水分野における経済的手法を含めたポリシーミックスの効果と 社会影響に関する研究

代表者 栗山浩一(京都大学)

報告内容

- 本研究の目的
- 3カ年の研究成果
 - 1. 海外の事例分析
 - 2. 水質解析
 - 3. 水質の経済的評価
 - 4. 水政策評価の統合モデル
- 結論および政策提言

本研究の目的

研究の背景

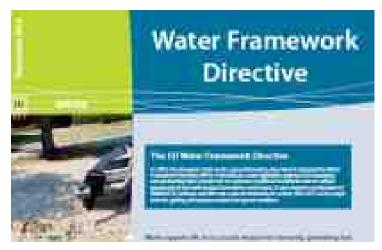
- 国内の水政策は環境基準による直接規制
- 生活排水, 面源汚染等は直接規制が困難
- 新たな経済的手段(排水課徴金,排出量取引)

• 研究の目的

- 汚染源ごとの汚濁負荷の把握
- 水質改善の経済的評価と経済実験による分析
- 日本の実情に合った経済的手段の検討

研究成果(1)海外調查

• 米国の水質取引


- 水質の排出量取引
- 流域の水質改善を低コ ストで実現
- 実施のための課題は?(下水処理場等)

費用負担

• EUの水枠組み指令

- 流域単位の取り組み
- 経済的側面への配慮
- どうやって配慮するのか?

米国 水質取引(オハイオ州の場合)

• オハイオ州での水質取引

- グレートマイアミ川:下水処理場と農場との取引
- シュガークリーク:チーズ工場と周辺農場との取引

• オハイオ州の事例からみる国内政策への示唆

- 汚濁負荷の把握とモニタリングの充実の重要性
- 制度設計時からの環境・下水道・農業部門の協働・連携
- 既存の制度(環境保全型農業直接支援対策等)の利用
- 市町村と普及・指導部門の有機的連携
- 水質取引の導入検討自体が統合的流域管理に貢献

水枠組み指令における経済分析

・ドイツ

- 定性的分析のハンドブックを作成、定量的手法も開発
- しかし適用は限定的(計画は各州が策定)
- オランダ
 - 費用便益分析を目指すも、便益評価はまだ
- デンマーク
 - 国全体で定量的な費用効果分析を実施
- 課題
 - 各国がさまざまな手法を模索中
 - 定性的分析・定量的分析とも一長一短
 - 次期計画策定にはより進んだ手法が使われる可能性も
- 国内の水政策への示唆
 - 国内でもデータ整備、手法開発が早急に必要

研究成果(2) 水質解析

- 湖沼法の指定湖沼の一つ
- 上水、工業用水、農業用水および内水面漁業に利用

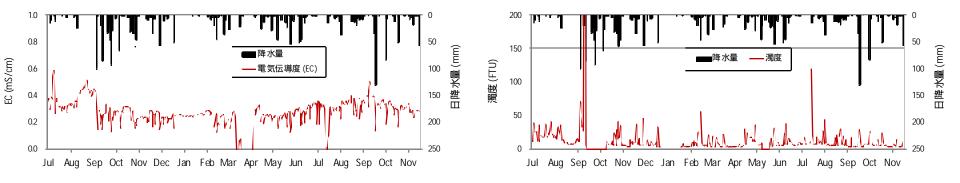
水質の状況

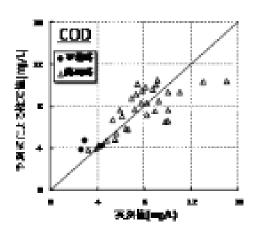
項目	基準値	H19年度 平均値
COD	3.0mg/L	12mg/L
T-N	0.4mg/L	2.4mg/L
T-P	0.03mg/L	0.14mg/L

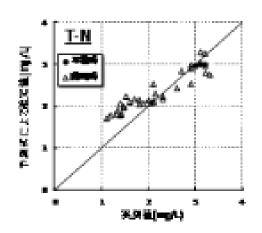
依然として大きな問題!!

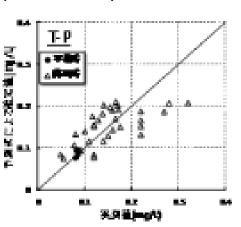
下水道普及率約80% その他の点源の管理

面源負荷の管理が重要


水質データのモニタリング


河川·水路	設置場所	設置機器	管理者	備考
低地排水路	臼井第二機場付近	濁度計, EC計, 水位計	印旛沼土地改良区	機場前
手繰川	無名橋	濁度計, EC計, 水温計	千葉県	河川流量観測地点
高崎川	高岡橋	水温計	千葉県	水位計設置箇所
江川	池袋橋付近	水温計	成田市	水位計設置箇所
鹿島川	亀崎橋	水温計	千葉県	水位計設置箇所


電気伝導度と濁度による水質の推定


▶ 手繰川(無名橋)(上)地点における電気伝導度(EC)と濁度の日平均値の変化(2010年7月~2011年11月)

➤ ECと濁度を用いたCOD、TN、TPの推定結果(手繰川)

水質対策の検討

▶ 汚濁負荷削減対策のモデル化オプション

区分	モデルでの対策名		
浸透対策	1 雨水浸透マス 2 透水性舗装 3 緑地保全		
生活系排水対策	4 下水道 5 合併処理浄化槽、高度処理型合併処理浄化槽 6 都市排水路等での負荷削減(都市排水の下水道への取り込み等)		
事業所対策	7事業場排出負荷削減		
面源対策	8 路面清掃 9 調整池での負荷トラップ・清掃 10 環境保全型農業(施肥量削減) 11 初期雨水の下水道への取り込み 12 路面排水処理装置		

▶ 汚濁負荷削減対策における設置基数と事業費(実績値)から、雨水浸透施設導入単価の算定例(環境省へのヒアリングにより)

	設置基数	事業費(千円)	導入単価(千円/基)
印旛沼(雨水浸透施設の設置)	194	9,470	48
手賀沼(浸透桝モニター制度)	5	1,500	300

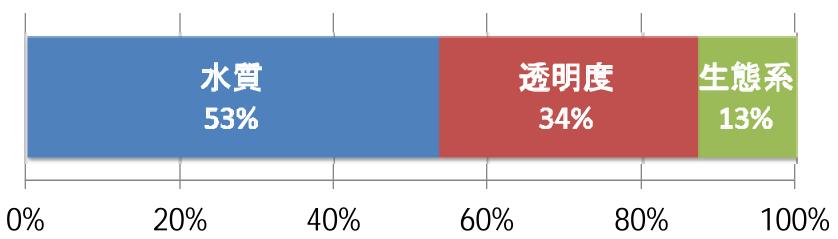
研究成果(3) 水質の経済評価

予備調査

- 水質改善と生態系保全の便益を評価
- 琵琶湖と印旛沼を比較→ほぼ同じ結果

本調査

- 対象: 琵琶湖の流域一般市民, 農家
 - 農家は対策にいくら必要か?
 - 流域市民はいくら支払うか?
- 評価手法:選択実験とC V M
- 調査方法: Web調査と郵送調査を比較

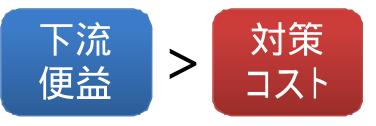

選択実験の設問例

項目	対策1	対策 2	対策 3	対策4(現状)
琵琶湖の水質 (環境基準7項目 の達成度)	達成度14%	達成度30%	達成度60%	達成度14% 北湖29%,南湖0%
琵琶湖の透明度	現状と同じ (4.4m)	現状より良い (6.6m)	現状より悪い (2.7m)	4.4m 北湖6.1m , 南湖2.7m
レクリエーション設備	キャンプ場の 拡充	キャンプ場の 拡充	マリーナの 拡充	拡充しない
生態系保全 (外来魚の駆除率)	生息量の 70%	生息量の50%	生息量の 30%	生息量の30%
負担額	2000円	500円	4000円	0円
	\downarrow			<u> </u>

どれか一つを選択

水質対策の便益評価

	現状	対策後	支払意思額	集計額
水質(%)	14%	100%	2,169 円	111 億円
透明度(m)	4.4m	6.6 m	1,355 円	70 億円
生態系保全(%)	30%	50%	532 円	27 億円
政策全体			4,056 円	208 億円


農業における水質対策

下流一般市民が支払っても構わない金額

	支払意思額	集計評価額	農地面積 10a あたり
滋賀県	2,815円	12億2,988万円	2,299円
京都府	2,421円	49億3,150万円	9,218円
大阪府	2,381円	69億6,940万円	1万3,027円

農家が対策に必要な金額

	農地面積 10a あたり
実践農家	373円
非実践農家	2,752円

水質取引実験

目的

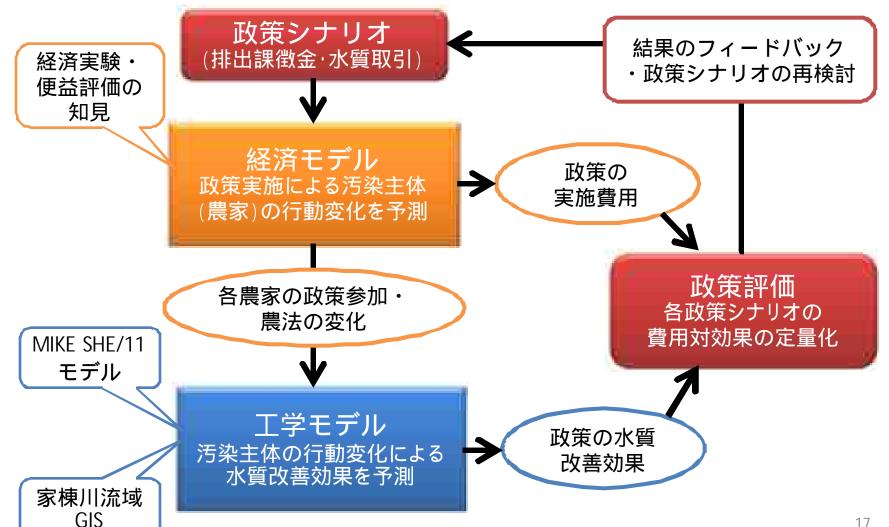
- 水質取引でどれだけ費用を削減 できるのか
- 水質取引を実現するための課題 は
- 水質取引以外の政策とのポリシーミックスの効果は

分析内容

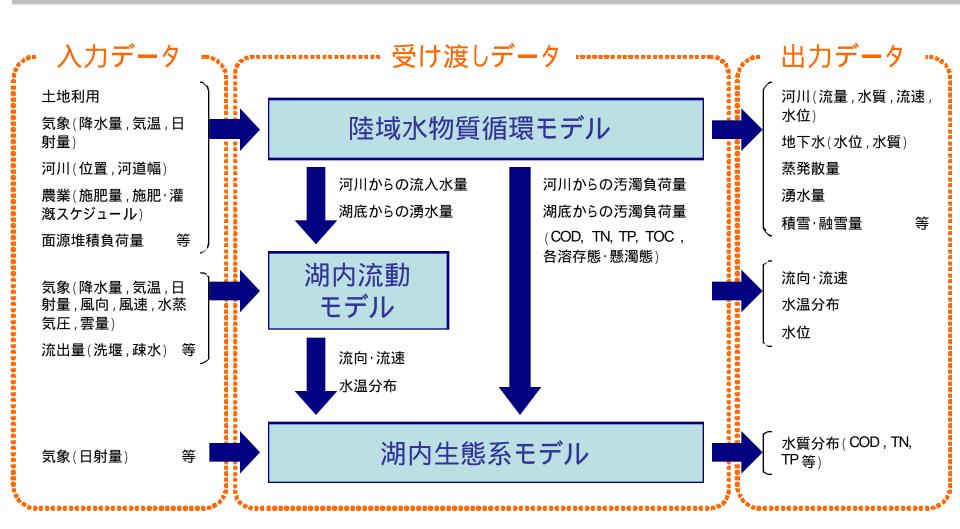
- 農地による削減効果の違い(取引 比率の異質性)を考慮
- 取引比率の情報提供は効率性を 改善するか?

- プレ実験 2013年1月16~18日 被験者数:84名
- · 本実験 2013年2月13~16日 被験者数∶168名

研究成果(4)統合モデルの開発


- 水環境政策評価における学際的側面の重要性
 - 経済学的分析 環境政策の実施→環境保全行動の変化 経済プロセス

- 工学的分析 汚染・環境保全行動の変化 → 環境への影響

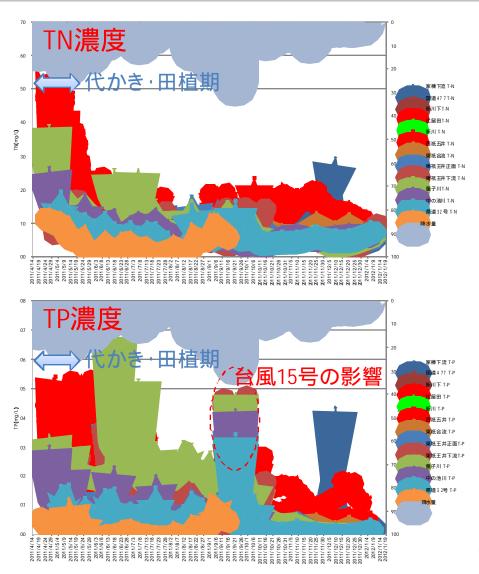

物理プロセス

- 経済・物理プロセスの統合モデルの必要性
 - → 統合モデルによる水環境政策の評価と立案

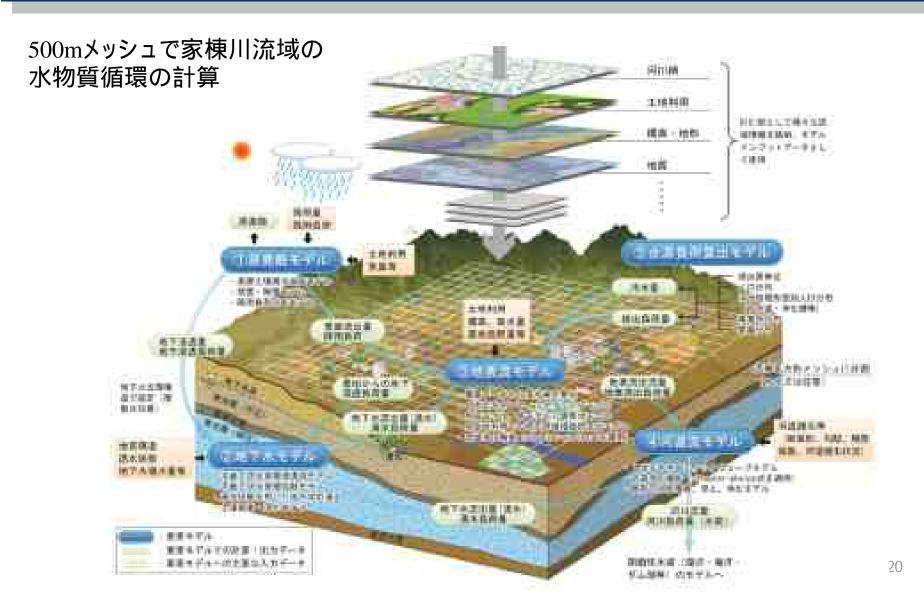
統合モデルのフレームワーク

琵琶湖流域水物質循環モデル 計算の流れ

家棟川流域多地点水質調査結果

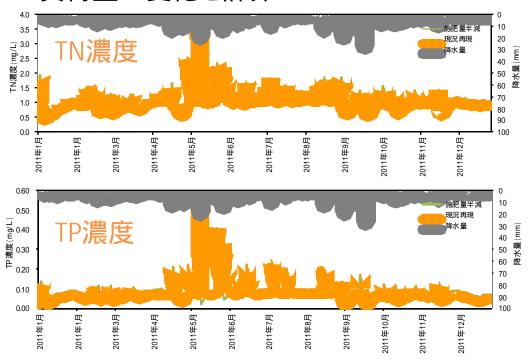


調査地点数:12地点


調査頻度:

(代かき期)1日に1回(3地点)

(通常時)1~2週間に1回

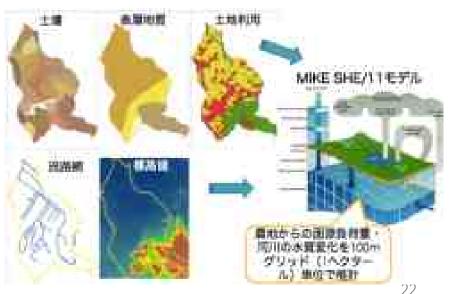

琵琶湖流域水物質循環モデルの概要

シナリオ計算結果(2011年)

モデルを用いて施肥量が半減したときの水質・ 負荷量の変化を計算

- TN、TPでは特に4月末~6月における濃度が大きく減少
- 負荷量で見ると、TNで17.0%、TPで38.9%の削減
 - □ 施肥量の適正化等の施策により、代かき・田植え期の濁水の影響を相当程度緩和できる

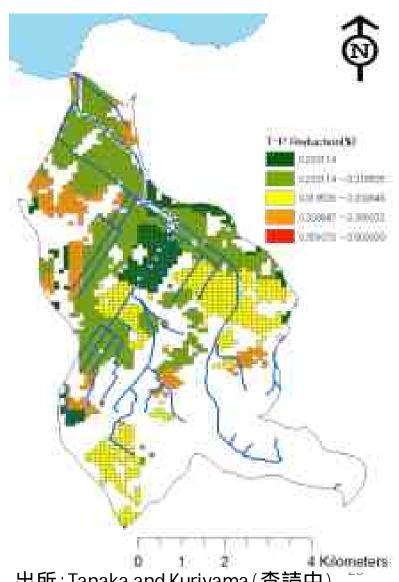

統合モデルによる水質取引の政策評価


• 経済モデル

- 水質取引の有無による汚染削減の 費用推計
- 点源主体 超高度下水処理費用
 - 滋賀県提供資料および県下水道課への 聞き取り結果
- 面源主体 保全型農業の実施費用
 - 経済評価の結果を使用

• 工学モデル

- 水質取引による面源のリン排出削 減効果の推計
 - MIKE SHE/11水文モデル
 - 家棟川流域GISデータベース



水質取引によるリン排出削減効果

政策シナリオ

- 水質取引参加による保全型農業の実践を 通じたリンの派出削減
- 滋賀県「環境こだわり農業」に依拠
- 工学モデルによる予測結果
 - リン排出量の変化
 - 実施前(慣行農業):3.1 Kg/ha
 - 実施後(保全型農業):2.2 Kg/ha
 - →平均して0.9Kg/haの削減効果 (約30%減少)
- 実際の削減効果は空間的 に大きく異なる
 - ターゲティングの重要性

出所:Tanaka and Kuriyama(査読中)

本研究の成果

• 海外事例の分析

- (米国)水質取引
- (EU)費用対効果分析,統合モデルによる対策評価
- 水質解析
 - 工学モデルによる水質対策の効果を予測
- 水質の経済評価
 - 農家の水質対策 対策便益 > 対策コスト
- 統合モデル
 - 工学モデルと経済モデルを統合化
 - 面源対策の効果予測が可能に
 - 水質取引の費用対効果を地図上で示すことが可能に
 - ただし,直接規制との組み合わせが重要

本研究の環境政策への貢献

- 従来型直接規制の効果と限界
 - 生活排水・農業廃水など面源汚染が課題
- 排水課徴金や水質取引の導入効果
 - 新たな経済的手段の有効性
- 湖沼法の改正に向けた政策オプション
 - 面源汚染への有効な対策
 - 経済的手段の導入による費用削減効果
 - 費用対効果の観点を取り入れた政策評価