧力より計算			
	PSA	:酸素必要量より 0.4kW/m ³ N-O2 として計算			
	その他汎用機器	:72kWh/ごみ t として計算			

表 4.2-1 発電量、場内消費電力量 試算条件

出典:株式会社神戸製鋼所 HP

http://www.kobelco.co.jp/machinery/products/rotation/microbinary/index.html

図 4.2-1 神戸製鋼所 マイクロバイナリーMB-70 概略フロー

4.3 発電端効率、送電端効率の試算結果

前述の前提に基づいて行った計算結果の要約を図 4.3-1 および表 4.3-1 に示す(詳細は添 付資料③参照)。空気ガス化に対し、酸素・水蒸気ガス化を実施した場合、

・酸素製造のため所内消費電力が増加する

・水蒸気を炉内に供給するため抽気蒸気量が増加して蒸気タービンの発電量が減少する

・SYNGAS 発熱量を上げても冷ガス効率が上昇せずガスエンジン発電量が増加しない ために、発電端/送電端効率は低下した。一方で、空気ガス化の場合のガス発熱量はガスエ ンジンの目標値を下回るため、安定した運転が難しいと考えられる。したがって空気に 50% 程度酸素・水蒸気を混合させたガス化剤でガス化改質するプロセスが、ガスエンジンの安 定稼働および送電端効率向上の観点から望ましいと考えられる。

今回の試算の結果、100t/日規模(4,400kcal/kg)の施設で 5,805kW の送電量が見込まれ、 ごみ1トンあたり1,392kW の送電が可能となる。売電単価15円/kWh を前提とすると、ご み1トンあたり約20,000円の売電収入が見込まれる。100~200t/日規模の一般廃棄物での 維持管理費はおおよそ12,000円から15,000円程度であり、売電収入で維持管理費が賄え 経済的にも成り立つ可能性のあるプロセスであることが示された。今回提案したプロセス が実用化できれば、小規模高効率発電施設として社会に大きく貢献するものである。

図 4.3-1 発電端/送電端効率 試算結果

項目		単位	①100%空気	②50%酸素・ 水蒸気 50%空気	③100%酸 素・水蒸気
ガスエンジン前		$MJ/m^{3}N$	4.6	6.2	8.6
ガス発熱量		-wet base			
発電	ガスエンジン	kW	4,345	4,291	4,188
	蒸気タービン	kW	2,410	2,250	2,100
	ORC	kW	123	123	123
	合計	kW	6,878	6,664	6,411
	発電端効率	%	32.3	31.3	30.1
場内消費	ファン	kW	305	273	248
	PSA	kW	0	286	553
	汎用機器	kW	300	300	300
	合計	kW	605	859	1,101
送電	送電量	kW	6,273	5,805	5,310
	送電端効率	%	29.5	27.3	25.0

表 4.3-1 発電端効率、送電端効率の試算結果
- 4.4 まとめ
 - > 100t/日炉を対象に発電端/送電端効率の試算を行った。
 - ガス化改質炉内に供給する水蒸気量を増やすほど蒸気タービンからの抽気蒸気量が増加するため、蒸気タービンの発電量が低下してシステム総発電効率が低下する。酸素発生装置の消費電力も大きくなるため送電端効率はさらに低下する。
 - 炉内に供給する酸素・水蒸気量を増やすほど SYNGAS 発熱量は高くなるが、 SYNGAS 発熱量が高くなってもガスエンジンの発電効率は上昇せず、システム全体の発電効率の向上に寄与しない。
 - ▶ 一方、「空気」によるガス化改質ではガスエンジンが求める最低発熱量をクリアで きないため、酸素・水蒸気・空気の比率の最適化を図り、ガスエンジンが動作す る最低限の SYNGAS 発熱量を満足する条件が、最もシステム全体の送電端効率が 高くなると考えられる。
 - 今回の試算条件における検討では、50%酸素・水蒸気、50%空気によるガス化プロセスが、SYNGAS 発熱量、送電端効率の観点から望ましいと考えられる。その場合の送電端効率は27.3%と試算された。
 - ごみ1トンあたり1,392kWの送電が可能であり、売電単価15円/kWh程度を前提とすると、ごみ1トンあたり約20,000円の売電収入となり、施設の維持管理費を賄え経済的にも成り立つ可能性のあるプロセスであることが示された。

第5章 まとめ

廃棄物をガス化して得た改質ガスを利用して、高効率で安定的に発電できることを実証 することを目標とした。発電効率は、100t/日~200t/日規模で、送電端効率 27%を目標と し、そのために必要な下記技術検討を実施した。

- OFA (Over Fire Air) によるガス化効率の向上
- プラズマ改質、酸素・水蒸気改質の効果検証
- > 試験結果に基づく全体プロセス設計
- 設計したプロセスにおける送電端効率の試算

検討の結果、以下のことが判明した。

- 灰分を含む廃棄物を対象とした場合、ガス化効率の向上に OFA が有効である。
- 空気+プラズマ改質ではガスエンジンが安定して稼働するためのガス発熱量の確保が難しい。酸素と水蒸気を使用した場合、生成ガスの発熱量を向上させることが可能であるが、酸素と水蒸気の製造にはコストがかかるため、できる限りガス化剤に空気を使用し、補助的に水蒸気と酸素を使用することが望ましい。
- 今回の試験より、ガス化剤中の空気の割合を 50%程度にすることでガスエンジンの要求下限値を満たすことが可能であることが分かった。
- 模擬ガスによる小型ガスエンジン試験を行い、問題なくガスエンジンが動作する ことを確認した。
- 排ガス処理プロセスを含む実機プロセスフローを構築した。
- 上記プロセスにおいて送電端効率を試算した結果、ガス化剤中の空気の割合を 50%、酸素・水蒸気の割合を 50%にした場合に、ガスエンジンの安定稼働、および送電端効率 27%が両立する目途を得た。
- ごみ1トンあたり1,392kWの送電が可能であり、売電単価15円/kWh程度を前提とすると、ごみ1トンあたり約20,000円の売電収入となり、施設の維持管理費を賄え経済的にも成り立つ可能性のあるプロセスであることが示された。

第6章 事業概要図

- 1. 研究課題名 : 廃棄物ガス化発電技術の高効率化の実証
- 2. 申請者 : 株式会社神鋼環境ソリューション
- 3. 補助金申請金額 : 金 17,007,000 円 (平成 26 年度)
- 4. 研究事業予定期間 : 2 年間(平成 25 年度~26 年度)
- 5. 事業の概要

地球温暖化対策としての二酸化炭素排出削減、および、エネルギー源の多様化の要 請により、廃棄物等からのエネルギー回収が求められており、特に高効率での発電技 術が重要となっている。申請者は、本技術開発事業において、国内のごみ処理プラン トで培った流動床式ガス化炉を発展させることにより、廃棄物のガス化と、ガスエン ジンによる発電を組み合わせて、高効率の廃棄物ガス化発電技術を開発する計画であ る。平成25年度は(1)流動床炉内で効率よくタール分を低減できるOFA(Over-Fire Air) 吹込み技術の実証を、平成26年度は(2)改質後のガスの発熱量低下を最小限とするため、 改質炉において空気に替えて酸素を添加する技術の実証、および(3)実験で得られた改 質ガスと同種の成分による模擬ガスによって、高効率の発電方法であるガスエンジン が駆動できることの実証、を行った。

将来的に、廃棄物発電の高効率化は経済性改善のために重要な課題であると認識しており、本技術は高効率廃棄物発電の普及のために非常に有用な技術となると考える。

第7章 英文概要

[Title]

Development of a high-efficiency waste gasification and power generation process

[Author]

Shigeyoshi Tagashira Waste treatment systems and process development department Technical development division Kobelco Eco-Solutions Co., Ltd.

[Abstract]

The authors have developed a new and innovative gasification process to produce energy from waste. This technology employs two stage gasification processes. The first stage of this process is to produce a product gas by fluidized-bed gasifier and the second stage reforms the product gas. The reformed gas is called syngas. This syngas can be injected into gas engines and it drives a generator to produce electricity.

The aims of this study are to:

- Improve the efficiency of the gasifier,
- Evaluate the reforming process by plasma or oxygen/steam injection,
- Design the industrial scale process,
- Evaluate the net electrical efficiency of designed process.

Based on our test results, we designed the gasification and reforming process using mixture of oxygen, steam and air as gas supplied to the gasifier. This gasification method was essential to operate gas engines under required conditions so that the process can yield high net electrical efficiency. The feasibility study for the industrial scale installation (100tons/day) was carried out, and the net electrical efficiency for this case was estimated more than 27%.

We expect that this process contributes to increase the net electrical efficiency of small and middle scale waste treatment facilities in Japan.

[Key Words]

廃棄物発電	Waste to Energy
流動層	Fluidized-bed
ガス化	Gasification
改質	Reforming
ガスエンジン	Gas Engine

参考文献

1) 燃焼工学 第3版、水谷幸夫、森北出版、p.41

2) CEN/TS 15439:2006 "Biomass Gasification –Tar and Particle in Product Gases-Sampling and Analysis"

3) 平成 3 年度研究開発協力事業 木質系廃棄物の熱分解ガス化技術と生成ガスの利用技術 開発報告書、平成 4 年 3 月、財団法人、エンジニアリング振興協会 添付資料

添付資料① 天然ガスを用いたガスエンジンの性能試験結果

図1 排ガス濃度分布(燃料:天然ガス)

図2 排ガス温度分布(燃料:天然ガス)

	RUN		1-1	1-2	1-3	1-4	1-5	1-6	1-7
着	火タイミング	° CA TDC	4	8	12	16	20	24	28
	空気比	-	1.01	1.00	1.00	1.01	1.00	1.01	1.01
入力	天然ガス流量	m³ _N /h	21.2	21.2	21.1	20.9	21.1	20.9	20.8
	空気流量	m³ _N /h	206.9	205.4	204.6	203.9	203.1	203.1	202.3
	排ガス温度	Ĉ	644	623	606	593	582	577	576
	HC濃度	g/m³ _N	0.43	0.46	0.46	0.50	0.52	0.55	0.54
	NO _x 濃度(5%O ₂)	g/m³ _N	2.77	2.98	3.42	4.08	3.65	4.04	4.35
山土	CO濃度(5%O ₂)	g/m³ _N	8.22	9.29	8.82	7.05	10.29	9.35	8.75
ШЛ	機械出力	kW	64.8	67.7	70.0	70.8	70.8	70.2	69.2
	機械効率	%	30.2	31.6	32.8	33.6	33.3	33.3	32.9
	発電出力	kWe	61.6	64.3	66.5	67.2	67.3	66.7	65.8
	発電効率	%	28.7	30.0	31.2	12 16 20 24 1.00 1.01 1.00 1.01 21.1 20.9 21.1 20.9 204.6 203.9 203.1 203.1 606 593 582 577 0.46 0.50 0.52 0.55 3.42 4.08 3.65 4.04 8.82 7.05 10.29 9.35 70.0 70.8 70.8 70.2 32.8 33.6 33.3 33.3 66.5 67.2 67.3 66.7 31.2 31.9 31.6 31.6	31.3		

表1 試験結果(RUN1): ノッキング有無の確認

表 2 試験結果(RUN2): 失火限界の確認

	RUN		2-1	2-2	2-3	2-4	2-5	2-6	2-7
着	火タイミング	° CA TDC	4	8	12	16	20	24	28
	空気比	-	1.47	1.45	1.48	1.55	1.55	1.53	1.56
入力	天然ガス流量	m³ _N /h	15.2	15.2	14.9	14.4	14.3	14.4	14.1
	空気流量	m³ _N /h	218.5	217.8	217.8	217.8	217.0	216.2	216.2
	排ガス温度	Ĵ	590	560	536	517	498	483	471
	HC濃度	g/m³ _N	1.06	0.95	1.13	0.99	1.05	1.05	1.10
	NO _x 濃度(5%O ₂)	g/m³ _N	0.11	0.24	0.26	0.20	0.33	0.86	0.86
யக	CO濃度(5%O ₂)	g/m³ _N	0.49	0.41	0.46	0.54	0.56	0.54	0.57
山刀	機械出力	kW	35.2	41.8	43.3	43.7	45.8	49.2	48.9
	機械効率	%	22.6	26.8	28.4	29.6	31.3	33.3	33.8
	発電出力	kW _e	33.5	39.7	41.2	41.5	43.5	46.7	46.4
	発電効率	%	$2-1$ $2-2$ TDC 4 8 1.47 1.45 1.45 /h 15.2 15.2 1.47 /h 218.5 217.8 1.45 /h 218.5 217.8 1.45 /h 218.5 217.8 1.45 3 N 0.11 0.95 1.45 3 N 0.11 0.24 1.45 3 N 0.49 0.41 1.45 $\sqrt{35.2}$ 41.8 1.45 $\sqrt{22.6}$ 26.8 1.45 \sqrt{e} 33.5 39.7 1.45 \sqrt{e} 21.5 25.4 1.45	27.0	28.1	29.7	31.6	32.1	

	RUN		3-1	3-2	3-3	3-4	3-5	3-6	3-7
着	火タイミング	° CA TDC	4	8	12	16	20	24	28
	空気比	-	1.31	1.33	1.38	1.43	1.48	1.53	1.56
入力	天然ガス流量	m³ _N /h	16.6	16.1	15.6	15.1	14.7	14.3	14.0
	空気流量	m³ _N /h	213.1	213.9	213.9	213.9	214.7	214.7	215.4
	排ガス温度	C	586	560	538	517	500	484	465
入力	HC濃度	g/m ³ _N	0.29	0.32	0.39	0.44	0.62	0.98	2.21
	NO _x 濃度(5%O ₂)	g/m³ _N	0.94	0.95	0.93	0.94	0.94	0.94	0.93
<u>ш</u> -ь	CO濃度(5%O ₂)	g/m³ _N	0.26	0.26	0.30	0.35	0.43	0.53	0.62
	機械出力	kW	49.4	50.9	51.0	51.0	50.3	49.0	47.1
	機械効率	%	29.2	30.8	32.0	32.9	33.4	33.4	32.8
	発電出力	kW _e	47.0	48.3	48.4	48.4	47.8	46.5	44.8
	発電効率	%	27.7	29.3	30.4	31.3	31.8	31.7	31.2

表3 試験結果(RUN3):日本の規制目安

表 4 試験結果(RUN4):ドイツの規制目安

	RUN		4-1	4-2	4-3	4-4	4-5	4-6	4-7
着	火タイミング	° CA TDC	4	8	12	16	20	24	28
	空気比	-	1.34	1.39	1.43	1.48	1.53	1.56	1.59
入力	天然ガス流量	m³ _N /h	16.06	15.62	15.17	14.68	14.29	13.85	13.47
	空気流量	m³ _N /h	214.7	214.7	215.4	215.4	215.4	216.2	216.2
	排ガス温度	C	583	559	538	516	496	464	419
	HC濃度	g/m³ _N	0.308	0.381	0.468	0.633	1.338	3.578	7.529
	NO _x 濃度(5%O ₂)	g/m ³ _N	0.509	0.499	0.504	0.494	0.509	0.506	0.506
யக	CO濃度(5%O ₂)	g/m ³ _N	0.286	0.309	0.357	0.435	0.557	0.691	0.759
山力	機械出力	kW	46.1	47.1	47.6	47.5	46.4	42.7	36.8
	機械効率	%	28.1	29.4	30.7	31.6	31.7	30.1	26.7
出力	発電出力	kW _e	43.8	44.7	45.3	45.1	44.1	40.6	34.9
	発電効率	%	26.7	27.9	29.1	30.0	30.1	28.6	25.3

	RUN		5-1	5-2	5-3	5-4	5-5	5-6	5-7
着	火タイミング	° CA TDC	4	8	12	16	20	24	28
	空気比	-	1.20	1.20	1.20	1.20	1.20	1.20	1.20
入力	天然ガス流量	Nm³/h	17.91	17.84	17.80	17.71	17.70	17.63	17.57
	空気流量	Nm³/h	212.4	212.4	211.6	210.8	209.3	209.3	208.5
	排ガス温度	C	599	577	560	547	539	533	528
	HC濃度	g/m³ _N	0.274	0.318	0.332	0.351	0.380	0.388	0.397
	NO _x 濃度(5%O ₂)	g/m³ _N	2.380	3.246	4.370	5.811	7.174	8.327	9.301
ш - 5	CO濃度(5%O ₂)	g/m³ _N	0.223	0.201	0.190	0.196	0.204	0.228	0.244
	機械出力	kW	55.9	59.2	61.5	62.8	63.4	63.2	62.6
	機械効率	%	30.5	32.4	33.7	34.6	35.0	35.0	34.8
	発電出力	kW _e	53.1	56.2	58.4	59.7	60.2	60.0	59.4
	発電効率	%	29.0	30.8	32.0	32.9	33.2	33.2	33.0

表 5 試験結果(RUN5):空気比 1.2 でのデータ取得

図1 排ガス濃度分布(①10MJ/m³N)

図 2 排ガス温度分布(①10MJ/m³N)

	RUN		6-1	6-2	6-3	6-4	6-5	6-6	6-7	6-8
着	火タイミング	$^{\circ}$ CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ר- ג	模擬ガス流量	m³ _N /h	72.6	71.8	71.3	71.3	71.4	71.2	71.2	70.8
ΛIJ	窒素流量	m³ _N /h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	空気流量	m³ _N /h	155.2	154.4	153.7	152.9	152.1	152.1	151.4	151.4
着) 入力 出力	排ガス温度	Ĉ	632	622	612	604	601	601	601	603
	HC濃度	g/m³ _N	0.04	0.05	0.06	0.07	0.07	0.07	0.08	0.08
	NO _x 濃度(5%O ₂)	g/m³ _N	3.70	3.78	4.34	4.51	4.81	5.33	5.50	5.89
山力	CO濃度(5%O ₂)	g/m³ _N	2.41	4.65	6.90	9.19	8.65	6.38	6.47	5.29
UЛ	機械出力	kW	57.3	58.6	58.9	58.4	57.3	55.8	53.8	51.5
	機械効率	%	28.5	29.5	29.9	29.6	29.1	28.4	27.4	26.3
	発電出力	kWe	54.4	55.7	56.0	55.5	54.5	53.0	51.2	48.9
	発電効率	%	27.1	28.1	28.4	28.2	27.6	27.0	26.0	25.0

表1 試験結果(RUN6): ノッキング有無の確認

表 2 試験結果(RUN7):日本の規制目安

	RUN		7-1	7-2	7-3	7-4	7-5	7-6	7-7	7-8
着	火タイミング	° CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.37	1.46	1.53	1.60	1.65	1.72	1.76	1.83
ר י ג	模擬ガス流量	m³ _N /h	58.5	55.9	54.1	52.3	50.7	49.2	47.8	46.4
ΛJ	窒素流量	m³ _N /h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	空気流量	m³ _N /h	173.0	174.5	176.1	177.6	179.2	180.7	180.7	182.2
	排ガス温度	Ĵ	542	517	495	474	457	443	431	420
	HC濃度	g/m³ _N	0.04	0.05	0.05	0.06	0.07	0.07	0.08	0.09
	NO _x 濃度(5%O ₂)	g/m³ _N	0.94	0.93	0.94	0.94	0.95	0.94	0.94	0.93
யக	CO濃度(5%O ₂)	g/m³ _N	0.55	0.65	0.76	0.89	1.09	1.26	1.49	1.79
шЛ	機械出力	kW	47.6	47.5	46.8	45.7	44.2	42.6	41.0	39.2
	機械効率	%	29.5	30.7	31.3	31.6	31.6	31.4	31.1	30.6
	発電出力	kW _e	45.2	45.1	44.5	43.4	42.0	40.5	39.0	37.3
	発電効率	%	28.0	29.2	29.8	30.0	30.0	29.8	29.5	29.1

	RUN		8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8
着	火タイミング	° CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.46	1.52	1.57	1.66	1.73	1.79	1.87	1.93
ר- ג	模擬ガス流量	m³ _N /h	56.3	54.7	53.3	50.8	48.9	47.5	46.0	44.8
ΛJ	窒素流量	m³ _N /h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	空気流量	m³ _N /h	176.1	177.6	179.2	179.9	180.7	182.2	183.8	185.3
着 入力 出力	排ガス温度	C	530	502	480	462	444	431	418	407
	HC濃度	g/m³ _N	0.06	0.07	0.07	0.08	0.08	0.09	0.10	0.10
	NO _x 濃度(5%O ₂)	g/m ³ _N	0.50	0.49	0.50	0.51	0.50	0.51	0.49	0.49
யக	CO濃度(5%O ₂)	g/m ³ _N	0.65	0.77	0.93	1.11	1.37	1.57	1.85	2.14
山刀	機械出力	kW	45.8	45.6	45.1	44.1	42.8	41.4	39.8	38.2
	機械効率	%	29.4	30.2	30.7	31.4	31.6	31.6	31.3	30.9
	発電出力	kW _e	43.5	43.3	42.9	41.9	40.6	39.4	37.8	36.3
	発電効率	%	28.0	28.7	29.1	29.8	30.1	30.0	29.7	29.3

表3 試験結果(RUN8):ドイツの規制目安

表 4 試験結果(RUN9): NOx 下限でのデータ取得

	RUN		9-1	9-2	9-3	9-4	9-5	9-6
着	火タイミング	° CA TDC	8	12	16	20	24	28
	空気比	-	1.97	2.00	2.10	2.15	2.22	2.35
<u>م</u> ب	模擬ガス流量	m³ _N /h	45.2	44.9	42.7	42.1	41.3	39.5
ΛJ	窒素流量	m³ _N /h	0.0	0.0	0.0	0.0	0.0	0.0
	空気流量	m³ _N /h	191.5	191.5	193.8	194.6	195.4	196.9
RUN 著 火タイミング ^{・ ・ }	排ガス温度	C	445	430	410	398	385	369
	g/m³ _N	0.07	0.08	0.09	0.11	0.11	0.12	
	NO _x 濃度(5%O ₂)	UN 9-1 9-2 9-3 9-4 9-4 9-4 グ ° CA TDC 8 12 16 20 24 比 - 1.97 2.00 2.10 2.15 2.2 次流量 m ³ N/h 45.2 44.9 42.7 42.1 41. 電量 m ³ N/h 0.0 0.0 0.0 0.0 0.0 電量 m ³ N/h 191.5 191.5 193.8 194.6 195. 温度 °C 445 430 410 398 38 度 g/m ³ N 0.07 0.08 0.09 0.11 0.1 5%O ₂) g/m ³ N 0.02 0.03 0.02 0.02 0.0 5%O ₂) g/m ³ N 1.53 1.71 2.18 2.46 2.7 5D kW 36.5 37.9 36.6 36.6 35. 5ma % 29.2 30.6 31.0 31.4 31.	0.03	0.02				
யக	イミング 着、シタイミング 空気比 模擬ガス流量 空気流量 空気流量 投援ガス流量 空気流量 日の濃度(5%02) 機械出力 機械出力 機械出力 発電出力 発電効率	g/m³ _N	1.53	1.71	2.18	2.46	2.71	3.26
山八	機械出力	kW	36.5	37.9	36.6	36.6	35.9	34.1
	機械効率	%	29.2	30.6	31.0	31.4	31.5	31.3
	発電出力	kW _e	34.7	36.0	34.8	34.7	34.1	32.4
	発電効率	%	27.7	29.1	29.5	29.9	29.9	29.7

図3 排ガス濃度分布(②8MJ/m³N)

	RUN		10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8
着	火タイミング	° CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ר- ג	模擬ガス流量	m³ _N /h	67.1	66.4	66.5	66.1	65.9	65.4	64.8	64.7
ΛIJ	窒素流量	m³ _N /h	16.5	16.8	16.6	16.5	16.5	16.5	16.3	16.3
	空気流量	m³ _N /h	144.4	142.9	142.1	142.1	141.3	140.5	139.8	138.2
入力	排ガス温度	°C	600	585	573	567	562	560	558	555
	HC濃度	g/m ³ _N	0.04	0.05	0.06	0.06	0.06	0.06	0.06	0.06
	NO _x 濃度(5%O ₂)	g/m ³ _N	1.78	2.11	2.48	2.96	3.33	3.63	3.72	3.46
யக	CO濃度(5%O ₂)	g/m ³ _N	3.72	7.20	10.02	9.82	10.15	10.41	12.32	17.28
ЦЛ	機械出力	kW	54.0	55.3	55.7	55.4	54.6	53.2	51.4	49.0
	機械効率	%	29.3	30.3	30.5	30.5	30.1	29.6	28.9	27.5
	発電出力	kW _e	51.3	52.5	52.9	52.6	51.8	50.5	48.9	46.6
	発電効率	%	27.8	28.8	29.0	29.0	28.6	28.1	27.4	26.2

表 5 試験結果(RUN10): ノッキング有無の確認

表 6 試験結果(RUN11):日本の規制目安

	RUN		11-1	11-2	11-3	11-4	11-5	11-6	11-7	11-8
着	火タイミング	° CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.27	1.37	1.44	1.51	1.58	1.64	1.70	1.76
ג <i>א</i>	模擬ガス流量	m³ _N /h	57.8	54.9	52.7	51.0	49.4	48.1	46.8	45.5
ΛŊ	窒素流量	m³ _N /h	14.5	13.9	13.2	12.8	12.4	12.0	11.6	11.2
	空気流量	m³ _N /h	156.8	159.8	162.2	164.5	166.8	168.3	169.9	171.4
	排ガス温度	C°	544	517	493	472	456	442	430	419
	HC濃度	g/m ³ _N	0.03	0.04	0.05	0.05	0.05	0.06	0.06	0.07
	NO _x 濃度(5%O ₂)	g/m ³ _N	0.94	0.93	0.93	0.94	0.94	0.95	0.94	0.95
யக	CO濃度(5%O ₂)	g/m³ _N	0.48	0.54	0.65	0.76	0.89	1.03	1.22	1.44
ЦЛ	機械出力	kW	47.9	47.7	46.8	45.5	44.0	42.4	40.6	38.8
	機械効率	%	30.2	31.6	32.3	32.4	32.4	32.1	31.6	31.1
	発電出力	kW _e	45.5	45.3	44.4	43.2	41.8	40.3	38.6	36.9
	発電効率	%	28.7	30.0	30.6	30.8	30.8	30.5	30.0	29.5

RUN			12-1	12-2	12-3	12-4	12-5	12-6	12-7	12-8
着火タイミング °CA TC		° CA TDC	4	8	12	16	20	24	28	32
	空気比	-	1.37	1.44	1.52	1.59	1.65	1.72	1.80	1.86
<u>م</u> بر	模擬ガス流量	m³ _N /h	54.94	52.99	51.09	49.33	47.82	46.38	45.00	43.59
ΧIJ	窒素流量	m³ _N /h	13.76	13.54	12.81	12.34	12.04	11.60	11.26	10.96
	空気流量	m³ _N /h	160.6	162.9	165.3	167.6	169.1	170.7	172.2	173.7
	排ガス温度	C	525	502	479	459	443	429	417	407
	HC濃度	g/m³ _N	0.044	0.053	0.058	0.059	0.061	0.069	0.075	0.084
	NO _x 濃度(5%O ₂)	g/m ³ _N	0.503	0.503	0.496	0.495	0.503	0.495	0.492	0.497
யக	CO濃度(5%O ₂)	g/m ³ _N	0.587	0.689	0.794	0.930	1.061	1.275	1.502	1.722
	機械出力	kW	45.6	45.4	44.8	43.6	42.3	40.8	39.2	37.7
	機械効率	%	30.2	31.2	31.9	32.2	32.2	32.0	31.7	31.4
	発電出力	kW _e	43.3	43.2	42.5	41.5	40.2	38.8	37.3	35.8
	発電効率	%	28.7	29.6	30.3	30.6	30.5	30.4	30.1	29.9

表 7 試験結果(RUN12):ドイツの規制目安

表 8 試験結果(RUN13): NOx 下限でのデータ取得

RUN			13-1	13-2	13-3	13-4	13-5	13-6	13-7	13-8
着	火タイミング	° CA TDC	4	8	12	16	20	24	28	32
7 +	空気比	-	1.50	1.58	1.66	1.75	1.81	1.87	1.94	2.00
	模擬ガス流量	m³ _N /h	52.1	50.1	48.0	46.5	45.3	44.2	43.1	42.0
ΛJ	窒素流量	m³ _N /h	12.9	12.5	12.0	11.6	11.4	11.1	10.7	10.6
	空気流量	m³ _N /h	167.6	169.1	171.4	173.7	175.3	176.8	178.4	179.9
	排ガス温度	Ĵ	506	483	462	442	426	413	400	390
	HC濃度	g/m ³ _N	0.05	0.06	0.07	0.07	0.08	0.09	0.10	0.11
	NO _x 濃度(5%O ₂)	g/m ³ _N	0.20	0.19	0.19	0.19	0.19	0.20	0.19	0.19
யக	CO濃度(5%O ₂)	g/m ³ _N	0.70	0.83	1.00	1.17	1.35	1.60	1.89	2.10
	機械出力	kW	43.2	43.3	42.9	42.0	40.9	39.6	38.2	36.8
	機械効率	%	30.2	31.5	32.5	32.8	32.8	32.6	32.2	31.8
	発電出力	kW _e	41.0	41.1	40.8	39.9	38.8	37.6	36.3	34.9
	発電効率	%	28.6	29.9	30.9	31.2	31.2	31.0	30.6	30.2

	RUN		14-1	14-2	14-3	14-4
着头	火タイミング	° CA TDC	12	16	20	24
入力	空気比	-	1.96	1.92	1.96	1.97
	模擬ガス流量	m³ _N /h	40.1	40.8	39.9	39.8
	窒素流量	m³ _N /h	26.8	27.0	26.7	26.7
	空気流量	m³ _N /h	168.3	167.6	167.6	167.6
	排ガス温度	Ĉ	408	397	385	378
	HC濃度	g/m³ _N	0.11	0.11	0.11	0.12
	NO _x 濃度(5%O ₂)	g/m³ _N	0.00	0.00	0.01	0.01
யக	CO濃度(5%O ₂) g/m ³		2.77	2.47	2.53	2.55
ΠIJ	機械出力	kW	29.6	32.0	33.0	33.5
	機械効率 %		26.7	28.4	30.0	30.4
	発電出力 kW _e		28.1	30.4	31.4	31.8
	発電効率	%	25.4	27.0	28.5	28.9

表 9 試験結果(RUN14)

図1 ①空気100%によるガス化 プロセス計算結果

図4 ②空気 50%+酸素・水蒸気 50%によるガス化 蒸気バランス計算結果

図5 ③酸素・水蒸気100%によるガス化 プロセス計算結果

◆ORC 発電量の試算

◆ORC による発電量の試算

加熱前のボイラ給水温度を 10℃、加熱後のボイラ給水温度を 90℃とする。 50%酸素・水蒸気ガス化時の給水量は 2,459kg/h であり、ボイラ給水加熱に必要な熱量は

給水温度差△T:80℃(90℃-10℃)×給水量 2,459L/h×4.18/3600=228kW となる。これは、ガスエンジンでの温水回収量 4,815kW と比較して約 5%に相当する。 よって、4,815-228=4587kW を用いた MB-70 による発電量を以下にて計算した。

① 交換における放熱を 5%として、有効利用可能熱量を 4357kW とした。

② MB-70の入口温度 90℃、MB-70の出口温度 70℃とすると、利用可能な水量は 20[℃] × Q[m³/h] = 4,357kW × 3.6MJ/kW / 4.18 MJ/Mcal Q=187m³/h となる。

③MB-70の仕様(図 3.4.3.2-2)より以下の仮定にて発電量を推算した。

・温水温度 90℃、温水量は 60m³/h×3 基=180m3/h とした

・冷却水量 120t/h、冷却水温度 30℃とした。

④下記 MB-70 スペックシートより、発電量は 41kW/台×3 基=123kW とした。
 ⑤100%空気ガス化、100%酸素・水蒸気ガス化時においても、同等の発電が可能とした。

冷却水量				120	120 [ton/h] 60 [ton/h]								
温水量 [ton/b]	冷却水温度[℃]				温水温度 [°C]								
		95	90	85	80	75	70	95	90	85	80	75	70
	15	60	55	47	39	32	24	58	51	44	37	30	22
75	20	60	52	44	35	28	21	54	45	39	32	25	19
75	25	57	49	40	32	24	17	49	41	35	28	22	15
	30	52	45	36	27	20	14	45	38	30	23	18	12
	15	59	54	46	38	31	24	57	50	43	36	29	22
70	20	59	51	43	35	27	20	52	45	38	31	25	18
10	25	56	48	40	31	24	16	47	40	34	28	21	15
	30	51	43	35	27	20	13	43	37	30	23	17	12
	15	58	51	44	38	31	24	55	48	41	35	28	21
60	20	57	49	41	33	26	19	50	43	36	30	24	18
00	25	54	46	38	30	23	16	45	39	33	27	21	15
	30	49	41	33	26	19	13	41	35	28	22	17	11
	15	56	48	42	37	30	23	53	46	40	33	27	21
50	20	55	48	40	32	25	18	48	41	35	28	23	17
50	25	52	44	36	29	22	15	43	37	31	25	20	14
	30	47	38	31	25	18	12	38	33	27	21	16	11
	15	51	44	39	33	27	21	49	43	36	30	24	19
40	20	50	43	36	29	23	17	44	38	32	26	21	16
40	25	47	39	32	25	19	13	40	34	28	23	18	13
	30	42	34	28	22	16	11	35	30	24	19	14	10
	15	46	40	35	30	24	18	45	39	33	27	22	17
30	20	45	38	31	25	20	15	41	35	29	23	18	14
	25	41	34	28	22	17	12	36	30	25	20	16	11
	30	36	29	24	19	14	9	31	26	21	16	12	8
	15	43	38	33	28	22	17	43	37	31	25	21	16
25	20	43	35	29	24	19	14	39	33	28	22	17	13
20	25	38	31	26	20	16	11	34	29	24	19	15	10
	30	33	27	22	17	13	9	29	25	20	15	11	8

出典:

http://www.kobelco.co.jp/machinery/products/rotation/microbinary/files/mb_catalog.pdf

図7 MB-70 発電量試算方法

研究発表

1) 高効率発電を目指した廃棄物ガス化・改質技術の実証、神鋼環境ソシューション技報、 Vol.9、No.2、2013

高効率発電を目指した廃棄物のガス化・改質技術の実証

Demonstration of Gasification and Reforming Technology of Waste for High Efficiency Electricity Generation

諠 Ryo Hayakawa

Takuya Kawai

エネルギー源の多様化や二酸化炭素発生量削減の要請から、廃棄物からのエネルギー回収、とり わけ廃棄物発電に期待が集まっている。欧州ではバイオマス発電や、従来よりも高い発電効率が期 待されるガス化発電に対して固定価格買取制度など電力買取価格のインセンティブが運用されてお り、また日本国内においても、2012年7月から、バイオマス発電等で得られた再生可能エネルギー の固定価格買取制度が開始された。今後、国内外においてバイオマスや廃棄物の高効率発電に対す るニーズがさらに高まることが予想される。当社では、このようなニーズに対応するため、流動床 式ガス化炉とプラズマ式改質炉の組み合わせによる高効率ガス化発電プロセスを開発すべく、仏) EUROPLASMA 社と共同で実証設備を建設し2012年10月から実証試験を開始した。本報では、実 証設備の概要およびこれまでに得られた試験結果について報告する。

Feed-in tariff program has been adopted in European market that has expected to biomass generation or advanced gasification technology generating electricity with high efficiency. Feed-in tariff program has been also started in 2012 in Japan, the market of renewable energy at home and abroad will be expanded under this program. KOBELCO ECO-SOLUTIONS decided to get into the renewable energy market with fluidized gasification technology and plasma reforming technology. KOBELCO ECO-SOLUTIONS has started a demonstration test with EUROPLASMA from October 2012. This report shows a story behind of this development, demonstration program and results through demonstration test.

Key Words :

廃棄物発電 固定価格買取制度 流動床式ガス化 プラズマ式改質 ガスエンジン

Waste to energy Feed-in tariff Fluidized bed gasification Plasma reforming Gas engine

【セールスポイント】

欧州および国内でニーズが高まっているバイオマスおよび廃棄物の高効率ガス化発電プロセス を提供する。

まえがき

欧州では、地球温暖化防止の観点から廃棄物の埋 立規制の強化が進んでおり、廃棄物の熱処理技術が 求められる有望な市場として期待されている。特 に、バイオマス発電や高効率発電が可能となるガス 化発電に対する電力の固定価格買取制度などのイン センティブが整備され、今後、市場が拡大していく と予想され、また国内においても同様に固定価格買 取制度が整備され、従来よりも高い発電効率が得ら れる技術が求められている。当社では、廃棄物やバ イオマスのエネルギー回収プロセスのニーズが高ま っている国内外において、高効率発電が可能となる ガスエンジンを活用した発電プロセスの適用性を検 討してきた。

ガスエンジンを活用するためには、その燃料とな る生成ガス中のタールをある許容レベルまで低減し なければならない。タールの改質にはこれまで触媒 方式や空気や酸素の吹込みによる部分酸化方式¹⁾ 等が用いられてきたが、触媒によるタールの分解技 術はまだ実用段階になく、また部分酸化によるガス 化改質を行うと、自らの熱量を消費して改質炉の温 度を上げる必要があり、冷ガス効率が下がるという デメリットがある。そこで当社は、ガス化炉で生成 したガスにプラズマを照射し、ガスに含まれるター ルを改質することとした。プラズマ加熱による改質 は,部分酸化方式と比較して,プロセス内に供給す る空気(酸素)の量が極めて少ないため,得られる 生成ガスの発熱量の低下が少ないという特長があ り,ガスエンジンでの発電に有効な手段であると判 断した。

当社は仏) EUROPLASMA 社と共同で処理規模 20 ton/d の実証施設を建設し、2012年10月から実証 設備での実証試験を開始したところである。現在 は、木材チップを使った試験によりプラントの基本 性能の確認試験を行っている段階であるが、今後 様々な対象物で試験を行いプロセスの最適化を進め ていく予定である。

本報では,設備の概要およびこれまでに得られた 試験の結果について報告する。

1. これまでの経緯

図1に本開発の全体工程を示す。2010年度からプロセスの検討および実証設備の設計を開始した。その後,実証設備の建設工事および試運転を経て2012年10月から実証試験を開始した。

2. 高効率ガス化発電プロセスの概要

当社が想定している高効率ガス化発電プロセスの フロー図を図2に示す。廃棄物もしくはバイオマス を流動床式ガス化炉へ供給しガス化した後,後段の プラズマ式改質炉にて生成ガス中のタールを改質す る。その後排ガス処理を行い,ガスエンジンに適し

神鋼環境ソリューション技報

図3 実証設備プロセスフロー図

表1 実証設備の概要							
定格能力	800 kg/hr						
対 象 物	RDF と木材チップの混合物 低位発熱量 18.3 MJ/kg						
ガス化方式	流動床式ガス化炉						
改質方式	空気プラズマ方式						
ガス冷却方式	間接熱交換方式						
ガス処理方式 バグフィルタ (薬剤吹込み)							

表2 実証試験の目標値(第1ステップ) タール露点温度 40℃以下

た燃料ガスをガスエンジンに供給し発電を行うこと で,従来のボイラータービン発電プロセスより高効 率の発電を実現するものである。

実証設備の概要

この高効率ガス化発電プロセスの実証を行うため、EUROPLASMA 社の R&D サイト(フランス、 アキテーヌ地域圏モルセンクス)に実証設備を建設 した。実証設備の概要を表1、プロセスフローを図 3、設備の外観を写真1に示す。

4. 実証試験結果

1) 目標値

本実証試験では,第1ステップとして,ガス化炉 での安定したガス化運転と,ガスエンジンの安定運 転の阻害要因になるタールの改質性能を確認するこ

Vol. 9 No. 2 (2013 / 2)

写真1 実証設備外観

とを目標とした。当社が想定しているプロセスで は、ガス温度をガスエンジンの入口で40℃程度ま で冷却する必要があるが、その時に生成ガス中に含 まれるタールが凝縮してエンジン入口でトラブルが 発生しないよう、露点温度を入口温度の40℃以下 とすることを目標とした(**表2**)。

2)対象物

本実証試験においては、各種廃棄物やバイオマス などの混合物を対象に試験を行うことを想定してい るが、今回の試験では、まずは木材チップ(写真 2)を原料として基本性能であるガス発熱量および タールの改質性能について確認すべく試験を行っ た。試験に使用した木材チップの分析結果を表3に 示す。今回の木材チップ単体の試験では、計画時よ りも低い発熱量での運転となった。

神鋼環境ソリューション技報

項 目	単 位	
水 分	%	24.1
灰 分	dry%	0.38
揮発分	dry%	84.0
燃料比	_	0.2
低位発熱量	MJ/kg	13
С	dry%	51.55
Н	dry%	7.08
Ν	dry%	0.04
0	dry%	40.73
S	dry%	0.01未満
Cl	dry%	0.01未満

表3 木材チップの分析結果

写真2 木材チップ外観

3) 運転結果

表4に主要な運転条件を示す。また、図4に温度 のトレンド、図5にプラズマ式改質炉出口のガス組 成のトレンドを示す。ガス化炉砂層温度、ガス化炉 出口温度およびプラズマ式改質炉出口温度に大きな 変動はなく安定した運転ができた。また、ガス組成 についても変動はほとんどなく、安定にガスが得ら れることを確認した。今回は計画値よりも発熱量の 低い木材チップを対象に試験を実施しているためガ ス中の CO や H₂の濃度がそれぞれ10 %程度である が、今後運転の最適化や発熱量の高い処理物での試 験を行うことで、より高い発熱量のガスを得る計画 である。

4) タール改質性能

次に本プロセスでのタール改質性能について述べ る。写真3,写真4にガス化炉出口および,プラズ マ式改質炉出口のタール採取ビンの様子を示す。タ ールはアルコールに吸収させる方法を用いて採取し た。ガス化炉出口では、タールとともに生成ガスに 含まれる灰やチャーなども採取されており,採取ビ ンのアルコールが黒もしくは黄色く着色されている のがわかる。一方,プラズマ式改質炉出口のものは 透明であり,ほとんどタールが含まれていないこと が伺えた。

タール濃度は、ガス化炉出口では約10 g/Nm³程度 存在していたが、プラズマ式改質後は0.6 g/Nm³ま で減少しており、残存したタールの主成分はベンゼ ンおよびトルエンであることが確認できた。改質後 のタールの露点温度は20 ℃で、目標値の40 ℃以下 であることが確認され、ガスエンジンに十分適用で きる改質性能を有することが確認できた。

表4 運転条件

処理量		木材チップ	800 kg/h					
		ガス化炉砂層	$700 \sim 750 \ \mathrm{°C}$					
温	度	ガス化炉出口	$800 \sim 850 \ {\rm C}$					
		プラズマ式改質炉出口	1 000 °C					
運転空気比		ガス化炉	$0.28 \sim 0.30$					
		プラズマ式改質炉	$0.35 \sim 0.45$					

神鋼環境ソリューション技報

Vol. 9 No. 2 (2013 / 2)

写真3 ガス化炉出口でのタール採取ビン

写真4 プラズマ改質炉後でのタール採取ビン

むすび

流動床式ガス化炉とプラズマ式改質炉の組み合せ による高効率ガス化発電プロセスを開発するための 実証試験を開始した。まず,木材チップを使用した 試験を行いガス化発電プロセスの基本性能を確認し た。今後は,プロセスの最適化に向けた追加試験を 継続するとともに,RDF や各種バイオマスなど多

*商品市場・技術開発センター プロセス技術開発部 廃棄物処理室

様な処理物を対象に試験を行い,欧州のみならず, 国内のニーズにも適合した高効率ガス化発電プロセ スを完成させる予定である。

[参考文献]

 財団法人エネルギ総合工学研究所ほか:高効率廃棄 物ガス変換発電技術開発 平成15年度報告書 (2003), pp.125-170