# 環境省

# 平成 29 年度環境技術実証事業 テーマ自由枠 (VOC 等簡易測定技術)

# 実証試験結果報告書 《詳細版》

平成 30 年 3 月

公益社団法人 日本環境技術協会

実証機関 : 東京都千代田区九段南4丁目8番30号

技 術 : VOC 等簡易測定技術

NISSHA エフアイエス株式会社 実証申請者 : には周知見する場合

· 兵庫県伊丹市北園 3-3 6-3

製品名・型番 : センサガスクロマトグラフ SGEA-P3

実証試験実施場所 : 株式会社堀場製作所 びわ湖工場

実証番号 :







# 一 目次 一

| 全体机         | 既要                    | 1  |
|-------------|-----------------------|----|
| 1. 氢        | 実証対象技術の概要             | 1  |
| 2. 匀        | 実証試験の概要               | 4  |
| 3. 氢        | <b>実証試験結果</b>         | 5  |
| 本編.         |                       | 11 |
| 1. 氢        | 実証試験の概要と目的            | 11 |
| 2. 🦻        | 実証試験参加組織と実証試験参加者の責任分掌 | 12 |
| 3. 匀        | 実証対象技術(機器等)の概要        | 13 |
| 3. 1        | 機器の特徴                 | 13 |
| 3. 2        | 2 測定原理                | 13 |
| 3. 3        | 5 定量方法                | 14 |
| 3. 4        | . データ解析方法             | 15 |
| 3. 5        | 5 半導体ガスセンサ            | 15 |
| 3. 6        |                       |    |
| <b>4.</b> § | 実証試験場所の概要             |    |
| <b>4.</b> 1 | 実証試験場所の名称等            | 17 |
| 4. 2        | 実証試験設備                | 17 |
| 5.実         | 証試験の内容                | 17 |
| 5. 1        | 試験期間                  | 17 |
| 5. 2        | 実証対象試験機の台数等           | 18 |
| 5. 3        | 3 実証項目                | 19 |
| 5. 4        | - 試験設備の妥当性の確認         | 20 |
| 6. 氢        | 実証試験結果と考察             | 28 |
| 6. 1        | 試験設備の妥当性の確認           | 29 |
| 6. 2        | 2 繰返し性試験              | 30 |
| 6. 3        | 3 直線性試験               | 32 |
| 6. 4        | - 干渉影響試験              | 34 |
| 6. 5        | <b>応答時間試験</b>         | 40 |
| 6.6         | 5 再現性(ドリフト)試験         | 40 |
| 6. 7        | ' 干渉影響試験 (トルエン)       | 41 |





| ○ 付録               | 44 |
|--------------------|----|
| 1. 用語の定義(JIS)      | 44 |
| 2. 実証試験要領で使用している用語 | 45 |
| ○ 資料編              | 46 |
| 実証試験場所及び装置写真       | 46 |





# 全体概要

| 実証対象技術/ | センサガスクロマトグラフ SGEA-P3                 |
|---------|--------------------------------------|
| 環境技術開発者 | NISSHA エフアイエス株式会社                    |
| 実証機関    | 公益社団法人日本環境技術協会                       |
| 実証試験期間  | 平成 29 年 11 月 13 日 (月) ~11 月 27 日 (月) |
| 本技術の目的  | VOC の簡易測定                            |

# 1. 実証対象技術の概要

本章(1. 実証対象技術の概要)の情報は、環境技術開発者が自らの責任において申請した内容及び その情報を参考に整理したものであり、環境省及び実証機関は、内容に関して一切の責任を負いませ ん。

#### 1.1 機器の特徴

検出器に半導体ガスセンサ(金属酸化物半導体式)を用いた、ガスクロマトグラフで、VOC 化合物の 測定をターゲットとした高感度測定機である。測定器は VOC 化合物に対しての選択性と ppb レベルが 計測可能な高感度性を有し、サンプルを濃縮することなく低濃度の VOC 化合物濃度の計測が可能であ る。ガスクロマトグラフのキャリアガスには清浄空気(装置内蔵の吸引ポンプにより、外付けの活性 炭フィルタを通して使用)を使用することににより、測定精度の向上を図るとともに、全体を小型、 軽量化した分析装置となっている。そのため、現場でのオンサイト測定も可能である。また、簡単な 操作、日常での部品交換が不要なことなど、操作が容易で保守性に優れている。

試料採取方法としては、シリンジによる手動注入方式(自動測定開始機能)あるいは、連続自動測 定方式の仕様がある。実証試験は手動注入方式にて実施した。

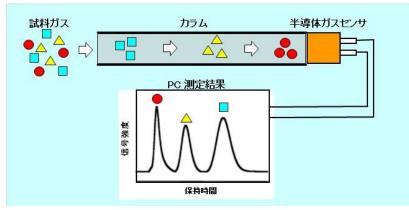
| .2 仕様の概要    | 表 1- 1 装置の概要                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 項目          | 記 入 欄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 企業名         | NISSHA エフアイエス株式会社 URL <a href="http://www.fisinc.co.jp">http://www.fisinc.co.jp</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 技術・製品の名称・型番 | センサガスクロマトグラフ SGEA-P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 測定対象物質      | アセトアルデヒド、エタノール、アセトン、イソプレン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 測定濃度範囲      | アセトアルデヒド 5~10,000 ppb、エタノール 200~100,000 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | アセトン 20~50,000 ppb、イソプレン 10~10,000 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 測定原理        | 半導体ガスセンサを使用したガスクロマトグラフィー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 重 量         | 約 6. 5kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 価 格         | 195 万円~300 万円(定価:仕様による)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 外形寸法        | W260 ×H135×D435 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 電源          | AC100 V 50/60 Hz 約 100 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 概 観         | Security Community and Security Securit |

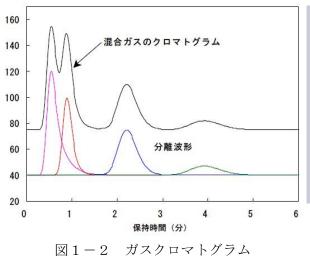




#### 1.3 測定原理

センサガスクロマトグラフSGEA-P3 は、 半導体ガスセンサを検出器に用いたガスクロマトグラフ方式 の硫黄化合物測定器です。ガスクロマトグラフィーにより多くのガスの混合物からアセトアルデヒド、エタノール、アセトン、イソプレンを分離し、高感度な半導体ガスセンサによって検出・定量します。





図1-1 測定原理

#### 1.4 半導体ガスセンサ

センサガスクロマトグラフでは検知器として、半導体ガスセンサSBシリーズを使用しています。半導体ガスセンサは酸化錫などの金属酸化物半導体を感ガス材料とし、その表面にガスが吸着した場合に電気抵抗が変化することを利用してガスを検出します。

SBシリーズガスセンサは、非常に小型で消費電力が小さく、また高感度、高速応答というガスクロマトグラフの検出器に適した特徴を持っています。

特にガスに対する感度は通常のガスクロマトグラフの検出器と比べて格段に高く、半導体ガスセンサを 検出器に用いることにより、少ない試料での高感度測定が可能になりました。



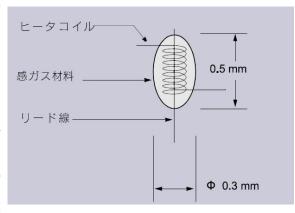



図1-3 センサ構造





# 1.5 設置条件及びコスト

# 1.5.1 設置条件

装置の設置条件について、表1-2に示す。

表1-2 装置の設置条件

| 電源   | AC100 V 50/60Hz             |  |  |
|------|-----------------------------|--|--|
| 使用環境 | 温度 10~30 ℃                  |  |  |
|      | 相対湿度 80 %以下 (結露なきこと)、清浄大気中  |  |  |
| 保存環境 | 温度 −20~60 ℃                 |  |  |
|      | 相対湿度 20~80 % (結露なきこと)、清浄大気中 |  |  |

※清浄空気中 水・油・薬品・湯気等がかからない場所で、ゴミ、ほこり等が多くない場所。

# 1.5.2 コスト

装置の運用に関わるコストを表1-3に示す。

表1-3 装置使用に関わるコスト

| 設置コスト   | 装置本体価格+制御用パーソナルコンピュータ代        |  |
|---------|-------------------------------|--|
| 維持管理コスト | 交換部品は試料注入口のゴム栓のみ。製品購入時に 5 個付属 |  |
|         | しており、200回注入により交換。             |  |
| 運転コスト   | 電源費 (本体 100 VA)               |  |





# 2. 実証試験の概要

#### 〇 目的

環境技術実証事業は、既に適用可能な段階にありながら、環境保全効果等についての客観的な評価が行われていないために普及が進んでいない先進的な環境技術について、その環境保全効果等を第三者が客観的に実証することにより、環境技術実証の手法・体制の確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とする。

本実証試験では、「VOC 等簡易測定技術分野」として、簡易計測器の基本的な性能や操作性等についての実証試験を実施する。

#### ○ 試験期間

実証試験は平成29年11月13日(月)~11月27日(月)の期間に実施した。また、実証試験に関しては「平成29年度環境技術実証事業テーマ自由枠(VOC等簡易測定技術)実証試験計画書」に従い実施した。

#### ○ 実証対象試験機の台数等

試験に供する実証製品の台数は1台とした。

#### 〇 同一型式

平成 29 年度の環境技術実証事業テーマ自由枠に申請があり選定された、技術及び製品は下記であった

・センサガスクロマトグラフ SGEA-P2

申請機関の NISSHA エフアイエス株式会社において、申請・選定後に CE 及び RoHS 対応のための設計変更を行い、今後は下記型式の装置を販売していく旨申請があった。

・センサガスクロマトグラフ SGEA-P3

SGEA-P2 と SGEA-P3 の測定原理や測定成分及び精度などは全く同一であり、申請機関としては、現在は併売しているが、今後は SGEA-P3 に統一していく方針であるため、技術実証検討会にて、同一型式としの審議を行い、実証試験は SGEA-P3 で実施し、SGEA-P2 を同一型式とする事になった。

#### 〇 実証項目

繰返し性、直線性、干渉影響試験、応答時間、再現性(ドリフト)等について実証した。

#### ○ 実証試験実施場所

株式会社堀場製作所 びわ湖工場





# 3. 実証試験結果

各試験方法は、本編 5.4 実証試験実施方法を参照。試験結果については、実証試験における基準値からの偏差を中心に記載し、結果については、申請メーカの装置仕様である、測定精度との比較を行い、各試験結果が装置仕様の範囲内であるか否かを判断基準として記載した。

・測定精度 校正直後、校正濃度で±15%

#### 3.1 繰返し性試験

繰返し性試験は、ゼロガス(窒素)、校正用ガス(アセトアルデヒド、エタノール、アセトン、イソプレン)についてそれぞれ実施した。また、本装置は測定対象が VOC ガスではあるが、測定用用途との関連から酸素や塩素を含有した VOC ガスに対する試験は実施しなかった。繰返し性試験結果としては、ゼロガス及び、校正用ガスともに、良好な結果であった。

表3-1 繰返し性試験結果 (VOC 4成分)

| 実証製品    | ガス種   | 結果まとめ                                                                                                                                                                                                                                                     |
|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ゼロガス  | <ul><li>○ゼロガス 窒素</li><li>○試験結果</li><li>偏差は、アセトアルデヒド:0.0%、エタノール:0.0%、アセトン:0.0%、イソプレン:0.0%であった。各成分とも、偏差は0.0%で、安定した結果が得られた。</li></ul>                                                                                                                        |
| SGEA-P3 | 校正用ガス | <ul> <li>○スパン校正ガス アセトアルデヒド(8,946 ppb)、エタノール (89,190 ppb)、 アセトン (45,270 ppb)、イソプレン (9,612 ppb)</li> <li>○試験結果         偏差は、アセトアルデヒド: -2.4~2.0%、エタノール: -2.3~2.1%、アセトン: -2.7~2.0%、イソプレン: -1.3~0.7% であった。各成分とも、偏差も小さくまた成分による偏差も同等 レベルで、安定した結果が得られた。</li> </ul> |





# 3.2 直線性試験

直線性試験は、校正用ガス及びトルエンともに、近似直線の  $\mathbb{R}^2$  値は 0.99 以上であり、偏差も 3%以内であり、良好な相関性が確認できた。

表3-2 直線性試験(VOC 4成分)

| 実証製品    | ガス種   | 結果まとめ                                                                                                                                              |
|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| SGEA-P3 | 校正用ガス | 偏差は、アセトアルデヒド: $-1.3\sim1.1$ %、エタノール: $-0.9\sim2.9$ %、アセトン: $-0.9\sim0.2$ %、イソプレン: $-0.9\sim1.7$ %であった。各成分とも、偏差も小さく、また、成分による偏差も同等レベルで、良好な直線性が確認できた。 |

# <校正用ガス>

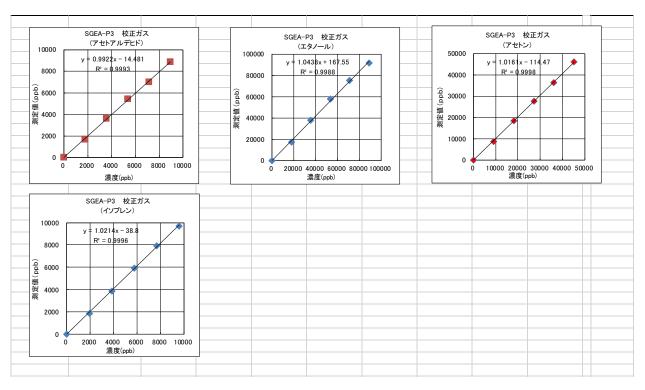



図3-1 直線性試験結果(VOC4成分)





# 3.3 干涉影響試験

ゼロ点における、酸素の干渉影響は0.0%、二酸化炭素の干渉影響は0.0%、水分の干渉影響は0.0% であり、影響は全く見られなかった。また、スパン点における干渉影響は最大値で、酸素の干渉影響 は2.8%以下、二酸化炭素の干渉影響は3.4%以下、水分の干渉影響は6.5%以下であった。

表3-3 干渉影響試験結果まとめ(酸素影響)

| 実証製品    |      | 結果まとめ (酸素干渉影響)                                                                                                                                                                                                                                         |  |  |
|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | ゼロ点  | 酸素濃度 0 vol %の測定値(ゼロ点)を基準とし、酸素濃度を 10.4 vol%、14.5 vol%及び 18.6 vol%に変動させた場合の最大偏差は、アセトアルデヒド:0.0 %、エタノール:0.0 %、アセトン:0.0 %、イソプレン:0.0 %であった。ゼロ点における酸素干渉影響としては、良好な結果であった。                                                                                      |  |  |
| SGEA-P3 | スパン点 | 酸素濃度 0 vol%の測定値を 100 (スパンガス濃度は、アセトアルデヒド: 9,410、エタノール: 104,200 ppb、アセトン: 52,800 ppb、イソプレン: 10,980 ppb) とした場合に、酸素濃度を 10.4 vol%、14.5 vol%及び 18.6 vol に変化させた場合の最大偏差は、アセトアルデヒド: -2.6%、エタノール: -2.8%、アセトン: 2.2%、イソプレン: -2.7%であった。 スパン点における干渉影響としては、良好な結果であった。 |  |  |

表3-4 干渉影響試験結果まとめ (二酸化炭素影響)

| 実証製品    |      | 結果まとめ (二酸化炭素影響)                                                                                                                                                                                                                               |  |
|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | ゼロ点  | 二酸化炭素 0 ppm (窒素導入)の測定値 (ゼロ点)を基準とし、二酸化<br>炭素濃度を 460 ppm、1380 ppm、2300 ppm に変動させた場合の最大偏差は、<br>アセトアルデヒド:0.0 %、エタノール:0.0 %、アセトン:0.0 %、イソプレ<br>ン:0.0 %であった。<br>ゼロ点における二酸化炭素影響としては、良好な結果であった。                                                       |  |
| SGEA-P3 | スパン点 | 二酸化炭素 0 ppm の測定値を 100 (スパンガス濃度は、アセトアルデヒド:9,410、エタノール:104,200 ppb、アセトン:52,800 ppb、イソプレン:10,980 ppb) とした場合に、二酸化炭素濃度を 460 ppm、1380 ppm、2300 ppm に変化させた場合の最大偏差は、アセトアルデヒド:-2.7%、エタノール:-2.1%、アセトン:-3.4%、イソプレン:-0.9%であった。スパン点における干渉影響としては、良好な結果であった。 |  |

表3-5 干渉影響試験結果まとめ(水分影響)

| 実証製品    |      | 結果まとめ(水分干渉影響)                                                                                                                                                                                                                 |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ゼロ点  | 水分濃度(相対湿度0%:窒素導入)の測定値を基準とした場合の相対湿度30%、60%、90%における最大偏差は、アセトアルデヒド:0.1%、エタノール:0.0%、アセトン:0.0%、イソプレン:0.0%であった。<br>ゼロ点における水分干渉影響としては、良好な結果であった。                                                                                     |
| SGEA-P3 | スパン点 | 水分濃度(相対湿度 0%: 窒素導入)の測定値を 100 (スパンガス濃度は、アセトアルデヒド: 9,410、エタノール: 104,200 ppb、アセトン: 52,800 ppb、イソプレン: 10,980 ppb) とした場合の相対湿度 30 %、60 %、90 %における最大偏差は、アセトアルデヒド: 3.6 %、エタノール: 6.1 %、アセトン: -4.4 %であった。 スパン点における水分干渉影響としては、良好な結果であった。 |





# 3.4 応答時間試験

90%応答時間は、各試験用ガスの繰返し性試験時に実施した。試験装置は、1回の計測インターバルは8分に設定されていた。また、連続計測を実施する場合には、測定終後、1分以内で次の計測が可能であった。

表3-6 応答時間試験結果まとめ

| 実証製品    | 結果まとめ           |
|---------|-----------------|
| SGEA-P3 | 測定時間 8 分(480 秒) |

# 3.5 再現性 (ドリフト) 試験

再現性試験は実証試験開始時に校正を行い、その後装置の校正は実施せず、実証試験終了時に再度、 開始時と同条件にてスパンガスを導入し、その偏差を確認した。

表3-7 再現性 (ドリフト) 試験結果まとめ

| 実証製品    | 結果まとめ                                                                                               |
|---------|-----------------------------------------------------------------------------------------------------|
| SGEA-P3 | 試験期間中の11日間(11月16日~11月27日)におけるスパン点感度変化は、<br>アセトアルデヒド:2.1%、エタノール:-2.8%、アセトン:9.6%、イソプレン:-3.0%<br>であった。 |

#### 3.6 干渉影響試験(トルエン)

トルエンは「VOC 等簡易測定技術分野」において、過去の試験を実施した全ての装置において影響を確認しているため、本装置においても、参考データとして確認試験を実施した。

表3-8 干渉影響(トルエン)試験結果まとめ

| 実証製品    | 結果まとめ                                   |
|---------|-----------------------------------------|
| SGEA-P3 | 高濃度 (94 ppm) のルエンに対する影響は各成分とも全く見られなかった。 |





# 4. 実証試験結果まとめ

表4 実証試験結果まとめ

| .,                                                                                                                                                                                                                                                                                                                      | 性試験、干渉影響試験のいずれの試験においても、測定成分毎の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ばらつきはなく、いずれの試験においても良好な性能を有していた。<br>干渉成分の影響については、酸素、二酸化炭素、水分ともに、ゼロ点における影響は<br>最大で 0.1 %以下であり、影響は見られなかった。また、スパン点においても酸素、二<br>酸化炭素の影響は最大で 3.4 %以下であり、水分干渉影響も最大で 6.5 %以下であった。<br>再現性 (ドリフト) も 2 週間での変動幅は 9.6 %以下であり、安定していた。<br>測定毎に表示されるクロマトグラムのベースラインも安定しており、測定精度及び安<br>定性に優れた装置である。                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 実証試験では、アセ定対象とした装置の実実対象とした装置の実実施した。で完了する。測定対象に早い応答速度を有し測定周期の短縮化が実にも使用が測定にも使用が測定にも使用が対け、リコンの対別をでラムの重ねがです。AC 100Vの供給が見えてわかりやデータはエクセルにロマトグラムの重ねが操作手順は一度使用アル)は、写真やパン                                                                                                                                                         | トアルデヒド、エタノール、アセトン、イソプレンの4成分を測証試験を実施した。<br>装置はシリンジによる手動注入の方式であり、1回の測定が8分成分及びガスクロマトグラフィーであることを考慮すると、非常ており、作業効率の向上や、連続測定(オプション)においては、現できる。装置の制御や濃度演算は全てパソコンからコントロー合が可能な場所であれば、装置は小型・軽量のため現場でのオン可能。<br>画面にクロマトグラムがリアルタイムで表示されるため、計測のすい。<br>CSV形式で出力が可能で、パソコン上で取得済みデータのガスクきや、検量線の表示などが出来るため、使用しやすい。<br>してからは、簡単かつ容易である。取扱説明書(操作マニュアコンの画面表示など図も多くわかりやすく記載されている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 料の打ち込みを行うと表示がされ、約1分後常に簡易であった。<br>また、装置の校正は                                                                                                                                                                                                                                                                              | 使用して注入する方式が標準であるが、装置にシリンジで試<br>、測定は自動で開始し、測定終了後には、パソコン上に濃度<br>にスタンバイ状態となり、次の測定が可能となる。操作は非<br>、通常の測定画面(状態)から対話形式で簡易に実施するこ<br>に対象の濃度での校正が簡易にできる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 測定成分       VOC 4 成分:<br>アセトアルデヒド、エタノール、アセトン、イソプレン         測定原理       半導体ガスセンサを使用したガスクロマトグラフィー         測定レンジ       アセトアルデヒド:5~10,000 ppb、エタノール:200~100,000 ppb アセトン:20~50,000 ppb、イソプレン:10~10,000 ppb キャリアガス         清浄空気(本体内蔵ポンプにより吸引)         重量・電源       重量:約6.5 kg 電源:AC100 V 約100 VA         外形寸法:W260×H135×D435 mm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                         | 最酸再定定でに測ルサー状の一次にまがでより、1 %以響フ示装は実際でに測ルサーボの一次で表でに測している。 では、1 では、1 でが、1 の影りでは、1 の形がでは、1 のがでは、1 |  |  |  |  |  |





#### (参考情報)

● 製品名・型番 : センサガスクロマトグラフ (Sensor Gas Chromatgraph)

SGEA-P3 及び SGEA-P2

● 製造企業名 : NISSHA エフアイエス株式会社

兵庫県伊丹市北園 3-3 6-3

● 連絡先 : TEL 072-780-1800 FAX 072-785-0073

● Webアドレス : http://www.fisinc.co.jp

● E-Mail(担当). : 営業部営業二グループ 水落 聡士

s. mizuochi@fisinc. co. jp

● 設置・導入条件 : ・電源 AC100V 50/60Hz

(対候性) ・室内設置(高濃度のガスが存在する環境での測定は不可)

・操作環境(室温): 10℃~30℃

·操作環境(湿度):0%~80%

● メンテナンス : 試料注入口のゴム栓を 200 回毎に交換。(標準付属品 5 個)

● コスト : 価格:195万円~300万円(仕様による)

他にパーソナルコンピュータが必要

(制御及び濃度演算用ソフトをインストール)

● 測定成分・レンジ: ・アセトアルデヒド 5~10,000 ppb

・エタノール 200~100,000 ppb

・アセトン 20~50,000 ppb

・イソプレン 10~10,000 ppb

● 測定原理 : 半導体ガスセンサを使用したガスクロマトグラフィー

● 利用用途 : 屋内・屋外環境中のガス測定 (アセトアルデヒド、エタノール、アセトン)

自動車車室内 VOC 測定 (アセトアルデヒド)

呼気中ガス等生体ガス測定(アセトアルデヒド、エタノール、アセトン、

イソプレン)

● 校正方法 : 標準ガスによる事前校正

● サンプリング方式: シリンジによる手動注入方式(注入により自動で測定開始)

(連続自動注入装置による連続自動測定方式も可能)

● 応答時間 : 480 秒

● 測定精度 : 校正直後、校正濃度で±15%

● キャリアガス : 大気エアー(高純度エアーボンベ仕様のオプションあり) ● 製品保管条件 : 温度 -20 $^{\circ}$  $^{\circ$ 

● 外形寸法 : W260×H135×D435

● 重量 : 約 6.5kg

2週間以上電源投入しなかった場合には、使用開始前数時間の電源投入が

望ましい。

● 保証期間 : 製造後 12 カ月





# 本編

# 1. 実証試験の概要と目的

環境技術実証事業は、既に適用可能な段階にありながら、環境保全効果等についての客観的な評価が行われていないために普及が進んでいない先進的な環境技術について、その環境保全効果等を第三者が客観的に実証することにより、環境技術実証の手法・体制の確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とする。

VOC 簡易測定技術分野については、平成 21 年度より実証を開始し、平成 23 年度からは手数料徴収体制によって実施しており、平成 24 年度から平成 26 年度まで、「VOC 等簡易測定技術分野(「等」を追記)」に名称変更するとともに、分野(対象とする物質、対象とする事業所又は測定対象場所、対象とする濃度範囲等)を「排ガス中の TVOC」「室内環境 VOC」「におい」等に拡張し実証をしてきた。

平成27年度からは、試験設備の関係で、実証の公募を見送っていた。平成29年度は、「テーマ自由枠」に対して、従来の「VOC等簡易測定技術分野」に該当する応募があったため、試験場所の再整備も含め対応を検討し、実証機関としての応募を行い選定されたので、公募のあった装置に対して、実証試験を実施した。

平成 29 年度に選定された実証対象技術としては、平成 26 年度に当協会が実証試験を実施した、エフアイエス株式会社のセンサガスクロ、SGVA-P2(測定成分:トルエン、mキシレン、 $\sigma$ キシレン、エチルベンゼン、スチレン)と同一測定原理(半導体センサを使用したガスクロマトグラフィー)を使用し、硫黄化合物を測定する装置、SGEA-P3 である。測定成分は、アセトアルデヒド、エタノール、アセトン、イソプレンの 4 成分。測定対象濃度は、アセトアルデヒド:5~10,000 ppb、エタノール:200~100,000 ppb、アセトン:20~50,000 ppb、イソプレン:10~10,000ppb となっている。

SGEA-P3 の測定対象成分は自由枠の応募であるが、測定対象及び装置の構成が、平成 26 年度まで実施していた環境技術実証事業の「VOC 等簡易測定技術分野」と同じであること、また測定原理や装置仕様が平成 26 年度実施の装置と同じであるため、従来の「VOC 等簡易測定技術分野」としての実証試験を実施した。

本実証試験は、以下に示す内容等を客観的に実証するものであり、実証申請者から提出された実証対象製品について、以下の視点から実証を行い、情報提供を行うものである。

- ・ 製品性能の信頼性
- ・ 測定現場での実用性
- 製品操作等の簡便性

表1 実証試験の視点

| 視点  | 内 容                                    |
|-----|----------------------------------------|
| 信頼性 | 各実証対象技術の用途において、求められる精度で信頼性ある測定が可能かどうか。 |
| 実用性 | 製品仕様や測定性能等が、測定現場での利用に適しているかどうか。        |
| 簡便性 | 製品仕様や操作手順等が、簡単かつ容易かどうか。                |





# 2. 実証試験参加組織と実証試験参加者の責任分掌

実証試験に参加する組織は、図2に示すとおりである。また、実証試験参加者の責任分掌は表2に 示すとおりである。

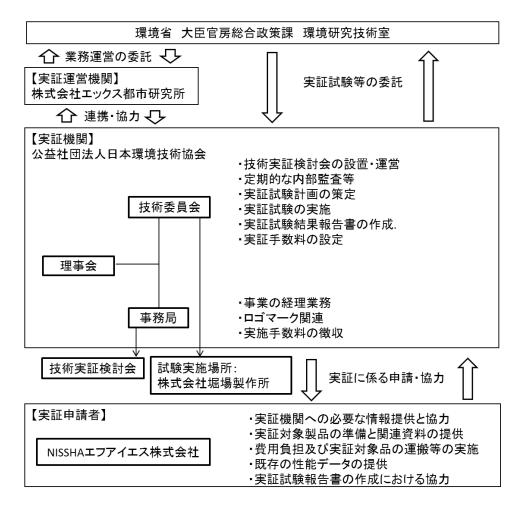



図2 実証試験参加組織

表 2 実証試験参加者の責任分掌

| <b>公立</b> 入皿FWが9加口で昇上ガナ |                    |                   |                 |  |  |  |  |
|-------------------------|--------------------|-------------------|-----------------|--|--|--|--|
| 区分                      | 実証試験参加機関           | 責任分掌              | 参加者名            |  |  |  |  |
|                         |                    | 実証試験の運営管理         | 藤原 雅彦(責任者)      |  |  |  |  |
| 実証機関                    |                    | 実証試験対象技術の公募・審査    | 平野 耕一郎          |  |  |  |  |
|                         |                    | 技術実証検討会の設置・運営     |                 |  |  |  |  |
|                         | 公益社団法人<br>日本環境技術協会 | 実証試験計画の策定         | 加賀 健一郎          |  |  |  |  |
|                         |                    | 実証試験の実施・結果報告書の作成  | 水野 裕介           |  |  |  |  |
|                         |                    | 品質管理システムの構築、実施、維持 | 取仕 少五           |  |  |  |  |
|                         |                    | データの検証            | 賢持 省吾<br>  角 心吾 |  |  |  |  |
|                         |                    | 実証試験の監査           |                 |  |  |  |  |
| 環境技術                    | NISSHA エフアイエス      | 実証対象機器の準備         | 水落 聡士           |  |  |  |  |
| 垛塊1又削                   | 株式会社               | 実証対象機器の運転や測定等の補助  | 八谷 临上           |  |  |  |  |





# 3. 実証対象技術(機器等)の概要

本章(3.実証対象技術の概要)の情報は、環境技術開発者が自らの責任において申請した内容及び その情報を参考に整理したものであり、環境省及び実証機関は、内容に関して一切の責任を負いませ ん。

#### 3.1 機器の特徴

検出器に半導体ガスセンサ(金属酸化物半導体式)を用いた、ガスクロマトグラフで、VOC 化合物測定をターゲットとした高感度測定機である。測定器は VOC 化合物に対しての選択性と ppb レベルが計測可能な高感度性を有し、サンプルを濃縮することなく低濃度レベルの VOC 化合物の計測が可能である。ガスクロマトグラフのキャリアガスには清浄空気(装置に内蔵された吸引ポンプにより、外付けの活性炭フィルターを通した空気)を使用することににより、測定精度の向上を図るとともに、全体を小型、軽量化した分析装置となっている。そのため、現場でのオンサイト測定も可能である。また、簡単な操作、日常での部品交換が不要なことなど、操作が容易で保守性に優れている。

試料採取方法としては、シリンジによる手動注入方式(自動測定開始機能)あるいは、連続自動測 定方式の仕様がある。実証試験は手動注入方式にて実施した。

#### ○特徴・長所・セールスポイント

- ・アセトアルデヒド (5 $\sim$ 10,000 ppb)、エタノール (200 $\sim$ 100,000 ppb)、アセトン (20 $\sim$ 50,000 ppb)、イソプレン (10 $\sim$ 10,000 ppb) を高感度に定量することができる。
- ・シリンジで試料ガスを注入すると自動的に測定を開始し、8分で測定を完了し、測定終了後約1分で次の測定が可能なため、1サイクル約9分での計測が可能。
- ・連続自動注入装置付き仕様もオプションで準備可能。
- ・小型、軽量で、持ち運び可能。

#### 3.2 測定原理

センサガスクロマトグラフSGEA-P3 は、半導体ガスセンサを検出器に用いたガスクロマトグラフ方式の 硫黄化合物測定器です。ガスクロマトグラフィーにより多くのガスの混合物から硫化水素、メタンチオー ル、硫化ジメチルを分離し、高感度な半導体ガスセンサによって検出・定量します。

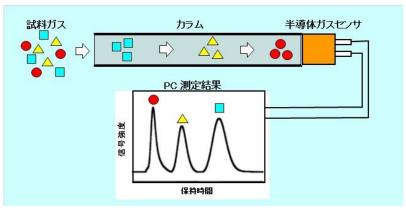



図3-1 測定原理





# 3.3 定量方法

図3-2に各測定成分の100 ppbの標準ガスを測定した場合のガスクロマトグラムを示します。 図3-3はガスクロマトグラムのピーク高さ(信号強度)とVOC濃度の関係です。半導体ガスセンサの 特性上、濃度の対数と信号強度の対数が比例関係を示します。この関係式を用いて、ガスの濃度を算出します。

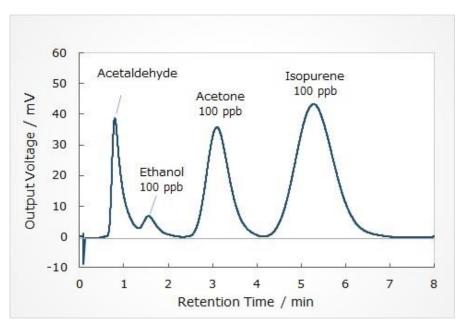



図3-2 VOC標準ガスのクロマトグラム

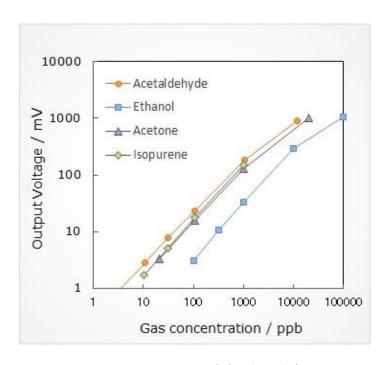



図3-3 VOC標準ガス濃度と信号強度の関係





#### 3.4 データ解析方法

測定結果の解析には専用のデータ解析ソフト「SGC Analyzing Software」を使用しています。

- ◎一般的なガスクロマトグラフでは、各ピークのピーク面積を用いて定量を行いますが、SGCではピーク 高さを用いて定量を行っています。ピーク高さで濃度を算出することにより、保持時間の近い干渉ガスの 影響及びノイズの影響を小さくしています。測定精度、再現性は面積計算の場合と同等です。
- ◎測定したガスクロマトグラムのベースラインを補正することにより、ピーク高さを正確に測定します。 ベースラインが多少傾いていても測定精度に問題はありません。
- ◎図3-4のように、二つのピークに重なりが生じる場合、先にでるピーク高さが後にでるピーク高さに 影響します。このような場合には予め指定した干渉ガスに対して、図3-4のように波形分離を行い、濃 度精度に干渉ガスの影響がでないようにすることができます。

# 3.5 半導体ガスセンサ

センサガスクロマトグラフでは検知器として、半導体ガスセンサSBシリーズを使用しています。半導体 ガスセンサは酸化錫などの金属酸化物半導体を感ガス材料とし、その表面にガスが吸着した場合に電気抵 抗が変化することを利用してガスを検出します。

SBシリーズガスセンサは、非常に小型で消費電力が小さく、また高感度、高速応答というガスクロマト グラフィーの検出器に適した特徴を持っています。

特にガスに対する感度は通常のガスクロの検出器と比べて格段に高く、半導体ガスセンサを検出器に用い ることにより、少ない試料での高感度測定が可能になりました。

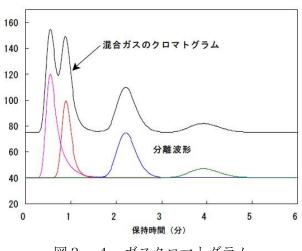



図3-4 ガスクロマトグラム

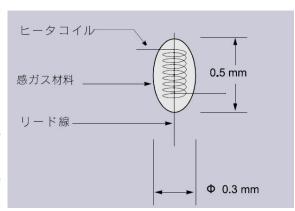



図3-5 センサ構造





# 3.6 製品データ

表3-1に実証対象技術の仕様の一部を示した。

# 表3-1 実証対象技術の仕様の一部

| V 7117 F2        | WYCONI                                 |
|------------------|----------------------------------------|
| 企業名              | NISSHA エフアイエス株式会社                      |
| 技術・製品の名称         | センサガスクロマトグラフ (VOC 測定器)                 |
| 技術・製品の型番         | SGEA-P3                                |
| 測定対象物質           | VOC                                    |
|                  | アセトアルデヒド、エタノール、アセトン、イソプレン              |
| 測定濃度範囲           | アセトアルデヒド 5~10,000 ppb                  |
|                  | エタノール 200~100,000 ppb                  |
|                  | アセトン 20~50,000 ppb                     |
|                  | イソプレン 10~10,000 ppb                    |
| 測定原理             | 半導体ガスセンサを使用したガスクロマトグラフィー               |
| 重 量              | 約 6.5 kg                               |
| 価 格              | 195 万円~300 万円 (定価:仕様による)               |
| 外形寸法             | W260×H135×D435 mm                      |
| 利用用途             | ・自動車車室内 VOC                            |
|                  | ・呼気中ガス等生体ガス測定                          |
| 校正用標準物質等         | 有                                      |
| 校正方法             | 標準ガスによる自動校正                            |
| サンプリング方式         | シリンジによる手動注入方式                          |
|                  | (連続自動注入装置による連続自動測定方式も可能)               |
| 試料ガス注入量          | 5 ml                                   |
| キャリアガス           | 清浄空気                                   |
| 電源               | AC100 V 約 40 VA                        |
| 操作環境(室温)         | 10~30 °C                               |
| 操作環境 (相対湿度)      | 0 %~80 %                               |
| 操作環境(その他)        | 屋内 (高濃度のガスが存在する環境での測定は不可)              |
| 製品保管条件           | -20~60 ℃、20~80 %RH (結露なきこと)            |
| #u = /= == Hn == | 2週間以上電源投入しなかった場合には、使用開始前数時間の電源投入が望ましい。 |
| 製品保証期間           | 製造後 12 ヶ月間                             |
| 応答時間             | 測定時間 8 分                               |





# 4. 実証試験場所の概要

# 4.1 実証試験場所の名称等

・名称 株式会社堀場製作所 びわ湖工場

# 4.2 実証試験設備

実証試験設備は、株式会社堀場製作所の試験設備を使用した。ガスの混合、圧力制御、流量制御が可能で、発生させたガスの湿度コントロールも可能なシステムを構成した。

# 5. 実証試験の内容

# 5.1 試験期間

実証試験は平成 29 年 11 月 13 日 (月)  $\sim$ 11 月 27 日 (月) の期間において、表 5-1 に示す試験項目を実施した。また、実証試験に関しては「平成 29 年度 環境技術実証事業テーマ自由枠 (VOC 等簡易測定技術) 実証試験計画書」 に従い実施した。

表5-1 試験スケジュール

| 11月13日(月)                   | 11月14日(火)                  | 11月15日(水)   | 11月16日(木) | 11月17日(金)          |  |
|-----------------------------|----------------------------|-------------|-----------|--------------------|--|
| 試験機持込み<br>試験機材持 込み<br>調整、準備 | 予備試験校正・希<br>釈率の検査実施 繰返し性試験 |             | 直線性試験     | 繰返し性試験<br>酸素干渉影響試験 |  |
| 11月20日(月)                   | 11月21日(火)                  | 11月22日(水)   | 11月23日(木) | 11月24日(金)          |  |
| 酸素干涉影響試験<br>二酸化炭素干涉<br>影響試験 | _                          |             |           | 水分干渉影響試験           |  |
| 11月27日(月)                   | 11月28日(火)                  | 11月29日(水)   | 11月30日(木) | 12月1日(金)           |  |
| 再現性<br>トルエン干渉影響<br>試験<br>お験 |                            | (予備日) (予備日) |           | (予備日)              |  |



製



#### 5.2 実証対象試験機の台数等

試験に供する実証製品の台数は1台、試験装置の妥当性(試験フローや希釈率等の確認)確認用及び各試験における発生濃度の確認用として、VOC測定における公定法である、水素炎イオン化検出器 (FID) を用いた。

表5-2に実証製品、及び比較用測定機の仕様の一部を示した。

型番 測定原理 測定範囲 試料採取 備考 半導体センサ アセトアルデヒド 5~10,000 ppb エタノール 200~100,000 ppb シリンジによる を使用した サンプルガス SGEA-P3 ガスクロマト アセトン 20~50,000 ppb 5 mL/回 手動注入 グラフィー イソプレン 10~10,000 ppb FID 東亜ディーケーケー GHT-200 (水素炎イオン化 0~10 ppmC から 10,000 ppmC 0.5 L/min

表5-2 実証製品、公定法比較機の仕様の一部

# ※濃度単位について

検出器)

濃度の単位は ppm あるいは ppb を使用するが、測定原理に FID 方式を使用した公定法の計測器については、濃度の単位に ppmC を使用する。

これは FID 法が、水素炎により VOC を分解し、基本的に C(カーボン)の数を計測するため、ppmC と言う濃度単位を用いる。例えば、本試験で使用しているトルエンでは、下記となる。 トルエン 1 ppm  $\Rightarrow$  7 ppmC (トルエンは分子式  $C_7H_8$   $\circ$  C が 7 個あるため)





# 5.3 実証項目

本実証試験では、実証対象製品の個別の物質の測定能力は、原則として申請者が提出する書類を参考にする。ただし、今年度試験を実施する簡易測定器の基本的な測定物質と考えられる、トルエンについては、本実証試験でも測定した。

本実証試験では混合ガス(模擬ガス)を使用し測定した。実証項目別の視点と方法は、表5-3に示した。

表5-3 実証項目別の視点と方法

| 1年日          | 指標       | 視点    |     |     | 方法 |              |  |
|--------------|----------|-------|-----|-----|----|--------------|--|
| 項目           |          | 信頼性   | 実用性 | 簡便性 | 書類 | 試験           |  |
| 1. 個別ガス測定に係る | 評価項目(書類  | 類確認+実 | 測)  |     |    |              |  |
| ①測定範囲        |          |       | 0   |     | 0  | <del>-</del> |  |
| ②繰返し性        | 偏差等      | 0     |     |     | 0  | 0            |  |
| ③直線性         | 相関等      | 0     |     |     | 0  | 0            |  |
| ④干涉影響試験      | 比率等      | 0     |     |     | 0  | 0            |  |
| ⑤応答時間        | 時間       | 0     | 0   |     | 0  | 0            |  |
| ⑥再現性         | 偏差等      | 0     |     |     | _  | 0            |  |
| 2. 模擬ガス測定に係る | 評価項目 (実) | 則)    |     |     |    |              |  |
| ①測定範囲        |          |       | 0   |     | 0  | _            |  |
| ②繰返し性        | 偏差等      | 0     |     |     | 0  | 0            |  |
| ③直線性         | 相関等      | 0     |     |     | 0  | 0            |  |
| ④干涉影響試験      | 比率等      | 0     |     |     | 0  | _            |  |
| ⑤応答時間        | 時間       | 0     | 0   |     | 0  | 0            |  |

注:方法の◎印は、実証に当たって、実測等によってデータを取得する。





# 5.4 試験設備の妥当性の確認

実証試験の基本流路系統図を図5-1に示す。実証試験開始にあたり、ガス流路やサンプルガス流量の確認のため、トルエンガスを使用し、設計通りに機能していることを、VOC計測の公定法である、水素炎イオン化法を使用した分析装置の測定値により妥当性を確認した。

# ○ 試験ガスの種類と濃度

・確認用ガス:トルエン 104ppm (空気バランス)、ゼロガス (精製空気)

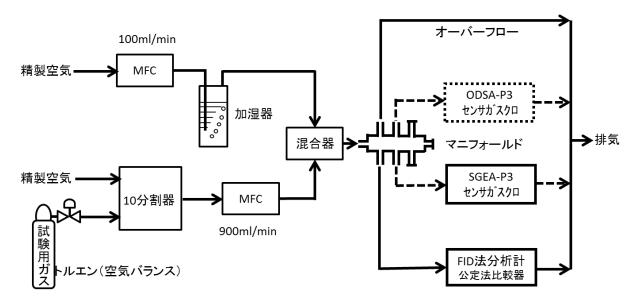
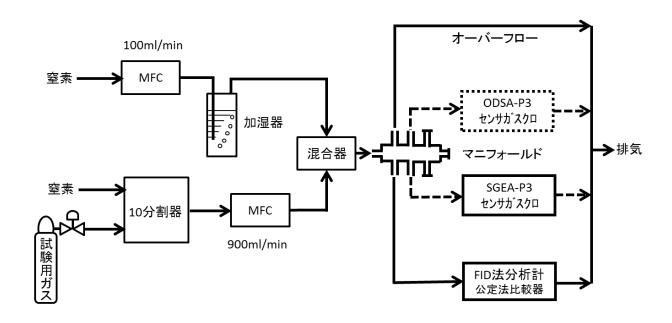



図5-1 実証試験の基本流路系統図(試験装置の妥当性確認)






#### 5.4.1 基本性能試験

試験は、試験用ガスをマニフォールドに流し、基本的に実証対象技術(試験機)、比較機に同時に 導入し、測定する方法で実施した。

試験データは付属のパソコンに表示される濃度値(表示部)を読み取り Excel File に書き込むとともに、パソコンに保存されるデータを使用した。

図 5-2 に実証試験の基本流路系統図を示した。SGEA-P3 の試験に関しては、シリンジによる手動 注入方式のため、マニフォールドからの排気ラインからシリンジに試料ガスの採取を行い、毎回装置 に注入した。試料の採取及び注入にあたっては、ばらつきを低減するため、手順を定めて実施した。



※ MFC:マスフローコントローラー

図5-2 基本流路系統図

- \* ゼロ点、スパン校正は試験開始時に実施する。以後は同一ガスを導入して測定し、再現性を確認した(原則として、試験中の校正は実施しない)。
- \* 測定成分試験用ガスは高圧容器詰めガス及びそれを希釈したガスを用いた。
- \* ゼロガスは窒素を使用した。
- \* キャリアガスには、清浄空気(大気を内蔵ポンプにより吸引し、外付けの活性炭フィルタを使用) を使用した。





#### 5.4.2 試験用ガスの種類と濃度

試験用ガスの種類と濃度を下記表 5 - 4 に示す。ガスは⑦のトルエン以外は全て窒素バランスガスを使用した。

| [S | GEA-P3用ガス】          |      |          |                   |       |           |      |  |
|----|---------------------|------|----------|-------------------|-------|-----------|------|--|
|    | 用途                  |      | ガス種      | 化学式               | 容器    | 濃度        | メーカ  |  |
|    |                     |      | アセトアルデヒド | CH₃CHO            |       | 9.94 ppm  |      |  |
|    | ③ SGEA-P3<br>スパンガス  | 5種混合 | エタノール    | C₂H₅OH            | 10L   | 99.1 ppm  | 住友精化 |  |
| 3  |                     |      | アセトン     | CH₃COCH₃          | (アルミ) | 50.3 ppm  |      |  |
|    |                     |      | イソプレン    | C₅H <sub>8</sub>  | () () | 10.68 ppm |      |  |
|    |                     |      | 窒素       | $(N_2)$           |       | Balance   |      |  |
|    |                     |      | アセトアルデヒド | CH₃CHO            |       | 94.1 ppm  |      |  |
|    | ④ SGEA-P3<br>干渉試験ガス | 5種混合 | エタノール    | C₂H₅OH            | 10L   | 1042 ppm  |      |  |
| 4  |                     | ガス   | アセトン     | CH₃COCH₃          | (アルミ) | 528 ppm   | 住友精化 |  |
|    |                     | 77.  | イソプレン    | C₅H <sub>8</sub>  | () () | 109.8 ppm |      |  |
|    |                     |      | 窒素       | (N <sub>2</sub> ) |       | Balance   |      |  |

表 5-4 試験用ガス

| [Ŧ       | 渉試験ガス等】 |            |       |                               |       |          |               |
|----------|---------|------------|-------|-------------------------------|-------|----------|---------------|
|          | 用途      |            | ガス種   | 化学式                           | 容器    | 濃度       | メーカ           |
| <b>⑤</b> | 干渉影響    | 2種混合       | 二酸化炭素 | CO <sub>2</sub>               | 10L   | 4600 ppm | 高千穂化学         |
| 3        | 試験用ガス   | ガス         | 窒素    | $(N_2)$                       | TUL   | Balance  | 同一個化子         |
| 6        | 空気      | 2種混合<br>ガス |       | (AIR)                         | 10L   | Research | 住友精化          |
|          | 干渉影響    | 2種混合       | トルエン  | C <sub>7</sub> H <sub>8</sub> | 10L   | 104 ppm  | <b>分七性</b> 12 |
| 7        | 試験用ガス   | ガス         | エアー   | (AIR)                         | (アルミ) | Balance  | 住友精化          |

#### 注) 試験用ガスのバランスガスについて

VOC 等簡易測定技術分野の実証試験では、スパンガスはエアーバランスの校正ガスを使用して実施してきた。この理由としては、共存ガス中の酸素濃度により影響を受ける対象技術が存在したことによる。

今回の実証試験では、アセトアルデヒドはエアーバランスの高圧ガスが作成できないため、アセトアルデヒドは窒素バランスの高圧ガスとなる。試験方法としては、アセトアルデヒドは窒素バランスの高圧ガス、他の3成分(エタノール、アセトン、イソプレン)はエアーバランスにて作成し、試験設備にて混合させる方法と、全てのガスを窒素バランスの高圧ガスボンベで製作する2つの方法が考えられた。2種類のバランスガスの高圧ガスボンベを使用する場合は、ガス分割器やマスフローコントローラを異なる2系統使用する必要があり、希釈精度の違い等による誤差を生じる可能性がある。

一方、窒素バランスの高圧ガス1本で試験を実施した場合には、前記の誤差は生じないが、バランスガスの違いによる、干渉影響等の誤差が考えられる。ただ、今回の実証技術は平成26年度に実証試験を実施しており、ゼロ点及びスパン点において酸素濃度の影響がないことが、確認できている。以上のことを踏まえ、技術実証検討会にて検討した結果、SGEA-P3の実証試験に使用するスパンガスは、窒素バランスの高圧ガスとした。但しトルエンのみ、従来から実施している環境技術実証事業との関連を維持するためエアーバランスの条件とした。





# 5.4.3 繰返し性、直線性、応答時間 試験

図 5-3 の流路で試験用ガスを調製し、繰返し性、直線性試験を実施した。応答時間は繰返し性試験時に測定した。試験パターン(例)を図 5-4 に示した。

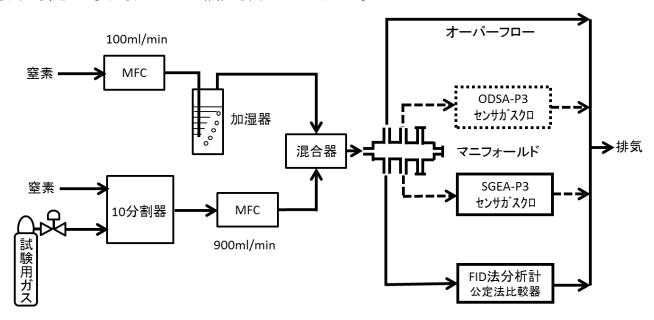



図5-3 繰返し性、直線性、応答時間試験の流路系統図

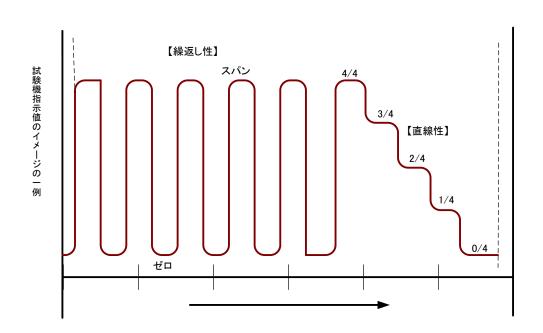



図5-4 繰返し性、直線性試験パターン (例)





#### 5.4.4 干涉影響試験

干渉影響試験は酸素、二酸化炭素、水分について実施した。

試験はゼロガス(窒素)にそれぞれ、窒素、二酸化炭素、水分を添加調製して実施すると共に、各スパンガスに、窒素、二酸化炭素、水分を添加調製して実施した。

なお、ゼロガスでの試験結果に有意な影響が見られた場合、スパンの試験結果は、補正(ゼロガスの影響分を差し引く)することを前提に試験を実施したが、ゼロ点の補正は実施しなかった。

#### 1)酸素影響試験

酸素影響試験の酸素濃度は約 19、15、10 vol%について試験を実施した。試験用ガスの調製方法を図 5-5 に、試験パターン(例)を図 5-6 に示した。

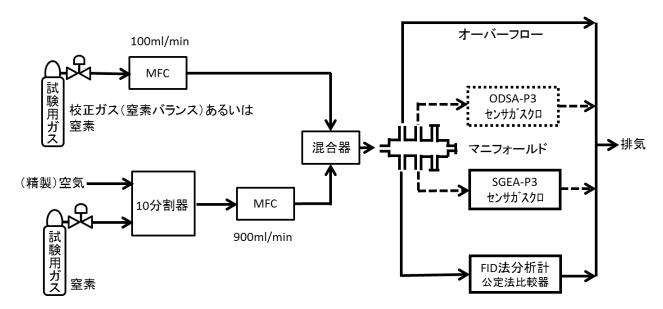



図5-5 酸素影響試験の流路系統図

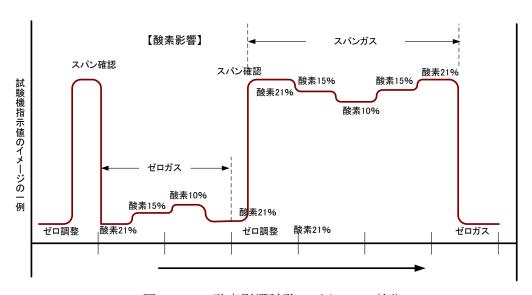



図5-6 酸素影響試験のパターン (例)





# 2) 二酸化炭素影響試験

二酸化炭素影響試験の二酸化炭素濃度は約 460、1380、2300 ppm について試験を実施した。試験用ガスの調整方法を図 5-7 に、試験パターン(例)を図 5-8 に示した。

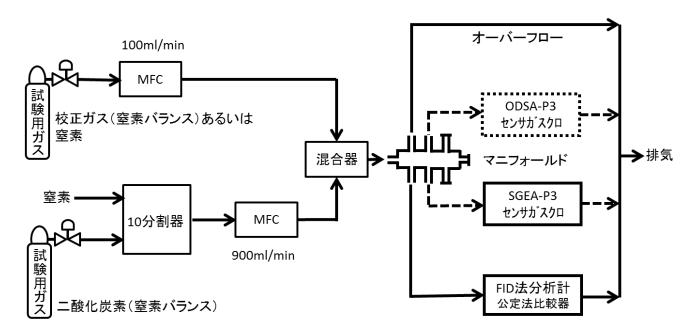



図5-7 二酸化炭素影響試験の流路系統図

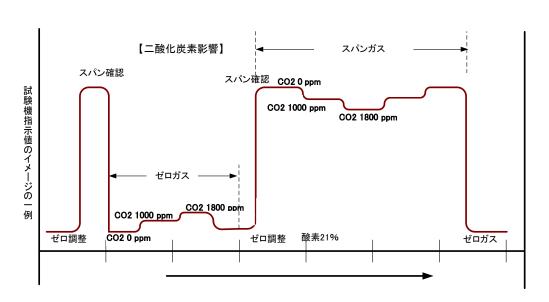



図5-8 二酸化炭素影響試験のパターン (例)





# 3) 水分影響試験

水分影響試験の水分濃度は 24<sup> $\circ$ </sup>C付近における相対湿度 90、60、30 %について試験を実施した。 試験用のガス調整方法を図5-9に、試験パターン(例)を図5-10 に示した。

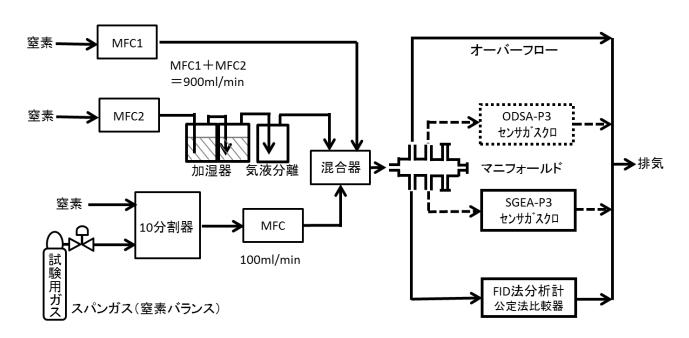



図5-9 水分影響試験の流路系統図

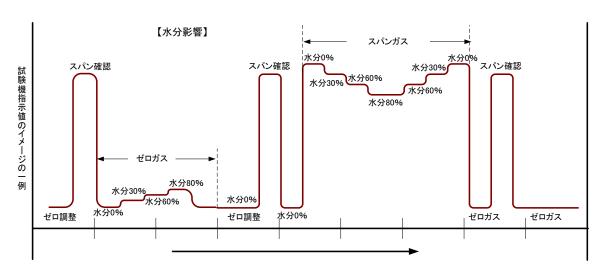



図5-10 水分影響試験のパターン (例)

VOC 等簡易測定技術分野 SGEA-P3 (センサガスクロマトグラフ) NISSHA エフアイエス株式会社





# 5.4.5 再現性 (ドリフト) 試験

試験期間中(約2週間)に、スパンガスを導入し、測定した時の各々の指示値を読み、初回の指示値からの偏差を調べる。

試験期間中の校正は行わず、スパン感度の確認のみ行い、他の試験完了時に、試験開始時に使用したスパンガスを導入し、偏差を調べることにより、再現性(ドリフト)試験とする。





# 6. 実証試験結果と考察

#### 1)試験用ガス

試験に使用するガスは、VOC 化合物の測定用途を考慮して、繰返し性及び直線性については、スパンガスとして、アセトアルデヒド、エタノール、アセトン、イソプレンの窒素バランスの混合ガスを使用した。

#### 2)試験方法及び判断基準

各試験方法は、本編 5.4 実証試験実施方法を参照。試験結果については、実証試験における基準値からの偏差を中心に記載し、結果については、申請メーカの装置仕様である、測定精度との比較を行い、各試験結果が装置仕様の範囲内であるか否かを判断基準として記載した。偏差については、各試験において計算方法を示した。

・測定精度 校正直後、校正濃度で±15%

#### 3)干渉影響ガス

また、干渉影響ガスとしては、測定におけるバックグランドは大気となるため、一般的な大気成分で存在濃度が高いガスである、酸素、二酸化炭素、水分の影響について確認した。干渉影響濃度は大気をベースに変動する可能性のある変化幅にて確認した。

#### 4)データの見方

実証試験データについては、実際に確認したデータ (測定値) については、他の数値と区別するため、各表においてピンク色の網掛をするとともに、太字で記載した。

#### 5)有効数字

表及びグラフに記載の数値の表示については、下記の方法で記載した。

- ・試験用ガス濃度:高圧ガスボンベメーカの「ガス分析試験成績書」に記載の数値及び桁数。
- ・測定値:各分析装置の表示値(濃度演算結果としてパソコンに表示される数値及び桁数)
- このため、測定値に関しては、有効桁数以上の記載となっている事にご注意ください。

# 6)各試験における繰返し精度について

各項目の試験の実施にあたっては、2回以上の試験を実施し、得られた測定値の妥当性を計算値や 繰返し精度から判断し妥当性を確認した。ガスの安定性などの関係から、報告書に記載のデータは最 終確認をしたデータを記載した。





# 6.1 試験設備の妥当性の確認

図5-1のフローにより試験設備の妥当性の確認を実証試験開始前に実施した。

計算上の理論濃度は、

 $104 \text{ ppm} \times (900 \text{ ml} / (900 \text{ ml} + 100 \text{ ml})) = 93.6 \text{ ppm}$ 

93.6 ppm×7 (トルエンの炭素数) =655.2 ppm

# ・FID(水素炎イオン化検出器)の測定値

試験装置の分割器を使用し、トルエンガスを 0/10、2/10、4/10、6/10、8/10、10/10 に分割し、 FID の測定値を確認した。結果を表 6-1 に示す。測定値は計算値の 98.5% また、ガス分割による直線性も 0.2% 以内であり、試験設備の妥当性があることを確認した。

表 6-1 妥当性確認試験結果

|          |              | =+昨今十、つ :曲 |               | 0117 000 /测点法\ |
|----------|--------------|------------|---------------|----------------|
|          |              | 試験ガス濃      | GHT-200 (測定値) |                |
| ガスの種類    | ガス名          | 濃度         | 炭素濃度          | 炭素濃度           |
|          |              | (ppm)      | (ppmC)        | (ppmC)         |
| ゼロ(0/5)  | 窒素           | 0.0        | 0             | 0              |
| スパン(5/5) | <b>⑦トルエン</b> | 93.6       | 655           | 645            |
| スパン(4/5) | <b>⑦トルエン</b> | 74.9       | 524           | 515            |
| スパン(3/5) | <b>⑦トルエン</b> | 56.2       | 393           | 386            |
| スパン(2/5) | ⑦トルエン        | 37.4       | 262           | 257            |
| スパン(1/5) | <b>⑦トルエン</b> | 18.7       | 131           | 129            |
| ゼロ(0/5)  | 窒素           | 0.0        | 0             | 0              |
|          |              |            | 5/5           | 100.0          |
|          |              |            | 4/5           | 79.8           |
| 直線性:%    |              |            | 3/5           | 59.8           |
| 旦秋注: 90  |              |            | 2/5           | 39.8           |
|          |              |            | 1/5           | 20.0           |
|          |              |            | 0/5           | 0.0            |





#### 6.2 繰返し性試験

図5-3の試験フロー及び図5-4の試験パターンにより繰返し性試験を実施した。

# 1) 試験結果

試験結果を表6-2に示した。

なお、偏差(%) = (指示値-平均値) ÷スパン平均値×100 とした。

表6-2 繰返し性試験結果

| 試験ガス : ガス③ VOC4種混合(校正用ガス) アセトアルデヒド 9.94ppm、エタノール 99.1ppm、アセトン 50.3ppm、イソプレン 10.68ppm |                     |                   |            |        |       |            |         |         |        |        |
|--------------------------------------------------------------------------------------|---------------------|-------------------|------------|--------|-------|------------|---------|---------|--------|--------|
|                                                                                      | ::試験ガス 900ml        |                   |            |        |       |            |         |         |        |        |
| 試験日:2017                                                                             | <u>年11月17日(金)</u> 室 | <u>を温:24.8℃、フ</u> | 大気圧:1012.2 | 2hPa   |       |            |         |         |        |        |
|                                                                                      |                     |                   | 試験ガス濃      | 度(計算値) |       |            | SGEA-P3 | (測定値)   |        | FID    |
| ガスの種類                                                                                | ガス名                 | アセトアルテ゛ヒト゛        | エタノール      | アセトン   | イソプレン | アセトアルテ゛ヒト゛ | エタノール   | アセトン    | イソプレン  | THC    |
|                                                                                      |                     | (ppb)             | (ppb)      | (ppb)  | (ppb) | (ppb)      | (ppb)   | (ppb)   | (ppb)  | (ppmC) |
| ゼロ_1回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.2        | 2.0     | 0.0     | 0.0    | 5.0    |
| スパン_1回目                                                                              | ③VOC_4種混合           | 8946              | 89190      | 45270  | 9612  | 8950.9     | 93848.8 | 46680.9 | 9855.2 | 274.0  |
| ゼロ_2回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.3        | 4.7     | 0.0     | 2.1    | 7.0    |
| スパン_2回目                                                                              | ③VOC_4種混合           | 8946              | 89190      | 45270  | 9612  | 9200.3     | 96533.7 | 48042.5 | 9980.5 | 276.0  |
| ゼロ_3回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.2        | 2.0     | 0.0     | 0.0    | 6.0    |
| スパン_3回目                                                                              | ③VOC_4種混合           | 8946              | 89190      | 45270  | 9612  | 8900.5     | 93406.0 | 46378.8 | 9782.9 | 274.0  |
| ゼロ_4回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.3        | 2.1     | 0.0     | 0.0    | 5.0    |
| スパン_4回目                                                                              | ③VOC_4種混合           | 8946              | 89190      | 45270  | 9612  | 9243.6     | 96675.4 | 48611.7 | 9945.3 | 277.0  |
| ゼロ_5回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.2        | 1.7     | 0.0     | 0.1    | 6.0    |
| スパン_5回目                                                                              | ③VOC_4種混合           | 8946              | 89190      | 45270  | 9612  | 9303.0     | 97608.9 | 48608.0 | 9976.9 | 275.0  |
| ゼロ_6回目                                                                               | 窒素                  | 0                 | 0          | 0      | 0     | 0.2        | 1.7     | 0.0     | 0.1    | 7.0    |
|                                                                                      |                     |                   |            |        | ゼロ平均値 | 0.2        | 2.5     | 0.0     | 0.4    | 5.8    |
| 繰り返し性:%                                                                              |                     |                   |            |        | 最大値偏差 | 0.0        | 0.0     | 0.0     | 0.0    | 0.4    |
|                                                                                      |                     |                   | •          |        | 最小值偏差 | 0.0        | 0.0     | 0.0     | 0.0    | -0.3   |
| 株分泌し1工:ア                                                                             | U                   |                   | <u> </u>   | ス      | パン平均値 | 9119.7     | 95614.6 | 47664.4 | 9908.2 | 275.2  |
|                                                                                      |                     |                   |            |        | 最大値偏差 | 2.0        | 2.1     | 2.0     | 0.7    | 0.7    |
|                                                                                      |                     |                   |            |        | 最小値偏差 | -2.4       | -2.3    | -2.7    | -1.3   | -0.4   |

# 2) 結果の考察

表 6-3 に試験結果をまとめた。精製空気を使用したゼロ点と校正用ガスによるスパン点における繰返し性試験を実施した。ゼロ点における偏差は0.0 %と非常に安定していた。パソコン画面上に表示されるクロマトも毎回、スタート時と終了時ともに、ベースラインに戻っていることが確認できた。また、スパン点においては $\pm 2.7$  %の偏差であり、測定成分によるばらつきの差も少なく安定していた。実証試験では、シリンジによる手動注入により試験を実施したため、最新の注意を払い、毎回同一手順にて試料を打ち込んだが、試料採取量のばらつきも含まれていると考えられる。





表6-3 繰返し性試験結果まとめ

| 実証製品    | ガス種   | 結果まとめ                                                                                                                                                                                                              |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGEA-P3 | ゼロガス  | <ul><li>○ゼロガス 窒素</li><li>○試験結果</li><li>偏差は、アセトアルデヒド:0.0%、エタノール:0.0%、アセトン:0.0%、イソプレン:0.0%であった。各成分とも、偏差は0.0%で、非常に安定した結果が得られた。</li></ul>                                                                              |
|         | 校正用ガス | ○スパン校正ガス アセトアルデヒド(8,946 ppb)、エタノール (89,190 ppb)、アセトン (45,270 ppb)、イソプレン (9,612 ppb) ○試験結果 偏差は、アセトアルデヒド: -2.4~2.0 %、エタノール: -2.3~2.1%、アセトン: -2.7~2.0%、イソプレン: -1.3~0.7%であった。各成分とも、偏差も小さくまた成分による偏差も同等レベルで、安定した結果が得られた。 |

# 3) クロマトグラム

繰返し性試験の時のクロマトグラムを重ねあわせた図を、図6-1に示す。

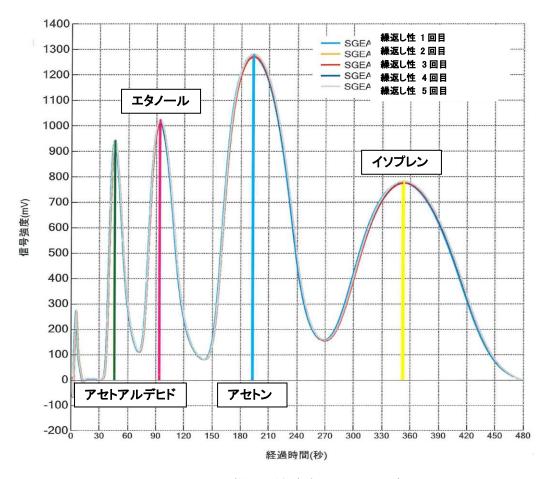
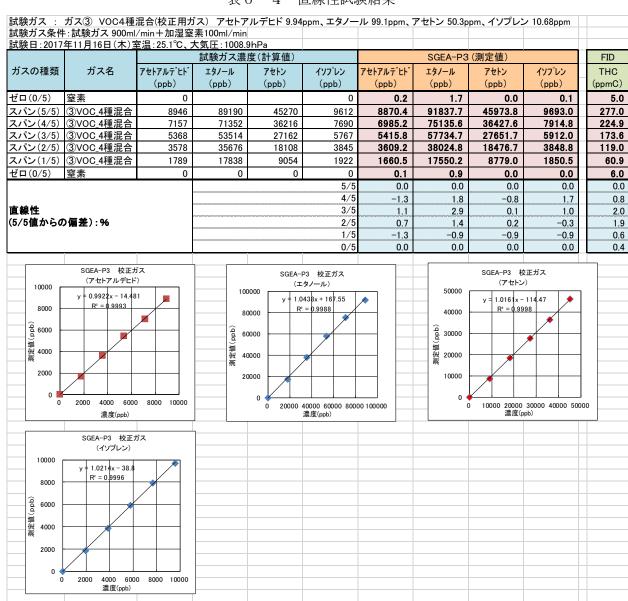



図6-1 繰返し性試験のクロマトグラム





#### 6.3 直線性試験


図5-3の試験フロー及び図5-4の試験パターンにより直線性試験を実施した。

#### 1) 試験結果

試験結果及び相関散布図を表6-4に示した。

なお、偏差(%) = (測定濃度-試験濃度) ÷試験時の最大濃度×100 とした。

表 6-4 直線性試験結果







# 2) 結果の考察

表6-5に直線性試験結果をまとめた。直線性試験は、エタノールの3/5の条件で2.9%の偏差 があった以外は、他の成分も含め全て $\pm 2$ %の偏差で、また各成分ともに、近似直線の $R^2$ 値は 0.99以上であり、良好な直線性の結果が得られた。

表6-5 直線性試験結果まとめ

| 実証製品    | ガス種   | 結果まとめ                                                                                                                                             |
|---------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| SGEA-P3 | 校正用ガス | 偏差は、アセトアルデヒド: $-1.3\sim1.1$ %、エタノール: $-1.9\sim2.9$ %、アセトン: $-0.9\sim0.2$ %、イソプレン: $-0.9\sim1.7$ %であった。各成分とも、偏差も小さくまた、成分による偏差も同等レベルで、良好な直線性が確認できた。 |

# 3) クロマトグラム

直線性試験時のクロマトグラムを図6-2に示す。

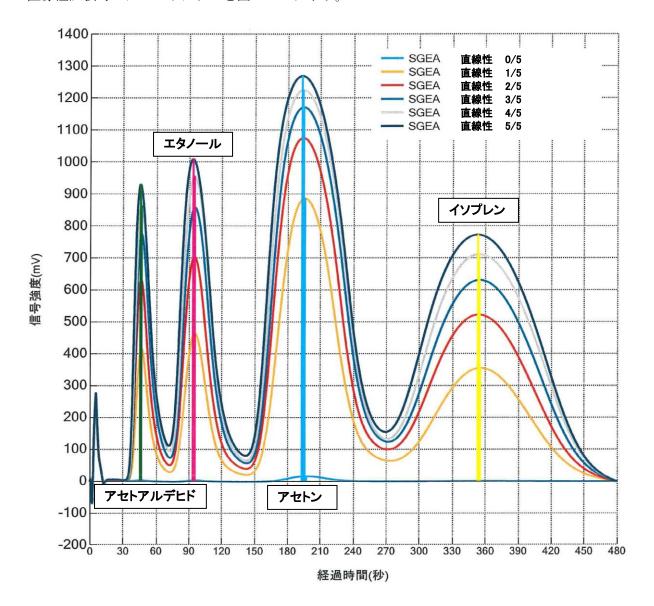
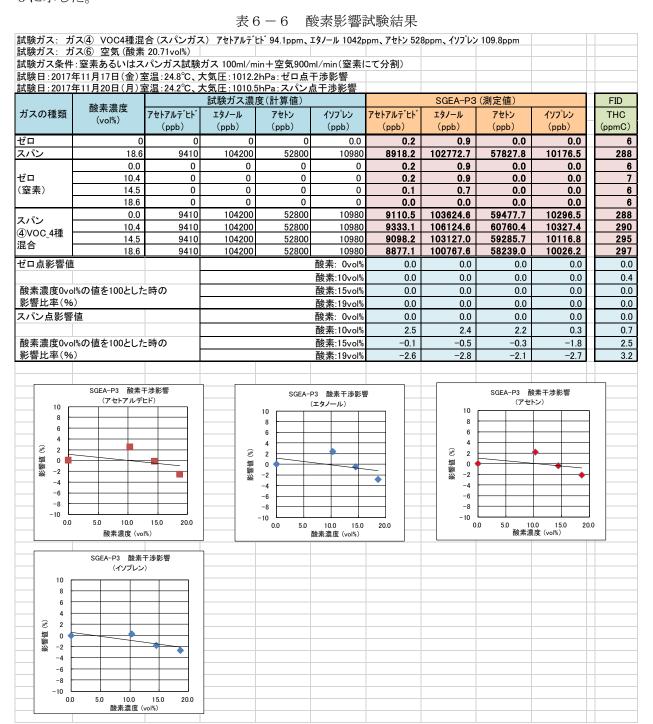



図6-2 直線性試験のクロマトグラム






#### 6.4 干渉影響試験

酸素干渉は、図5-5の試験フロー及び図5-6の試験パターン、二酸化炭素干渉は、図5-7の試験フロー及び図5-8の試験パターン、水分干渉は、図5-9の試験フロー及び図5-10の試験パターンにより実施した。

#### 6.4.1 酸素影響試験

### 1) 試験結果

酸素濃度 0 vol%時のゼロ点及びスパン点に対して、酸素濃度を変動させた時の影響比率を表 6 ー 6 に示した。







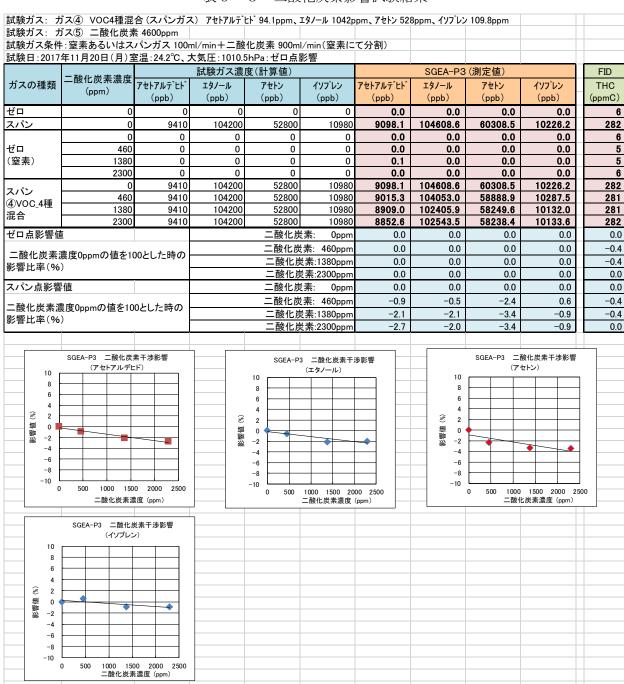
## 2) 結果のまとめ

表 6-7 に二酸化炭素干渉試験結果をまとめた。ゼロ点における二酸化炭素の影響は無く、スパン点における影響は、各測定成分における差異も少なく、最大で 2.8%であり、干渉影響が少ないことが確認できた。

表6-7 干渉影響試験(酸素)結果まとめ

| 実証製品    |      | 結果まとめ (酸素干渉影響)                                                                                                                                                                                                                                         |
|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ゼロ点  | 酸素濃度 0 vol %の測定値(ゼロ点)を基準とし、酸素濃度を 10.4 vol%、14.5 vol%及び 18.6 vol%に変動させた場合の最大偏差は、アセトアルデヒド:0.0 %、エタノール:0.0 %、アセトン:0.0 %、イソプレン:0.0 %であった。ゼロ点における酸素干渉影響としては、良好な結果であった。                                                                                      |
| SGEA-P3 | スパン点 | 酸素濃度 0 vol%の測定値を 100 (スパンガス濃度は、アセトアルデヒド: 9,410、エタノール: 104,200 ppb、アセトン: 52,800 ppb、イソプレン: 10,980 ppb) とした場合に、酸素濃度を 10.4 vol%、14.5 vol%及び 18.6 vol に変化させた場合の最大偏差は、アセトアルデヒド: -2.6%、エタノール: -2.8%、アセトン: 2.2%、イソプレン: -2.7%であった。 スパン点における干渉影響としては、良好な結果であった。 |






### 6.4.2 二酸化炭素影響試験

#### 1) 試験結果

二酸化炭素濃度 0 ppm 時のゼロ点及びスパン点に対して、二酸化炭素濃度を変動させた時の影響比率を表 6-8 に示した。

表6-8 二酸化炭素影響試験結果







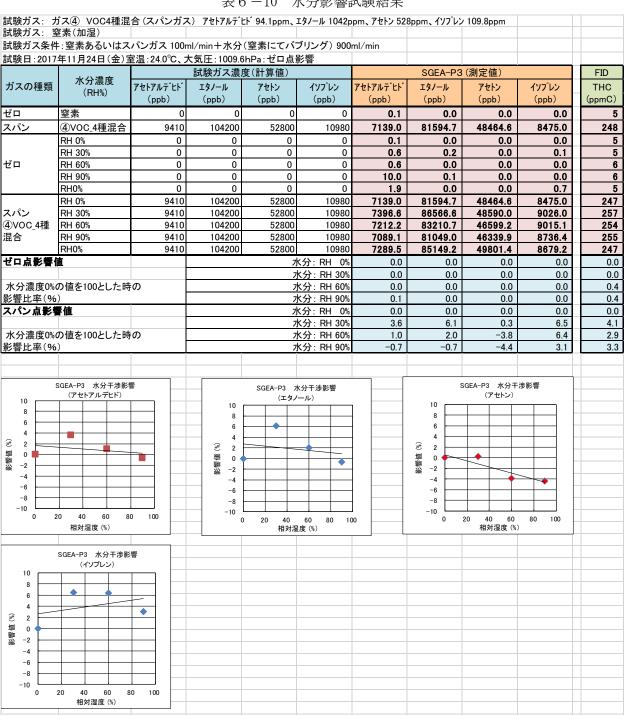
## 2) 結果のまとめ

表 6-9 に二酸化炭素干渉試験結果をまとめた。ゼロ点における二酸化炭素の影響は無く、スパン点における影響は、各測定成分における差異も少なく、最大で 3.4%であり、干渉影響が少ないことが確認できた。

表6-9 干渉影響試験(二酸化炭素)結果まとめ

| 実証製品    |      | 結果まとめ (二酸化炭素影響)                                                                                                                                                                                                                               |
|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ゼロ点  | 二酸化炭素 0 ppm (窒素導入)の測定値 (ゼロ点)を基準とし、二酸化<br>炭素濃度を 460 ppm、1380 ppm、2300 ppm に変動させた場合の最大偏差は、<br>アセトアルデヒド:0.0 %、エタノール:0.0 %、アセトン:0.0 %、イソプレ<br>ン:0.0 %であった。<br>ゼロ点における二酸化炭素影響としては、良好な結果であった。                                                       |
| SGEA-P3 | スパン点 | 二酸化炭素 0 ppm の測定値を 100 (スパンガス濃度は、アセトアルデヒド:9,410、エタノール:104,200 ppb、アセトン:52,800 ppb、イソプレン:10,980 ppb) とした場合に、二酸化炭素濃度を 460 ppm、1380 ppm、2300 ppm に変化させた場合の最大偏差は、アセトアルデヒド:-2.7%、エタノール:-2.1%、アセトン:-3.4%、イソプレン:-0.9%であった。スパン点における干渉影響としては、良好な結果であった。 |






### 6.4.3 水分影響試験

#### 1) 試験結果

室温 24<sup> $\circ$ </sup>Cにおける、相対湿度 0%時のゼロ点及びスパン点に対して、相対湿度を変動させた時の影響比率を表 6-10 に示した。

表 6-10 水分影響試験結果







#### 2) 結果のまとめ

表 6-11 に水分干渉試験結果をまとめた。ゼロ点における水分の影響は各測定成分において、見られなかった。スパン点においては最大で 6.5%の影響が確認された。成分毎の顕著なばらつきは認められなかった。

実証製品 結果まとめ (水分干渉影響)

水分濃度 (相対湿度 0%: 窒素導入) の測定値を基準とした場合の相対湿度 30 %、60 %、90 %における最大偏差は、アセトアルデヒド:0.1 %、エタノール:0.0 %、アセトン:0.0 %、イソプレン:0.0 %であった。ゼロ点における水分干渉影響としては、良好な結果であった。水分濃度 (相対湿度 0%: 窒素導入) の測定値を 100 (スパンガス濃度は、アセトアルデヒド:9,410、エタノール:104,200 ppb、アセトン:52,800 ppb、イソプレン:10,980 ppb) とした場合の相対湿度 30 %、60 %、90 %における最大偏差は、アセトアルデヒド:3.6 %、エタノール:6.1 %、アセトン: -4.4 %、イソプレン:6.5 %であった。スパン点における水分干渉影響としては、良好な結果であった。

表6-11 干渉影響試験(水分)結果まとめ

### 6.4.4 干渉影響試験まとめ

干渉影響試験は、酸素、二酸化炭素、水分の影響について、ゼロ点及びスパン点について実証試験を実施した。ゼロ点において影響はなく、スパン点においては測定成分による差異は少なかった。干渉影響としては、酸素及び二酸化炭素についいては最大で 3%程度の影響であっあが、水分干渉影響については、最大で 6.5%の影響が認められた。これは Dry ベースとの比較であるため、実運用上では、Dry ベースと Wet ベースで比較する事例も少ないと思われるため、影響は少ないと思われる。

装置の構成として、ガスクロマトグラフィーと半導体センサの組み合わせとなっているが、ガスクロマトグラフィーによる分離が有効に作用していると思われる。





### 6.5 応答時間試験

90%応答時間は各試験用ガスの繰返し性試験時に実施した。試験装置は8分に1回の計測インターバルに設定されていた。また、連続計測を実施する場合には、測定終了後、通常約1分程度の待ち時間で、次の測定が可能であった。

表6-12 応答時間試験結果まとめ

| 実証製品    | 結果まとめ  |  |  |  |
|---------|--------|--|--|--|
| SGEA-P3 | 測定時間8分 |  |  |  |

#### 6.6 再現性 (ドリフト) 試験

再現性試験は実証試験開始時に校正を行い、その後装置の校正は実施せず、実証試験終了時に再度、開始時と同条件にてスパンガスを導入し、その偏差を確認した。11 日間における偏差は 10%以内であり、また測定成分毎の感度変化のばらつきも少なく、良好な結果であった。試験結果を表 6-13 に、結果のまとめを表 6-14 に示した。

表6-13 再現性 (ドリフト) 試験結果

| 試験ガス : ガス③ VOC4種混合(校正用ガス) アセトアルデヒド 9.94ppm、エタノール 99.1ppm、アセトン 50.3ppm、イソプレン 10.68ppm |             |            |                    |            |                     |            |            |         |        |        |
|--------------------------------------------------------------------------------------|-------------|------------|--------------------|------------|---------------------|------------|------------|---------|--------|--------|
| 試験ガス条件                                                                               | ∵試験ガス 900ml | /min+加湿窒   | 素100ml/min         |            |                     |            |            |         |        |        |
| 試験日:2017:                                                                            | 年11月16日(木)1 | 4時20分 室温   | <b>昰:25.1℃、大</b> 套 | 気圧:1004.9h | Pa、再現性(I            | ドリフト)試験開   | 始          |         |        |        |
| 試験日:2017:                                                                            | 年11月27日(月)1 | 2時12分 室温   | 蒀: 23.0℃、大约        | 気圧:1016.0h | Pa、再現性(l            | ドリフト)試験終   | <b>圣</b> 了 |         |        |        |
|                                                                                      |             |            | 試験ガス濃              | 度(計算値)     |                     |            | SGEA-P3    | (測定値)   |        | FID    |
| ガスの種類                                                                                | ガス名         | アセトアルテ゛ヒト゛ | エタノール              | アセトン       | イソプ <sup>°</sup> レン | アセトアルテ゛ヒト゛ | エタノール      | アセトン    | イソプ・レン | THC    |
|                                                                                      |             | (ppb)      | (ppb)              | (ppb)      | (ppb)               | (ppb)      | (ppb)      | (ppb)   | (ppb)  | (ppmC) |
| ゼロ調整                                                                                 | 窒素          | 0          | 0                  | 0          | 0                   | 0.1        | 0.9        | 0.0     | 0.0    | 5      |
| スパン調整                                                                                | ①硫黄_3種混合    | 8946       | 89190              | 45270      | 9612                | 9303.0     | 97608.9    | 48608.0 | 9976.9 | 275    |
| 保持時間(秒)                                                                              | ①硫黄_3種混合    | _          | -                  | -          |                     | 45.7       | 93.4       | 193.1   | 353.2  | -      |
| ゼロ調整                                                                                 | 窒素          | 0          | 0                  | 0          | 0                   | 0.1        | 0.3        | 0.0     | 0.0    | 6      |
| スパン調整                                                                                | ①3種混合       | 8946       | 89190              | 45270      | 9612                | 9500.6     | 94862.1    | 53276.6 | 9674.5 | 277    |
| 保持時間(秒)                                                                              | ①硫黄_3種混合    | _          | -                  | -          |                     | 46.0       | 94.4       | 193.4   | 351.8  | _      |
| 再現性(ドリフト)                                                                            |             |            | ゼロドリフト             |            |                     | 0.0        | 0.0        | 0.0     | 0.0    | 0.4    |
|                                                                                      |             |            | スパンドリフト            |            |                     | 2.1        | -2.8       | 9.6     | -3.0   | 0.7    |

表 6-14 再現性 (ドリフト) 試験結果まとめ

| 実証製品    | 結果まとめ                                                                                                                                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| SGEA-P3 | 試験期間中の11日間(11月16日~11月27日)におけるスパン点感度変化は、アセトアルデヒド:2.1%、エタノール:-2.8%、アセトン:9.6%、イソプレン:-3.0%であった。また、保持時間の変動についても、確認を実施したが、試験期間中にずれることはなかった。 |





## 6.7 干渉影響試験 (トルエン)

トルエンは「VOC等簡易測定技術分野」において、過去の試験を実施した全ての装置において影響を確認しているため、本装置においても、参考データとして確認試験を実施した。

測定対象のガス濃度に対して、トルエンの濃度が高いため、試験は再現性試験が終了した後に実施した。

影響の程度を確認するため、トルエンは 10 倍に希釈した状態で確認試験を実施した後、測定に影響がないことが確認できたため、高濃度 (94.0 ppm) のトルエンの影響も確認した。試験結果を表 6-15 に、結果のまとめを表 6-16 に示した。

表6-15 干渉影響試験(トルエン)結果

| 試験ガス:                                                 | ガス⑦ トルエン    | 104ppm  |           |              |      |               |       |       |        |        |
|-------------------------------------------------------|-------------|---------|-----------|--------------|------|---------------|-------|-------|--------|--------|
| 試験ガス条件: 試験ガス 900ml/min+加湿窒素100ml/minを分割器にて1/10及び10/10 |             |         |           |              |      |               |       |       |        |        |
| 試験日:2017                                              | 年11月27日(月)1 | 4時55分 室 | 温:23.0℃、丿 | マラス : 1016.0 | lhPa |               |       |       |        |        |
|                                                       |             |         | 試験ガス濃     | 度(計算値)       |      | SGEA-P3 (測定值) |       |       |        | FID    |
| ガスの種類                                                 | ガス名         | トルエン    | トルエン      |              | _    | アセトアルテ゛ヒト゛    | エタノール | アセトン  | イソプ・レン | THC    |
|                                                       |             | (ppm)   | (ppmC)    | ı            | _    | (ppb)         | (ppb) | (ppb) | (ppb)  | (ppmC) |
| ゼロ                                                    | ⑦トルエン       | 9.4     | 65.8      | 1            | -    | 0.0           | 0.1   | 0.0   | 0.0    | 66     |
| ゼロ                                                    | ⑦トルエン       | 94.0    | 658.0     | ı            | _    | 0.0           | 0.0   | 0.0   | 0.0    | 664    |

表6-16 干渉影響(トルエン)試験結果まとめ

| 実証製品    | 結果まとめ                      |
|---------|----------------------------|
| SGEA-P3 | トルエンに対する影響は各成分とも全く見られなかった。 |





# 6.8 実証試験結果まとめ

# 表6-17 実証試験結果まとめ

| 視点   | SGEA-P3 結果まとめ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 信頼性  | 繰返し性試験、直線性試験、干渉影響試験のいずれの試験においても、測定成分毎のばらつきはなく、いずれの試験においても良好な性能を有していた。<br>干渉成分の影響については、酸素、二酸化炭素、水分ともに、ゼロ点における影響は最大で 0.1 %以下であり、影響は見られなかった。また、スパン点においても酸素、二酸化炭素の影響は最大で 3.4 %以下であり、水分干渉影響も最大で 6.5 %以下であった。再現性 (ドリフト) も 2 週間での変動幅は 9.6 %以下であり、安定していた。<br>測定毎に表示されるクロマトグラムのベースラインも安定しており、測定精度及び安定性に優れた装置である。                                                                                                                                                                                                                      |  |  |  |  |  |
| 実用性  | 実証試験では、アセトアルデヒド、エタノール、アセトン、イソプレンの4成分を測定対象とした装置の実証試験を実施した。 実証試験を実施した装置はシリンジによる手動注入の方式であり、1回の測定が8分で完了する。測定対象成分及びガスクロマトグラフィーであることを考慮すると、非常に早い応答速度を有しており、作業効率の向上や、連続測定(オプション)においては、測定周期の短縮化が実現できる。装置の制御や濃度演算は全てパソコンからコントロールする。AC 100Vの供給が可能な場所であれば、装置は小型・軽量のため現場でのオンサイト測定にも使用が可能。 測定中はパソコンの画面にクロマトグラムがリアルタイムで表示されるため、計測の状況が見えてわかりやすい。 データはエクセルに CSV 形式で出力が可能で、パソコン上で取得済みデータのガスクロマトグラムの重ねがきや、検量線の表示などが出来るため、使用しやすい。 操作手順は一度使用してからは、簡単かつ容易である。取扱説明書(操作マニュアル)は、写真やパソコンの画面表示など図も多くわかりやすく記載されている。測定は、シリンジを使用して注入する方式が標準であるが、装置にシリンジで試 |  |  |  |  |  |
| 簡便性  | 料の打ち込みを行うと、測定は自動で開始し、測定終了後には、パソコン上に濃度<br>要性 表示がされ、約1分後にスタンバイ状態となり、次の測定が可能となる。操作は非<br>常に簡易であった。<br>また、装置の校正は、通常の測定画面(状態)から対話形式で簡易に実施するこ<br>とができるため、測定対象の濃度での校正が簡易にできる。                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 装置仕様 | 測定成分VOC 4 成分:<br>アセトアルデヒド、エタノール、アセトン、イソプレン測定原理半導体ガスセンサを使用したガスクロマトグラフィー測定レンジアセトアルデヒド:5~10,000 ppb、 エタノール:200~100,000 ppbアセトン:20~50,000 ppb、 イソプレン:10~10,000 ppbキャリアガス清浄空気(本体内蔵ポンプにより吸引)重量・電源重量:約6.5 kg 電源:AC100 V 約100 VA外形寸法外形寸法:W260×H135×D435                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|      | 価格 195 万円~300 万円 (定価:仕様による)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

VOC 等簡易測定技術分野 SGEA-P3 (センサガスクロマトグラフ) NISSHA エフアイエス株式会社





# 7. データの品質管理、監査

実証試験の実施にあたっては、実証試験計画及び品質管理マニュアルに基づきデータの品質管理を行った。また、実証試験終了後に監査を実施し、現場にて指示値を読み取りエクセルに記入した値と、付属のパソコンに保存されたデータの値とのクロスチェックを実施すると共に、実証試験が適切に行われていたことを確認した。





# 〇 付録

### 1. 用語の定義(JIS)

主な用語の定義は日本工業規格(以下 JIS) に準ずるものとする。特に、関連の深い JIS としては以下が挙げられる:

- JIS B 7989 排ガス中の揮発性有機化合物 (VOC) の自動計測器による測定方法
- JIS K 0055 ガス分析装置校正方法通則
- JIS K 0095 排ガス試料採取方法
- JIS K 0211 分析化学用語(基礎部門)
- JIS K 0212 分析化学用語(光学部門)
- JIS K 0213 分析化学用語(電気化学部門)
- JIS K 0215 分析化学用語(分析機器部門)
- JIS Z 8103 計測用語

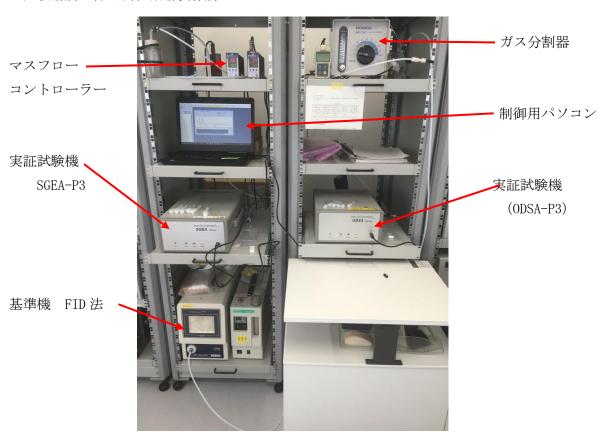




# 2. 実証試験要領で使用している用語

## 実証試験要領中の用語の定義

| 用語      | 定義                                                                         |
|---------|----------------------------------------------------------------------------|
| 実証対象技術  | 実証試験を行う技術に関し、実証の核となる理論や性能(本実証試験要                                           |
| 关证对象仅例  | 領では「VOC 等簡易測定技術」)                                                          |
| 実証対象製品  | 実証対象技術を機器・装置として具現化したもののうち、実証試験で実                                           |
| 关础内象表面  | 際に使用するもの(具体的には「○○社」の「○○計測器」など)                                             |
| 実証項目    | 実証対象製品の性能を測るための項目 (感度、応答時間など)                                              |
| ゼロ(ガス)  | 機器・装置の最小目盛値をゼロ(点)と呼び、その目盛をあわせるガス                                           |
| ゼロ校正    | をゼロガス、ゼロの目盛をあわせることを、ゼロ校正と言う。                                               |
| スパン(ガス) | 機器・装置の最大目盛値をスパン(点)と呼び、その目盛をあわせるガ                                           |
| スパン校正   | スをスパンガス、スパンの目盛をあわせることを、スパン校正と言う。                                           |
|         | 機器・装置のガス濃度に対する濃度出力の相関性(直線性)を確認する                                           |
| 分割点     | ために、スパンガス濃度を均等に希釈するが、この均等に希釈した比率                                           |
|         | を分割点という。                                                                   |
|         | ドリフト試験で使用している感度は、機器・装置の能力としての分解能                                           |
| 感度      | ではなく、濃度が同一のガスを導入した場合の機器・装置からの濃度出                                           |
|         | 力の変化量を意味する。                                                                |
|         | 本実証試験で、測定対象とする試験ガスの1種。                                                     |
| 模擬ガス    | 実際に使用される現場や実証対象技術の仕様から想定される複数のガス                                           |
|         | 種を混合した試料ガス(模擬ガス)。                                                          |
|         | 同一の実証対象製品で、ゼロ試験用ガスとスパン試験用ガスを3回以上測定                                         |
| 操返し性    | し、ゼロ指示値、スパン指示値の各々の平均値を算出し、各測定値と平均値                                         |
|         | との差の最大目盛値に対する百分率を求めたもの。<br><b>定義</b>                                       |
| /       | , = 4.4                                                                    |
| 直線性     | 試験用ガスの濃度を幾つかに分割し、各濃度とその指示値との相関を確認<br>する。(分割例:ゼロガス、25%、50%、75%、100%(スパンガス)) |
|         | 試料ガス中の測定対象成分以外の共存ガスによる測定値に対する影響値。ガ                                         |
| 干渉影響    | スとしては水分、酸素濃度、二酸化炭素濃度等通常に大気に含まれるガス。                                         |
|         | 測定器の指示値が、試験用ガスを導入してから最終指示値の 90%に相当                                         |
| 応答時間    | する値に達するのに要する、応答遅れ時間(lag time)と立ち上がり時間(rise                                 |
|         | time)とを合わせた時間。                                                             |
| 相対感度    | 実証対象製品において、基準となる物質(例:トルエン等)の感度を1と                                          |
|         | した合、その他の物質の感度を基準となる物質との比率で求めたもの。                                           |
| 五祖州     | 同一の実証対象製品で、試験期間中にスパン試験用ガスを測定し、各々の測                                         |
| 再現性     | 定値と平均値との差の最大目盛値に対する百分率を求めたもの。ドリフト試   験とも言う。                                |
|         |                                                                            |






# 〇 資料編

## 実証試験場所及び装置写真

試験場所:株式会社堀場製作所



実証試験現場全体



実証試験装置 SGEA-P3



ガスシリンジ 6ml







基準器 (東亜ディーケーケー: GHT-200)



ガス分割器 (堀場エステック: SGD-710C)



マスフロー (堀場エステック:N-100、PE-D20)



相対湿度計 (CHINO: HN-CH)



混合器 (パイレックス)



加湿器