三晃クールガードバルーン Si 三晃金属工業株式会社

ヒートアイランド対策技術分野 実証番号 051 - 1235 第三者機関が実証した 性能を公開しています www.env.go.jp/policy/etv 本ロゴマークは一定の基準に適合していることを 認定したものではありません

本実証試験結果報告書の著作権は、環境省に属します。

〇 全体概要

実証対象技術/	三晃クールガードバルーン Si/
実証申請者	三晃金属工業株式会社
実証機関	一般財団法人建材試験センター
実証試験期間	平成24年8月31日~平成25年3月11日

1. 実証対象技術の概要

建築物の屋根(屋上)に日射反射率の高い塗料を塗布する技術 ※技術の特徴などの情報は、4.参考情報(概要版7ページ)を参照。

2. 実証試験の概要

2.1 空調負荷低減等性能

屋根・屋上用高反射率塗料の熱・光学特性を測定し、その結果から、下記条件における対象建 築物の屋根(屋上)に屋根・屋上用高反射率塗料を塗布した場合の効果(冷房負荷低減効果等) を数値計算により算出した。数値計算は、実証対象技術の灰色の測定結果を用いて行った。なお、 数値計算の基準は、灰色 (N6) の一般塗料とした。ただし、実証対象技術の灰色の明度 V が 6.0 ±0.2 の範囲内にないものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細 版本編 4.2.2.(3)に示す推定式(詳細版本編 18ページ参照)により算出した。

2.1.1. 数値計算における設定条件

(1) 対象建築物

工場 [床面積:1000m²、最高高さ:10.8m、構造:S造(鉄骨造)]

注) 周囲の建築物等の影響による日射の遮蔽は考慮しない。 対象建築物の詳細は、詳細版本編 4.2.2(1)①対象建築物(詳細版本編 13 ページ)参照。

(2) 使用気象データ

拡張アメダス気象データ標準年(1981年~1995年)(東京都及び大阪府)

(3) 空調機器設定

建築物	設定温度(°C)		稼働時間	冷房 COP	暖房 COP
连架物	冷房	暖房	作外刊》 时间	和 厉 COI	吸厉 UU1
工場	28.0	18.0	平日 8~17 時	3.55	3.90

電力量料金単価の設定 (4)

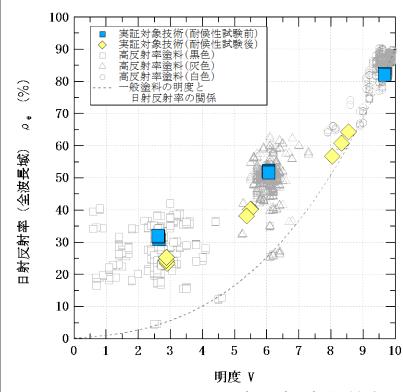
地域	建築物	+西 3年 4刀 8万 4手 Dil	電力量料金単価(円/kWh)		
地域	连采彻	標準契約種別	夏季	その他季	
東京	工場	高圧電力 A	16.20 [13.59]	15.12 [12.51]	
大阪	上场	高圧電力 BS	12.59	11.53	

2.2 環境負荷・維持管理等性能

一般財団法人建材試験センター中央試験所の敷地内(埼玉県草加市)で屋外暴露試験を 4 ヶ 月間(10月~2月)実施した。屋外暴露試験終了後、熱・光学性能の測定を行い、屋外暴露試 験前後の測定値の変化を確認した。

3. 実証試験結果

- 3.1 空調負荷低減等性能及び環境負荷・維持管理等性能
- (1) 熱·光学性能及び環境負荷·維持管理等性能試験結果*1 (平均値)【実証項目】

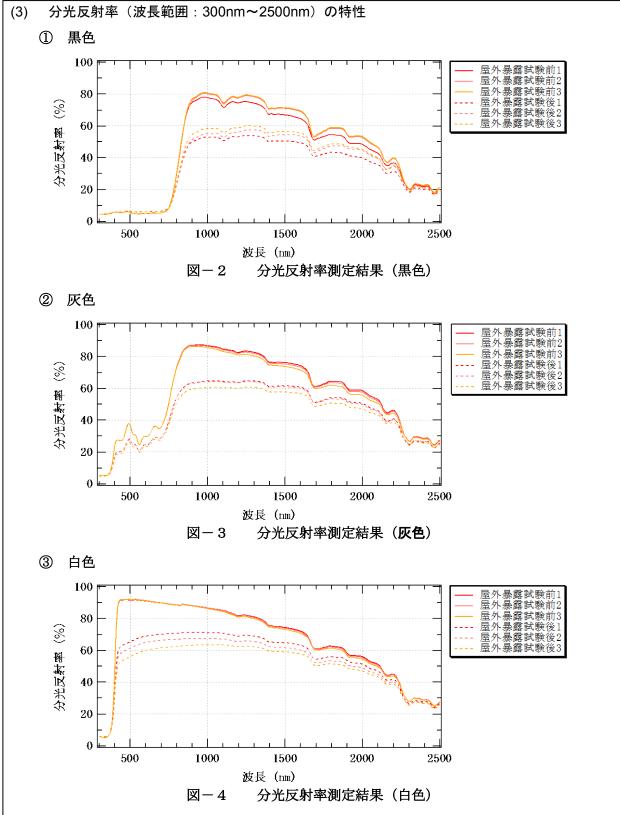

			黒	色	灰色 白色		色	
			屋外暴露 試験前	屋外暴露 試験後	屋外暴露 試験前	屋外暴露 試験後	屋外暴露 試験前	屋外暴露 試験後
日射反射率	近紫外及び 可視光域 ^{*2}	(%)	5.8	6.4	32.7	25.3	84.4	58.9
	近赤外域 ^{*3}	(%)	64.2	47.0	77.1	58.1	79.5	63.0
	全波長域*4	(%)	31.5	24.3	52.0	39.6	82.2	60.6
修正放射率(長波放射率) (—)		0.91	0.92	0.89	0.91	0.88	0.89	
明度 (—)		2.6	2.9	6.1	5.5	9.7	8.3	

*1:結果は、試験結果(試験体数量 n=3)の平均値である。

*2:近紫外及び可視光域の波長範囲は、300 nm~780nm である。

*3:近赤外域の波長範囲は、780 nm~2500nm である。 *4:全波長域の波長範囲は、300 nm~2500nm である。

(2) 明度と日射反射率(全波長域)の関係【実証項目】


※左図は、平成20年度~平成24年度環境技術実証事業ヒートアイランド対策技術分野(建築物外皮による空調負荷低減等技術)において実証を行った高反射率塗料と一般塗料の明度と日射反射率(全波長域)の関係を示したものである。

※明度 V が 10 に近い白色では、 一般塗料と高反射率塗料と高反射率塗料と高反射率塗料は、近赤外域での反射率塗料は、近赤外域での反射を高くする技術を使用していた。 無色でも日射反射率を高くにないより、 無色で持っている。 とでは一般塗はない によりに できれている。 とでは が、灰色、黒色では明らい が、灰色、黒色ではれている。 を対象に差が現れている。

(詳細は、詳細版本編 27 ページ 【注意事項】)

図-1 明度と日射反射率(全波長域)の関係

三晃金属工業株式会社

- 屋外暴露試験の番号は試験体に任意に付したものである。屋外暴露試験前の測定は、施工時 のばらつきを考慮し、n=3(n:試験体数量)として測定した。屋外暴露試験による性能劣化 を把握するため、試験終了後に測定を行った。
- **※** 屋外暴露試験は、一般財団法人建材試験センター中央試験所内(埼玉県草加市)にて行った。

3.1.2. 数値計算により算出する実証項目

実証項目の計算結果 (1)

【算出対象区域:工場全体〔屋上表面温度低下量及び顕熱量低減効果は、屋根(屋上)〕】

比較対象:一般塗料

比較对象:一般垄科							
		東京都	大阪府				
		工場					
屋根(屋上)表面温度低下量 (夏季 14 時)* ¹		8.1 °C	8.4 °C				
		(51.6°C→ 43.5 °C)	(54.1°C→ 45.7 °C)				
	4 ht 4 10 ±2	1.4 °C	1.3 °C				
室温上昇 抑制効果* ¹	自然室温*2	(36.6°C→ 35.2 °C)	(36.7°C→ 35.4 °C)				
抑制効果 (夏季 14 時)	仕咸泪 亩∗³	1.7 °C	1.7 °C				
	体感温度*3	(38.5°C→ 36.8 °C)	(38.5°C→ 36.8 °C)				
		685 kWh/月	796 kWh/月				
│ │	熱量	(13,156kWh/月 → 12,471kWh/月)	(16,735kWh/月 → 15,939kWh/月)				
低 <i>減</i> が未 (夏季1ヶ月)		5.2 % 低減	4.8 % 低減				
	電気料金	3,125 円低減 [2,621 円低減]	2,824 円低減				
	熱量	1,887 kWh/4 ヶ月	2,237 kWh/4 ヶ月				
│ │ 冷房負荷 低減効果* ⁴		(31,038kWh/4 ヶ月 → 29,151kWh/4 ヶ月)	(35,886kWh/4 ヶ月 → 33,649kWh/4 ヶ月)				
低概効果 (夏季 6~9 月)		6.1 % 低減	6.2 % 低減				
	電気料金	8,500 円低減 [7,111 円低減]	7,830 円低減				
 昼間の対流顕熱		大気への放熱を 39.8 % 低減	大気への放熱を 40.4 % 低減				
(夏季1		(220,939MJ/月 → 132,988MJ/月)	(237,245MJ/月 → 141,477MJ/月)				
尽問の対流顕勢	地景低減効里	大気への放熱を 40.8 % 低減	大気への放熱を 41.2 % 低減				
昼間の対流顕熱量低減効果 (夏季 6~9 月)		(758,390MJ/4 ヶ月 → 449,331MJ/4 ヶ月)	(867,517MJ/4 ヶ月 → 510,435MJ/4 ヶ月)				
夜間の対流顕熱		大気への放熱を 6.7 % 低減	大気への放熱を 9.0 % 低減				
(夏季1	ヶ月)	(-16,392MJ/月→ -17,486 MJ/月)	(-18,128MJ/月→ -19,753 MJ/月)				
あ問の対流顕熱	九	大気への放熱を 6.9 % 低減	大気への放熱を 8.8 % 低減				
夜間の対流顕熱量低減効果 (夏季 6~9 月)		(-69,582MJ/4 ヶ月 → -74,365MJ/4 ヶ月)	(-79,891MJ/4 ヶ月 → -86,887MJ/4 ヶ月)				

^{*1:8}月1日~10日の期間中最も日射量の多い日時における対象部での屋根表面温度・室温の抑制効果

^{*2:} 冷房を行わないときの室温

^{*3:} 平均放射温度 (MRT) を考慮した温度 (空気温度と MRT の重み付き平均)

^{*4:}夏季1ヶ月(8月)及び夏季(6~9月)において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷 房負荷低減効果

注 1) 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものであり、実際の導入環境とは異なる。なお、 数値計算の基準は、灰色 (N6) の一般塗料とした。ただし、実証対象技術の灰色の明度 V が 6.0 ± 0.2 の範囲内にな いものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版本編 4.2.2.(3)に示す推定式(詳細版 本編18ページ参照)により算出した。

注 2) 電気料金のうち、括弧内に示す値は、平成 23 年度に当分野で設定した電力量料金単価に基づき算出したものである。

(2) 参考項目の計算結果 【算出対象区域:工場全体】

比較対象:一般塗料

		東京都	大阪府			
		工場				
		2,166 kWh/年	2,548 kWh/年			
│ │	熱量	(32,364kWh/年 → 30,198kWh/年)	(37,371kWh/年 → 34,823kWh/年)			
(年間空調)		6.7 % 低減	6.8 % 低減			
	電気料金	9,687 円低減 [8,093 円低減]	8,841 円低減			
		-522 kWh/月	-433 kWh/月			
暖房負荷 低減効果* ²	熱量	(15,628kWh/月 → 16,150kWh/月)	(19,160kWh/月 → 19,593kWh/月)			
(冬季1ヶ月)		-3.3 % 低減	-2.3 % 低減			
	電気料金	-2,021 円低減 [-1,672 円低減]	-1,279 円低減			
		-1,857 kWh/6 ヶ月	-1,611 kWh/6 ヶ月			
暖房負荷 低減効果* ²	熱量	(70,527kWh/6 ヶ月 → 72,384kWh/6 ヶ月)	(73,759kWh/6 ヶ月 → 75,370kWh/6 ヶ月)			
(冬季 11~4 月)		-2.6 % 低減	-2.2 % 低減			
	電気料金	-7,195 円低減 [-5,954 円低減]	-4,759 円低減			
	熱量	31 kWh/年	626 kWh/年			
冷暖房負荷 低減効果* ³		(101,565kWh/年 → 101,534kWh/年)	(109,645kWh/年 → 109,019kWh/年)			
(期間空調)		0.0 % 低減	0.6 % 低減			
	電気料金	1,305 円低減 [1,157 円低減]	3,071 円低減			

- *1:年間を通じ室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果
- *2:冬季1ヶ月(2月)及び冬季(11~4月)において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の暖房 負荷低減効果
- *3:夏季(6~9月)において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合及び冬季(11~4月)におい て室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の冷暖房負荷低減効果
- 注 1) 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものであり、実際の導入環境とは異なる。なお、 数値計算の基準は、灰色 (N6) の一般塗料とした。ただし、実証対象技術の灰色の明度 ${
 m V}$ が 6.0 ± 0.2 の範囲内にな いものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版本編 4.2.2.(3)に示す推定式(詳細版 本編18ページ参照)により算出した。
- 注 2) 電気料金のうち、括弧内に示す値は、平成 23 年度に当分野で設定した電力量料金単価に基づき算出したものである。

(3) (1)実証項目の計算結果及び(2)参考項目の計算結果に関する注意点

① 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものである。実際の 導入環境とは異なる。

- ② 熱負荷の低減効果を熱量単位 (kWh) だけでなく、電気料金の低減効果 (円) としても 示すため、定格出力運転時における消費電力 1kW当たりの冷房・暖房能力(kW)を表 したCOP及び電力量料金単価を設定している。
- ③ 数値計算において設定した冷暖房の運転期間は、下記の通りとした。

 夏季 14 時 : 8月1日~10日の期間中最も日射量の多い日の14時

夏季1ヶ月 : 8月1~31日

• 夏季6~9月 : 6月1日~9月30日

: 2月1日~28日 冬季1ヶ月

• 期間空調 : 冷房期間 6~9 月及び暖房期間 11~4 月

年間空調 : 冷房期間1年間*1

*1: 設定温度よりも室温が高い場合に冷房運転を行う。

- ② 冷房・暖房負荷低減効果の熱量の欄には、実証対象技術の使用前後の熱負荷の差および 使用前後の熱負荷の総和をそれぞれ示している (使用前→使用後)。
- ⑤ 電気料金について、本計算では屋根・屋上用高反射率途料の途布による室内熱負荷の差 を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、 熱負荷の変化に伴う空調電気料金の差額のみを示している(電気料金の算出に関する考 え方は詳細版本編28ページ【電気料金算出に関する考え方】に示す)。

3.2 環境負荷·維持管理等性能【参考項目】

【付着性試験】*1*2(平均值)

	屋外暴露試験前	屋外暴露試験後
付着強さ(N/mm²)	0.6	0.5

*1:結果は、試験結果(試験体数量 n=3)の平均値である。

*2:破壊状況は、詳細版本編 5.2 に詳細を示す(詳細版本編 26 ページ参照)。

三晃クールガードバルーン Si

三晃金属工業株式会社

4. 参考情報

(1)実証対象技術の概要(参考情報)及び(2)その他メーカーからの情報(参考情報)は、全て 実証申請者が自らの責任において申請したものであり、環境省及び実証機関は、内容に関して一 切の責任を負いません。

実証対象技術の概要 (参考情報) (1)

	項目	実証申請者記入欄					
	実証申請者	三晃金属工業株式会社 (英文表記:Sanko Metal Industrial Co., Ltd.)					
ł	支術開発企業名	日塗化学株式会社 (英文表記: Nitto Chemical Co., Ltd.)					
実証対象製品・名称 実証対象製品・名称 (英文表記: Sanko Cool Guard Balloon Si)							
実	証対象製品·型番						
	TEL	03-5446-5612					
連絡	FAX	03-5446-5631					
光	Web アドレス	http://www.sankometal.co.jp/	http://www.sankometal.co.jp/				
	E-mail	rifure@snkk.jp					
	技術の特徴	高い近赤外線反射率により、遮熱効果が得られる。中塗りは中空バルーンを使用している。また、下塗りとの組合せにより、高い防食性能も兼ね備える。					
設	対応する 建築物・部位など	学校施設、工場、倉庫の金属屋根など					
置 施工上の留意点 ゴミ、異物や旧塗膜が浮き塗膜である場合には、除去すること。結露状条 施工上の留意点 工は、やめること。							
件	その他設置場所 等の制約条件	一般暴露環境において 10 年間保証(塗膜の剥離・錆の発生)					
	テナンスの必要性 実性・製品寿命など						
	コスト概算	設計施工価格(材工共) 3,900 円 1m ² あたり					

(2) その他メーカーからの情報(参考情報)

- ・日本塗料工業会色見本帳を基準として調色可能。
- ・超厚膜型下塗り塗料(120 µ m)による防錆、防食効果がある。