| FY2014<br>Results of the Radioactive Material Monitoring in the Water Environr | nent |
|--------------------------------------------------------------------------------|------|
| March 2016<br>Ministry of the Environment                                      |      |

# Contents

| Outline                                                                                                           | Japan |
|-------------------------------------------------------------------------------------------------------------------|-------|
| 1. Objective and Details                                                                                          |       |
| 1.1 Objective                                                                                                     | 6     |
| 1.2 Details                                                                                                       | 6     |
| 2. Survey Methods and Analysis Methods                                                                            | 18    |
| 2.1 Survey methods                                                                                                | 18    |
| 2.2 Analysis methods                                                                                              | 19    |
| 3. Results                                                                                                        | 21    |
| 3.1 Detection of total β radioactivity and γ-ray emitting radionuclides                                           | 21    |
| (1) Public water areas                                                                                            | 21    |
| 1) Water                                                                                                          | 21    |
| 2) Sediments                                                                                                      | 23    |
| (2) Groundwater                                                                                                   | 26    |
| 3.2 Consideration regarding detected radionuclides                                                                | 29    |
| (1) Detection of naturally occurring radionuclides                                                                | 29    |
| 1) Correlation between activity concentrations of K-40 and salinity                                               | 29    |
| 2) Uranium and thorium series radionuclides                                                                       | 32    |
| (2) Detection of artificial radionuclides                                                                         | 36    |
| 1) Cs-134 and Cs-137 in sediments                                                                                 | 36    |
| 2) Cs-134 and Cs-137 in water                                                                                     | 44    |
| 3) Cs-134 and Cs-137 in groundwater                                                                               | 44    |
| 3.3 Survey to check annual variation                                                                              | 45    |
| Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefe (FY2011 to FY2014) |       |
| 1. Objective and Details                                                                                          | 47    |
| 1.1 Objective                                                                                                     | 47    |
| 1.2 Details                                                                                                       | 47    |
| Survey Methods and Analysis Methods                                                                               | 49    |
| 2.1 Survey methods                                                                                                | 49    |
| 2.2 Analysis methods                                                                                              | 49    |
| 3. Outline of the Results                                                                                         | 51    |
| 3.1 Detection of radioactive cesium                                                                               | 51    |
| 3.2 Detection of radionuclides other than radioactive cesium                                                      | 55    |
| 4. Results (Radioactive Cesium (Cs-134 and Cs-137))                                                               | 56    |
| 4.1 Water                                                                                                         | 56    |
| (1) Public water areas                                                                                            | 56    |
| 1) Rivers                                                                                                         | 56    |

| 2) Lakes                                                                           | 56                |
|------------------------------------------------------------------------------------|-------------------|
| 3) Coastal areas                                                                   | 56                |
| (2) Groundwater                                                                    | 56                |
| 4.2 Sediments                                                                      | 61                |
| (1) Public water areas (rivers)                                                    | 61                |
| (2) Public water areas (lakes)                                                     | 61                |
| (3) Public water areas (coastal areas)                                             | 61                |
| 4.3 Detection of radioactive materials in sediments by location                    | 65                |
| (1) Evaluation policy                                                              | 65                |
| (2) Concentration levels in sediment samples from rivers, lakes, and coastal areas | and their changes |
| by prefecture                                                                      | 68                |
| (2)-1 Rivers                                                                       | 68                |
| (2)-2 Lakes                                                                        | 86                |
| (2)-3 Coastal areas                                                                | 102               |
| (3) Conclusion                                                                     | 112               |
| 5. Results (Radionuclides Other than Radioactive Cesium)                           | 121               |
| 5.1 Radioactive iodine (I-131)                                                     | 121               |
| (1) Water                                                                          | 121               |
| 1) Public water areas                                                              | 121               |
| 2) Groundwater                                                                     | 121               |
| (2) Sediments                                                                      | 121               |
| 5.2 Radioactive strontium (Sr-90 and Sr-89)                                        | 124               |
| (1) Public water areas                                                             | 124               |
| (2) Groundwater                                                                    | 127               |
| 5.3 Other γ-ray emitting radionuclides                                             | 128               |
| Part 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2014)        | 132               |
| 1. Outline of the Monitoring                                                       |                   |
| 1.1 Covered monitoring                                                             |                   |
| 1.2 Compilation methods                                                            | 132               |
| 2. Results                                                                         | 135               |
| 2.1 Water                                                                          | 135               |
| (1) Inland water                                                                   | 135               |
| (2) Seawater                                                                       | 136               |
| 2.2 Sediments                                                                      | 137               |
| (1) Inland water sediments (river sediments and lake sediments)                    | 137               |
| (2) Sea sediments                                                                  | 138               |

# **Outline**

The following show the outline of the results of the FY2014 Monitoring of Radioactive Materials based on the Water Pollution Control Act.

Monitoring locations are as shown in Figure 1 and Figure 2.

# 1. National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2014)

- Monitoring that was commenced in FY2014 at 110 locations for both public water areas and groundwater in 47 prefectures for the purpose of clarifying the distribution of radioactive materials in those areas nationwide (hereinafter referred to as the "Nationwide Monitoring")
- $\circ$  The total  $\beta$  radioactivity and detected  $\gamma$ -ray emitting radionuclides were within the past measurement trends except for one location where a relatively higher value than past records was measured in the sediment. Detection limits vary by radioactive material and monitoring location but were around 0.001 to 0.1 Bq/L for water and around 1 to 100 Bq/kg for sediments<sup>1</sup>.
- o There were locations where the value of K-40 was rather high in public water areas and groundwater, but this was considered to have been caused by the influence of seawater.
- Naturally occurring radionuclides that have not been included in nationwide surveys so far or have not been
  detectable in past surveys were detected but they were considered to be all thorium series radionuclides or
  uranium series radionuclides that are generally contained in natural soils and rocks, etc.
- o At some monitoring locations for public water areas, artificial radionuclides, Cs-134 and Cs-137, exceeding their detection limits were detected, but their values were within the past measurement trends<sup>2</sup>.
- It is appropriate to continue this monitoring the following fiscal year onward in order to clarify the distribution of radioactive materials in the water environment.

# Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2011 to FY2014)

- Monitoring that has been conducted continuously since August 2011 in response to the accident at the Tokyo Electric Power Company's Fukushima Daiichi NPS (hereinafter referred to as the "Fukushima NPS Accident"), at around 600 locations for public water areas and around 400 locations for groundwater in and around Fukushima Prefecture for the purpose of clarifying the distribution of the accident-derived radioactive materials in the water environment (hereinafter referred to as the "Post-Earthquake Monitoring")
- The outline of the results of the measurement of radioactive cesium after the commencement of the FY2011 monitoring up to FY2014 is as follows.

<sup>&</sup>lt;sup>1</sup> See Table 3-1-1, Table 3-1-2, and Table 3-1-3 of the report for the details of detection limits.

<sup>&</sup>lt;sup>2</sup> "Within the past measurement trends" means that the results of the latest monitoring survey are evaluated from a technical perspective as not displaying extreme deviation from the results of past similar monitoring surveys (such as the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted by the Nuclear Regulation Authority, and the Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture).

#### < Public water areas >

#### 1) Water (detection limit: 1 Bq/L)

- Detection rates (number of detections/number of samples) were generally decreasing for rivers and lakes in all surveyed prefectures, and radioactive materials have not been detected in prefectures other than Fukushima Prefecture since FY2013.
- Radioactive materials were not detectable at any surveyed locations in coastal areas.

#### 2) Sediments (detection limit: 10 Bg/kg)

#### a) Concentration distribution

- Rivers: There were some locations in Hamadori and Aizu in Fukushima Prefecture and in Ibaraki and Chiba Prefectures where activity concentrations were at relatively high levels. In other prefectures, concentrations were mostly at relatively low levels, although some locations showed relatively high concentrations.
- Lakes: There were some locations in Hamadori in Fukushima Prefecture where activity concentrations were at relatively high levels. In other prefectures, concentrations were mostly at relatively low levels, although some locations showed relatively high concentrations.
- Coastal areas: There were some locations in Miyagi and Fukushima Prefectures where activity concentrations were at relatively high levels. In other prefectures, concentrations were mostly at relatively low levels.

#### b) Changes in activity concentrations

- Rivers: A decreasing trend was observed in concentration levels at most locations.
- Lakes: Activity concentrations were generally decreasing or unchanged at most locations with some locations showing fluctuations. There were also a few locations where an increasing trend was observed.
- Coastal areas: Activity concentrations were generally decreasing at most locations with some locations showing fluctuations.

# < Groundwater >

- Radioactive materials were not detectable in groundwater at any surveyed locations except for the two locations where they were detected in FY2011 (detection limit: 1 Bq/L).
- The results concerning radionuclides other than radioactive cesium were as follows.
  - I-131: Not detectable at any surveyed locations for public water areas and groundwater
  - Sr-89: Not detectable at any surveyed locations for groundwater
- Sr-90: Detectable in sediment collected at several locations for public water areas, but activity concentrations were generally decreasing; Not detectable at any surveyed locations for groundwater
- As measured activity concentrations are considered to fluctuate at some locations due to slight changes in sampling locations and properties, it is appropriate to continue this monitoring in the following fiscal years on an ongoing basis.

#### 3. Other Radioactive Material Monitoring Conducted Nationwide (FY2014)

o The results of the Monitoring of Environmental Radioactivity Levels, which has been conducted by the

Nuclear Regulation Authority for the purpose of clarifying the existence or nonexistence of the influence of nuclear facilities, etc. nationwide, were all within the past measurement trends.

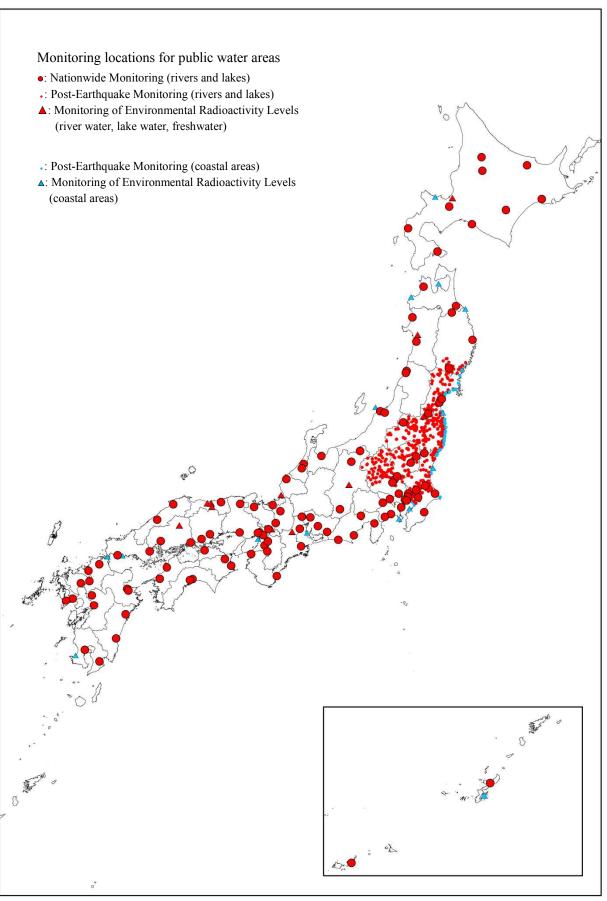



Figure 1 Locations for monitoring of radioactive materials based on the Water Pollution Control Act (public water areas)

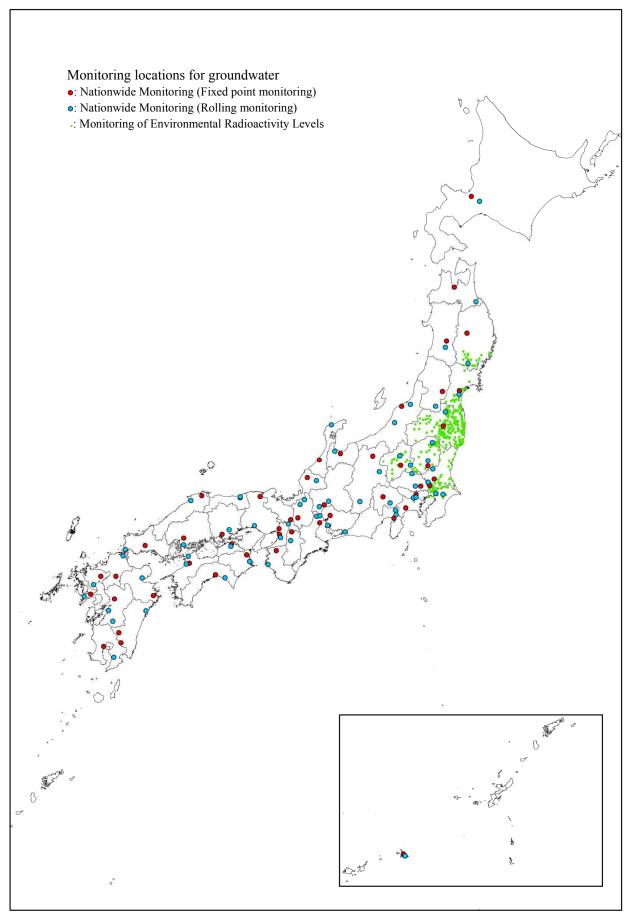



Figure 2 Locations for monitoring of radioactive materials based on the Water Pollution Control Act (groundwater)

# Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2014)

# 1. Objective and Details

#### 1.1 Objective

The Fukushima NPS Accident discharged radioactive materials and caused environmental pollution. In response, the Water Pollution Control Act was amended and it was decided that the Minister of the Environment should monitor pollution caused by radioactive materials for public water areas and groundwater and release the results from the perspective of preserving the health and living environment of the people.

Under such circumstances, this monitoring aims to clarify the distribution of radioactive materials in public water areas and groundwater nationwide.

#### 1.2 Details

#### (1) Monitoring locations

• Public water areas: 110 locations (rivers: 107 locations; lakes: 3 locations)

· Groundwater: 110 locations

Locations were selected based on the following thinking from the viewpoint of ensuring balanced nationwide monitoring (specific locations are as shown in Tables 1.2-2 and 1.2-3 and Figures 1.2-1 and 1.2-2).

#### (i) Public water areas

- The number of locations per prefecture was decided depending on the area and population, while securing at least one location in each prefecture, from the viewpoint of ensuring balanced nationwide monitoring.
- Locations within each prefecture were selected based on the following thinking:
  - a) Select representative rivers (including lakes) within each prefecture in the same numbers as those of the aforementioned locations in consideration of the area and population in their basins.
  - b) Regarding rivers selected as explained in a), select locations from among those for the monitoring of hazardous materials, etc. conducted under the Water Pollution Control Act, which are selected in consideration of water utilization points. For an individual river, prioritize locations in the lower sections (including lakes located downstream).
  - c) As this monitoring does not aim to clarify the influence of a specific source, exclude locations close to those subject to the Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants), in principle.

#### (ii) Groundwater

- Two locations were chosen for each prefecture from the viewpoint of ensuring balanced nationwide monitoring, and one more location was added for each prefecture where the amount of groundwater utilized had been large in past several years.
- Locations within each prefecture were selected mainly from those for monitoring of environmental standard items for groundwater, based on the following conditions:
  - a) Select regional representative wells (such as wells built for monitoring or major wells with especially

- high frequency of use) in consideration of the utilization amount of groundwater from respective groundwater basins and water veins (hereinafter referred to as "groundwater basins, etc.").
- b) Prioritize wells owned or managed by local governments, etc. in consideration of the convenience of coordination in case an additional survey is required.
- c) Select one location for continuous fixed point monitoring from among the locations selected in the manner above, while taking into account the utilization amount and representativeness in a broader area of the relevant groundwater basin, etc. Other locations are for rolling monitoring (for five years in principle).
- d) As this monitoring does not aim to clarify the influence of a specific source, exclude locations close to those subject to the Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants), in principle.

# (2) Targets

• Public water areas: Water and sediments (for lakes, survey water both at the surface and bottom layers)

(Additionally, radioactive concentrations in soil and ambient dose rates are to be measured in the surrounding environment (river beds, etc.) near the sampling locations as reference.)

· Groundwater: Water

(Additionally, ambient dose rates are to be measured near the sampling locations as reference.)

## (3) Frequencies and periods

• Public water areas: Once a year

However, monitoring was conducted four times a year at two locations (one location in eastern and western Japan, respectively) in order to check any annual variation.

•Groundwater: Fixed point monitoring was conducted once a year, and rolling monitoring was conducted once every five years in principle.

Periods for FY2014 monitoring are as shown in Table 1.2-4.

# (4) Conducted analyses

The following analyses were conducted for collected samples.

- Measurement of total  $\beta$  radioactivity concentrations
- $\gamma$ -ray spectrometry measurement using a germanium semiconductor detector (all detectable radionuclides, including naturally occurring radionuclides and artificial radionuclides, were surveyed in principle)

#### (5) Comparison with the past measurement trends

Obtained values were compared with the past measurement trends, and if any deviation was suspected, the validity of the measured values was rechecked (possibilities of transcription errors or insufficient adjustments of equipment, etc.).

This monitoring was just commenced and there are no accumulated data for the same locations. Therefore, the results of similar environmental monitoring conducted so far are to be used for comparison for the time being. Specifically, the results of the Monitoring of Environmental Radioactivity Levels and Monitoring of the Surrounding Environment conducted by the Nuclear Regulation Authority, as well as the results of the Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture conducted by the Ministry of the Environment were utilized. When making comparisons, due consideration was given to the possibility that the values of Cs-137 and other accident-derived radionuclides would have increased after the Fukushima NPS Accident.

Basically, nationwide data for the last two decades, which have become relatively free from the influence of nuclear tests in the atmosphere, were used. Also, with regard to the influence of the Fukushima NPS Accident, considering the influence immediately after it and based on actual measurement, "one year after the accident" was assumed to be a steady state, and therefore, the period from March 11, 2011 to March 10, 2012 was excluded.

#### (6) Measures to be taken when a value deviating from the past measurement trends was detected

The following measures are to be taken when a value deviating from the past measurement trends was detected (see Figure 1.2-3).

#### (6)-1 Release of preliminary values

Any value that is suspected to deviate from the past measurement trends should be immediately evaluated professionally by the chair and the deputy chair, and if it is judged highly urgent (when it has been confirmed that the value is highly likely to deviate from the past measurement trends, and additional detailed analyses are considered to be necessary), a preliminary report should be released as promptly as possible.

In such a case, the following related data should be compiled as basic data for professional evaluation. Members of the Evaluation Committee other than the chair and the deputy chair should be informed of the relevant information together with the professional evaluation by the chair and the deputy chair (see Table 1.2-1 for the chair and other committee members).

- (i) Results of the measurement concerning water, sediments and ambient dose rates (results of the measurement of total  $\beta$  radioactivity concentrations and  $\gamma$ -ray spectrometry measurement)
- (ii) Sampling dates, sampling locations (maps, water depth, river width, etc.), sampling methods, and sampling circumstances (photos)
- (iii) Weather data for about one week near the measuring date (the amount of precipitation, in particular)
- (iv) Ambient dose rates measured for the last one month or so in neighboring points
- (v) Changes in past detected values of the relevant radionuclide

#### (6)-2 Detailed analyses and release of the results

For data for which the preliminary report was released as explained in (6)-1 above, the following detailed analyses are to be conducted and the results should be released.

- Concrete analysis to identify radionuclides (including measurement of individual radionuclides through a radiochemical analysis)
- · Additional measurement in the surrounding areas of the relevant surveyed location

Table 1.2-1 List of members of the Evaluation Committee on Radioactive Material Monitoring in the Water Environment

| IIMOTO Takeshi<br>(Deputy chair) | Associate professor, Division for Environment, Health and Safety, the University of Tokyo                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| ISHII Nobuyoshi                  | Senior Researcher, Research Center for Radiation Protection,<br>National Institute of Radiological Sciences               |
| TOKUNAGA<br>Tomochika            | Professor, Department of Environment Systems, Graduate School of Frontier Sciences, the University of Tokyo               |
| HAYASHI Seiji                    | Head, Center for Regional Environmental Research (Soil Environment Section), National Institute for Environmental Studies |
| FUKUSHIMA Takehiko (Chair)       | Professor, Doctoral Program in Integrative Environment and<br>Biomass Sciences, Graduate School, University of Tsukuba    |

Table 1.2-2 List of locations for the FY2014 Nationwide Monitoring (public water areas) (No. 1)

| 1              |                         | _              |                                | Samp ling location                                                                           |                                                  |
|----------------|-------------------------|----------------|--------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| No.            | Prefecture              | Property       | Water area                     | Location                                                                                     | Municipality                                     |
| 1              |                         | River          | Ishikari River                 | Clean water intake at Ishikari River in Asahikawa City                                       | Asahikawa City                                   |
| 2              |                         | River          | Ishikari River                 | Intake at the Shirakawa water purification plant in Sapporo City                             | Sapporo City                                     |
| 3              |                         | River          | Teshio River                   | Nakashibetsu Bridge<br>(Intake at the Higashiyama water purification plant in Shibetsu City) | Shibetsu City                                    |
| 4              | Hokkaido                | River          | Tokoro River                   | Tadashi Bridge                                                                               | Kitami City                                      |
| 5              | Prefecture              | River          | Kushiro River                  | Intake at the Aikoku water purification plant in Kushiro City                                | Kushiro City                                     |
| 6              | 1101001410              | River          | Tokachi River                  | Nantai Bridge                                                                                | Obihiro City                                     |
| 7              |                         | River          | Sarugawa River                 | Sarugawa Bridge (Tomigawa)                                                                   | Hidaka Town                                      |
| 8              |                         | River          | Matsukura River                | Mitsumori Bridge (Before the confluence with Torasawa River)                                 | Hakodate City                                    |
| 9              |                         | River          | Shiribeshi-toshibetsu<br>River | Intake at the Kitahiyama simple water plant in Kitahiyama Town                               | Setana Town                                      |
| 10             | Aomori                  | River          | Iwaki River                    | Tsugaru-ohashi Bridge                                                                        | Nakadomari Town                                  |
| 11             | Prefecture              | River          | M abechi River                 | Shiriuchi Bridge                                                                             | Hachinohe City                                   |
| 12             |                         | River          | M abechi River                 | Fugane Bridge                                                                                | Ninohe City                                      |
| 13             | Iwate<br>Prefecture     | River          | Heigawa River                  | M iyako Bridge                                                                               | M iyako City                                     |
| 14             | Trefecture              | River          | Kitakami River                 | Chitose Bridge                                                                               | Ichinoseki City                                  |
| 15             | Miyagi                  | River          | Abukuma River                  | Iwanuma (Abukuma Bridge)                                                                     | Iwanuma City                                     |
| 16             | Prefecture              | River          | Natori River                   | Yuriage-ohashi Bridge                                                                        | Natori City                                      |
| 17             | Akita                   | River          | Yoneshiro River                | Noshiro Bridge                                                                               | Noshiro City                                     |
| 18             | Prefecture              | River          | Omono River                    | Kurose Bridge                                                                                | Akita City                                       |
| 19             | Yamagata                | River          | M ogami River                  | Ryou Bridge                                                                                  | Sakata City                                      |
| 20             | Prefecture              | River          | Akagawa River                  | Shinkawa Bridge                                                                              | Sakata City                                      |
| 21             |                         | River          | Agano River                    | Shingo Dam                                                                                   | Kitakata City                                    |
| 22             | Fukushima               | River          | Abukuma River                  | Taisho Bridge (Fushiguro)                                                                    | Date City                                        |
| 23             | Prefecture              | River          | Kujigawa River                 | Takachihara Bridge                                                                           | Yamatsuri Town                                   |
| 24             | Ibaraki                 | Lake           | Lake Kasumigaura               | Center of the lake                                                                           | M iho Village                                    |
| 25             | Prefecture              | River          | Kokai River                    | Fumimaki Bridge                                                                              | Toride City                                      |
| 26             | Tochigi                 | River          | Nakagawa River                 | Shinnaka Bridge                                                                              | Nakagawa Town                                    |
| 27             | Prefecture              | River          | Kinugawa River                 | Kinugawa Bridge (Hoshakuji Temple)                                                           | Utsunomiya City                                  |
| 28             | Gunma                   | River          | Tonegawa River                 | Toneozeki Weir                                                                               | Chiyoda Town                                     |
| 29             | Prefecture              | River          | Watarase River                 | Watarase-ohashi Bridge                                                                       | Tatebayashi City                                 |
| 30             |                         | River          | Arakawa River                  | Kuge Bridge                                                                                  | Kumagaya City                                    |
| 31             | Saitama                 | River          | Arakawa River                  | Akigase Intake Weir                                                                          | Saitama City/ Shiki City                         |
| 32             | Prefecture              | River          | Edogawa River                  | Nagarey ama Bridge                                                                           | Nagareyama City (Chiba Prefecture) / Misato City |
| 33             |                         | River          | Tonegawa River                 | Kakozeki Weir                                                                                | Tonosho Town                                     |
| 34             | Chiba                   | River          | Ichinomiya River               | Nakanobashi Bridge                                                                           | Ichinomiya Town                                  |
| 35             | Prefecture              | Lake           | Lake Inbanuma                  | Lower area of clean water intake                                                             | Sakura City                                      |
| 36             |                         | River          | Edogawa River                  | Shinkatsushika Bridge                                                                        | Katsushika City                                  |
| 37             | Т-1                     | River          | -                              | · ·                                                                                          | Akishima City                                    |
| 38             | Tokyo<br>Metoroporis    | River          | Tamagawa River<br>Sumida River | Haijima raw water supply point<br>Ryogoku Bridge                                             | Chuo City / Sumida City                          |
| 39             |                         | River          | Arakawa River                  |                                                                                              | Koto City / Edogawa City                         |
| 40             |                         |                | Tsurumi River                  | Kasai Bridge<br>Rinko Tsurumi Bridge                                                         | Yokohama City                                    |
| 41             | Kanagawa                | River          |                                | <u> </u>                                                                                     | Hiratsuka City                                   |
| 41             | Prefecture              | River          | Sagami River                   | Banyu Bridge                                                                                 | ·                                                |
| _              | NT''                    | River          | Sakawa River                   | Sakawa Bridge                                                                                | Odawara City                                     |
| 43             | Niigata<br>Prefecture   | River          | Shinano River                  | Heisei-ohashi Bridge                                                                         | Niigata City                                     |
| 45             | Toyama                  | River          | Agano River Jinzu River        | Oun Bridge Hagiura Bridge                                                                    | Niigata City<br>Toyama City                      |
| 46             | Prefecture<br>Ishikawa  | River          | Saigawa River                  | Okuwa Bridge                                                                                 | Kanazawa City                                    |
| 47             | Prefecture              | River          | Tedori River                   | Hakusangoguchi Dike                                                                          | Hakusan City                                     |
| _              |                         |                |                                |                                                                                              | <u> </u>                                         |
| 48             | Fukui<br>Prefecture     | River          | Kuzuryu River                  | Fuseda Bridge                                                                                | Fukui City                                       |
| 49<br>50       |                         | River          | Kitagawa River                 | Takatsuka Bridge                                                                             | Obama City                                       |
| 50             | Yamanashi<br>Prefecture | River          | Sagami River                   | Katsuragawa Bridge                                                                           | Uenohara City                                    |
| 51             | 1 1010011110            | River          | Fujikawa River                 | Manbu Bridge                                                                                 | Nanbu Town                                       |
| 51             |                         | D.             | CI . D.                        | 0.1:5:1                                                                                      | I. C.                                            |
| 51<br>52<br>53 | Nagano                  | River<br>River | Shinano River<br>Saigawa River | Ozeki Bridge<br>Koichi Bridge                                                                | Iiyama City<br>Nagano City                       |

Table 1.2-2 List of locations for the FY2014 Nationwide Monitoring (public water areas) (No. 2)

|     |                        |          |                 | Sampling location                                           |                               |
|-----|------------------------|----------|-----------------|-------------------------------------------------------------|-------------------------------|
| No. | Prefecture             | Property | Water area      | Location                                                    | Municipality                  |
| 55  | Gifu                   | River    | Kisogawa River  | Tokai-ohashi Bridge (Naruto)                                | Kaizu City                    |
| 56  | Prefecture             | River    | Nagara River    | Tokai-ohashi Bridge                                         | Kaizu City                    |
| 57  |                        | River    | Kanogawa River  | Kurose Bridge                                               | Numazu City                   |
| 58  | Shizuoka<br>Prefecture | River    | Ooi River       | Fujimi Bridge                                               | Yaizu City / Yoshida Town     |
| 59  | Ficiecture             | River    | Tenry u River   | Kaketsuka Bridge                                            | Iwata City / Hamamatsu City   |
| 60  |                        | River    | Shonai River    | M iwakare Bridge                                            | Nagoya City                   |
| 61  | Aichi<br>Prefecture    | River    | Yahagi River    | Iwazutenjin Bridge                                          | Okazaki City / Toyota City    |
| 62  | Ficiecture             | River    | Toyogawa River  | Eshima Bridge                                               | Toy okawa City                |
| 63  | Mie                    | River    | Suzuka River    | Ogura Bridge                                                | Yokkaichi City                |
| 64  | Prefecture             | River    | M iyakawa River | Watarai Bridge                                              | Ise City                      |
| 65  | Shiga                  | River    | Adogawa River   | Joan Bridge                                                 | Takashima City                |
| 66  | Prefecture             | Lake     | Lake Biwako     | Karasakioki-Chuo                                            | _                             |
| 67  | Kyoto                  | River    | Yuragawa River  | Yuragawa Bridge                                             | Maizuru City                  |
| 68  | Prefecture             | River    | Katsura River   | Before the confluence of three tributaries of Katsura River | Oyamazaki Town                |
| 69  |                        | River    | Inagawa River   | Gunko Bridge                                                | Itami City (Hyogo prefecture) |
| 70  | Osaka<br>Prefecture    | River    | Yodogawa River  | Sugaharashirokita-ohashi Bridge                             | Osaka City                    |
| 71  | 1 icicciuie            | River    | Ishikawa River  | Takahashi                                                   | Tondabay ashi City            |
| 72  | **                     | River    | Kakogawa River  | Kakogawa Bridge                                             | Kakogawa City                 |
| 73  | Hy ogo<br>Prefecture   | River    | Mukogawa River  | Hyakkenbi                                                   | Takarazuka City               |
| 74  | Ficiecture             | River    | Maruyama River  | Kaminogo Bridge                                             | Toyooka City                  |
| 75  | Nara                   | River    | Yamato River    | Fujii                                                       | Oji Town                      |
| 76  | Prefecture             | River    | Kinokawa River  | Okura Bridge                                                | Gojo City                     |
| 77  | Wakayama               | River    | Kinokawa River  | Shinrokkaizeki Weir                                         | Wakayama City                 |
| 78  | Prefecture             | River    | Kumano River    | Kumano-ohashi Bridge                                        | Shingu City                   |
| 79  | Tottori<br>Prefecture  | River    | Sendai River    | Gyotoku                                                     | Tottori City                  |
| 80  | Shimane                | River    | Hiikawa River   | Kandatsu Bridge                                             | Izumo City                    |
| 81  | Prefecture             | River    | Gonokawa River  | Sakurae-ohashi Bridge                                       | Gotsu City                    |
| 82  | Okayama                | River    | Asahikawa River | Otoite Weir                                                 | Okayama City                  |
| 83  | Prefecture             | River    | Takahashi River | Kasumi Bridge                                               | Kurashiki City                |
| 84  | Hiroshima              | River    | Ota River       | Clean water intake in Hesaka                                | Hiroshima City                |
| 85  | Prefecture             | River    | Ashida River    | Kominomi Bridge                                             | Fukuyama City                 |
| 86  | Yamaguchi              | River    | Nishiki River   | Clean water intake for the city                             | Iwakuni City                  |
| 87  | Prefecture             | River    | Koto River      | Suenobu Bridge                                              | Ube City                      |
| 88  | Tokushima              | River    | Yoshino River   | Takase Bridge                                               | Ishii Town                    |
| 89  | Prefecture             | River    | Nakagawa River  | Nakagawa Bridge                                             | Anan City                     |
| 90  | Kagawa<br>Prefecture   | River    | Dokigawa River  | Marugame Bridge                                             | Marugame City                 |
| 91  | Ehime                  | River    | Shigenobu River | Deai Bridge                                                 | Matsuyama City                |
| 92  | Prefecture             | River    | Hijikawa River  | Hijikawa Bridge                                             | Ozu City                      |
| 93  | Kochi                  | River    | Kagami River    | Kachuzeki Weir                                              | Kochi City                    |
| 94  | Prefecture             | River    | Niyodo River    | Hatazeki Weir (1) Center of flow                            | Ino Town                      |
| 95  | Eulmal                 | River    | Onga River      | Hinode Bridge                                               | Nogata City                   |
| 96  | Fukuoka<br>Prefecture  | River    | Nakagawa River  | Shiobara Bridge                                             | Fukuoka City                  |
| 97  |                        | River    | Chikugo River   | Senoshita                                                   | Kurume City                   |
| 98  | Saga<br>Prefecture     | River    | Kasegawa River  | Kase Bridge                                                 | Saga City                     |
| 99  | Nagasaki               | River    | Honmyo River    | In front of Tenma Park                                      | Isahaya City                  |
| 100 | Prefecture             | River    | Uragami River   | Ohashizeki Weir                                             | Nagasaki City                 |
| 101 | Kumamoto               | River    | Kikuchi River   | Shiroishi                                                   | Nagomi Town                   |
| 102 | Prefecture             | River    | Midori River    | Uesugizeki Weir                                             | Kumamoto City                 |
| 103 | Oita                   | River    | Oita River      | Funaichi-ohashi Bridge                                      | Oita City                     |
| 104 | Prefecture             | River    | Oono River      | Shirataki Bridge                                            | Oita City                     |
| 105 | Miyazaki               | River    | Gokase River    | Miwa                                                        | Nobeoka City                  |
| 106 | Prefecture             | River    | Oyodo River     | Aioi Bridge                                                 | Miyazaki City                 |
| 107 | Kagoshima              | River    | Kotsuki River   | Iwasaki Bridge                                              | Kagoshima City                |
| 108 | Prefecture             | River    | Kimotsuki River | Matase Bridge                                               | Kanoya City                   |
| 109 | Okinawa                | River    | Genka River     | Water intake                                                | Nago City                     |
| 110 | Prefecture             | River    | Miyara River    | Omoto water intake                                          | Ishigaki City                 |
|     |                        |          |                 |                                                             |                               |

Table 1.2-3 List of locations for the FY2014 Nationwide Monitoring (groundwater) (No. 1)

| 3.            | D. C.                  | D           |                      | Location                        |                        |  |  |  |
|---------------|------------------------|-------------|----------------------|---------------------------------|------------------------|--|--|--|
| No.           | Prefecture             | Prop erty   | Municipality         | District                        | Monitoring method      |  |  |  |
| 1             | Hokkaido               | Groundwater | Sapporo City         | Kita Sanjo-Nishi, Chuo Ward     | Fixed point monitoring |  |  |  |
| 2             | Prefecture             | Groundwater | Eniwa City           | Iz aributo                      | Rolling monitoring     |  |  |  |
| 3             | Aomori                 | Groundwater | Aomori City          | Shin Town                       | Fixed point monitoring |  |  |  |
| 4             | Prefecture             | Groundwater | Hachinohe City       | Kushihiki Aza Toriageishi       | Rolling monitoring     |  |  |  |
| 5             | Iwate                  | Groundwater | M orioka City        | Motomiya                        | Fixed point monitoring |  |  |  |
| 6             | Prefecture             | Groundwater | Ichinoseki City      | Nakasato Aza Shinkawara         | Rolling monitoring     |  |  |  |
| 7             | Miyagi                 | Groundwater | Sendai City          | Hon Town, Aoba Ward             | Fixed point monitoring |  |  |  |
| 8             | Prefecture             | Groundwater | Natori City          | Takadatekawakami Higashikongoji | Rolling monitoring     |  |  |  |
| 9             | Akita                  | Groundwater | Daisen City          | Niiyachi Aza Shimokawara        | Fixed point monitoring |  |  |  |
| 10            | Prefecture Groundwater |             | Yokote City          | Omori Town Aza Onakajima        | Rolling monitoring     |  |  |  |
| 11            | Yamagata Groundwate    |             | Yamagata City        | Hatago Town                     | Fixed point monitoring |  |  |  |
| 12            | Prefecture             | Groundwater | Yonezawa City        | Tori Town                       | Rolling monitoring     |  |  |  |
| 13            | Fukushima              | Groundwater | Koriy ama City       | Asahi                           | Fixed point monitoring |  |  |  |
| 14            | Prefecture             | Groundwater | Fukushima City       | Niida                           | Rolling monitoring     |  |  |  |
| 15            |                        | Groundwater | T sukub a City       | Karima                          | Fixed point monitoring |  |  |  |
| 16            | Ibaraki                | Groundwater | Chikusei City        | Işami                           | Rolling monitoring     |  |  |  |
| 17            | Prefecture             | Groundwater | Bando City           | Oyama                           | Rolling monitoring     |  |  |  |
| 18            |                        | Groundwater | Shimotsuke City      | Machida                         | Fixed point monitoring |  |  |  |
| 19            | Tochigi                | Groundwater | Utsunomiy a City     | Yanaz e Town                    | Rolling monitoring     |  |  |  |
| 20            | Prefecture             | Groundwater |                      | Torinome                        |                        |  |  |  |
|               |                        |             | Nasushiobara City    |                                 | Rolling monitoring     |  |  |  |
| 21            | Gunma                  | Groundwater | Maeba City           | Shikishima Town                 | Fixed point monitoring |  |  |  |
|               | Prefecture             | Groundwater | Kiryu City           | Tenjin Town                     | Rolling monitoring     |  |  |  |
| 23            |                        | Groundwater | Numata City          | Idoue Town                      | Rolling monitoring     |  |  |  |
| 24            | Saitama                | Groundwater | Saitama City         | Mikura, Minuma Ward             | Fixed point monitoring |  |  |  |
| 25            | Prefecture             |             |                      | Yatsukuchi                      | Rolling monitoring     |  |  |  |
| 26            |                        | Groundwater | Kawago e City        | Minamitajima                    | Rolling monitoring     |  |  |  |
| 27            | Chiba                  | Groundwater | Kashiwa City         | Funato                          | Fixed point monitoring |  |  |  |
| 28            | Prefecture             | Groundwater | Yachiyo City         | Murakami                        | Rolling monitoring     |  |  |  |
| 29            |                        | Groundwater | Tomisato City        | Tokura                          | Rolling monitoring     |  |  |  |
| 30            | Tokyo                  | Groundwater | Koganei City         | Kajino Town                     | Fixed point monitoring |  |  |  |
| 31            | Metoroponis            | Groundwater | Tama City            | Nagay ama                       | Rolling monitoring     |  |  |  |
| 32            | Kanagawa               | Groundwater | Hadano City          | Imaizumi                        | Fixed point monitoring |  |  |  |
| 33            | Prefecture             | Groundwater | Kawasaki City        | Suge, Tama City                 | Rolling monitoring     |  |  |  |
| 34            |                        | Groundwater | Niigata City         | Nagata, Chuo Ward               | Fixed point monitoring |  |  |  |
| 35            | Niigata<br>Prefecture  | Groundwater | Shibata City         | Yukata Town                     | Rolling monitoring     |  |  |  |
| 36            |                        | Groundwater | Joetsu City          | Minato Town                     | Rolling monitoring     |  |  |  |
| 37            | Toyama                 | Groundwater | Toyama City          | Hunahashikita Town              | Fixed point monitoring |  |  |  |
| 38            | Prefecture             | Groundwater | Takaoka City         | Nakagawasono Town               | Rolling monitoring     |  |  |  |
| 39            | Ishikawa               | Groundwater | Hakusan City         | Kuramitsu                       | Fixed point monitoring |  |  |  |
| 40            | Prefecture             | Groundwater | Wajima City          | Kawai Town, 2-bu                | Rolling monitoring     |  |  |  |
| 41            | Fukui                  | Groundwater | Fukui City           | Ote                             | Fixed point monitoring |  |  |  |
| 42            | Prefecture             | Groundwater | Ono City             | Tomoe                           | Rolling monitoring     |  |  |  |
| 43            | Yamanashi              | Groundwater | Showa Town           | Nishijo Shinden                 | Fixed point monitoring |  |  |  |
| 44            | Prefecture             | Groundwater | Fujikawaguchiko Town | Odachi                          | Rolling monitoring     |  |  |  |
| 45            |                        | Groundwater | Nagano City          | Tsurugamidori Town              | Fixed point monitoring |  |  |  |
| 46            | Nagano                 | Groundwater | Saku City            | Ko aza Kamisairenji             | Rolling monitoring     |  |  |  |
| 47            | Prefecture             | Groundwater | Iida City            | Ote Town                        | Rolling monitoring     |  |  |  |
| 48            |                        | Groundwater | Gifu City            | Kanoshimizu Town                | Fixed point monitoring |  |  |  |
| 49            | Gifu                   | Groundwater | Ogaki City           | Marunouchi                      | Rolling monitoring     |  |  |  |
| 50            | Prefecture             | Groundwater | Seki City            | Kose                            | Rolling monitoring     |  |  |  |
| 51            |                        | Groundwater | Numazu City          | Izumi Town                      | Fixed point monitoring |  |  |  |
| 52            | Shizuoka               | Groundwater | Gotenba City         | Higashitanaka                   | Rolling monitoring     |  |  |  |
| 53            | Prefecture             | Groundwater | Susono City          | Mishuku                         |                        |  |  |  |
| 54            |                        | Groundwater | -                    |                                 | Rolling monitoring     |  |  |  |
| 55            | Aichi                  |             | Nagoya City          | Kawaharatori, Showa Ward        | Fixed point monitoring |  |  |  |
| $\overline{}$ | Prefecture             | Groundwater | Toyoha City          | Mukaiy amaoike Town             | Rolling monitoring     |  |  |  |
| 56            |                        | Groundwater | Handa City           | Ikeda Town                      | Rolling monitoring     |  |  |  |

Table 1.2-3 List of locations for the FY2014 Nationwide Monitoring (groundwater) (No. 2)

| -   |                         | 0           |                  | Location                              |                        |
|-----|-------------------------|-------------|------------------|---------------------------------------|------------------------|
| No. | Prefecture              | Property    | Municipality     | M onitoring method                    |                        |
| 57  |                         | Groundwater | * *              | District                              | -                      |
| 57  | M ie                    |             | Yokkaichi City   | Daikyo Town                           | Fixed point monitoring |
| 58  | Prefecture              | Groundwater | Inabe City       | Inabe Town Kamikasada                 | Rolling monitoring     |
| 59  |                         | Groundwater | Kuwana City      | Tado Town Yui                         | Rolling monitoring     |
| 60  | Shiga                   | Groundwater | M oriy ama City  | Miyake Town                           | Fixed point monitoring |
| 61  | Prefecture              | Groundwater | Nagahama City    | Nishiazai Town Yanokuma               | Rolling monitoring     |
| 62  |                         | Groundwater | Takashima City   | Imazu Town                            | Rolling monitoring     |
| 63  | Kyoto                   | Groundwater | Kyoto City       | Kamihonnojimae Town, Nakagyo Ward     | Fixed point monitoring |
| 64  | Prefecture              | Groundwater | Oyamazaki Town   | Shimoueno                             | Rolling monitoring     |
| 65  | Osaka                   | Groundwater | Osaka City       | Tsuru Town, Taisho Ward               | Fixed point monitoring |
| 66  | Prefecture              | Groundwater | Sakai City       | Daisennaka Town, Sakai Ward           | Rolling monitoring     |
| 67  | ••                      | Groundwater | Itami City       | Kuchisakai                            | Fixed point monitoring |
| 68  | Hy ogo<br>Prefecture    | Groundwater | Toyooka City     | Saiwai Town                           | Fixed point monitoring |
| 69  |                         | Groundwater | Himeji City      | Нојо                                  | Rolling monitoring     |
| 70  | Nara                    | Groundwater | Nara City        | Sakyo                                 | Fixed point monitoring |
| 71  | Prefecture              | Groundwater | Kashihara City   | Okubo Town                            | Rolling monitoring     |
| 72  | Wakayama                | Groundwater | Kinokawa City    | Takano                                | Fixed point monitoring |
| 73  | Prefecture              | Groundwater | Gobo City        | Sono                                  | Rolling monitoring     |
| 74  | Tottori                 | Groundwater | Tottori City     | Saiwai Town                           | Fixed point monitoring |
| 75  | Prefecture              | Groundwater | Tottori City     | Denen Town                            | Rolling monitoring     |
| 76  | Shimane                 | Groundwater | Matsue City      | Nishikawatsu Town                     | Fixed point monitoring |
| 77  | Prefecture              | Groundwater | Izumo City       | Enya Town                             | Rolling monitoring     |
| 78  | 01                      | Groundwater | Kurashiki City   | Fukui                                 | Fixed point monitoring |
| 79  | Okayama<br>Prefecture   | Groundwater | Okayama City     | Imazaike, Naka Ward                   | Rolling monitoring     |
| 80  |                         |             | Hiroshima City   | ·                                     |                        |
| 81  | Hiroshima<br>Prefecture | Groundwater |                  | Ushiroyamako, Kamiseno Town, Aki Ward | Fixed point monitoring |
|     |                         | Groundwater | Kure City        | Hirobentenbashi Town                  | Rolling monitoring     |
| 82  | Yamaguchi<br>Prefecture | Groundwater | Yamaguchi City   | Ouchimihori                           | Fixed point monitoring |
| 83  | Trefecture              | Groundwater | Shimonoseki City | Tomito Town                           | Rolling monitoring     |
| 84  | Tokushima<br>Prefecture | Groundwater | Tokushima City   | Fudohoncho Town                       | Fixed point monitoring |
| 85  | Trefecture              | Groundwater | Anan City        |                                       | Rolling monitoring     |
| 86  | Kagawa                  | Groundwater | Takamatsu City   | Bancho Town                           | Fixed point monitoring |
| 87  | Prefecture              | Groundwater | Takamatsu City   | Ichinomiy a Town                      | Rolling monitoring     |
| 88  | Ehime                   | Groundwater | Matsuyama City   | Hirai Town                            | Fixed point monitoring |
| 89  | Prefecture              | Groundwater | Matsuyama City   | Nakanishiuchi                         | Rolling monitoring     |
| 90  |                         | Groundwater | Iyo City         | Ueno                                  | Rolling monitoring     |
| 91  | Kochi                   | Groundwater | Kochi City       | Kerako                                | Fixed point monitoring |
| 92  | Prefecture              | Groundwater | Aki City         | Yanomaru                              | Rolling monitoring     |
| 93  | Fukuoka                 | Groundwater | Kurume City      | Tanushimaru Town Akinari              | Fixed point monitoring |
| 94  | Prefecture              | Groundwater | Kitakyushu City  | Fujimi, Kokuraminami Ward             | Rolling monitoring     |
| 95  | Saga                    | Groundwater | Saga City        | Yamato Town Niji                      | Fixed point monitoring |
| 96  | Prefecture              | Groundwater | Kashima City     | Nodomibunbaba                         | Rolling monitoring     |
| 97  | Nagasaki                | Groundwater | Isahaya City     | Sakaeda Town                          | Fixed point monitoring |
| 98  | Prefecture              | Groundwater | Nagasaki City    | Ohashi                                | Rolling monitoring     |
| 99  |                         | Groundwater | Kumamoto City    | Suizenji, Chuo Ward                   | Fixed point monitoring |
| 100 | Kumamoto                | Groundwater | Yatsushiro City  | Furujo Town                           | Rolling monitoring     |
| 101 | Prefecture              | Groundwater | Hitoyoshi City   | Inoguchinoso                          | Rolling monitoring     |
| 102 | 0:4-                    | Groundwater | Saiki City       | Kamioka                               | Fixed point monitoring |
| 102 | Oita<br>Prefecture      | Groundwater | Hiji Town        | Toyoka                                | Rolling monitoring     |
| 103 |                         | Groundwater | Miyakonojo City  | M inamiy okoichi Town                 | Fixed point monitoring |
| 104 | M iyazaki               |             |                  |                                       |                        |
|     | Prefecture              | Groundwater | Kobayashi City   | M inaminishikata                      | Fixed point monitoring |
| 106 |                         | Groundwater | Nobeoka City     | Byumachi Town                         | Rolling monitoring     |
| 107 | Kagoshima               | Groundwater | Kagoshima City   | Tamazato Town                         | Fixed point monitoring |
| 108 | Prefecture              | Groundwater | Kanoya City      | Tasaki Town                           | Rolling monitoring     |
| 109 | Okinawa                 | Groundwater | M iyakojima City | Hirahigashinakasonezoe                | Fixed point monitoring |
| 110 | Prefecture              |             |                  | Gusukube                              | Rolling monitoring     |

<sup>(\*)</sup> For Location 65 in Osaka City, Osaka, measurement was not conducted as a sufficient amount of water could not be collected due to water shortage. The location will be changed for FY2015 onward.

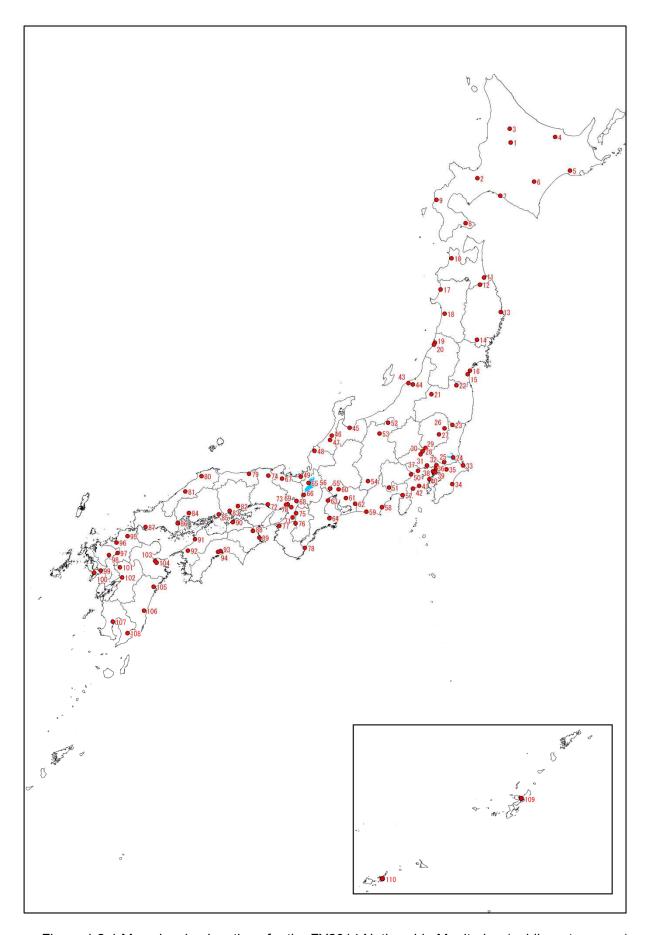



Figure 1.2-1 Map showing locations for the FY2014 Nationwide Monitoring (public water areas)

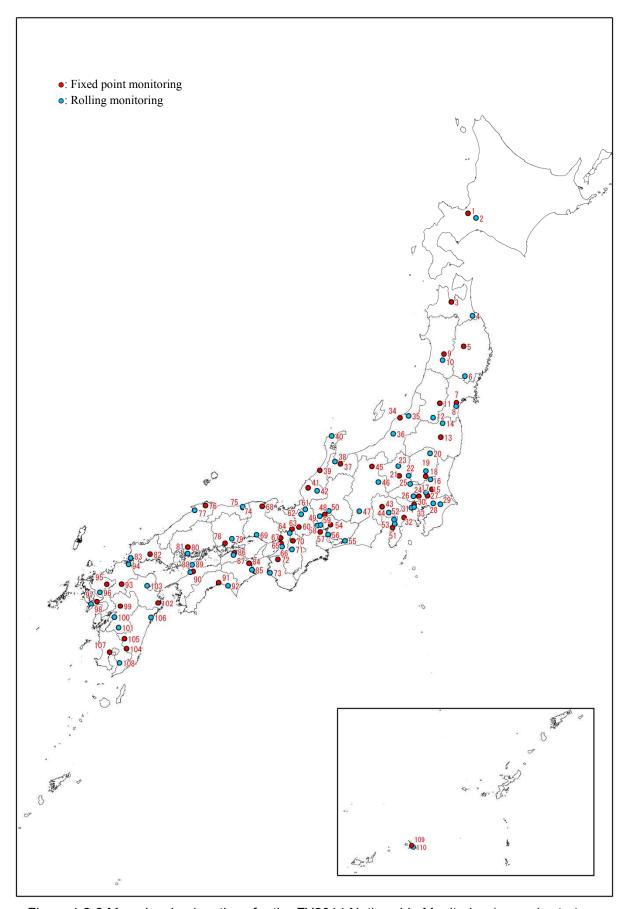



Figure 1.2-2 Map showing locations for the FY2014 Nationwide Monitoring (groundwater)

Table 1.2-4 Monitoring points and period by block (FY2014)

|                                  |                                                                                            | Public wa                | ater areas             | Ground              | lwater                 |
|----------------------------------|--------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------------|------------------------|
| Block                            | Prefectures                                                                                | Number of locations (*1) | Period                 | Number of locations | Period                 |
| Hokkaido block                   | Hokkaido                                                                                   | 9                        | Aug. 26 to<br>Oct. 24  | 2                   | Aug. 25 to<br>Aug. 27  |
| Tohoku block                     | Aomori, Iwate, Miyagi, Akita,<br>Yamagata, and Fukushima                                   | 14                       | Sept. 1 to<br>Sept. 18 | 12                  | Aug. 26 to<br>Sept. 11 |
| Kanto block                      | Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, Niigata, Yamanashi, and Shizuoka | 26 (2)                   | Aug. 25 to<br>Sept. 18 | 27                  | Aug. 25 to<br>Oct. 21  |
| Chubu block                      | Toyama, Ishikawa, Fukui,<br>Nagano, Gifu, Aichi, and Mie                                   | 15                       | Sept. 3 to<br>Sept. 19 | 18                  | Sept. 1 to<br>Sept. 19 |
| Kinki block                      | Shiga, Kyoto, Osaka, Hyogo,<br>Nara, and Wakayama                                          | 14 (1)                   | Sept. 3 to<br>Sept. 18 | 13                  | Sept. 3 to<br>Sept. 19 |
| Chugoku-Shikoku<br>block         | Tottori, Shimane, Okayama, Hiroshima, Yamaguchi, Tokushima, Kagawa, Ehime, and Kochi       | 16                       | Aug. 28 to<br>Sept. 17 | 19                  | Aug. 25 to<br>Sept. 18 |
| Kyushu and<br>Okinawa block      | Fukuoka, Saga, Nagasaki,<br>Kumamoto, Oita, Miyazaki,<br>Kagoshima, and Okinawa            | 16                       | Aug. 25 to<br>Sept. 17 | 18                  | Aug. 25 to<br>Sept. 16 |
| Survey to check annual variation | Gunma and Okayama                                                                          | 2                        | Aug. 25 to<br>Jan. 26  | -                   | -                      |

<sup>(\*1)</sup> Numbers in parentheses are those of monitoring locations for lakes and other numbers are those of monitoring locations for rivers.

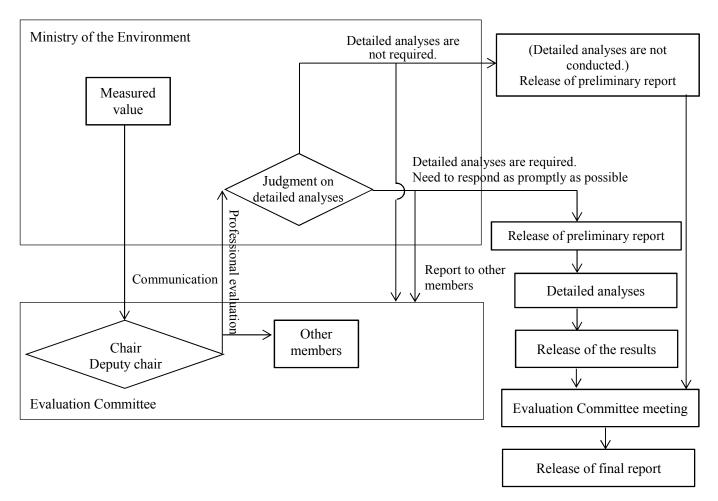



Figure 1.2-3 Procedures for professional evaluation of the results of the Nationwide Monitoring

# 2. Survey Methods and Analysis Methods

#### 2.1 Survey methods

Samples were collected based on the following guidelines in principle, as outlined below.

- Water Quality Survey Method (September 30, 1971; Notice Kansuikan No. 30 issued by the Director of the Water Quality Preservation Bureau, Ministry of the Environment)
- Sediment Survey Method (August 8, 2012; Notice Kansuitaisuihatsu No. 120725002 issued by the Director of the Environmental Management Bureau, Ministry of the Environment)
- Groundwater Quality Survey Method (September 14, 1989; Notice Kansuikan No. 189 issued by the Director of the Water Quality Preservation Bureau, Ministry of the Environment)
- Environmental Sample Collection Method (1983, MEXT's Radioactivity Measurement Method Series)
- Sample Pretreatment for Instrumental Analysis Using Germanium Semiconductor Detectors (1982, MEXT's Radioactivity Measurement Method Series)

#### (1) Public water areas

#### · Water:

Water samples of around 160 L (hydrochloric acid added) and around 2 L (nitric acid added) were collected at the predetermined points. Out of the 160 L (hydrochloric acid added), 80 L was used for the  $\gamma$ -ray spectrometry measurement and the remaining 80 L was preserved for possible detailed analyses. Out of the 2 L (nitric acid added), 1 L was used for the measurement of total  $\beta$  radioactivity concentrations. Additionally, the transparency (or Secchi disk depth) was measured upon collecting water samples, and if any influence of rainwater was suspected as a result of a comparison with past data or when there seems to be an influence of rainwater in light of the circumstances at locations without any past data where the transparency (or Secchi disk depth) was 50 cm or less, sampling at such locations was judged to be inappropriate.

#### · Sediments:

Bottom sediment samples of around 6L were collected at the predetermined points at a depth of around 10 cm from the surface layer by using an Ekman-Birge grab sampler, and 3L out of the 6 L was used for the  $\gamma$ -ray spectrometry measurement.

#### · Soil:

Soil samples (around 5 cm in diameter) were collected at a depth of around 5cm at five points within a 3 to 5 meter square (four vertexes and the diagonal intersection point), or when it is difficult to find an appropriate square to determine such five sampling points, at five points with 3 to 5 meter intervals along a river, and were brought back separately. Samples thus collected at the five points were mixed in equal amounts respectively and were used for analyses.

#### • Ambient dose rates (soil sampling locations):

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1m from the ground surface on both banks of a river (or in the case of a lake, installing a NaI (Tl) scintillation survey meter at one point on lake side) in a manner to face the sampling point of river water

(or lake water).

#### (2) Groundwater

#### · Water:

Groundwater samples of around 160 L (hydrochloric acid added) and around 2 L (nitric acid added) were collected at the predetermined wells, etc. 80 L of the 160 L (hydrochloric acid added) was used for the  $\gamma$ -ray spectrometry measurement and the remaining 80 L was preserved for possible detailed analyses. 1 L of the 2 L (nitric acid added) was used for the measurement of total  $\beta$  radioactivity concentrations.

When collecting water samples, it was confirmed that water temperature, transparency, pH, and electrical conductivity remained constant by letting the water pass for several minutes, and changes in the transparency, etc. thereafter were recorded as notes.

• Ambient dose rates (soil sampling locations):

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1 m from the ground surface near the relevant wells, etc. in a manner to face the sampling point of groundwater (or the groundwater layer).

#### 2.2 Analysis methods

The measurement of total  $\beta$  radioactivity concentrations and  $\gamma$ -ray spectrometry measurement using a germanium semiconductor detector were conducted by the following methods for public water areas (water, sediments and soil) and groundwater (water). The  $\gamma$ -ray spectrometry measurement covered all detectable radionuclides (including naturally occurring radionuclides and artificial radionuclides) in principle. Detected values were indicated with two significant digits in the unit of "Bq/L" in the case of water samples from public water areas and groundwater samples, and in the unit of "Bq/kg (dry)" in the case of sediment samples from public water areas.

Adopted analysis methods were basically in line with the MEXT's Radioactivity Measurement Method Series, and detection limits were set at around 0.001 to 0.01 Bq/L for water samples and around 1 to 30 Bq/kg (dry) for sediment samples (however, these detection limits do not apply for I-131 or other radionuclides volatilized in pretreatment process for measurement analyses).

- Measurement of total β radioactivity concentrations: Concentrate and dry up samples, and then conduct measurement using a low-background gas-flow proportional counter.
- γ-ray spectrometry measurement: After proper pretreatment, put samples in a U-8 container or a 2L-Marinelli beaker and conduct measurement using a germanium semiconductor detector; The following 62 types of γ-ray emitting radionuclides (18 naturally occurring radionuclides and 44 artificial radionuclides) were surveyed. The measurement results of γ-ray emitting radionuclides were corrected for attenuation, and reported figures were activity concentrations as of the time of completing sampling.

Table 2.2-1 Surveyed  $\gamma$ -ray emitting radionuclides

| Naturally or<br>radionu<br>(18 radion | clides               |              |                    | ficial radionuc |        |         |
|---------------------------------------|----------------------|--------------|--------------------|-----------------|--------|---------|
| Ac-228                                | Ra-224               | Ag-108m      | Co-58              | I-131           | Np-239 | Te-129m |
| Be-7                                  | Ra-226               | Ag-110m      | Co-60              | I-132           | Ru-103 | Te-132  |
| Bi-212                                | Th-227               | Am-241 Cr-51 |                    | La-140          | Ru-106 | Y-91    |
| Bi-214                                | Th-228               | As-74        | As-74 Cs-134 Mn-54 |                 | Sb-124 | Y-93    |
| K-40                                  | Th-231               | Ba-140       | Cs-136             | Mn-56           | Sb-125 | Zn-63   |
| Pa-234m                               | Th-234               | Bi-207       | Cs-137             | Mo-99           | Sb-127 | Zn-65   |
| Pb-210                                | Pb-210 Tl-206 Ce-141 |              | Fe-59              | Nb-95           | Sr-91  | Zr-95   |
| Pb-212                                | T1-208               | Ce-143       | Ga-74              | Nb-97           | Tc-99m | Zr-97   |
| Pb-214                                | U-235                | Ce-144       | Ge-75              | Nd-147          | Te-129 |         |

#### 3. Results

The outline of detectable radioactive materials at each monitoring location is as follows.

## 3.1 Detection of total β radioactivity and γ-ray emitting radionuclides

# (1) Public water areas

#### 1) Water

The results of the measurement of total  $\beta$  radioactivity and  $\gamma$ -ray emitting radionuclides are as shown in Table 3.1-1 and Figure 3.1-1.

# a) Total β radioactivity

The detection rate for total  $\beta$  radioactivity was approximately 73%, with detected values ranging from not detectable to 1.1 Bq/L: all of which were within the past measurement trends.

# b) γ-ray emitting radionuclides

Nine types of  $\gamma$ -ray emitting radionuclides (seven naturally occurring radionuclides and two artificial radionuclides) as shown in Table 3.1-1 and Figure 3.1-1 were detected, while other types of  $\gamma$ -ray emitting radionuclides were not detectable at any of the locations surveyed.

The detection rates of naturally occurring radionuclides were approximately 5% or less except for K-40, for which the detection rate was approximately 90%. K-40 was detected at some locations with the highest concentrations being, at the maximum, three times higher than the range of past measurement records but such high concentrations were considered to have been caused by the influence of seawater (explained later). Measured values of other naturally occurring radionuclides were within the past measurement trends except for those which had not been surveyed in the past.

Bi-212, Pb-210, and Pb-214 have not been included in nationwide surveys so far, but they are all thorium or uranium series naturally occurring radionuclides that are generally contained in natural soils and rocks, etc.

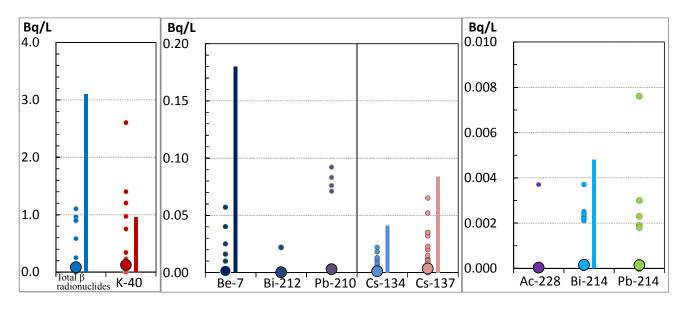

Regarding artificial radionuclides, the detection rates of Cs-134 and Cs-137 were around 16 to 23%, but detected values were 0.022 Bq/L or lower for Cs-134 and 0.065 Bq/L or lower for Cs-137: all of which were within the past measurement trends.

Table 3.1-1 Detection of total β radioactivity and γ-ray emitting radionuclides in water samples from public water areas

|                        |                       |                | Number                  | Number               | Detection |    |        | Measured | l value [Bq/                               | 'L] |        | Ra  | nge o | of past |       |       |   |     |  |      |     |
|------------------------|-----------------------|----------------|-------------------------|----------------------|-----------|----|--------|----------|--------------------------------------------|-----|--------|-----|-------|---------|-------|-------|---|-----|--|------|-----|
| Radionuclides          |                       | of samples [A] | of<br>detections<br>[B] | rate<br>(B/A)<br>[%] | Range     |    | Detect | limit    | measurement records <sup>(*1)</sup> [Bq/L] |     |        |     |       |         |       |       |   |     |  |      |     |
| r                      | Total β radioactivity |                | 113                     | 82                   | 72.6      | ND | -      | 1.1      | 0.019                                      | -   | 0.46   | ND  | -     | 3.1     |       |       |   |     |  |      |     |
|                        |                       | Ac-228         | 113                     | 1                    | 0.9       | ND | -      | 0.0037   | 0.0029                                     | -   | 0.021  |     | NI    | )       |       |       |   |     |  |      |     |
|                        | 7                     | Be-7           | 113                     | 5                    | 4.4       | ND | -      | 0.057    | 0.0084                                     | -   | 0.052  | ND  | -     | 0.18    |       |       |   |     |  |      |     |
| ү-гау                  | Naturally-occurring   | Bi-212         | 113                     | 1                    | 0.9       | ND | -      | 0.022    | 0.0094                                     | -   | 0.061  |     | No d  | ata     |       |       |   |     |  |      |     |
| emitting radionuclides | lly-occ               | Bi-214         | 113                     | 7                    | 6.2       | ND | -      | 0.0037   | 0.0012                                     | -   | 0.011  | ND  | -     | 0.0048  |       |       |   |     |  |      |     |
| ing ra                 | curring               | K-40           | 113                     | 101                  | 89.4      | ND | -      | 2.6      | 0.015                                      | -   | 0.092  | ND  | -     | 0.96    |       |       |   |     |  |      |     |
| dionu                  | 0.00                  | 09             | 09                      | 09                   | 04        | 09 | 09     | 00       | Pb-210                                     | 113 | 4      | 3.5 | ND    | -       | 0.092 | 0.043 | - | 1.2 |  | No d | ata |
| clides                 |                       | Pb-214         | 113                     | 5                    | 4.4       | ND | -      | 0.0076   | 0.0017                                     | -   | 0.0091 |     | No d  | ata     |       |       |   |     |  |      |     |
|                        | Artificial            | Cs-134         | 113                     | 18                   | 15.9      | ND | -      | 0.022    | 0.00071                                    | -   | 0.0043 | ND  | -     | 0.041   |       |       |   |     |  |      |     |
|                        | icial                 | Cs-137         | 113                     | 26                   | 23.0      | ND | -      | 0.065    | 0.0007                                     | -   | 0.0044 | ND  | -     | 0.084   |       |       |   |     |  |      |     |

ND: Not detectable

- \* : Detected value
  - : Average (arithmetic average; calculated by assuming ND to be zero)
  - : Range of past measurement records (not indicated in the case of ND or where there are no past data)



(\*) Vertical scales are different in the respective figures because detected values vary by radionuclide.

Figure 3.1-1 Detection of total  $\beta$  radioactivity and  $\gamma$ -ray emitting radionuclides in water samples from public water areas

<sup>(\*1)</sup> Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1995 to FY2014 (excluding data for March 11, 2011 to March 10, 2012)

#### 2) Sediments

The results of the measurement of total  $\beta$  radioactivity and  $\gamma$ -ray emitting radionuclides in sediment samples from public water areas are as shown in Table 3.1-2 and Figure 3.1-2.

## a) Total β radioactivity

Total  $\beta$  radioactivity was detected at all locations surveyed, with detected values ranging from 160 to 1,300 Bq/kg (dry): all of which were within the past measurement trends.

#### b) y-ray emitting radionuclides

12 types of  $\gamma$ -ray emitting radionuclides (ten naturally occurring radionuclides and two artificial radionuclides) as shown in Table 3.1-2 and Figure 3.1-2 were detected, while no other types of  $\gamma$ -ray emitting radionuclides were detectable.

The detection rates of naturally occurring radionuclides exceeded 50% except for Be-7 and Th-234.

Measured values of Be-7, Bi-214, K-40, and Ra-226 exceeded the range of past measurement records.

Bi-214 was detected at Location No. 53 (Koichi Bridge, Saigawa River, Nagano City, Nagano) at a relatively higher level than past measurement records, but other radionuclides such as Pb-214, Ra-226, and Th-234, which are radionuclides of the same uranium series as Bi-214, were also detected at the same location at relatively higher levels compared with other locations, which suggests that the relevant sampling point is located in an area where concentrations of naturally occurring radionuclides derived from natural soils and rocks, etc. are relatively high (explained later).

K-40 and Be-7, which are radionuclides commonly found in the environment (K-40 was first incorporated at the time of the formation of the earth and Be-7 is generated by cosmic rays in the atmosphere), were detected but their measured values were considered to be within the past measurement trends.

Ra-226 is a uranium series naturally occurring radionuclide existing widely within the earth's crust. In light of the fact that the past data were based on the survey results for limited areas (Bi-214 was detected only in Aomori Prefecture and Ra-226 in Okayama Prefecture in the past), measured values of Bi-214 and Ra-226 in the latest monitoring were considered to be within the past measurement trends.

Ac-228, Bi-212, Pb-212, Pb-214, Th-234, and Tl-208 are radionuclides that have not been included in nationwide surveys so far or have not been detectable in past surveys. They are all thorium or uranium series naturally occurring radionuclides that are generally contained in natural soils and rocks, etc.

As shown in the margin of Table 3.1-2 and Figure 3.1-2, internationally detected concentration levels have been reported as 0 to 1,800 Bq/kg for K-40 and 0 to 900 Bq/kg for Ra-226 (both for soil).<sup>3</sup> In comparison with such levels, measured values were all within these levels.

Values of Cs-134 and Cs-137, which are artificial radionuclides, contained in sediment samples collected at the following locations exceeded the range of past measurement records.

Radiation Sources and Effects: 2000 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly; ANNEX B; Exposures from natural radiation sources O No.13: Heigawa River, Iwate

O No.15: Abukuma River, Miyagi

O No.16: Natori River, Miyagi

O No.21: Agano River, Fukushima

O No.22: Abukuma River, Fukushima

O No.24: Lake Kasumigaura, Ibaraki

O No.25: Kokai River, Ibaraki

O No.28: Tonegawa River, Gunma

O No.32: Edogawa River, Saitama

O No.33: Tonegawa River, Chiba

O No.35: Lake Inbanuma, Chiba

O No.36: Edogawa River, Tokyo

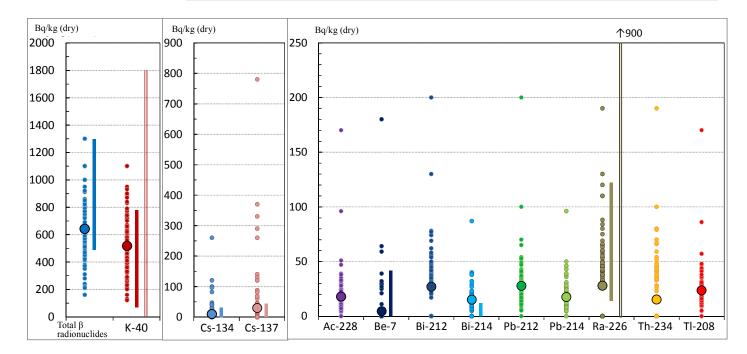
O No.38: Sumida River, Tokyo

O No.39: Arakawa River, Tokyo

O No.40: Tsurumi River, Kanagawa

These locations were all in the Tohoku and Kanto blocks. Therefore, it was considered appropriate to compare detected values for samples collected at these locations with the results of the monitoring that the Ministry of the Environment has been conducting in and around Fukushima Prefecture after the Fukushima NPS Accident (hereinafter referred to as the "Post-Earthquake Monitoring"), separately with the results of the monitoring surveys conducted in the whole of Japan (Monitoring of Environmental Radioactivity Levels, etc.). Detailed comparison results, which are explained later, showed that detected values of Cs-134 and Cs-137 were also within the past measurement trends.

Table 3.1-2 Detection of total β radioactivity and γ-ray emitting radionuclides in sediment samples from public water areas


|               |                |           |            |           |       | , a.b.i.o 1 |          |        |       |       |     |                                     |         |       |
|---------------|----------------|-----------|------------|-----------|-------|-------------|----------|--------|-------|-------|-----|-------------------------------------|---------|-------|
|               |                | Number    | Number     | Detection | Me    | asure       | ed value | [Bq/kg | (dry  | )]    | Ra  | nge of                              | oast    |       |
| R             | Radionuclides  |           | of         | of        | rate  |             |          |        |       |       |     | measurement records <sup>(*1)</sup> |         |       |
|               |                | samples   | detections | (B/A)     | ]     | Rang        | e        | Detec  | ction | limit |     | q/kg (di                            |         |       |
|               |                | [A]       | [B]        | [%]       |       |             |          |        |       |       |     | T-8 (***                            | 7/1     |       |
| Total         | lβradio        | oactivity | 110        | 110       | 100.0 | 160         | -        | 1,300  | 16    | -     | 44  | 490                                 | -       | 1,300 |
|               |                | Ac-228    | 110        | 106       | 96.4  | ND          | -        | 170    | 3.6   | -     | 12  |                                     | ND      |       |
|               |                | Be-7      | 110        | 11        | 10.0  | ND          | -        | 180    | 8.5   | -     | 69  | ND                                  | -       | 42    |
| γ-ray         | Z              | Bi-212    | 110        | 75        | 68.2  | ND          | -        | 200    | 14    | -     | 49  |                                     | No data | a     |
|               | Naturally      | Bi-214    | 110        | 99        | 90.0  | ND          | -        | 87     | 1.8   | -     | 27  | ND                                  | -       | 12    |
| emitting      | ally           | K-40      | 110        | 110       | 100.0 | 120         | -        | 1,100  | 13    | -     | 82  | 69                                  | -       | 780   |
| ting          | осс            | Pb-212    | 110        | 109       | 99.1  | ND          | -        | 200    | 1.9   | -     | 8.5 |                                     | No data | a     |
|               | occurring      | Pb-214    | 110        | 109       | 99.1  | ND          | -        | 96     | 2.1   | -     | 12  |                                     | No data | a     |
| radionuclides | ng             | Ra-226    | 110        | 55        | 50.0  | ND          | -        | 190    | 21    | -     | 98  | 14                                  | -       | 122   |
| ucli          |                | Th-234    | 110        | 33        | 30.0  | ND          | -        | 190    | 17    | -     | 83  |                                     | No data | a     |
| ides          |                | T1-208    | 110        | 108       | 98.2  | ND          | -        | 170    | 2.8   | -     | 16  |                                     | No data | a     |
|               | Artifi<br>cial | Cs-134    | 110        | 27        | 24.5  | ND          | -        | 260    | 1.0   | -     | 5.3 | ND                                  | -       | 31    |
|               | ifi-<br>al     | Cs-137    | 110        | 43        | 39.1  | ND          | -        | 780    | 1.0   | -     | 5.1 | ND                                  | -       | 44    |

ND: Not detectable

<sup>(\*1)</sup> Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1995 to FY2014 (excluding data for March 11, 2011 to March 10, 2012)

<sup>(</sup>Note) Internationally detected concentration levels have been reported as 0 to 1,800 Bq/kg for K-40 and 0 to 900 Bq/kg for Ra-226 (both for soil) (see the main text).

- \* : Detected value
  - : Average (arithmetic average; calculated by assuming ND to be zero)
    - : Range of past measurement records (not indicated in the case of ND or where there are no past data)
    - : Range of past measurement records (internationally detected concentration levels)



- (\*) Details of the detection of Cs-134 and Cs-137 are explained later.
  (\*) Vertical scales are different in the respective figures because detected values vary by radionuclide.
  (\*) See the note in the margin of Table 3.1-2 and the main text for internationally detected concentration levels.

Figure 3.1-2 Detection of total β radioactivity and γ-ray emitting radionuclides in sediment samples from public water areas

# (2) Groundwater

The results of the measurement of total  $\beta$  radioactivity and  $\gamma$ -ray emitting radionuclides in groundwater samples are as shown in Table 3.1-3 and Figure 3.1-3.

# a) Total β radioactivity

The detection rate for total  $\beta$  radioactivity was approximately 80%, with detected values ranging from not detectable to 0.44 Bq/L: all of which were within the past measurement trends.

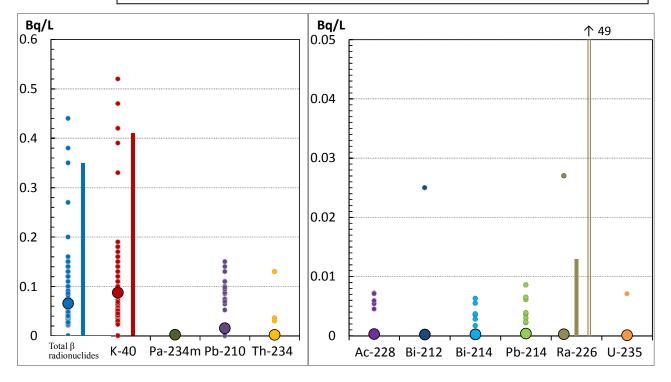
#### b) γ-ray emitting radionuclides

Ten types of  $\gamma$ -ray emitting radionuclides (all naturally occurring radionuclides) as shown in Table 3.1-3 and Figure 3.1-3 were detected, while no other types of  $\gamma$ -ray emitting radionuclides were detectable. Out of these detected  $\gamma$ -ray emitting radionuclides, K-40 was detected at concentration levels slightly exceeding the range of past measurement records but this is a radionuclide generally contained in natural soils and rocks, etc. (explained later). The measured value of Ra-226 also exceeded the range of past measurement records but could be considered to be within the past measurement trends, in light of the fact that Ra-226 was only detected in a limited area (only in Okayama Prefecture) in the past, that this is a uranium series radionuclide existing widely within the earth's crust, and that the value was much lower than the range of the internationally detected concentration levels.

Ac-228, Bi-212, Pb-212, Pb-214, Th-234, and U-235 are radionuclides that have not been included in nationwide surveys so far or have not been detectable in past surveys. They are all thorium or uranium series naturally occurring radionuclides that are generally contained in natural soils and rocks, etc.

Table 3.1-3 Detection of total β radioactivity and γ-ray emitting radionuclides in groundwater samples

| Radionuclides |                       |         | Number               | Number            | Detection            |       | Measured v | Range of past   |          |                                            |  |  |
|---------------|-----------------------|---------|----------------------|-------------------|----------------------|-------|------------|-----------------|----------|--------------------------------------------|--|--|
|               |                       |         | of<br>samples<br>[A] | of detections [B] | rate<br>(B/A)<br>[%] | Range |            | Detection limit |          | measurement records <sup>(*1)</sup> [Bq/L] |  |  |
| Tota          | Total β radioactivity |         | 109                  | 87                | 79.8                 | ND    | - 0.44     | 0.019           | - 0.040  | ND - 0.35                                  |  |  |
|               | Naturally occurring   | Ac-228  | 109                  | 5                 | 4.6                  | ND    | - 0.0072   | 0.0028          | - 0.0095 | No data                                    |  |  |
| 7             |                       | Bi-212  | 109                  | 1                 | 0.9                  | ND    | - 0.025    | 0.010           | - 0.036  | No data                                    |  |  |
| γ-ray emi     |                       | Bi-214  | 109                  | 7                 | 6.4                  | ND    | - 0.0063   | 0.0017          | - 0.0054 | No data                                    |  |  |
|               |                       | K-40    | 109                  | 88                | 80.7                 | ND    | - 0.52     | 0.017           | - 0.061  | ND - 0.41                                  |  |  |
| emitting      |                       | Pa-234m | 109                  | 1                 | 0.9                  | ND    | - 0.22     | 0.12            | - 0.45   | No data                                    |  |  |
| rad           |                       | Pb-210  | 109                  | 17                | 15.6                 | ND    | - 0.15     | 0.044           | - 0.30   | No data                                    |  |  |
| radionuclides |                       | Pb-214  | 109                  | 9                 | 8.3                  | ND    | - 0.0086   | 0.0018          | - 0.0055 | No data                                    |  |  |
|               |                       | Ra-226  | 109                  | 1                 | 0.9                  | ND    | - 0.027    | 0.019           | - 0.13   | ND - 0.013                                 |  |  |
|               |                       | Th-234  | 109                  | 3                 | 2.8                  | ND    | - 0.13     | 0.013           | - 0.034  | No data                                    |  |  |
|               |                       | U-235   | 109                  | 1                 | 0.9                  | ND    | - 0.0071   | 0.0030          | - 0.027  | No data                                    |  |  |


ND: Not detectable

<sup>(\*1)</sup> Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1995 to FY2014 (excluding data for March 11, 2011 to March 10, 2012)

<sup>(\*2)</sup> Internationally detected concentration levels have been reported as 0 to 49 Bq/L for Ra-226 (for drinking water).

Radiation Sources and Effects: 2000 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly; ANNEX B; Exposures from natural radiation sources

- \* : Detected value
  - : Average (arithmetic average; calculated by assuming ND to be zero)
  - : Range of past measurement records (not indicated in the case of ND or where there are no past data)
  - : Range of past measurement records (internationally detected concentration levels)



- (\*) Vertical scales are different in the respective figures because detected values vary by radionuclide. (\*) See the note in the margin of Table 3.1-3 for internationally detected concentration levels.

Figure 3.1-3 Detection of total β radioactivity and γ-ray emitting radionuclides in groundwater samples

#### 3.2 Consideration regarding detected radionuclides

## (1) Detection of naturally occurring radionuclides

#### 1) Correlation between activity concentrations of K-40 and salinity

As explained in 3.1 above, activity concentrations of K-40 were at levels exceeding the range of past measurement records (0.96 Bq/L at the maximum) in water samples collected at some locations in public water areas.

Locations where activity concentrations of K-40 were at high levels showed high electrical conductivity (EC) (1,360 mS/m at the maximum) and this suggests the influence of the intrusion of seawater. Therefore, a comparison was made using all available data to clarify the correlation between activity concentrations of K-40 and EC (see Figure 3.2-1).

As shown in Figure 3.2-1, a positive correlation was found between them.

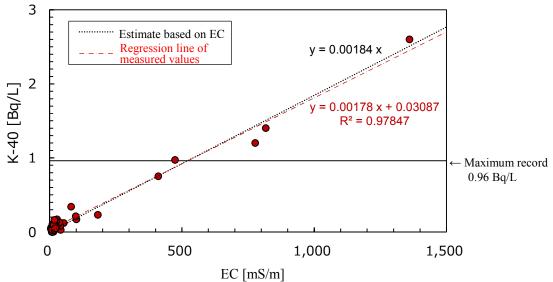



Figure 3.2-1 Correlation between the K-40 concentration and electrical conductivity in water samples from public water areas

In the meantime, according to the results of the Monitoring of Environmental Radioactivity Levels, conducted for the 20 years from FY1995 to FY2014 (monitoring of 465 samples collected from 18 prefectures), the average concentration (average) of K-40 was approximately 8.3 Bq/L and the maximum concentration was 14 Bq/L (see Table 3.2-1).

Table 3.2-1 Results of the Monitoring of Environmental Radioactivity Levels, etc. concerning K-40 in seawater(\*1)

| Number of surveys | Number of detections | Detection rate [%] | Average [Bq/L] | Maximum [Bq/L] |  |  |
|-------------------|----------------------|--------------------|----------------|----------------|--|--|
| 465               | 439                  | 94.40%             | 8.3            | 14             |  |  |

<sup>(\*1)</sup> Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1995 to FY2014

possible influence of seawater were obtained by using the following formula based on the measurement results of EC for the relevant river water.

The estimated activity concentrations of K-40 in the river water are indicated with a dashed line in Figure 3.2-1, and the estimate values were very close to the measured activity concentrations of K-40. Therefore, relatively high activity levels of K-40 measured in the latest monitoring are considered to have been caused by the intrusion of seawater and fall within the past measurement trends.

In the same manner, the correlation between the K-40 concentration and EC was also checked with regard to groundwater samples (see Figure 3.2-2; scales of the vertical and horizontal axes differ from those for Figure 3.2-1). However, no clear correlation was found for groundwater samples. The measured values slightly exceeded the range of past measurement records (0.41 Bq/L at the maximum) for samples collected at Location No. 66 (Daisennaka Town, Sakai Ward, Sakai City, Osaka; 0.47 Bq/L), Location No. 68 (Saiwai Town, Toyooka City, Hyogo; 0.52 Bq/L), and Location No. 75 (Fukui, Kurashiki City, Okayama; 0.42 Bq/L). These locations are within areas where the potassium concentration in soil is relatively high (Figure 3.2-3), and relatively high activity levels of K-40 are considered to reflect the geological property of respective areas. Accordingly, the K-40 concentration for groundwater samples in the latest monitoring is considered to fall within the past measurement trends.

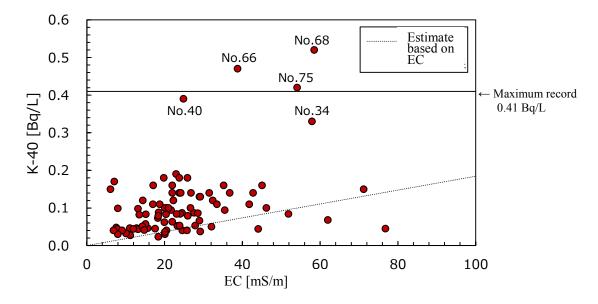



Figure 3.2-2 Correlation between the K-40 concentration and electrical conductivity in groundwater samples

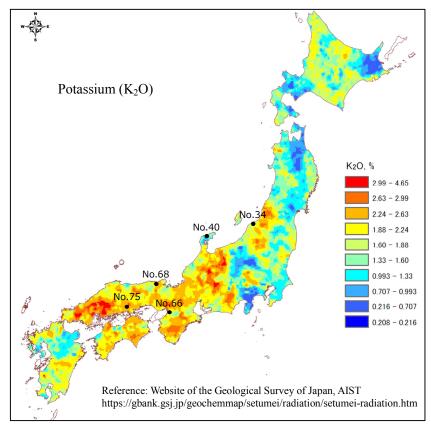



Figure 3.2-3 Distribution of potassium  $(K_2O)$  in soil in Japan

#### 2) Uranium and thorium series radionuclides

As explained in 3.1 above, uranium and thorium series radionuclides were detected at relatively high concentration levels in sediment samples from public water areas.

Such radionuclides were detected as shown in Table 3.2-2.

These naturally occurring radionuclides exist widely within the earth's crust and belong to the same decay series, which implies the existence of some correlations among detected values.

Table 3.2-2 Detection of uranium and thorium series naturally occurring radionuclides

|                      |             |        | Number  | Number     | Detection | Measured value [Bq/kg (dry)] |   |     |                 |   |     |
|----------------------|-------------|--------|---------|------------|-----------|------------------------------|---|-----|-----------------|---|-----|
|                      | Radionuclid | les    | of      | of         | rate      | Range                        |   |     | Detection limit |   |     |
|                      | Radionaciic | ics    | samples | detections | (B/A)     |                              |   |     |                 |   |     |
|                      |             |        | [A]     | [B]        | [%]       |                              |   |     |                 |   |     |
|                      |             | Th-234 | 110     | 33         | 30.0      | ND                           | - | 190 | 17              | - | 83  |
|                      | Uranium     | Ra-226 | 110     | 55         | 50.0      | ND                           | - | 190 | 21              | - | 98  |
| γ-ray<br>radic       | series      | Pb-214 | 110     | 109        | 99.1      | ND                           | - | 96  | 2.1             | - | 12  |
| _                    |             | Bi-214 | 110     | 99         | 90.0      | ND                           | - | 87  | 1.8             | - | 27  |
| emitting<br>nuclides |             | Ac-228 | 110     | 106        | 96.4      | ND                           | - | 170 | 3.6             | - | 12  |
| ting<br>des          | Thorium     | Pb-212 | 110     | 109        | 99.1      | ND                           | - | 200 | 1.9             | - | 8.5 |
|                      | series      | Bi-212 | 110     | 75         | 68.2      | ND                           | - | 200 | 14              | - | 49  |
|                      |             | T1-208 | 110     | 108        | 98.2      | ND                           | - | 170 | 2.8             | - | 16  |

ND: Not detectable

Figure 3.2-4 and Figure 3.2-5 show correlations among detected values of radionuclides belonging to respective series (excluding data for radionuclides not detectable).

As is clear from these figures, high correlations were observed among uranium series radionuclides or thorium series radionuclides, respectively.

Given these facts, radionuclides belonging to these two series are considered to show geological characteristics of their respective sampling locations.

Locations where detected values of uranium and thorium series naturally occurring radionuclides were high include Location No. 45 (Hagiura Bridge, Jinzu River, Toyama City, Toyama), Location No. 53 (Koichi Bridge, Saigawa River, Nagano City, Nagano), Location No. 66 (Karasakioki-Chuo, Lake Biwako, Shiga), Location No. 84 (Intake for water supply in Hesaka, Ota River, Hiroshima City, Hiroshima), and Location No. 87 (Suenobu Bridge, Kotogawa River, Ube City, Yamaguchi), all of which are in areas where granite is widely distributed in neighboring areas or in upstream parts (see Figure 3.2-6). Generally, "granite contains naturally occurring radionuclides in relatively larger amounts than other types of rocks" (Geological Society of Japan, etc.), and measured values for these locations are considered to reflect such geological property of respective areas.

According to the Geological Society of Japan, etc.,<sup>5</sup> "natural radiation doses have certain correlation with uranium and thorium series radionuclides." Natural radiation doses in Japan are as shown in Figure 3.2-7.

<sup>&</sup>lt;sup>5</sup> http://www.geosociety.jp/hazard/content0058.html

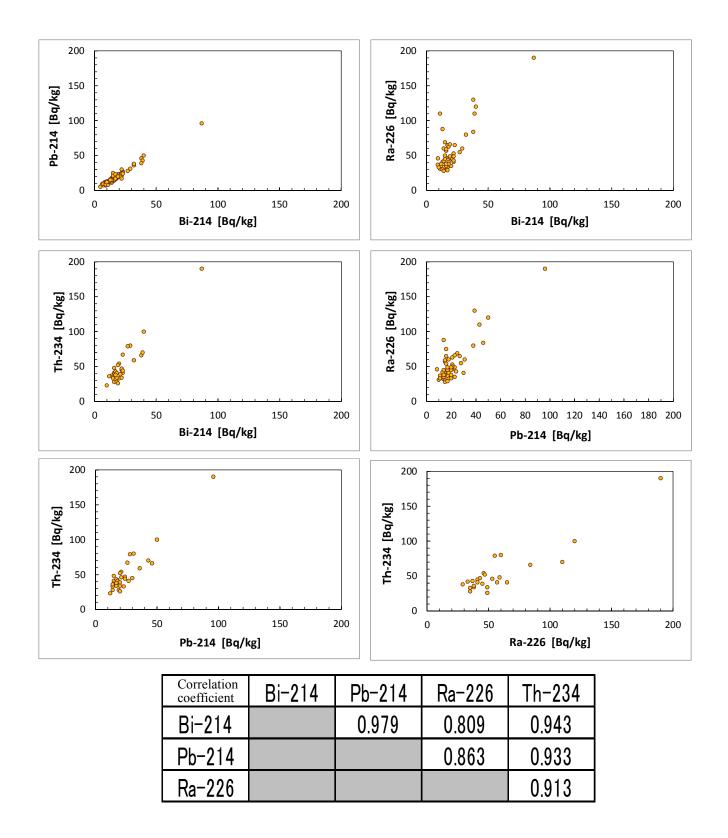



Figure 3.2-4 Correlations among uranium series radionuclides

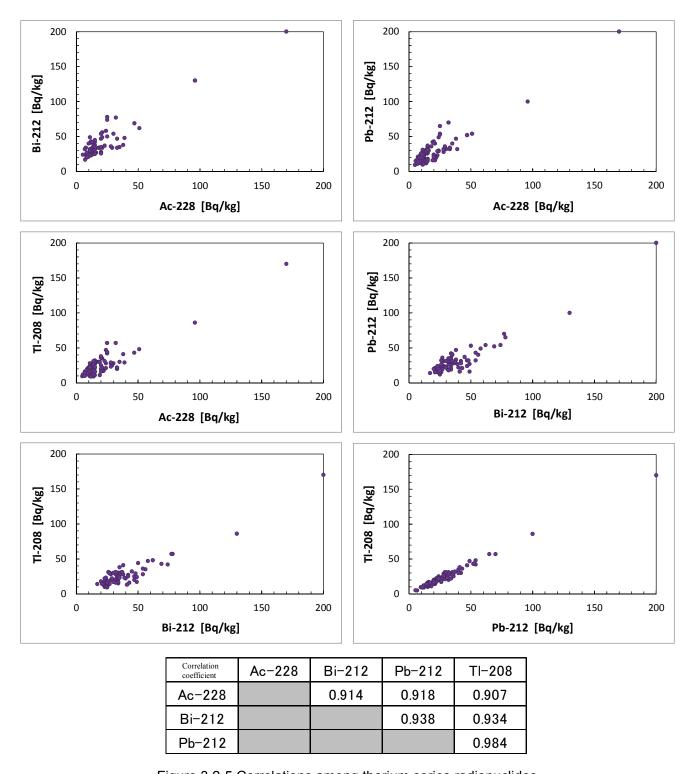



Figure 3.2-5 Correlations among thorium series radionuclides



(\*) Reference: Seamless Digital Geological Map of Japan (1:200,000) ®; AIST website<sup>6</sup>

(\*) Numbers in the figure indicate monitoring locations.

Figure 3.2-6 Distribution of granite in Japan (parts highlighted in pink in the Figure are locations where granite exists)

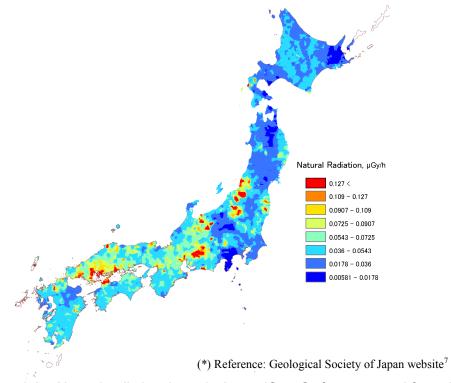


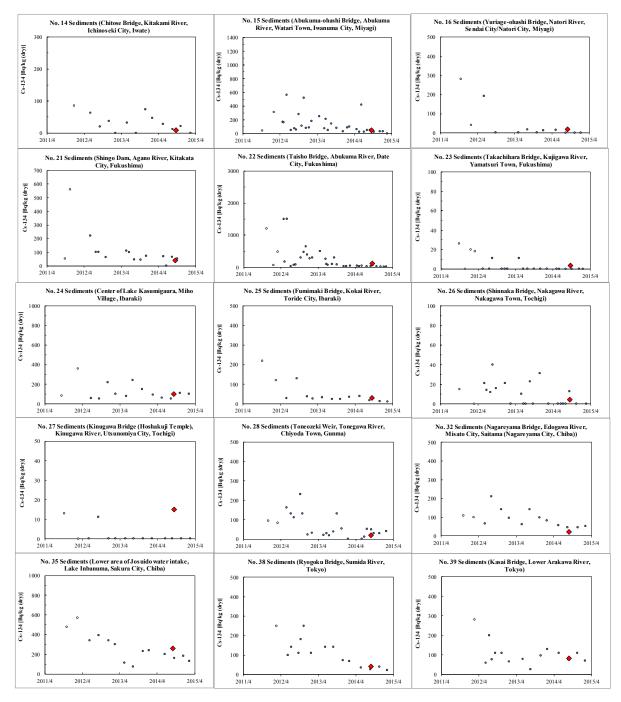

Figure 3.2-7 Natural radiation doses in Japan (Gy = Sv for  $\gamma$ -rays and  $\beta$ -rays)

https://gbank.gsj.jp/seamless/
 http://www.geosociety.jp/hazard/content0058.html

#### (2) Detection of artificial radionuclides

#### 1) Cs-134 and Cs-137 in sediments

As explained in 3.1 above, radioactive cesium was detected in sediment samples from public water areas in the Hokkaido, Tohoku, Kanto, Chubu, Kinki, and Kyushu blocks (43 locations in total; both Cs-134 and Cs-137 were detected at 27 locations (all in the Tohoku and Kanto blocks), and only Cs-137 was detected at 16 locations). At some of these locations, Cs-134 and Cs-137 were detected at concentration levels exceeding the range of past measurement records.


As locations where detected values exceeded the range of past measurement records were all in the Tohoku and Kanto blocks, the influence of the Fukushima NPS Accident was suspected. Therefore, a comparison was made as follows by using available data, including the results of the Post-Earthquake Monitoring being conducted at present.

- (i) Regarding locations also surveyed in the Post-Earthquake Monitoring, a direct comparison with the data for the relevant locations obtained through said monitoring
- (ii) Regarding locations that do not fall under the category of (i) above but are in Tokyo Metropolis or other prefectures where the Post-Earthquake Monitoring is conducted, a comparison with data for other locations in said prefectures
- (iii) Regarding locations that do not fall under the categories of (i) and (ii) above, a comparison with the data for areas around the relevant locations obtained through the Post-Earthquake Monitoring
- (iv) Regarding locations where measured values did not exceed the range of past measurement records, a comparison with data obtained through the Monitoring of Environmental Radioactivity Levels, etc.

#### (i) Comparison with the past Post-Earthquake Monitoring results for the same locations

Regarding locations also surveyed in the Post-Earthquake Monitoring, the measured values in the latest monitoring were compared with the past measurement records for the same locations (see Figure 3.2-8).

At Locations No. 27 and No. 35, measured values were larger than the range of past measurement records, but such deviations were considered to be within minor fluctuations in light of the past similar monitoring results, and the results of the latest monitoring were found to be within the past measurement trends.



- (\*) ♦ in figures shows the latest monitoring results.
- (\*) White small circles show the measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference.

Figure 3.2-8(1) (i) Comparison with the past Post-Earthquake Monitoring results for the same locations [Cs-134]



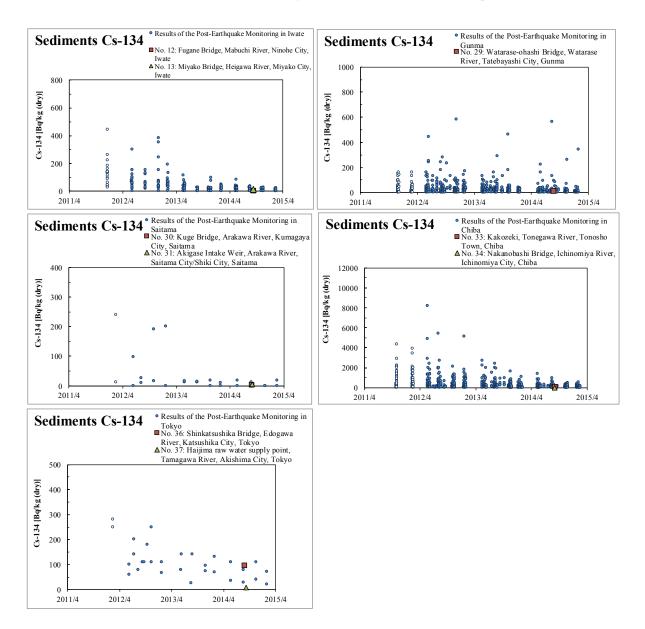
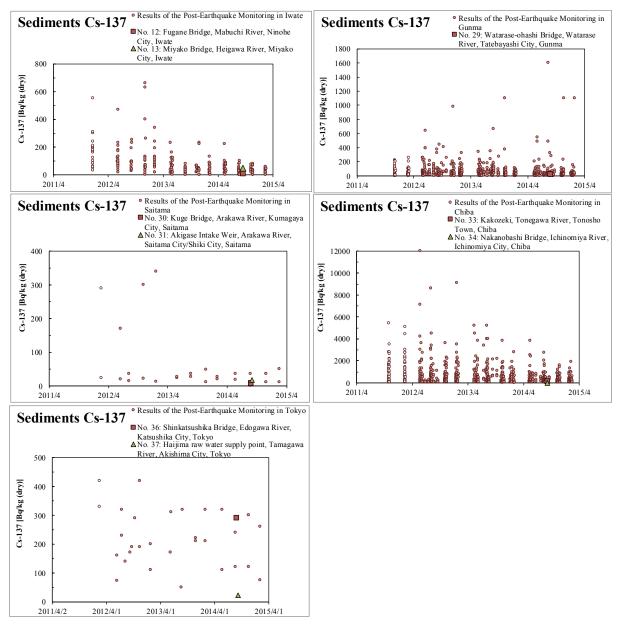

- (\*) ♦ in figures shows the latest monitoring results.
- (\*) White small circles show the measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference.

Figure 3.2-8(2) (i) Comparison with the past Post-Earthquake Monitoring results for the same locations [Cs-137]

# (ii) Comparison with the past Post-Earthquake Monitoring results in the same prefectures

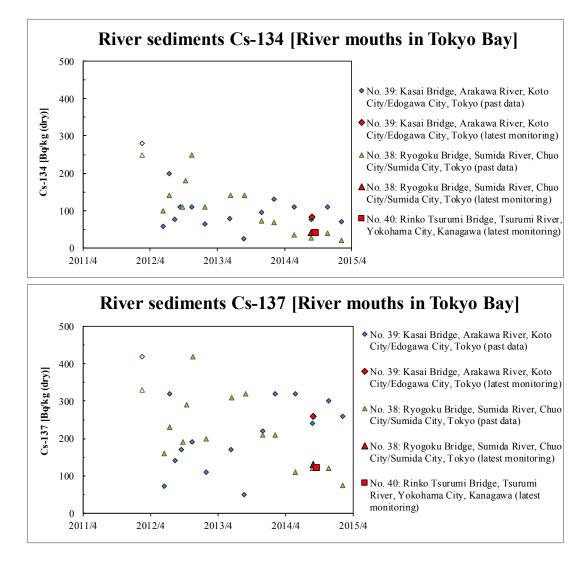

Regarding locations that have not been surveyed in the Post-Earthquake Monitoring, the measured values in the latest monitoring were compared with the past Post-Earthquake Monitoring results for locations in the same prefectures (see Figure 3.2-9).

The measured values in the latest monitoring were found to be all within the past measurement trends.



(\*) White small circles show the measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference.

Figure 3.2-9(1) (ii) Comparison with the past Post-Earthquake Monitoring results in the same prefectures [Cs-134]




(\*) White small circles show the measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference.

Figure 3.2-9(2) (ii) Comparison with the past Post-Earthquake Monitoring results in the same prefectures [Cs-137]

# (iii) Comparison with the past Post-Earthquake Monitoring results for nearby locations

Regarding Location No. 40 (Rinko Tsurumi Bridge, Tsurumi River, Yokohama City, Kanagawa Prefecture), it was considered to be appropriate to make a comparison with the past data for nearby locations although the Post-Earthquake Monitoring had not been conducted in Kanagawa Prefecture. Therefore, a comparison was made with the past data for Location No. 38 (Ryogoku Bridge, Sumida River, Chuo City/Sumida City, Tokyo Metropolis) and Location No. 39 (Kasai Bridge, Arakawa River, Koto City/Edogawa City, Tokyo Metropolis), both of which are located at the mouths of the Sumida River and the Arakawa River to Tokyo Bay (see Figure 3.2-10). As a result, it was found that the measured values for Location No. 40 were within the past measurement trends.



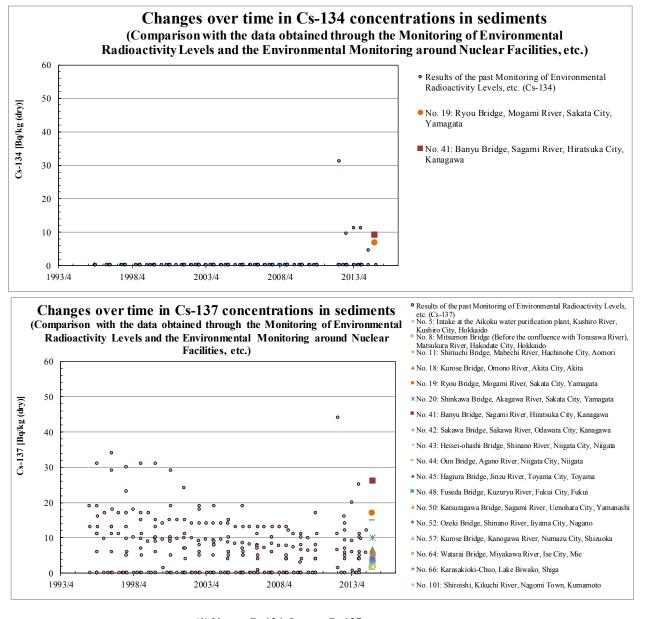
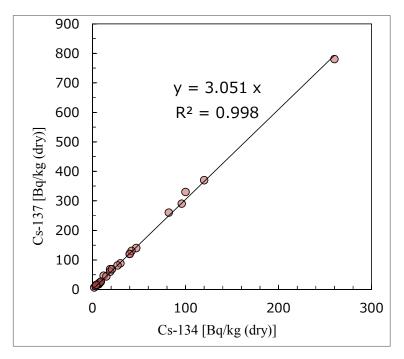

<sup>(\*)</sup> White small circles show the measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference.

Figure 3.2-10 (iii) Comparison with the past Post-Earthquake Monitoring results for nearby locations

# (iv) Comparison with the data obtained through the Monitoring of Environmental Radioactivity Levels, etc.

Regarding locations where measured values did not exceed the range of past measurement records, the measured values in the latest monitoring were compared with the data obtained through the Monitoring of Environmental Radioactivity Levels, etc. to check the concentration levels (see Figure 3.2-11).

Cs-134 and Cs-137 were detected at Location No.19 (Ryou Bridge, Mogami River, Sakata City, Yamagata Prefecture) and Location No. 41 (Banyu Bridge, Sagami River, Hiratsuka City, Kanagawa Prefecture), but measured values were all within the measurement trends after the Fukushima NPS Accident. In Hokkaido, Chubu, Kinki, and Kyushu blocks, only Cs-137 was detected at concentration levels within the measurement trends after the Fukushima NPS Accident.




<sup>(\*)</sup> Upper: Cs-134; Lower: Cs-137

Figure 3.2-11 (iv) Comparison with the data obtained through the Monitoring of Environmental Radioactivity Levels, etc.

<sup>(\*)</sup> The measurement results for March 11, 2011 to March 10, 2012, which were excluded from the past measurement records used as reference, are not indicated.

Regarding locations where both Cs-134 and Cs-137 were detected (all in the Tohoku and Kanto blocks), a good correlation was observed in the activity concentration ratios of Cs-137 and Cs-134. The calculated activity concentration ratio was 3.1. When assuming that detected Cs-134 and Cs-137 are those discharged due to the Fukushima NPS Accident, this ratio could be found to be close to the theoretical ratio (approx. 3) as of September 2014 after the discharge in March 2011 (see Figure 3.2-12). This suggests that Cs-134 and Cs-137 detected in sediment samples collected in the Tohoku and Kanto blocks were derived from the Fukushima NPS Accident.



| Radionuclide                    | Half-life (year) | Mar. 2011 | Sep. 2011 | Mar. 2012 | Sept. 2012 | Mar. 2013 | Sept. 2013 | Mar. 2014 | Sept. 2014 |
|---------------------------------|------------------|-----------|-----------|-----------|------------|-----------|------------|-----------|------------|
| Cs-134 (relative concentration) | 2.062            | 1         | 0.85      | 0.71      | 0.60       | 0.51      | 0.43       | 0.36      | 0.31       |
| Cs-137 (relative concentration) | 30.07            | 1         | 0.99      | 0.98      | 0.97       | 0.95      | 0.94       | 0.93      | 0.92       |
| Cs-137/Cs-134                   |                  | 1         | 1.17      | 1.37      | 1.60       | 1.87      | 2.19       | 2.56      | 2.99       |

Figure 3.2-12 Concentration ratio (Cs-137/Cs-134) [Sediments (public water areas)]

(Note: Changes over the years in concentration ratios (Cs-137/Cs-134) in consideration of half-life periods)

(\*) The concentration ratio at the time of the latest monitoring (around September 2014) is estimated to be approximately 3 (highlighted in yellow in the table above).

Given these facts, Cs-134 and Cs-137 detected in sediment samples from public water areas were mostly derived from the Fukushima NPS Accident, except for some locations for which causal relations were unclear, but detected values were all within the measurement trends of the Post-Earthquake Monitoring being conducted at present.

# 2) Cs-134 and Cs-137 in water

Cs-134 or Cs-137 were detected at 26 out of the 110 locations where water samples from public water areas were collected (a total of 26 locations: both Cs-134 and Cs-137 were detected at 18 locations (all in the Tohoku and Kanto blocks) and only Cs-137 was detected at eight locations). However, the maximum values were 0.022 Bq/L for Cs-134 and 0.065 Bq/L for Cs-137, both of which were smaller by one digit or more than the lower detection limit (1 Bq/L) applied for the Post-Earthquake Monitoring and were below the range of past measurement records obtained through the Monitoring of Environmental Radioactivity Levels, which were used for comparison, (0.041 Bq/L for Cs-134 and 0.084 Bq/L for Cs-137).

Regarding the 18 locations (all in the Tohoku and Kanto blocks) where both Cs-134 and Cs-137 were detected, the concentration ratio (Cs-137/Cs-134) calculated in the same manner as in the case of sediment samples also showed a good correlation. The obtained concentration ratio was 2.9. When assuming that detected Cs-134 and Cs-137 were those discharged due to the Fukushima NPS Accident, this ratio was found to be close to the theoretical ratio (approx. 3) as of September 2014 after the discharge in March 2011 (see Figure 3.2-13). This suggests that Cs-134 and Cs-137 detected in water samples collected in the Tohoku and Kanto blocks were derived from the Fukushima NPS Accident.

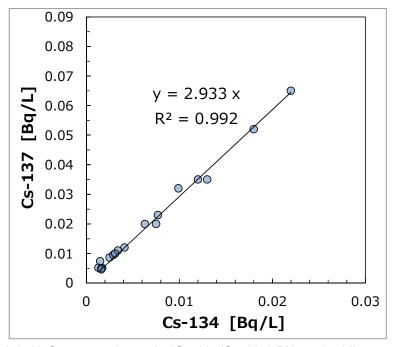


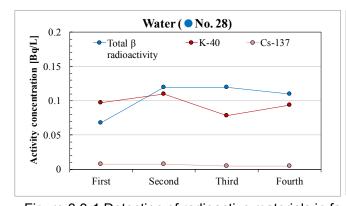

Figure 3.2-13 Concentration ratio (Cs-137/Cs-134) [Water (public water areas)]

#### 3) Cs-134 and Cs-137 in groundwater

Cs-134 and Cs-137 were not detectable in groundwater samples collected at any of the 109 locations (detection limit: approx. 0.001 to 0.002 Bq/L).

# 3.3 Survey to check annual variation

At two locations<sup>8</sup> (both in rivers), namely, Location No.28 (Toneozeki Weir, Tonegawa River, Chiyoda Town, Gunma Prefecture) and Location No. 83 (Kasumi Bridge, Takahashi River, Kurashiki City, Okayama Prefecture), surveys were conducted four times during the period from August 25, 2014 to January 26, 2015.


Radionuclides were detected as shown in Table 3.3-1 and Table 3.3-2. Changes in concentration levels of radionuclides that were detected on all four occasions are shown in Figure 3.3-1 and Figure 3.3-2. No significant variation was observed for uranium and thorium series naturally occurring radionuclides as a whole (Ac-228, Pb-212, Pb-214, Tl-208, Bi-212, and Bi-214), nor for total β radioactivity and K-40 in particular.

Coefficients of variation<sup>9</sup> (sample standard deviation/average) are also indicated in Table 3.3-1 and Table 3.3-2 to show the dispersion of detected values. Regarding total  $\beta$  radioactivity and K-40, coefficients of variation were below 10% for sediment samples and were around 10 to 30% for water samples, while regarding radioactive cesium, they were around 20% both for sediment samples and water samples. The Radioactive Material Monitoring in the Water Environment conducted in FY2012<sup>10</sup> revealed that the variations in radioactive cesium concentration levels in river sediment samples (nine samples collected around the same time) were around 12% to 16%. The results of the latest monitoring for sediment samples were close to these figures although the survey period was different, and this suggests that variations depending on survey periods are of the same level as those depending on locations.

Table 3.3-1 Detection of radioactive materials in four surveys conducted at the same location [water]

| Location | Radionuclide             |               | Water         | [Bq/L]         |               | Coefficient of | Tti      | Radionuclide             |               | Water         | [Bq/L]        |               | Coefficient of |
|----------|--------------------------|---------------|---------------|----------------|---------------|----------------|----------|--------------------------|---------------|---------------|---------------|---------------|----------------|
| Location | Radionucide              | First         | Second        | Third          | Fourth        | variation [%]  | Location | Radionucide              | First         | Second        | Third         | Fourth        | variation [%]  |
|          | Survey date              | Aug. 25, 2014 | Oct. 27, 2014 | Dec. 15, 2014  | Jan. 26, 2015 |                |          | Survey date              | Aug. 30, 2014 | Oct. 28, 2014 | Dec. 15, 2014 | Jan. 26, 2015 |                |
|          | K-40                     | 0.097         | 0.11          | 0.078          | 0.094         | 13.9           |          | Be-7                     | < 0.024       | 0.012         | < 0.0073      | < 0.0073      | -              |
| No.28    | Cs-134                   | 0.0015        | 0.0020        | <0.0010 0.0018 |               | 14.2           | No.83    | K-40                     | 0.034         | 0.045         | < 0.028       | 0.034         | 16.9           |
| 110.20   | Cs-137                   | 0.0074        | 0.0072        | 0.0048         | 0.0049        | 23.3           | 110.05   | Pb-212                   | < 0.0019      | < 0.0021      | < 0.0019      | 0.0013        | -              |
|          | Total β<br>radioactivity | 0.068         | 0.12          | 0.12           | 0.11          | 23.7           |          | Total β<br>radioactivity | 0.046         | 0.064         | 0.037         | 0.038         | 27.0           |

(\*) Coefficients of variation are indicated only for radionuclides that were detected three times or more.



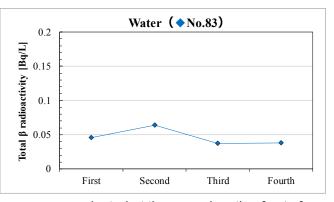



Figure 3.3-1 Detection of radioactive materials in four surveys conducted at the same location [water]

8 It was decided to select one location each in eastern and western Japan. All 110 locations were first divided into two for convenience (Locations No. 1 to No. 55 were classified as eastern Japan and Locations No. 51 to No. 110 were classified as western Japan) and the two locations of the median number in respective categories were selected.

45

<sup>&</sup>lt;sup>9</sup> In the report of March 2015, a coefficient of deviation was calculated by dividing the population standard deviation with the average. However, in light of the fact that samples for the latest monitoring were collected from the natural environment (population), a coefficient of deviation in this report was calculated by dividing the sample standard deviation by the average. The same applies hereinafter.

Review on methods of the FY2012 Radioactive Material Monitoring in the Water Environment (March 2013)

Table 3.3-2 Detection of radioactive materials in four surveys conducted at the same location [sediments]

| Location | Radionuclide                                                                                                                                                |               | Sediments [B  | sq/kg (dry)]  |               | Coefficient of | Location                 | Radionuclide |               | Sediments     | [Bq/kg (dry)] |               | Coefficient of |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|----------------|--------------------------|--------------|---------------|---------------|---------------|---------------|----------------|
| Location | Radionucilde                                                                                                                                                | First         | Second        | Third         | Fourth        | variation [%]  | Location                 | Radionucide  | First         | Second        | Third         | Fourth        | variation [%]  |
|          | Survey date                                                                                                                                                 | Aug. 25, 2014 | Oct. 27, 2014 | Dec. 15, 2014 | Jan. 26, 2015 |                |                          | Survey date  | Aug. 30, 2014 | Oct. 28, 2014 | Dec. 15, 2014 | Jan. 26, 2015 |                |
| Ī        | Ac-228                                                                                                                                                      | 15            | 9.8           | 12            | 15            | 19.6           |                          | Ac-228       | 13            | 25            | 12            | 19            | 34.9           |
|          | Bi-214                                                                                                                                                      | <12           | 11            | 13            | 13            | 9.4            |                          | Bi-212       | 42            | 34            | 23            | 28            | 25.8           |
|          |                                                                                                                                                             | 8.1           |               | Bi-214        | 15            | 21             | 17                       | 17           | 14.4          |               |               |               |                |
| Ī        |                                                                                                                                                             | 13.3          |               | K-40          | 870           | 830            | 910                      | 770          | 7.1           |               |               |               |                |
| No.28    |                                                                                                                                                             | 20.4          |               | Pb-212        | 28            | 28             | 24                       | 27           | 7.1           |               |               |               |                |
|          | T1-208                                                                                                                                                      |               | 12.4          | No.83         | Pb-214        | 21             | 23                       | 19           | 15            | 17.5          |               |               |                |
|          | Cs-134                                                                                                                                                      | 19            | 13            | 21            | 17            | 19.5           |                          | Ra-226       | 50            | <42           | 36            | <39           | -              |
|          | Cs-137                                                                                                                                                      | 60            | 44            | 76            | 61            | 21.7           |                          | Th-234       | <30           | <41           | 30            | 42            | -              |
|          | Cs-137         60         44         76         61         21.7           Total β radioactivity         410         350         350         380         7.7 | 7.7           |               | Tl-208        | 25            | 20             | 21                       | 25           | 11.6          |               |               |               |                |
|          |                                                                                                                                                             |               |               |               |               |                | Total β<br>radioactivity | 1000         | 980           | 890           | 920           | 5.4           |                |

(\*) Coefficients of variation are indicated only for radionuclides that were detected three times or more.

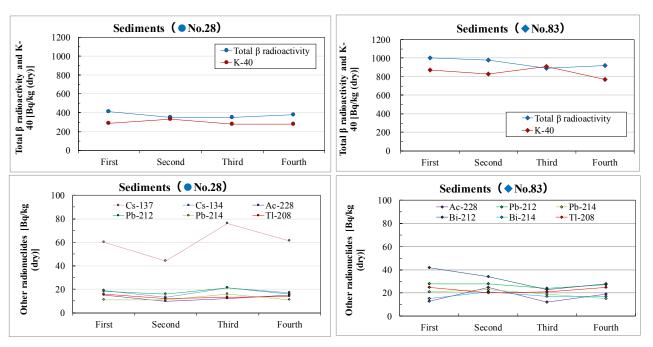



Figure 3.3-2 Detection of radioactive materials in four surveys conducted at the same location [sediments]

# Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2011 to FY2014)

# 1. Objective and Details

# 1.1 Objective

This monitoring was conducted in response to the Fukushima NPS Accident for the purpose of clarifying the distribution of the accident-derived radioactive materials in the water environment.

#### 1.2 Details

#### (1) Locations

The survey was conducted mainly in the Tohoku and Kanto districts at around 600 locations for public water areas and at around 400 locations for groundwater. Specific locations are as shown in Figure 1.2-1.

#### (2) Targets

For public water areas (rivers, lakes, and coastal areas), water and sediments were surveyed. Additionally, radioactive concentrations in soil were measured in the surrounding environment (river beds, etc.) near the sampling locations as reference.

Radioactive concentrations in groundwater were also measured.

#### (3) Frequencies and periods

The monitoring for public water areas was conducted 2 to 10 times a year (varying by location) since August 2011.

The monitoring for groundwater was conducted 1 to 4 times a year (varying by location) since October 2011.

# (4) Conducted analyses

Primarily, analyses targeting Cs-134 and Cs-137 were conducted.

Additionally, analyses on I-131, Sr-89, Sr-90 and other artificial radionuclides were also conducted for some of the collected samples.

#### (5) Compilation and evaluation of results

The results of the measurement are compiled and released sequentially as preliminary reports on the website of the Ministry of the Environment.

This report is the compilation of the overall monitoring results, and the details of individual monitoring surveys are available on the following webpages.

Public water areas: <a href="http://www.env.go.jp/jishin/monitoring/results-r-pw.html">http://www.env.go.jp/jishin/monitoring/results-r-pw.html</a>

Groundwater: <a href="http://www.env.go.jp/jishin/monitoring/results-r-gw.html">http://www.env.go.jp/jishin/monitoring/results-r-gw.html</a>

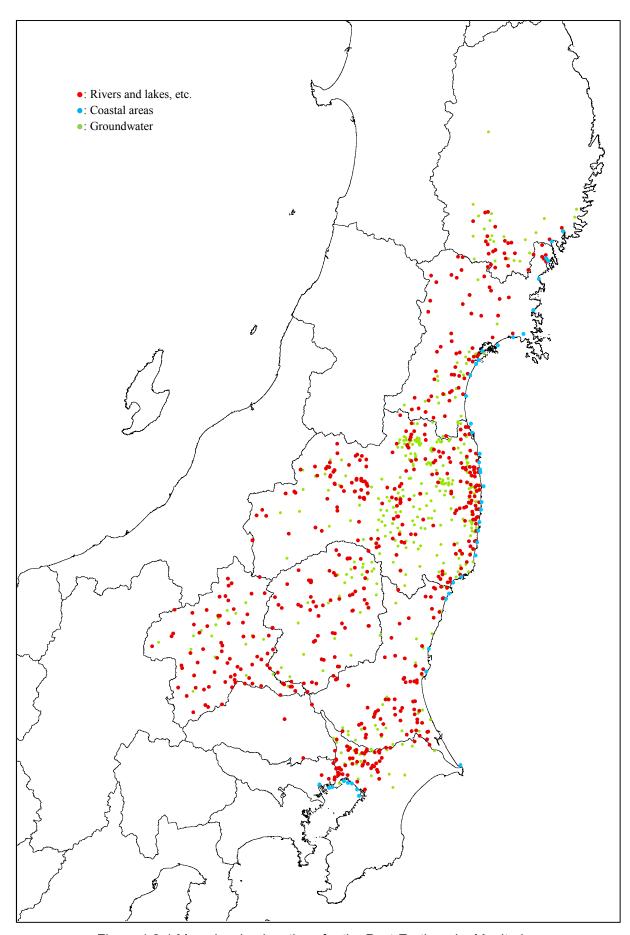



Figure 1.2-1 Map showing locations for the Post-Earthquake Monitoring

# 2. Survey Methods and Analysis Methods

#### 2.1 Survey methods

Samples were collected at predetermined locations (for public water areas and groundwater) and the following analyses of radioactive materials are conducted at chemical laboratories.

Samples were collected based on the following guidelines in principle, as outlined below.

- Water Quality Survey Method (September 30, 1971; Notice Kansuikan No. 30 issued by the Director of the Water Quality Preservation Bureau, Ministry of the Environment)
- Sediment Survey Method (August 8, 2012; Notice Kansuitaisuihatsu No. 120725002 issued by the Director of the Environmental Management Bureau, Ministry of the Environment)
- Groundwater Quality Survey Method (September 14, 1989; Notice Kansuikan No. 189 issued by the Director of the Water Quality Preservation Bureau, Ministry of the Environment)
- Environmental Sample Collection Method (1983, MEXT's Radioactivity Measurement Method Series)
- Sample Pretreatment for Instrumental Analysis Using Germanium Semiconductor Detectors (1982, MEXT's Radioactivity Measurement Method Series)

## 2.2 Analysis methods

The  $\gamma$ -ray spectrometry measurement using a germanium semiconductor detector was conducted for water samples and sediment samples from public water areas and for groundwater samples, primarily targeting Cs-134 and Cs-137.

Additionally, analyses on I-131, Sr-89, Sr-90 and other artificial radionuclides were also conducted for some of the collected samples. Detected values were indicated with two significant digits in the unit of "Bq/L" in the case of water samples from public water areas and groundwater samples, and in the unit of "Bq/kg (dry)" in the case of sediment samples from public water areas. The measurement results were corrected for attenuation, and reported figures were activity concentrations as of the time of completing sampling.

Adopted analysis methods were basically in line with the MEXT's Radioactivity Measurement Method Series, and detection limits were as shown in the table below.

Table 2.2-1 Detection limit targets for radionuclides for the radioactive material-related environmental monitoring in areas afflicted by the Great East Japan Earthquake

|                                   |       |                    | ao annotoa by the creat Lact cap                                |                       |
|-----------------------------------|-------|--------------------|-----------------------------------------------------------------|-----------------------|
| Radionuc                          | lide  | Public water areas | Public water areas                                              | Groundwater           |
|                                   |       | (water)            | (sediments)                                                     |                       |
| Radioactive (Cs-134 and C         |       | Approx. 1 Bq/L     | Approx.10 Bq/kg (dry)                                           | Approx.1 Bq/L         |
| Radioactive (I-131)               |       | Approx.1 Bq/L      | Approx.10 Bq/kg (dry)                                           | Approx.1 Bq/L         |
| Radioactive                       | Sr-90 | _                  | Approx.1 Bq/kg (dry)<br>(0.18 to 2.9 Bq/kg (dry))               | Approx.1 Bq/L<br>(*1) |
| strontium                         | Sr-89 | _                  | Approx.2 Bq/kg (dry)                                            | Approx.1 Bq/L (*2)    |
| Other artif<br>radionucli<br>(*3) |       | _                  | Ag-110m: 7 to 180 Bq/kg (dry)<br>Sb-125: 130 to 330 Bq/kg (dry) |                       |

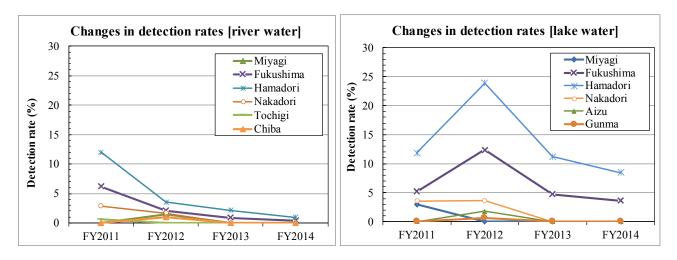
<sup>\*1: 0.0002</sup> Bq/L for the FY2011 monitoring \*2: 0.001 Bq/L for the FY2011 monitoring

<sup>\*3:</sup> Vary by type of radionuclides; The above table shows detection limit targets for Ag-110m and Sb-125, which were detected in the monitoring (see Chapter 5.3 of the main text).

#### 3. Outline of the Results

The results of the Post-Earthquake Monitoring conducted in Tokyo Metropolis and other nine prefectures during the period from August 2011 to December 2014 were as outlined below.

#### 3.1 Detection of radioactive cesium


Radioactive cesium (the total of Cs-134 and Cs-137) was detected as follows.

#### (1) Public water areas (water)

Detection rates of radioactive cesium were generally decreasing for river water samples (7,000 or more in total) and lake water samples (4,100 or more in total) collected in all surveyed prefectures. Radioactive cesium has not been detected in prefectures other than Fukushima Prefecture since FY2013 (see Figure 3.1-1).

The maximum concentration levels in the FY2014 monitoring was 1.6 Bq/L for river water samples (detection rate: 0.9%) and 34 Bq/L for lake water samples (detection rate: 8.5%).

Radioactive cesium was not detectable in any of the samples collected at coastal areas (1,700 or more in total).



(\*) Data for Fukushima Prefecture are the total of those for Hamadori, Nakadori, and Aizu. The same applies in other figures below.

Figure 3.1-1 Changes in detection rates of radioactive cesium in water samples from public water areas (left: rivers; right: lakes)

#### (2) Groundwater

Radioactive cesium was not detectable in groundwater samples (2,600 or more in total) collected in any of the surveyed prefectures, except for the two samples collected in Fukushima Prefecture wherein radioactive cesium was detected at 2 Bq/L and 1 Bq/L, respectively, in 2011.

#### (3) Public water areas (sediments)

#### 1) Overall trends

Radioactive cesium was detected at the rate of over 80% in river sediment samples (7,000 or more in total), at over 90% in lake sediment samples (2,400 or more in total), and at over 50% in sediment samples collected

in coastal areas.

Concentration levels were generally decreasing for all of the samples collected in rivers, lakes, and coastal areas, and the decreasing trend was especially notable in samples collected in rivers.

# 2) Situation by location

As radioactive cesium was detected at many locations, the situations in respective locations were compared and detected concentration levels and their changes were statistically compiled as shown in "4.3 Detection of radioactive materials in sediment samples by sampling location."

Detected concentration levels were compiled as shown in Table 3.1-1.

Locations where concentration levels were relatively high (Category A or B: upper 10 percentile) were found in Hamadori in Fukushima Prefecture, as well as in Nakadori and Aizu in Fukushima Prefecture, and also in Miyagi, Chiba, and Ibaraki Prefectures.

Table 3.1-1 Categorization of detected concentration levels for sediment samples from public water areas (rivers, lakes, and coastal areas)

#### <Rivers>

|          |                                   |                                          |       |         |               |                 |      | Numl    | per of loca | tions   |        |          |       |                     |            |
|----------|-----------------------------------|------------------------------------------|-------|---------|---------------|-----------------|------|---------|-------------|---------|--------|----------|-------|---------------------|------------|
| Category | Percentile (see<br>Figure 4.3-1)) | [River sediments] Range<br>[Bq/kg (dry)] | Iwate | Miyagi  | Fukus         | shima Prefectur | e    | Ibaraki | Tochigi     | Gunma   | Chiba  | Saitama  | Tokyo | Total               |            |
|          | 1 iguie 1.5 1)/                   | [24/18(0.3)]                             | Iwate | Wilyagi | Hamadori Area | Nakadori Area   | Aizu | Ioaiaki | Tochigi     | Guillia | Cilioa | Saltania | TOKYO | Number of locations | Percentage |
| A        | Upper 5 percentile                | 2,613 or<br>more                         | 0     | 0       | 15            | 0               | 0    | 1       | 0           | 0       | 3      | 0        | 0     | 19                  | 4.8        |
| В        | Upper 5 to 10 percentile          | 1,326 ~ 2,613                            | 0     | 1       | 2             | 3               | 1    | 2       | 0           | 0       | 11     | 0        | 0     | 20                  | 5.1        |
| С        | Upper 10 to 25<br>percentile      | 522 ~ 1,326                              | 0     | 7       | 13            | 15              | 1    | 9       | 0           | 1       | 14     | 0        | 0     | 60                  | 15.2       |
| D        | Upper 25 to 50<br>percentile      | 188 ~ 522                                | 2     | 15      | 10            | 10              | 6    | 27      | 11          | 4       | 12     | 0        | 2     | 99                  | 25.0       |
| Е        | Lower 50 percentile               | 188 or<br>less                           | 20    | 20      | 13            | 16              | 18   | 14      | 45          | 43      | 7      | 2        | 0     | 198                 | 50.0       |
|          | Total                             | 1                                        | 22    | 43      | 53            | 44              | 26   | 53      | 56          | 48      | 47     | 2        | 2     | 396                 | 100.0      |

#### <Lakes>

|     |       |                              |                           |                      |                  |                  |      | 1       | Number of loc | ations |       |                     |            |
|-----|-------|------------------------------|---------------------------|----------------------|------------------|------------------|------|---------|---------------|--------|-------|---------------------|------------|
| Cat | egory | Percentile (see              | Range<br>[Lake sediments] | \c                   | Fukush           | ima Prefectu     | re   |         |               |        |       | Total               |            |
| Cab | .gory | Figure 4.3-1))               | [Bq/kg (dry)]             | Miyagi<br>Prefecture | Hamadori<br>Area | Nakadori<br>Area | Aizu | Ibaraki | Tochigi       | Gunma  | Chiba | Number of locations | Percentage |
|     | Ą     | Upper 5 percentile           | 26,707 or<br>more         | 0                    | 8                | 0                | 0    | 0       | 0             | 0      | 0     | 8                   | 4.9        |
|     | В     | Upper 5 to 10<br>percentile  | 20,599 ~ 26,707           | 0                    | 8                | 0                | 0    | 0       | 0             | 0      | 0     | 8                   | 4.9        |
|     | С     | Upper 10 to 25 percentile    | 2,913 ~ 20,599            | 0                    | 16               | 6                | 0    | 1       | 1             | 0      | 1     | 25                  | 15.2       |
| 1   | D     | Upper 25 to 50<br>percentile | 803 ~ 2,913               | 6                    | 6                | 4                | 8    | 4       | 1             | 11     | 1     | 41                  | 25.0       |
|     | Е     | Lower 50 percentile          | 803 or<br>less            | 15                   | 3                | 2                | 23   | 14      | 6             | 13     | 6     | 82                  | 50.0       |
|     |       | Total                        |                           | 21                   | 41               | 12               | 31   | 19      | 8             | 24     | 8     | 164                 | 100.0      |

# <Coastal areas>

|          |                                | Range                    |       |        |           |         | Number | of locations |                     |            |
|----------|--------------------------------|--------------------------|-------|--------|-----------|---------|--------|--------------|---------------------|------------|
| Category | Percentile (see Figure 4.3-1)) | [coastal area sediments] | Iwate | Miyagi | Fukushima | Ibaraki | Chiba  | Tokyo        | Tota                | 1          |
|          |                                | [Bq/kg (dry)]            |       |        |           |         |        | 10.0,0       | Number of locations | Percentage |
| A        | Upper 5 percentile             | 533 or<br>more           | 0     | 1      | 1         | 0       | 0      | 0            | 2                   | 4.8        |
| В        | Upper 5 to 10 percentile       | 462 ~ 533                | 0     | 0      | 2         | 0       | 0      | 0            | 2                   | 4.8        |
| С        | Upper 10 to 25 percentile      | 276 ~ 462                | 0     | 1      | 3         | 0       | 0      | 2            | 6                   | 14.3       |
| D        | Upper 25 to 50 percentile      | 79 ~ 276                 | 0     | 5      | 5         | 0       | 0      | 0            | 10                  | 23.8       |
| Е        | Lower 50 percentile            | 79 or less               | 2     | 5      | 4         | 5       | 5      | 1            | 22                  | 52.4       |
|          | Total                          |                          | 2     | 12     | 15        | 5       | 5      | 3            | 42                  | 100.0      |

Changes in detected concentration levels were compiled as shown in Figure 3.1-2, which shows Table 4.3-45 graphically.

At most monitoring locations for rivers, a decreasing trend was observed. For lakes, concentration levels were generally decreasing or unchanged at most locations with some locations showing fluctuations. There were also some locations where an increasing trend was observed. For coastal areas, a decreasing trend was observed at most locations with some locations showing fluctuations.

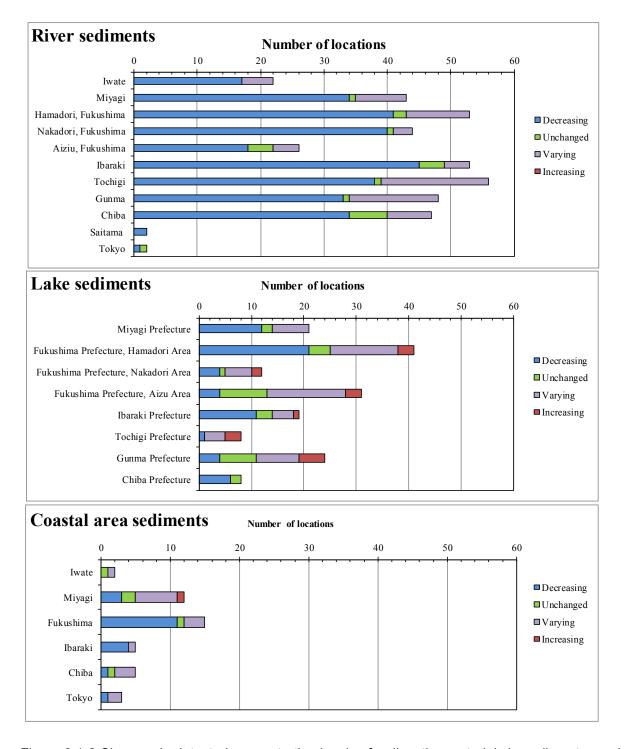



Figure 3.1-2 Changes in detected concentration levels of radioactive materials in sediment samples from public water areas (rivers, lakes, and coastal areas)

#### 3.2 Detection of radionuclides other than radioactive cesium

# (1) I-131

I-131 was not detectable in any of the monitoring surveys conducted from FY2011 to FY2012 for water samples from public water areas (approx. 3,000 samples from rivers, approx. 1,400 samples from lakes, and approx. 700 samples from coastal areas) and sediment samples from public water areas (approx. 3,000 samples from rivers, approx. 900 samples from lakes, and approx. 400 samples from coastal areas) as well as in any of the monitoring surveys conducted from FY2011 to FY2014 for groundwater samples (approx. 3,800 samples) (detection limit: 1 Bq/L for water and 10 Bq/kg for sediments).

#### (2) Sr-89 and Sr-90

Sr-90 was surveyed in the monitoring surveys conducted from FY2011 to FY2012 for sediment samples from public water areas (rivers, lakes, and coastal areas) (approx. 300 samples in total) and for groundwater samples (approx. 190 samples in total). As a result, Sr-90 was detected in some of the sediment samples from public water areas, but concentration levels were generally decreasing (see Figure 3.2-1).

Sr-89 was not detectable in any of the monitoring surveys conducted for sediment samples from public water areas (a total of 22 samples collected from rivers and lakes in FY2011) and for groundwater samples (a total of approx. 190 samples surveyed from FY2011 to FY2014) (detection limit: 1 Bq/L for water and 2 Bq/kg for bottom sediments).

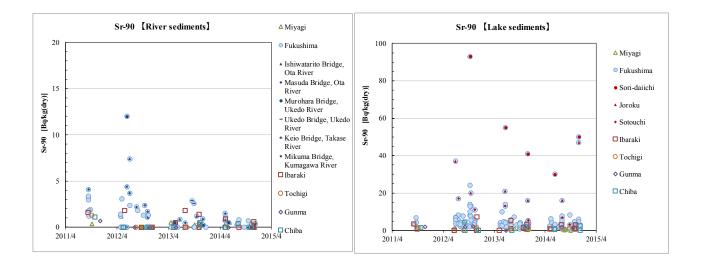



Figure 3.2-1 Detection of Sr-90 in sediment samples from public water areas (left: rivers; right: lakes)

#### (3) Other radionuclides

Ag-110m and Sb-125 were detected in FY2011 and FY2012 at detection rates below 1% within a total of over 10,000 samples surveyed from FY2011 to FY2014. They were detected near the Fukushima Daiichi NPS. Since FY2013, neither Ag-110m nor Sb-125 has been detectable.

# 4. Results (Radioactive Cesium (Cs-134 and Cs-137))

#### 4.1 Water

#### (1) Public water areas

#### 1) Rivers

Detection of radioactive cesium (Cs-134 and Cs-137) in river water samples was as shown in Table 4.1-1 and Figure 4.1-1.

Detection rates as a whole were generally decreasing since FY2011, and radioactive cesium was not detectable in FY2014 except in Hamadori in Fukushima Prefecture.

Detected values (the total of Cs-134 and Cs-137) were also in decline since FY2011. Radioactive cesium was detected in Hamadori in Fukushima Prefecture at a level of 1.6 Bq/L at the maximum in FY2014 but was not detectable in other locations (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

#### 2) Lakes

Detection of radioactive cesium (Cs-134 and Cs-137) in lake water samples was as shown in Table 4.1-2 and Figure 4.1-2.

Detection rates as a whole were decreasing since FY2012, and radioactive cesium was not detectable since FY2013 except in Hamadori in Fukushima Prefecture.

Detected values (the total of Cs-134 and Cs-137) were also in decline since FY2012. Radioactive cesium was detected in Hamadori in Fukushima Prefecture at a level of 34 Bq/L at the maximum in FY2014 but was not detectable in other locations (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

# 3) Coastal areas

Detection of radioactive cesium (Cs-134 and Cs-137) in coastal area water samples was as shown in Table 4 1-3

Radioactive cesium was not detectable at any surveyed locations (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

#### (2) Groundwater

Detection of radioactive cesium (Cs-134 and Cs-137) in groundwater samples was as shown in Table 4.1-4.

The monitoring surveys were conducted for approx. 2,600 samples collected in eight prefectures. In FY2011, Cs-134 and Cs-137 were detected only at one location and two locations (all in Fukushima Prefecture), respectively, at a level of 1 Bq/L, which is the detection limit for radioactive cesium. In FY2012 onward, radioactive cesium was not detectable at any surveyed locations for groundwater.

#### <Note>

 Specification and Standards for Food, Food Additives, etc. in Accordance with the Food Sanitation Act (Drinking Water) (Ministry of Health, Labour and Welfare Public Notice No.130, March 15, 2012)

Radioactive cesium (total for Cs-134+Cs-137): 10 Bq/kg

• Reference Values for Radioactive Materials in Tap Water (Management Target for Water Supply Facilities) (March

5, 2012; 0305 Notice No.1 from the Director of the Water Supply Division, Health Service Bureau, Ministry of Health, Labour and Welfare)

Radioactive cesium (total for Cs-134+Cs-137): 10 Bq/kg

Table 4.1-1 Detection of radioactive cesium in river water samples (by fiscal year)

|               |                          |                             | FY2011 |                                  |                          |                             | FY2012                      |              |     |                          |                             | FY2013                      |      |                       |                          |                             | FY2014                      |          |                          |                             | Total |                            |     |
|---------------|--------------------------|-----------------------------|--------|----------------------------------|--------------------------|-----------------------------|-----------------------------|--------------|-----|--------------------------|-----------------------------|-----------------------------|------|-----------------------|--------------------------|-----------------------------|-----------------------------|----------|--------------------------|-----------------------------|-------|----------------------------|-----|
| Prefecture    | Number of<br>samples [A] | Number of<br>detections [B] |        | Range of measured valu<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of mea |     | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) |      | asured values<br>q/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | values   | Number of<br>samples [A] | Number of<br>detections [B] |       | Range of measure<br>(Bq/L) |     |
| Iwate         | 18                       | 0                           | 0.0    | -                                | 64                       | 0                           | 0.0                         | -            |     | 80                       | 0                           | 0.0                         | -    |                       | 80                       | 0                           | 0.0                         | =        | 242                      | 0                           | 0.0   | -                          |     |
| Yamagata      | 10                       | 0                           | 0.0    | -                                | 0                        | 0                           | -                           | -            |     | 0                        | 0                           | -                           | -    |                       | 0                        | 0                           |                             | u.       | 10                       | 0                           | 0.0   | -                          |     |
| Miyagi        | 114                      | 0                           | 0.0    | -                                | 204                      | 3                           | 1.5                         | ND -         | 6.3 | 193                      | 0                           | 0.0                         | -    |                       | 196                      | 0                           | 0.0                         | -        | 707                      | 3                           | 0.4   | ND - 0                     | 6.3 |
| Fukushima     | 452                      | 28                          | 6.2    | ND - 20                          | 854                      | 18                          | 2.1                         | ND -         | 4.6 | 801                      | 7                           | 0.9                         | ND - | 5.5                   | 770                      | 3                           | 0.4                         | ND - 1.6 | 2877                     | 56                          | 1.9   | ND -                       | 20  |
| Hamadori Area | 192                      | 23                          | 12.0   | ND - 20                          | 342                      | 12                          | 3.5                         | ND -         | 4.6 | 325                      | 7                           | 2.2                         | ND - | 5.5                   | 326                      | 3                           | 0.9                         | ND - 1.6 | 1185                     | 45                          | 3.8   | ND -                       | 20  |
| Nakadori Area | 176                      | 5                           | 2.8    | ND - 8.0                         | 355                      | 6                           | 1.7                         | ND -         | 1.9 | 322                      | 0                           | 0.0                         | -    |                       | 324                      | 0                           | 0.0                         | -        | 1177                     | 11                          | 0.9   | ND -                       | 8.0 |
| Aizu          | 84                       | 0                           | 0.0    | -                                | 157                      | 0                           | 0.0                         | -            |     | 154                      | 0                           | 0.0                         | -    |                       | 120                      | 0                           | 0.0                         | =        | 515                      | 0                           | 0.0   | -                          |     |
| Ibaraki       | 128                      | 0                           | 0.0    | -                                | 214                      | 0                           | 0.0                         | -            |     | 212                      | 0                           | 0.0                         | -    |                       | 212                      | 0                           | 0.0                         | -        | 766                      | 0                           | 0.0   | -                          |     |
| Tochigi       | 161                      | 1                           | 0.6    | ND - 1.0                         | 277                      | 0                           | 0.0                         | -            |     | 276                      | 0                           | 0.0                         | -    |                       | 274                      | 0                           | 0.0                         | -        | 988                      | 1                           | 0.1   | ND -                       | 1.0 |
| Gunma         | 90                       | 0                           | 0.0    | -                                | 216                      | 0                           | 0.0                         | -            |     | 214                      | 0                           | 0.0                         | -    |                       | 210                      | 0                           | 0.0                         | -        | 730                      | 0                           | 0.0   | -                          |     |
| Saitama       | 2                        | 0                           | 0.0    | -                                | 8                        | 0                           | 0.0                         | -            |     | 8                        | 0                           | 0.0                         | -    |                       | 8                        | 0                           | 0.0                         | -        | 26                       | 0                           | 0.0   | -                          |     |
| Chiba         | 82                       | 0                           | 0.0    | -                                | 202                      | 2                           | 1.0                         | ND -         | 1.3 | 200                      | 0                           | 0.0                         | -    |                       | 200                      | 0                           | 0.0                         | -        | 684                      | 2                           | 0.3   | ND -                       | 1.3 |
| Tokyo         | 3                        | 0                           | 0.0    | -                                | 12                       | 0                           | 0.0                         | -            |     | 8                        | 0                           | 0.0                         | -    |                       | 8                        | 0                           | 0.0                         |          | 31                       | 0                           | 0.0   | -                          |     |
| Total         | 1060                     | 29                          | 2.7    | ND - 20                          | 2051                     | 23                          | 1.1                         | ND -         | 6.3 | 1992                     | 7                           | 0.4                         | ND - | 5.5                   | 1958                     | 3                           | 0.2                         | ND - 1.6 | 7061                     | 59                          | 0.8   | ND -                       | 20  |

ND: Not detectable

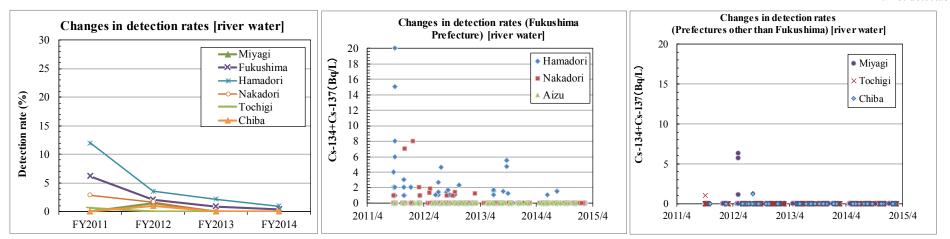



Figure 4.1-1 Detection rates of radioactive cesium in river water samples (left) and changes in detected values (center and right)

Table 4.1-2 Detection of radioactive cesium in lake water samples (by fiscal year)

|               |                          |                             | FY2011                      |                                |                            |                             | FY2012                      |                                 |                          |                             | FY2013                      |                                    |                          |                             | FY2014                      |                                    |                          |                             | Total                       |                                    |
|---------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-----------------------------|-----------------------------|---------------------------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|
| Prefecture    | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured value (Bq/L) | s Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured values (Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate (B/A)<br>(%) | Range of measured values<br>(Bq/L) |
| Yamagata      | 4                        | 0                           | 0.0                         | -                              | 0                          | 0                           | -                           | -                               | 0                        | 0                           | -                           | -                                  | 0                        | 0                           | -                           | -                                  | 4                        | 0                           | 0.0                         | -                                  |
| Miyagi        | 34                       | 1                           | 2.9                         | ND - 3.0                       | 90                         | 0                           | 0.0                         | -                               | 118                      | 0                           | 0.0                         | -                                  | 114                      | 0                           | 0.0                         | -                                  | 356                      | 1                           | 0.3                         | ND - 3.0                           |
| Fukushima     | 211                      | 11                          | 5.2                         | ND - 27                        | 581                        | 72                          | 12.4                        | ND - 100                        | 761                      | 36                          | 4.7                         | ND - 47                            | 799                      | 29                          | 3.6                         | ND - 33.8                          | 2352                     | 148                         | 6.3                         | ND - 100                           |
| Hamadori Area | 76                       | 9                           | 11.8                        | ND - 27                        | 272                        | 65                          | 23.9                        | ND - 100                        | 321                      | 36                          | 11.2                        | ND - 47                            | 342                      | 29                          | 8.5                         | ND - 33.8                          | 1011                     | 139                         | 13.7                        | ND - 100                           |
| Nakadori Area | 56                       | 2                           | 3.6                         | ND - 5.0                       | 83                         | 3                           | 3.6                         | ND - 1.2                        | 109                      | 0                           | 0.0                         | -                                  | 113                      | 0                           | 0.0                         | -                                  | 361                      | 5                           | 1.4                         | ND - 5.0                           |
| Aizu          | 79                       | 0                           | 0.0                         | -                              | 226                        | 4                           | 1.8                         | ND - 5.1                        | 331                      | 0                           | 0.0                         | -                                  | 344                      | 0                           | 0.0                         | -                                  | 980                      | 4                           | 0.4                         | ND - 5.1                           |
| Ibaraki       | 48                       | 0                           | 0.0                         | -                              | 93                         | 0                           | 0.0                         | -                               | 152                      | 0                           | 0.0                         | -                                  | 152                      | 0                           | 0.0                         | -                                  | 445                      | 0                           | 0.0                         | -                                  |
| Tochigi       | 24                       | 0                           | 0.0                         | -                              | 54                         | 0                           | 0.0                         | -                               | 62                       | 0                           | 0.0                         | -                                  | 64                       | 0                           | 0.0                         | -                                  | 204                      | 0                           | 0.0                         | -                                  |
| Gunma         | 51                       | 0                           | 0.0                         | -                              | 144                        | 1                           | 0.7                         | ND - 1.0                        | 188                      | 0                           | 0.0                         | -                                  | 187                      | 0                           | 0.0                         | -                                  | 570                      | 1                           | 0.2                         | ND - 1.0                           |
| Chiba         | 32                       | 0                           | 0.0                         | -                              | 50                         | 0                           | 0.0                         | -                               | 53                       | 0                           | 0.0                         | -                                  | 50                       | 0                           | 0.0                         | -                                  | 185                      | 0                           | 0.0                         | -                                  |
| Total         | 404                      | 12                          | 3.0                         | ND - 27                        | 1012                       | 73                          | 7.2                         | ND - 100                        | 1334                     | 36                          | 2.7                         | ND - 47                            | 1366                     | 29                          | 2.1                         | ND - 33.8                          | 4116                     | 150                         | 3.6                         | ND - 100                           |

ND: Not detectable

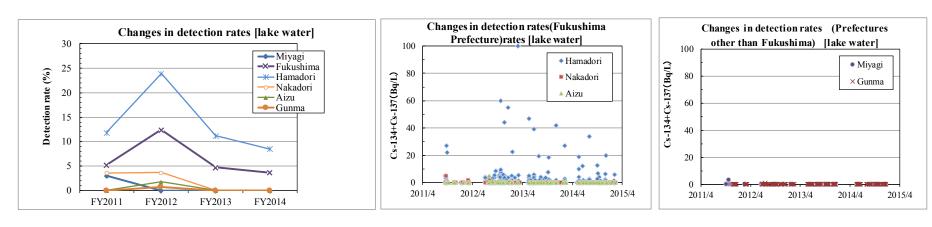



Figure 4.1-2 Detection rates of radioactive cesium in lake water samples (left) and changes in detected values (center and right)

Table 4.1-3 Detection of radioactive cesium in coastal area water samples (by fiscal year)

|            |                          | F                           | Y2011                       |                                       |                          |                             | FY2012                      |                                       |                          |                             | FY2013                      |                                       |                          | I                           | Y2014                       |                                       |                          |                             | Total                       |                                       |
|------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|
| Prefecture | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) |
| Iwate      | 5                        | 0                           | 0.0                         | -                                     | 8                        | 0                           | 0.0                         | -                                     | 8                        | 0                           | 0.0                         | -                                     | 8                        | 0                           | 0.0                         | -                                     | 29                       | 0                           | 0.0                         | -                                     |
| Miyagi     | 94                       | 0                           | 0.0                         | -                                     | 96                       | 0                           | 0.0                         | -                                     | 102                      | 0                           | 0.0                         | -                                     | 104                      | 0                           | 0.0                         | -                                     | 396                      | 0                           | 0.0                         | -                                     |
| Fukushima  | 116                      | 0                           | 0.0                         | -                                     | 189                      | 0                           | 0.0                         | -                                     | 300                      | 0                           | 0.0                         | -                                     | 300                      | 0                           | 0.0                         | -                                     | 905                      | 0                           | 0.0                         | -                                     |
| Ibaraki    | 45                       | 0                           | 0.0                         | -                                     | 62                       | 0                           | 0.0                         | -                                     | 40                       | 0                           | 0.0                         | -                                     | 40                       | 0                           | 0.0                         | -                                     | 187                      | 0                           | 0.0                         | -                                     |
| Chiba      | 0                        | 0                           | -                           | -                                     | 62                       | 0                           | 0.0                         | -                                     | 46                       | 0                           | 0.0                         | -                                     | 46                       | 0                           | 0.0                         | -                                     | 154                      | 0                           | 0.0                         | -                                     |
| Tokyo      | 0                        | 0                           | -                           | -                                     | 38                       | 0                           | 0.0                         | -                                     | 36                       | 0                           | 0.0                         | -                                     | 36                       | 0                           | 0.0                         | -                                     | 110                      | 0                           | 0.0                         | -                                     |
| Total      | 260                      | 0                           | 0.0                         | -                                     | 455                      | 0                           | 0.0                         | -                                     | 532                      | 0                           | 0.0                         | -                                     | 534                      | 0                           | 0.0                         | -                                     | 1781                     | 0                           | 0.0                         | -                                     |

Table 4.1-4 Detection of radioactive cesium in groundwater samples (by fiscal year)

|            |                          |                             | FY2011                      |                                       |                          |                             | FY2012                      |                                    |      |                             | FY2013                      |                                       |                          |   | FY2014                      |                                       |                          |                             | Total |                                    |
|------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|---|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-------|------------------------------------|
| Prefecture | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured values<br>(Bq/L) |      | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] |   | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] |       | Range of measured values<br>(Bq/L) |
| Iwate      | 42                       | 0                           | 0.0                         | =                                     | 44                       | 0                           | 0.0                         | =                                  | 44   | 0                           | 0.0                         | -                                     | 22                       | 0 | 0.0                         | -                                     | 152                      | 0                           | 0.0   | -                                  |
| Miyagi     | 79                       | 0                           | 0.0                         | -                                     | 44                       | 0                           | 0.0                         | -                                  | 48   | 0                           | 0.0                         | -                                     | 24                       | 0 | 0.0                         | -                                     | 195                      | 0                           | 0.0   | -                                  |
| Yamagata   | 79                       | 0                           | 0.0                         | -                                     | 0                        | 0                           | -                           | -                                  | 0    | 0                           | -                           | -                                     | 0                        | 0 | -                           | -                                     | 79                       | 0                           | 0.0   | -                                  |
| Fukushima  | 540                      | 2                           | 0.4                         | ND - 2.0                              | 543                      | 0                           | 0.0                         | -                                  | 766  | 0                           | 0.0                         | -                                     | 771                      | 0 | 0.0                         | -                                     | 2620                     | 2                           | 0.1   | ND - 2.0                           |
| Ibaraki    | 89                       | 0                           | 0.0                         | -                                     | 54                       | 0                           | 0.0                         | =                                  | 54   | 0                           | 0.0                         | -                                     | 27                       | 0 | 0.0                         | -                                     | 224                      | 0                           | 0.0   | -                                  |
| Tochigi    | 76                       | 0                           | 0.0                         | -                                     | 54                       | 0                           | 0.0                         | -                                  | 54   | 0                           | 0.0                         |                                       | 27                       | 0 | 0.0                         | -                                     | 211                      | 0                           | 0.0   | -                                  |
| Gunma      | 40                       | 0                           | 0.0                         | -                                     | 40                       | 0                           | 0.0                         | -                                  | 42   | 0                           | 0.0                         | -                                     | 21                       | 0 | 0.0                         | -                                     | 143                      | 0                           | 0.0   | -                                  |
| Chiba      | 54                       | 0                           | 0.0                         | =                                     | 46                       | 0                           | 0.0                         | =-                                 | 46   | 0                           | 0.0                         | 1                                     | 23                       | 0 | 0.0                         | -                                     | 169                      | 0                           | 0.0   | -                                  |
| Total      | 999                      | 2                           | 0.2                         | ND - 2.0                              | 825                      | 0                           | 0.0                         | =                                  | 1054 | 0                           | 0.0                         | -                                     | 915                      | 0 | 0.0                         | -                                     | 2620                     | 2                           | 0.1   | ND - 2.0                           |

ND: Not detectable

(\*) In FY2011, both Cs-134 and Cs-137 were detected at one location and only Cs-137 was detected at one location at a level of 1 Bq/L (detection limit), respectively (see the main text).

#### 4.2 Sediments

Detection of radioactive cesium (Cs-134 and Cs-137) in sediment samples from pubic water areas (rivers, lakes, and coastal areas) were as outlined below (detection limit was set at 10 Bq/kg).

# (1) Public water areas (rivers)

Radioactive cesium (Cs-134 and Cs-137) detected in river sediment samples was as shown in Table 4.2-1 and Figure 4.2-1.

Detection rates varied between 60% and 100% with a slight decreasing trend observed over years. Detection rates remained over 80% in many of the surveyed prefectures in FY2014.

In the meantime, locations where detected values (the total activity concentrations of Cs-134 and Cs-137) were high were decreasing while the number of locations with low detected values was increasing. It was observed that detected values were generally decreasing over years.

#### (2) Public water areas (lakes)

Detection of radioactive cesium (Cs-134 and Cs-137) in lake sediment samples was as shown in Table 4.2-2 and Figure 4.2-2.

Detection rates varied between 83% and 100% and remained over 90% in all surveyed prefectures in FY2014 as well.

As a whole, locations where detected values (the total of Cs-134 and Cs-137) were high were decreasing and the number of locations with low detected values was increasing, although such trend was not as clear as in the case of river sediment samples.

In Hamadori in Fukushima Prefecture, high values exceeding 100,000 Bq/kg were observed even in FY2014.

# (3) Public water areas (coastal areas)

Detection of radioactive cesium (Cs-134 and Cs-137) in coastal area sediment samples was as shown in Table 4.2-3 and Figure 4.2-3.

Detection rates varied between 50% and 100% and were over 50% in FY2014 in all surveyed prefectures except for those where only a small number of samples were collected.

A decrease in the number of locations where detected values (the total of Cs-134 and Cs-137) were high was not as clear for prefectures where only a small number of samples were collected, but in Fukushima and Miyagi Prefectures, the number of locations where detected values continued to be low was increasing, and detected values were thus decreasing over the years as a whole. However, in Miyagi Prefecture, there were locations where detected values exceeded 1,000 Bq/kg even in FY2014.

Table 4.2-1 Detection of radioactive cesium in river sediment samples (by fiscal year)



Figure 4.2-1 Detection of radioactive materials in river sediment samples (changes) (Prefectures where only a small number of samples were collected are omitted.)

Table 4.2-2 Detection of radioactive cesium in lake sediment samples (by fiscal year)

|               |                          | FY                          | 2011                        |                                       |                          | FY                          | Y2012                       |                                       |                          | I                           | Y2013                       |                                       |                          | FY                          | 2014                        |                                       |                       |                             | Total                |                     |         |
|---------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|-----------------------|-----------------------------|----------------------|---------------------|---------|
| Prefecture    | Number of samples<br>[A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of samples<br>[A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of samples<br>[A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of samples [A] | Number of<br>detections [B] | Detection rate (B/A) | Range of mea<br>(Bq |         |
| Iwate         | 18                       | 18                          | 100.0                       | 62 - 990                              | 64                       | 63                          | 98.4                        | ND - 1,040                            | 80                       | 71                          | 88.8                        | ND - 340                              | 80                       | 68                          | 85.0                        | ND - 301                              | 242                   | 220                         | 90.9                 | ND -                | 1,040   |
| Yamagata      | 10                       | 6                           | 60.0                        | ND - 132                              | 0                        | 0                           | -                           | -                                     | 0                        | 0                           | -                           | -                                     | 0                        | 0                           | -                           | -                                     | 10                    | 6                           | 60.0                 | ND -                | 132     |
| Miyagi        | 113                      | 111                         | 98.2                        | ND - 11,100                           | 199                      | 191                         | 96.0                        | ND - 3,700                            | 192                      | 182                         | 94.8                        | ND - 2,450                            | 196                      | 187                         | 95.4                        | ND - 1,620                            | 700                   | 671                         | 95.9                 | ND -                | 11,100  |
| Fukushima     | 441                      | 421                         | 95.5                        | ND - 92,000                           | 847                      | 808                         | 95.4                        | ND - 165,000                          | 795                      | 750                         | 94.3                        | ND - 45,000                           | 770                      | 724                         | 94.0                        | ND - 24,700                           | 2853                  | 2703                        | 94.7                 | ND -                | 165,000 |
| Hamadori Area | 192                      | 191                         | 99.5                        | ND - 92,000                           | 336                      | 329                         | 97.9                        | ND - 165,000                          | 325                      | 321                         | 98.8                        | ND - 45,000                           | 326                      | 318                         | 97.5                        | ND - 24,700                           | 1179                  | 1159                        | 98.3                 | ND -                | 165,000 |
| Nakadori Area | 176                      | 174                         | 98.9                        | ND - 30,000                           | 354                      | 353                         | 99.7                        | ND - 20,000                           | 316                      | 316                         | 100.0                       | 10 - 8,300                            | 324                      | 317                         | 97.8                        | ND - 3,060                            | 1170                  | 1160                        | 99.1                 | ND -                | 30,000  |
| Aizu          | 73                       | 56                          | 76.7                        | ND - 25,000                           | 157                      | 126                         | 80.3                        | ND - 2,590                            | 154                      | 113                         | 73.4                        | ND - 1,410                            | 120                      | 89                          | 74.2                        | ND - 720                              | 504                   | 384                         | 76.2                 | ND -                | 25,000  |
| Ibaraki       | 128                      | 125                         | 97.7                        | ND - 5,800                            | 214                      | 208                         | 97.2                        | ND - 4,800                            | 212                      | 209                         | 98.6                        | ND - 4,200                            | 212                      | 208                         | 98.1                        | ND - 1,640                            | 766                   | 750                         | 97.9                 | ND -                | 5,800   |
| Tochigi       | 159                      | 150                         | 94.3                        | ND - 4,900                            | 275                      | 267                         | 97.1                        | ND - 1,780                            | 276                      | 245                         | 88.8                        | ND - 1,540                            | 274                      | 231                         | 84.3                        | ND - 820                              | 984                   | 893                         | 90.8                 | ND -                | 4,900   |
| Gunma         | 88                       | 74                          | 84.1                        | ND - 410                              | 211                      | 184                         | 87.2                        | ND - 1,560                            | 214                      | 179                         | 83.6                        | ND - 1,560                            | 210                      | 177                         | 84.3                        | ND - 2,160                            | 723                   | 614                         | 84.9                 | ND -                | 2,160   |
| Saitama       | 2                        | 2                           | 100.0                       | 35 - 530                              | 8                        | 8                           | 100.0                       | 12 - 540                              | 8                        | 8                           | 100.0                       | 10 - 67                               | 8                        | 7                           | 87.5                        | ND - 68                               | 26                    | 25                          | 96.2                 | ND -                | 540     |
| Chiba         | 83                       | 83                          | 100.0                       | 50 - 9,700                            | 199                      | 199                         | 100.0                       | 17 - 20,200                           | 200                      | 199                         | 99.5                        | ND - 7,900                            | 200                      | 200                         | 100.0                       | 11 - 5,200                            | 682                   | 681                         | 99.9                 | ND -                | 20,200  |
| Tokyo         | 2                        | 2                           | 100.0                       | 580 - 700                             | 12                       | 12                          | 100.0                       | 131 - 670                             | 8                        | 8                           | 100.0                       | 75 - 460                              | 8                        | 8                           | 100.0                       | 96 - 430                              | 30                    | 30                          | 100.0                | 75 -                | 700     |
| Total         | 1044                     | 992                         | 95.0                        | ND - 92,000                           | 2029                     | 1940                        | 95.6                        | ND - 165,000                          | 1985                     | 1851                        | 93.2                        | ND - 45,000                           | 1958                     | 1810                        | 92.4                        | ND - 24,700                           | 7016                  | 6593                        | 94.0                 | ND -                | 165,000 |

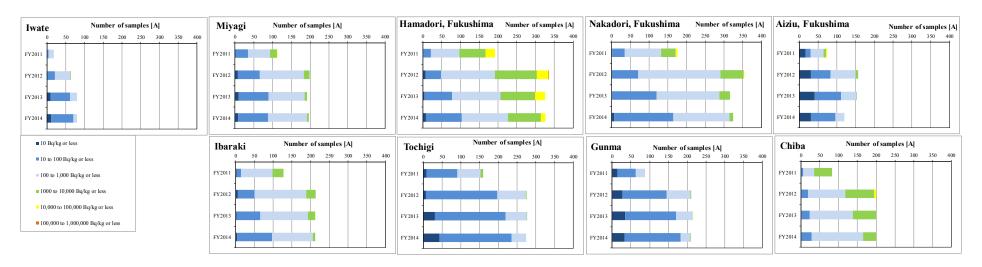



Figure 4.2-2 Detection of radioactive cesium in lake sediment samples (changes) (Prefectures where only a small number of samples were collected are omitted.)

Table 4.2-3 Detection of radioactive cesium in coastal area sediment samples (by fiscal year)

|            |                          |                             | FY2011                      |                                    |                          |                                               | FY2012 |                                    |                          |     | FY2013 |                                 |                          | I                           | Y2014                       |                                       | Total                    |                             |                             |                                |       |  |  |  |
|------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|--------------------------|-----------------------------------------------|--------|------------------------------------|--------------------------|-----|--------|---------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|-------|--|--|--|
| Prefecture | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured values<br>(Bq/L) | Number of<br>samples [A] | Number of Detection redetections [B] (B/A) (% |        | Range of measured values<br>(Bq/L) | Number of<br>samples [A] |     |        | Range of measured values (Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>(Bq/L) | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured va<br>(Bq/L) | alues |  |  |  |
| Iwate      | 3                        | 0                           | 0.0                         | ND - 0                             | 4                        | 2                                             | 50.0   | ND - 39                            | 4                        | 2   | 50.0   | ND - 46                         | 4                        | 2                           | 50.0                        | ND - 16                               | 15                       | 6                           | 40.0                        | ND -                           | 46    |  |  |  |
| Miyagi     | 52                       | 34                          | 65.4                        | ND - 830                           | 48                       | 38                                            | 79.2   | ND - 1,530                         | 51                       | 47  | 92.2   | ND - 2,040                      | 52                       | 42                          | 80.8                        | ND - 1,090                            | 203                      | 161                         | 79.3                        | ND - 2                         | 2,040 |  |  |  |
| Fukushima  | 80                       | 77                          | 96.3                        | ND - 1,240                         | 97                       | 93                                            | 95.9   | ND - 1,110                         | 150                      | 145 | 96.7   | ND - 1,600                      | 150                      | 139                         | 92.7                        | ND - 830                              | 477                      | 454                         | 95.2                        | ND - 1,                        | 1,600 |  |  |  |
| Ibaraki    | 28                       | 27                          | 96.4                        | ND - 230                           | 31                       | 17                                            | 54.8   | ND - 69                            | 20                       | 11  | 55.0   | ND - 67                         | 20                       | 11                          | 55.0                        | ND - 67                               | 99                       | 66                          | 66.7                        | ND -                           | 230   |  |  |  |
| Chiba      | 0                        | 0                           | -                           | -                                  | 31                       | 20                                            | 64.5   | ND - 134                           | 23                       | 14  | 60.9   | ND - 54                         | 23                       | 14                          | 60.9                        | ND - 21                               | 77                       | 48                          | 62.3                        | ND -                           | 134   |  |  |  |
| Tokyo      | 0                        | 0                           | -                           | -                                  | 19                       | 17                                            | 89.5   | ND - 780                           | 18                       | 18  | 100.0  | 12 - 780                        | 18                       | 17                          | 94.4                        | ND - 630                              | 55                       | 52                          | 94.5                        | ND -                           | 780   |  |  |  |
| Total      | 163                      | 138                         | 84.7                        | ND - 1,240                         | 230                      | 187                                           | 81.3   | ND - 1,530                         | 266                      | 237 | 89.1   | ND - 2,040                      | 267                      | 225                         | 84.3                        | ND - 1,090                            | 926                      | 787                         | 85.0                        | ND - 2                         | 2,040 |  |  |  |

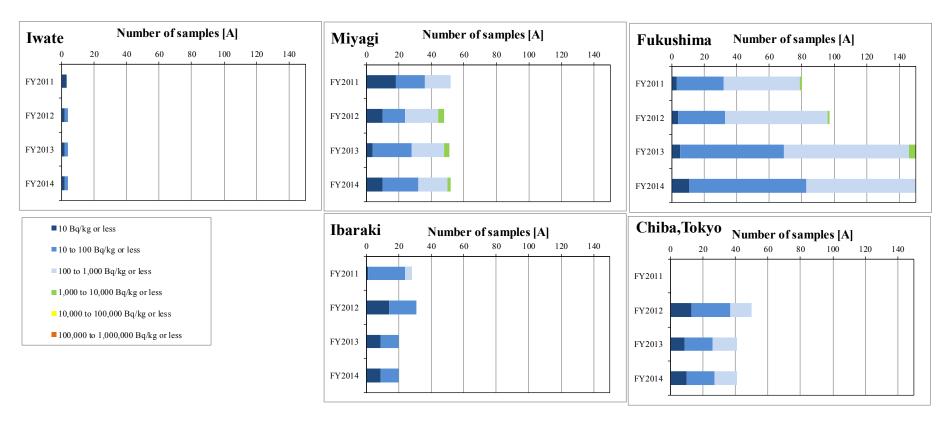



Figure 4.2-3 Detection of radioactive cesium in coastal area sediment samples (changes) (Prefectures where only a small number of samples were collected are omitted.)

## 4.3 Detection of radioactive materials in sediments by location

#### (1) Evaluation policy

Circumstances where radioactive materials were detected were compiled more in detail by sampling location, while separately considering the property of rivers, lakes and coastal areas.

Circumstances for each location were statistically analyzed from the following two perspectives by using all available data for each location. The evaluation excluded Yamagata prefecture, where surveys have not been conducted since FY2012.

# 1) Detected concentration levels

- i. Obtain the average for each location by using all survey results concerning concentrations of radioactive cesium (the total of Cs-134 and Cs-137) (arithmetic average calculated by assuming ND to be zero; hereinafter referred to as the "average for each location").
- ii. Arrange all such averages (separately for samples from rivers, lakes, and coastal areas) in descending order and set the following five categories depending on upper percentile ranges (see Figure 4.3-1).
  - Category A: Upper 5 percentile of the entirety
  - Category B: Upper 5 to 10 percentile of the entirety
  - Category C: Upper 10 to 25 percentile of the entirety
  - Category D: Upper 25 to 50 percentile of the entirety
  - Category E: Upper 50 to 100 percentile of the entirety (lower 50 percentile)

(Incidentally, a comparison between the average and the maximum value for each location revealed a good correlation between them (see right below of Figure 4.3-1). Therefore, considering that the evaluation of the average for each location covers that of large detected values (maximum values) that emerge occasionally, the evaluation was conducted by using only the average for each location.)

#### 2) Changes in detected values

- i. Changes in detected values were categorized based on the following thinking in order to evaluate their changes over the years.
  - (i) Based on visual judgment of graphs that show changes in detected values over the years for each location, those negatively sloped are judged as "decreasing" and those positively sloped are judged as "increasing."
  - (ii) When visual judgment is difficult, a regression analysis is conducted to check the trend. Specifically, when the lower and upper 95% of the slope are both negative, it is judged as "decreasing," and when the lower and upper 95% of the slope are both positive, it is judged as "increasing."
  - (iii) When neither a decreasing nor an increasing trend is clear (either the lower or upper 95% of the slope is negative and the other is positive), when a coefficient of variation (sample standard deviation/average) is less than 0.5, it is judged as "unchanged," and when a coefficient of variation is 0.5 or higher, it is judged as "varying."
- ii. However, data may show fluctuations, depending on minor differences in sampling points or properties of

samples, and it is considered to be too early to make judgments on changes in detected values at this point in time. Even if a certain location is judged to show an increasing trend based on the abovementioned thinking, it is necessary to accumulate further data and conduct careful examination for making a judgment on whether the increasing trend will be continuously observed in the relevant location.

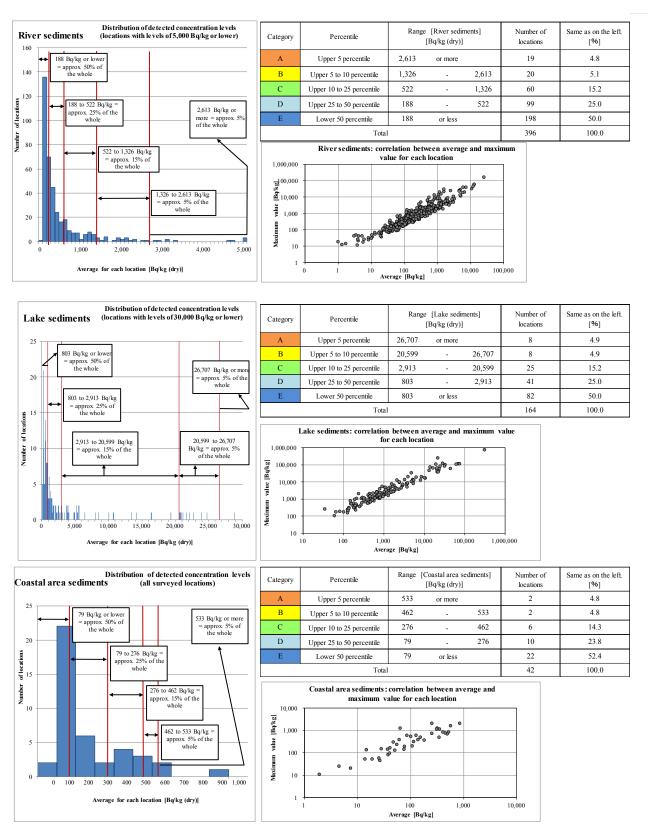



Figure 4.3-1 Categories based on the average for each location (left: picture showing means of categorization; upper right: results of categorization<sup>11</sup>; lower right correlation between average and maximum value for each location)

<sup>&</sup>lt;sup>11</sup> Setting of boundary values: The average of the minimum value of the upper category and the maximum value of the lower category is adopted as the boundary value between the relevant upper category and lower category.

(2) Concentration levels in sediment samples from rivers, lakes, and coastal areas and their changes by prefecture

#### (2)-1 Rivers

#### 1) Iwate Prefecture

In Iwate Prefecture, surveys were conducted 7 to 13 times from December 2011 to February 2015 for river sediment samples collected at 22 locations (this analysis excludes the survey results at one location where the survey was conducted only in 2011).

Regarding concentration levels of detected values, two locations were categorized into Category D and 20 locations were categorized into Category E (see Table 4.3-1 and Table 4.3-2).

Concentration levels were generally decreasing at 17 locations but were generally unchanged or varying at five locations.

Table 4.3-1 Categorization of detected values at respective locations (Iwate Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                          |
|----------|--------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                             |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                                                             |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                                                                                                                             |
| D        | Upper 25 to 50 percentile                        | 2                   | No.3、No.16                                                                                                                         |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 20                  | No.1, No.2, No.4, No.5, No.6, No.7, No.8, No.9, No.10, No.11, No.12, No.13, No.14, No.15, No.17, No.18, No.19, No.20, No.21, No.22 |

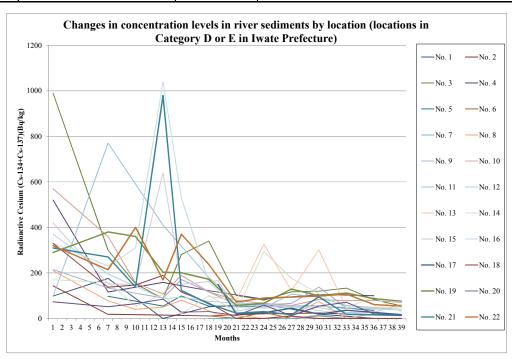
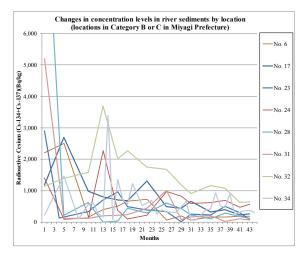



Figure 4.3-2 Changes in concentration levels over the years at respective locations (Iwate Prefecture: river sediments)

Table 4.3-2 Detection of radioactive cesium at respective locations (Iwate Prefecture: river sediments)

|          | I                           | Location                          |                               | River sediments/Radioactive Cesium (Cs-134+Cs-137)/Concentration(Bq/kg)(*1)           FY2011         FY2012         FY2013         FY2014 |                        |     |                    |    |     |     |   |   |     |   |        |     |      |       |     |     |   |     |       |   |     |                         |     |    |            |     |        |         |       |          |                       |          |        |        |    |           |                 |         |      |                        |
|----------|-----------------------------|-----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|--------------------|----|-----|-----|---|---|-----|---|--------|-----|------|-------|-----|-----|---|-----|-------|---|-----|-------------------------|-----|----|------------|-----|--------|---------|-------|----------|-----------------------|----------|--------|--------|----|-----------|-----------------|---------|------|------------------------|
| No.      | Water area                  | Location                          | Municipality                  |                                                                                                                                           |                        |     | _                  |    |     |     |   |   |     |   | _      | _   |      |       |     |     |   |     |       |   |     | FY2013                  |     |    |            |     |        |         |       |          |                       |          |        |        |    | Changes   | Average<br>(*2) | No.     | (*2) | Trends<br>(*3)         |
|          | Sakari River Lower          |                                   |                               | 8                                                                                                                                         | 9                      | 10  | _                  | 12 | 1 2 | 2 3 | 4 | 5 | 6   | 7 | 8      | 9 1 | 0 11 | 12    | 1 : | 2 3 | 4 | 5   | 6     | 7 | 8 9 | 9 10                    | 11  | 12 | 1 2        | 2 3 | 4      | 5       | 6     | 7 8      | 9                     | 10 11    | 12     | 1      | 2  | 3         |                 |         |      |                        |
| 1        | Reaches                     | Sano Bridge                       | Ofunato City<br>Rikuzentakada |                                                                                                                                           |                        |     | _                  | 98 |     |     | _ | _ | 176 |   | 4      |     |      | 0     |     | 4   |   | 51  |       |   |     |                         | 63  |    |            | _   |        | 19      |       |          |                       | 0        |        |        |    |           | 58              | 1       | 1.08 | ->                     |
| 2        | Kesen River                 | Aneha Bridge                      | City                          |                                                                                                                                           |                        |     | _                  | 43 |     |     |   |   | 18  |   |        |     |      | 15    |     |     | _ | 11  |       |   |     |                         | 20  |    |            |     |        | 24      |       |          |                       | 1.5      | _      |        |    |           | 35              | 2       | 1.36 | ->                     |
| 3        | Okawa River                 | Prefectural border<br>with Miyagi | Ichinoseki City               |                                                                                                                                           |                        |     | 9                  | 90 |     |     |   |   | 300 |   | 1      | .52 |      | 87    | 2   | 81  |   | 340 |       |   | 101 |                         | 80  |    | 11         | 17  |        | 120     |       | 133      |                       | 83       | 3      |        | 55 | \_        | 218             | 3       | 1.14 | ->3                    |
| 4        | Tsuyagawa River             | Chiyogahara Bridge                | Ich inoseki City              |                                                                                                                                           |                        |     | 5:                 | 20 |     |     |   |   | 116 |   |        |     |      | 158   |     |     |   | 122 |       |   |     |                         | 85  |    |            |     |        | 105     |       |          |                       | 10       | 0      |        |    |           | 172             | 4       | 0.90 | ~                      |
| 5        | Kurosawa River              | Kawarada Bridge                   | Kanegasaki<br>Town            |                                                                                                                                           |                        |     |                    |    |     |     |   |   | 97  |   | - 1    | 76  |      | 54    | 9   | 19  |   | 54  |       |   |     |                         | 53  |    |            |     |        | 55      |       |          |                       | 35       | 5      |        |    | ~         | 65              | 5       | 0.35 | ->                     |
| 6        |                             | Oago Bridge                       | Oshu City                     |                                                                                                                                           |                        |     |                    |    |     |     |   |   |     |   |        |     |      |       |     |     |   | 11  |       |   | 0   |                         | 27  |    | (          | 0   |        | 11      |       | 0        |                       | 0        |        |        | 0  | $\wedge$  | 6               | 6       | 1.60 | $\wedge \wedge \wedge$ |
| 7        | Isawa River                 | Saijin Bridge                     | Oshu City                     |                                                                                                                                           |                        |     |                    |    |     |     |   |   |     |   | T      |     |      |       |     | T   |   | 0   |       |   | 0   |                         | 0   |    | (          | 0   |        | 14      |       | 0        |                       | 0        |        |        | 0  | Λ         | 2               | 7       | 2.83 | $\wedge \wedge \wedge$ |
| 8        | Kitakami River              | Fuji Bridge                       | Oshu City                     |                                                                                                                                           |                        |     | 2                  | 10 |     |     |   |   | 77  |   | -      | 40  |      | 50    | 8   | 0   |   |     | 18    |   | 12  |                         | 0   |    | 1          | 3   |        | 75      |       | 0        |                       | 21       | 1      |        | 13 | \_ ^      | 47              | 8       | 1.21 |                        |
| 9        | Shiratori River             | Shiratori Bridge                  | Oshu City                     |                                                                                                                                           |                        |     | 2                  | 15 |     |     |   |   | 134 |   | 1      | 11  |      | 90    | 1   | 71  |   |     | 98    |   | 61  |                         | 59  |    | 6          | 6   |        | 138     |       | 46       |                       | 45       | 5      |        | 46 | M         | 98              | 9       | 0.54 |                        |
| 10       | Koromo River                | Koromogawa Bridge                 | Hiraizumi Town                |                                                                                                                                           |                        |     | 5                  | 70 |     |     |   |   | 360 |   | 1      | 56  |      | 107   | 1   | 89  |   | 117 |       |   | 79  |                         | 66  |    | 5          | 7   |        | 83      |       | 78       |                       | 79       | ,      |        | 70 | 1.        | 155             | 10      | 0.96 |                        |
| 11       | Ota River                   | Hitosuji Bridge                   | Hiraizumi Town                |                                                                                                                                           |                        |     | 9                  | 97 |     |     | + | + | 770 |   | $\top$ |     |      | 410   |     | T   |   | 179 |       |   | 76  |                         | 46  |    | 10         | 07  |        | 93      |       | 57       |                       | 48       | 3      |        | 36 | _         | 174             | 11      | 1.28 |                        |
| 12 2     | Iwai River Middle           | Kamino Bridge                     | Ichinoseki City               |                                                                                                                                           |                        |     | 3                  | 70 |     |     |   |   | 195 |   | 1      | 41  |      | 87    | 9   | 13  |   | 75  |       |   | 67  |                         | 63  |    | 5          | 5   | +      | 48      |       | 26       |                       | 27       | ,      |        | 63 |           | 101             | 12      | 0.92 |                        |
| 13 takam | Reaches<br>Iwai River Lower | Kozenji Bridge                    | Ichinoseki City               |                                                                                                                                           |                        |     | +                  |    |     |     | ╁ | + |     |   | +      | +   |      |       |     | +   | + | 96  |       |   | 80  |                         | 326 |    | 12         | 22  | +      | 301     |       | 45       |                       | 48       |        |        | 46 | M         | 133             | 13      | 0.86 | M                      |
| 14       | Reaches<br>Kitakami River   | Chitose Bridge                    | Ichinoseki City               |                                                                                                                                           |                        |     | 11                 | 70 |     |     |   |   | 158 |   | +      | 54  |      | 106   |     | 9   | + | 101 |       |   | 29  |                         | 294 |    | 17         | _   | +      | 108     | -     | 47       |                       | 93       | _      |        | 28 | - ^       | 106             | 14      | 0.73 | <b>W</b>               |
| 15 es    | Sokei River                 | (Kozenji)<br>Unada Bridge         | Ichinoseki City               |                                                                                                                                           |                        | -   | _                  | 20 | +   | _   | ╁ | + | 151 | + | -      | 50  | +    | 640   |     | 50  | + |     | 166   | _ | 32  |                         | 54  |    | 5          | _   | +      | 35      | -     | 20       |                       | 26       |        |        | 19 | \ \ \ \ \ | 147             | 15      | 1.25 | 7, 7, 7,               |
| 16       | Sarusawa River              | Kannon Bridge                     | Ichinoseki City               |                                                                                                                                           |                        |     | _                  | 30 |     |     | ╁ | + | 230 |   | -      | 10  | -    | 1.040 |     | 30  | + | 160 | -     |   | 48  |                         | 45  |    | 4          | _   | +      | 54      |       | 49       |                       | 39       | _      |        | 38 | 1         | 225             | 16      | 1.29 | - 3                    |
| 17       | Salasawa Idici              | Oide Bridge                       | Ichinoseki City               |                                                                                                                                           |                        | -   |                    | 50 |     | +   | - |   | 230 |   | +      | 10  |      | 1,040 |     | ,,, | + | 100 | 149   |   | 19  |                         | 25  |    | 4          |     | +      | 19      | -     | 36       |                       | 27       | _      |        | 16 |           | 42              | 17      | 1.05 | - 3                    |
| 10       | Satetsu River               |                                   | -                             |                                                                                                                                           |                        |     | 2                  | 30 | _   |     | + | + | 137 |   | ٠,     | 47  |      | 189   | ١,  | 16  | - | 68  | 149   |   | 0   |                         | 0   |    | 1          | -   | -      | 0       |       | 0        |                       | 0        | _      |        | 0  | \ \       | 77              | 18      | 1.03 | ->                     |
| 10       | Senmaya River Upper         | Kanzaki Bridge                    | Ichinoseki City               |                                                                                                                                           |                        |     | _                  | 90 |     |     | - |   | 380 |   | -      | 60  |      | 203   |     | 01  |   | 172 |       |   | 57  |                         | 67  |    | -   '      | -   |        | -       |       | 112      | ╁                     | 87       |        |        | 76 | ~         |                 |         |      | 7                      |
| 19       | Reaches                     | Miyata Bridge                     | Ichinoseki City               |                                                                                                                                           |                        |     |                    | -  | -   | -   | - | + |     |   | -      | -   | -    | -     |     |     | - | _   |       |   | -   | -                       |     |    |            | 29  | -      | 100     |       | _        |                       | _        | _      |        |    |           | 172             | 19      | 0.64 | A A A                  |
| 20       | Kitakami River              | Kitakamigawa Bridge               | -                             |                                                                                                                                           |                        |     | -                  | 73 |     | -   | - | - | 51  |   | -      | 65  | _    | 85    |     | 8   | - | 30  |       |   | 13  |                         | 59  |    | 1.         | +   | _      | 54      |       | 71       |                       | 20       | _      |        | 16 | * TW/     | 44              | 20      | 0.58 | \\\\ <b>\</b>          |
| 21       | Kinomi River                | Higuchi Bridge                    | Ichinoseki City               | <b> </b>                                                                                                                                  |                        | _   |                    | 10 | _   | -   | - | + | 270 | - | +      | 38  | _    | 980   |     | 23  | _ | 64  |       |   | 23  |                         | 30  |    | 1          | _   |        | 95      |       | 18       |                       | 16       | _      |        | 13 | -\_       | 161             | 21      | 1.64 | ->-                    |
| 22       | Kinryu River                | Tenjin Bridge                     | Ich inoseki City              | L.                                                                                                                                        | L                      |     | 3:                 | 20 |     |     |   |   | 214 |   | 4      | 00  |      | 169   | 3   | 70  |   | 237 |       |   | 72  |                         | 90  |    | 9.         | 4   |        | 98      |       | 107      |                       | 61       | 1      |        | 54 | ~~/       | 176             | 22      | 0.69 | >>                     |
|          |                             |                                   |                               | numl                                                                                                                                      | otal<br>per of<br>ples | 241 | Detection<br>times |    | 19  |     |   |   |     |   |        |     |      |       |     |     |   |     |       |   |     |                         |     |    |            |     |        |         |       |          |                       |          |        |        |    |           | 110             | Average |      |                        |
|          | nk cells are locations w    |                                   |                               |                                                                                                                                           |                        |     |                    |    |     | A B | С | D | Е   |   |        |     |      |       |     |     |   |     | *3: R |   |     | lysis of tr<br>method e |     |    | e location | ıs  | √ Decr | reasing | ∕≯ In | creasing | <b>~</b> ^ <b>4</b> U | nchangeo | 1 ///A | Varyin | g  |           |                 |         | •    |                        |

### 2) Miyagi Prefecture


In Miyagi Prefecture, surveys were conducted 12 to 33 times from October 2011 to February 2015 for river sediment samples collected at 43 locations (this analysis excludes the survey results at 37 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, one location was categorized into Category B, seven locations into Category C, 15 locations into Category D, and 20 locations into Category E (see Table 4.3-3 and Table 4.3-4).

Concentration levels were generally decreasing at 34 locations but were generally unchanged or varying at nine locations.

Table 4.3-3 Categorization of detected values at respective locations (Miyagi Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                              |
|----------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                                 |
| В        | Upper 5 to 10 percentile                         | 1                   | No.32                                                                                                                                  |
| С        | Upper 10 to 25 percentile                        | 7                   | No.6, No.17, No.23, No.24, No.28, No.31, No.34                                                                                         |
| D        | Upper 25 to 50 percentile                        | 15                  | No.2, No.4, No.7, No.8, No.11, No.14, No.18, No.22, No.27, No.33, No.36, No.37, No.41, No.42, No.43                                    |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 20                  | No.1, No.3, No.5, No.9, No.10, No.12, No.13, No.15, No.16, No.19, No.20, No.21, No.25, No.26, No.29, No.30, No.35, No.38, No.39, No.40 |



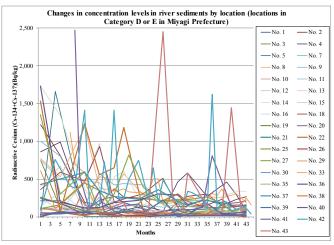



Figure 4.3-3 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: river sediments)

Table 4.3-4 Detection of radioactive cesium at respective locations (Miyagi Prefecture: river sediments)

|                       |              |                     |                      | Location                                                   | 14516 4.0                                       | 1                          |          |                   |               |       |          |           |          |         |       |                |         |          |     | esium (Cs-134+Cs- |                 |           |                     | ,             |          |             |          |       |                 |            |           | ,             |                      | I           |         | ı                           |                        |
|-----------------------|--------------|---------------------|----------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------|----------|-------------------|---------------|-------|----------|-----------|----------|---------|-------|----------------|---------|----------|-----|-------------------|-----------------|-----------|---------------------|---------------|----------|-------------|----------|-------|-----------------|------------|-----------|---------------|----------------------|-------------|---------|-----------------------------|------------------------|
| No                    |              | Water a             |                      | Location                                                   | Municipality                                    |                            |          | FY2011            |               |       |          |           |          |         | FY20  |                |         |          |     | (0                | .,              | FY20      |                     |               |          |             |          |       | FY201           | 1          |           |               | Channa               | Average(*2) | No.     | Coefficient of<br>variation | of Trends(*3)          |
| No.                   |              | water               | area                 |                                                            | Nuncipany                                       | 8 9                        | 10       | 11 1              | _             | 2 3   | 4        | 5         | 6 7      | _       | 9     | 10 11          | 12 1    | 2        | 3 4 |                   | 7 8             | 9         | 10 11               | 12 1          | 2        | 3 4 5       | 6 7      | 8     | 9 1             | 0 11 1     | 12 1      | 2 3           | Changes              |             |         |                             |                        |
| 1                     |              |                     | Shishiori River      | Kinzan Bridge                                              |                                                 |                            | 210      |                   |               | 211   |          |           | 100      | -       | 124   | 128            | 86      |          |     | 139               | 83              | _         | 99                  | 96            |          | 103         |          | 71    |                 | 93         | 85        |               | ~~~                  | 116         | 1       | 0.38                        | 7                      |
| 2                     |              |                     |                      | Namita Bridge                                              |                                                 |                            | 1,220    |                   |               | 810   |          |           | 189      | 1       | 165   | 370            | 262     |          |     | 245               | 28              |           | 186                 | 268           |          | 300         |          | 150   |                 | 231        | 265       |               | \~~                  | 335         | 2       | 0.92                        | <b>\</b>               |
| 3                     |              |                     |                      | Tateyama-ohashi Bridge                                     | Kesennum City                                   |                            | 750      |                   |               | 115   |          |           | 56       |         | 91    | 121            | 56      |          |     | 39                | 43              |           | 51                  | 35            |          | 33          |          | 54    |                 | 60         | 61        |               | \                    | 112         | 3       | 1.66                        | ~                      |
| 4                     |              |                     | Okawa River          | Kamiyama Bridge                                            | ACSCHILLING CRY                                 |                            | 860      |                   |               | 990   |          |           | 59       | 1       | 222   | 271            | 190     |          |     | 99                | 65              |           | 460                 | 580           |          | 269         |          |       | 460             | 288        | 76        |               | 2~                   | 349         | 4       | 0.84                        | ~ <u>~</u>             |
| 5                     |              |                     |                      | Okawa River Estuary                                        |                                                 |                            | 23       |                   | 1,660         |       |          |           | 0        |         | 0     | 0              | 0       |          |     | 0                 | 0               |           | 0                   | 0             |          | 0           |          | 0     |                 | 0          | 0         |               | Λ                    | 120         | 5       | 3.69                        | 7                      |
| 6                     |              |                     | Omose River          | Ozaki Bridge                                               |                                                 |                            | 2,200    |                   |               | 2,500 |          |           | 159      | 4       | 400   | 510            | 670     |          |     | 730               | 64              |           | 194                 | 63            |          | 158         |          | 158   |                 | 185        | 182       |               | 1-                   | 584         | 6       | 1.34                        | 1                      |
| 7                     |              |                     | Arima River          | Unanda Bridge                                              |                                                 |                            | 1,000    |                   |               | 800   |          |           | 146      | 1       | 570   | 420            | 440     |          |     | 420               | 173             | 3         | 229                 | 210           |          | 225         |          | 152   |                 | 145        | 131       |               | V                    | 362         | 7       | 0.74                        | \ <u></u>              |
| 8                     |              |                     | Kinryu River         | Obata Bridge                                               |                                                 |                            | 770      |                   |               | 530   |          |           | 1,190    | 1       | 380   | 340            | 570     |          |     | 289               | 165             | 5         | 196                 | 221           |          | 271         |          | 250   |                 | 304        | 184       |               | 1                    | 404         | 8       | 0.70                        |                        |
| 9                     |              |                     | Kitakami River       | Tome-ohashi Bridge (Tome)                                  |                                                 |                            | 113      |                   |               | 98    |          |           | 74       |         | 118   | 199            | 71      |          |     | 115               | 22              |           | 63                  | 133           |          | 119         |          | 106   |                 | 158        | 139       |               | Mr                   | 109         | 9       | 0.40                        | ~~*                    |
| 10                    |              |                     | Sanhasama River      | Doman Bridge (Kurikoma Dami))                              | Kuriham City                                    |                            | 85       |                   |               | 137   |          |           | 55       |         | 260   | 24             | 20      | Ħ        |     | 25                | 13              |           | 38                  | 45            |          | 40          |          | 33    |                 | 26         | 22        |               | ΛΛ                   | 59          | 10      | 1.13                        |                        |
| 11                    |              |                     | Nihasama River       | Kajiya Bridge                                              |                                                 |                            | 750      |                   |               | 490   |          |           | 480      | -       | 450   | 131            |         | H        |     | 153               | 123             | 3         | 161                 | 167           |          | 124         |          | 54    |                 | 98         | 91        |               | 5                    | 252         | 11      | 0.86                        |                        |
| 12                    |              | Hasama<br>iver Area |                      | Hanayama Dam, inflow area                                  |                                                 |                            | 44       |                   |               | 60    | $\vdash$ |           | 135      | +       | 56    | 0              | 14      | +        |     | 17                | 0               | _         | 0                   | 0             |          | 0           |          | 0     |                 | 0          | 10        |               | $\overline{\Lambda}$ | 24          | 12      | 1.61                        |                        |
|                       |              | net Area            | Hasama River         | Wakayanagi                                                 |                                                 |                            | 400      |                   |               | 670   | Н        |           | 84       | -       | 340   | 104            | 65      | $\vdash$ |     | 90                | 71              | _         | 33                  | 52            | $\vdash$ | 62          |          | 55    | _               | 61         | 72        |               | 1                    | 154         | 13      | 1.20                        |                        |
| 13 Kitak<br>River S   | ami<br>ystem |                     |                      | Yamayoshida Bridge                                         | Tome City                                       |                            | 1.730    | $\vdash$          | -             | 1,340 | Н        |           | 370      |         | 69    | 530            | 600     | $\vdash$ | +   | 150               | 327             | _         | 68                  | 197           | -        | 225         | +        | 258   | $\dashv$        | 339        | 337       | $\vdash$      | 1                    | 467         | 14      | 1.03                        |                        |
| 15                    | F            |                     |                      | Todoroki Bridge (Todoroki)                                 |                                                 |                            | 260      | $\vdash$          |               | 77    | Н        |           | 470      |         | 970   | 89             | 600     | 66       |     | 67                | 85              | _         | 66                  | 197           | +        | 80          |          | 67    | -               | 49         | 331<br>AF |               | 1                    | 184         | 15      | 1.03                        | -                      |
| 16                    |              |                     | Eai River            | Shinharisahan entrance                                     | Osaki City                                      | $\vdash$                   | 141      | $\vdash$          | -             | 330   | Н        |           | 63       |         | 104   | 10             | 0       | 00       | +   | 59                | 37              | _         | 17                  | 17            | $\vdash$ | 16          | +        | 18    | -               | 11         | 40        | ++            | × -                  | 59          | 16      | 1.44                        |                        |
| 17                    |              | iai River           | In Furukawa District |                                                            | Osani City                                      |                            | 1,190    |                   | -             | 2,700 | $\vdash$ |           | 980      | +       | 800   | 710            | 690     | $\vdash$ |     | 1.310             | 490             |           | 450                 | 660           | $\vdash$ | 324         |          | 308   |                 | 229        | 200       |               |                      | 800         | 17      | 0.80                        | - 3                    |
| 18                    | 1            | an Raver            | Osaki City           | Stationalion, cinalice                                     | Misato Town                                     |                            | 360      |                   | -             | 590   | $\vdash$ |           | 470      |         | 930   | /10            | 233     | $\vdash$ | _   | 305               | 510             | -         | 134                 | 133           | -        | 153         |          | 398   |                 | 229        | 203       |               | 1                    | 317         | 18      | 0.80                        | ->-                    |
| 19                    |              |                     | Dekigawa River       | Kogota Bridge                                              |                                                 | -                          |          |                   | _             |       | $\vdash$ |           |          |         | -     | 195            | 233     | $\vdash$ | _   |                   | -               | _         | +                   | 133           | $\vdash$ |             | _        | 232   | _               | 95         | 101       | $\vdash$      | ~h                   |             |         |                             | -                      |
| 19                    | -  -         | _                   | Eai River            | Okawa Bridge (Tandai)                                      | Wakuya Town /Ishinomaki Town                    |                            | 260      |                   |               | 172   |          |           | 79       | -       | 66    | 37             | 73      |          |     | 56                | 41              | +-        | 21                  | 79            |          | 20          |          | 19    |                 | 13         | 18        |               | 1                    | 68          | 19      | 1.02                        | - A A A                |
| 20                    |              |                     | Kyu-Kitakami River   | Kadonowaki                                                 | Ishinomaki City                                 |                            | 240      |                   |               | 175   |          |           | 36       | +       | 49    | 0              | 10      |          |     | 0                 | 27              | +-        | 18                  | 26            |          | 221         |          | 171   |                 | 184        | 212       | $\vdash$      | \_/°                 | 98          | 20      | 0.97                        | \/\/\                  |
| 21                    |              |                     | Naruse River         | Onobashi Bridge (Ono)                                      | Higashi-Matsushima City                         |                            | 0        |                   |               | 74    |          |           | 28       |         | 41    | 65             | 17      |          |     | 19                | 19              | _         | 82                  | 44            |          | 40          |          | 153   |                 | 53         | 54        |               | $\sim$               | 49          | 21      | 0.77                        | ////•                  |
| 22                    |              |                     | Sunaoshi River       | Tagajozeki Weir                                            | Tagajo City                                     |                            | 1,530    |                   |               | 62    |          |           | 1,230    |         | 560   | 650            | 1,180   |          |     | 61                | 215             | _         | 302                 | 202           | Ш        | 122         |          | 123   |                 | 132        | 156       |               | M_                   | 466         | 22      | 1.06                        |                        |
| 23                    |              |                     | retzin-unga Canai    | Nenbutsu Bridge                                            |                                                 |                            | 2,900    |                   | 129           |       |          |           | 340      |         | 710   | 960            | 490     |          |     | 380               | 340             | )         | 17                  | 255           |          | 225         |          | 500   |                 | 307        | 87        |               | 1                    | 546         | 23      | 1.32                        | 7                      |
| 24                    |              |                     | (Kyu-sunaoshi        | Teizan Bridge                                              | Shiogama City/Shichigahama Town/<br>Tagajo City |                            | 1,410    |                   |               | 95    |          |           | 141      | 2       | ,280  | 380            | 101     |          |     | 218               | 980             | )         | 820                 | 600           |          | 620         |          | 690   |                 | 470        | 570       |               | $\mathcal{N}_{\sim}$ | 670         | 24      | 0.88                        | \/\\                   |
| 25                    |              |                     | Nanakita River       | Nanakita Bridge                                            |                                                 |                            | 109      |                   |               | 157   |          |           | 450      | 3       | 350   | 71             |         | 43       |     | 238               | 215             | 5         | 230                 | 226           |          | 264         |          | 173   |                 | 20         | 18        |               | 1                    | 183         | 25      | 0.69                        | $\wedge \wedge \wedge$ |
| 26 Nana<br>27 River S | kita         |                     | Namakaa Parki        | Fukuda-ohashi Bridge                                       | Sendai City                                     |                            | 10       |                   |               | 60    |          |           | 14       |         | 60    | 17             |         | 17       |     | 13                | 12              |           | 16                  | 13            |          | 18          |          | 22    |                 | 16         | 0         |               | M                    | 21          | 26      | 0.85                        |                        |
|                       | ystem        |                     | Umeda River          | Fukuda Bridge                                              | Schulichy                                       |                            | 1,350    |                   |               | 300   |          |           | 600      |         | 53    | 300            |         | 820      |     | 390               | 186             | 5         | 233                 | 47            |          | 76          |          | 71    |                 | 84         | 124       |               | hr                   | 331         | 27      | 1.12                        | <b>&gt;</b>            |
| 28                    |              |                     | Nanakita River       | Takasago Bridge                                            |                                                 |                            | 11,100   |                   |               | 220   |          |           | 630      |         | 0     | 42             | 450     |          |     | 291               | 610             | )         | 430                 | 225           |          | 114         |          | 293   |                 | 185        | 124       |               | \                    | 1,051       | 28      | 2.76                        | ~                      |
| 29                    |              |                     | Natori River         | Yuriage-ohashi Bridge                                      | Sendai City /Natori City                        |                            | 610      |                   | 108           |       |          |           | 470      |         | 14    |                |         |          |     | 0                 | 52              |           | 11                  | 47            |          | 61          |          | 26    |                 | 23         | 18        |               | И                    | 120         | 29      | 1.67                        | <b>\</b>               |
| 30 Natori<br>Syst     | River        |                     |                      | Yakushi Bridge                                             |                                                 |                            | 56       |                   |               | 47    |          |           | 68       | 1       | 220   | 73             |         |          |     | 35                | 23              |           | 17                  | 20            |          | 28          |          | 52    |                 | 27         | 43        |               | 1                    | 55          | 30      | 0.97                        | ~                      |
| 31 Syst               | tem          |                     | Masuda River         | Koyama Bridge                                              | Natori City                                     |                            | 5,200    |                   |               | 116   |          |           | 124      | - 1     | 202   | 221            | 236     |          |     | 450               | 1,01            | 0         | 81                  | 168           |          | 208         |          | 21    |                 | 112        | 74        |               | \                    | 587         | 31      | 2.30                        | 7                      |
| 32                    |              |                     |                      | Bishamon Bridge                                            |                                                 |                            | 1,140    |                   |               | 1,390 | П        |           | 1,590    | 3.      | ,700  | 2,020          | 2,270   |          |     | 1,750             | 1,68            | :0        | 1,190               | 910           |          | 1,170       |          | 1,080 |                 | 630        | 650       |               | 1                    | 1,512       | 32      | 0.52                        |                        |
| 33                    |              |                     |                      | Hadeniwa Bridge                                            | Marumori Town                                   |                            | 1        |                   | +             |       | 1,120    | 690       | 580 38   | 0 430 5 | 530   | 520 330 350 3  | 350 370 | 330      | 320 | 310 500           | 500 196         | 5         | 203                 | 236 247       | 259      | 153 236     | 312 280  | 363   | 272 1:          | 57 16      | 65 251    | 155           | hur.                 | 358         | 33      | 0.54                        |                        |
| 34                    |              |                     | Abukuma River        | Marumori Bridge                                            | Marumori Town                                   |                            | 220      |                   | +             | 1,470 | 570      | 101       | 560 61   | 0 280 1 | 162 3 | 3,400 90 1,360 | 710 580 | 1,230    | 530 |                   |                 | )         | 312                 | 560 59        | 75       | 380 420     | 930 520  | 470   | 890 20          | 52 36      | 64 373    | 318           | 1                    | 593         | 34      | 1.03                        | MÃ                     |
| 35                    |              |                     |                      | Higashine Bridge                                           | Kakuda City                                     |                            | 1        |                   | +             | _     | Н        |           |          | +       | Ť     |                |         | $\vdash$ | 283 |                   | 161             | 1         | -                   | 212 138       | -        | 122         | 91       | 98    | 4               | 6 9        | _         |               | Maria                | 146         | 35      | 0.54                        |                        |
| 36                    | -            |                     | Shiroishi River      | Before the confluence with<br>Kawampo sawa River (Sunaoshi | Shiroishi City                                  |                            | 1 730    |                   |               | 191   | П        |           | 116      | 11      | 123   | 190            |         | H        | 218 |                   | 302             | +         | 286                 | 165           | H        | 212         |          | 45    |                 | 46         | 71        |               |                      | 284         | 36      | 1.56                        |                        |
| 50                    |              |                     |                      | Bridge)                                                    |                                                 |                            | 1,750    |                   |               | .,.   |          |           |          | $\perp$ | _     | 1,00           | -       | $\vdash$ |     |                   | 502             | -         | 200                 | 100           |          |             |          | -     |                 |            | - "       |               | <u></u>              |             |         |                             |                        |
| 37<br>Abuk            | uma S        | Shiroishi           | Saikawa River        | Hsubo Bridge                                               | Shiroishi City                                  | $\vdash$                   | 430      | $\vdash$          | +             | _     | Н        |           | 590      |         | 350   | 270            | -       | $\vdash$ | 234 |                   | 360             | +         | 206                 | 146           | $\vdash$ | 225         | _        | 188   | -               | 137        | 153       | $\vdash$      | ~                    | 274         | 37      | 0.50                        |                        |
| 38 River S            | ystem        | River               | Matsukawa River      | Miya-ohashi Bridge                                         | Zao Town                                        | $\vdash$                   | 119      | $\vdash$          | $\perp$       |       |          |           | 19       |         | 47    | 54             | 66      | $\sqcup$ | 31  | $\sqcup \sqcup$   | 58              | 1         | 39                  | 10            | $\sqcup$ | 39          | _        | 13    | _               | 15         | 14        | $\vdash$      | m                    | 40          | 38      | 0.75                        | - A                    |
| 39                    |              |                     | Arakawa River        | Niragami Bridge                                            | Muzata Town/Ogawara Town                        | $\perp \perp$              | 33       |                   | $\perp$       | 36    | Ш        |           | 68       |         | 38    | 32             | 101     | $\sqcup$ |     | 47                | 222             | _         | 0                   | 27            | $\sqcup$ | 178         |          | 26    | _               | 26         | 14        | $\vdash$      | $ \sqrt{N}$          | 61          | 39      | 1.06                        | VVV                    |
| 40                    | L            |                     | Shiroishi River      | Shirahata Bridge                                           | Shibata Town                                    | $\perp \perp$              | 32       | $\sqcup$          | $\perp \perp$ | 61    | Ш        |           | 60       | -       | 32    | 31             | 68      | $\sqcup$ |     | 52                | 12              | _         | 31                  | 12            | $\sqcup$ | 19          |          | 20    |                 | 16         | 37        | $\perp \perp$ | ~~                   | 35          | 40      | 0.55                        |                        |
|                       |              |                     |                      | Tsukinoki-ohashi Bridge                                    | Kakuda City/Shibata Town                        | oxdot                      |          |                   | $\perp$       |       | Ш        | 2,470 540 | 88       |         | 340   | 63             | 154     | -        | 166 |                   | 74              | 1         |                     | 94 84         | _        | 123         | 810      | 463   | 13              | 37 14      | 45 143    |               | 1                    | 324         | 41      | 1.72                        | 3                      |
| 42                    |              |                     | Abukuma River        | Abukuma-ohashi Bridge(Iwanuma)                             | Iwanuma City/Watari Town                        |                            | 91       | $\sqcup \bot$     | 760           |       | 410      | 380       | 1,410 13 | -       | 143   | 730 300 1,410  | 243 247 | -        | 750 | 231 650           | 181 490         | )         | 270                 | 91 338        | 318      | 240 101     | 1,620 82 | 197   | 200 7           | 7 12       | 23 111    | 37            | Month                | 396         | 42      | 1.02                        | VVV                    |
| 43                    |              |                     |                      | Abukuma River Estuary (Watari-<br>ohashi Bridge)           | Iwanuma City/Watari Town                        |                            |          |                   |               |       |          | 103 249   | 10       | 4       | 102   | 91             | 187     | 49       | 85  | 41                | 2,45            | 0         | 209                 | 45 580        |          | 237         | 60       | 70    | 1,4             | 140 6      | 55 98     |               | $-\lambda$           | 330         | 43      | 1.84                        | $\wedge \wedge \wedge$ |
| 1                     |              |                     |                      |                                                            |                                                 | Total number of<br>samples | f<br>656 | Detectio<br>times |               |       |          |           |          |         |       |                |         |          |     |                   |                 |           |                     |               |          |             |          |       |                 |            |           |               |                      | 312         | Average |                             |                        |
| *1: Blank cel         | lls are lo   | cations w           | there samples were   | e not collected. The result "Not de                        | tectable" is indicated as "0."                  | Jumpas                     |          | 23                |               |       |          |           |          |         |       |                |         |          |     | *3: R             | esults of the a | malysis ( | of trends at respec | tive location | ns using | Decreasing  | -> Incre | asing | ~~ <b>4</b> (In | changed A/ | V varvi   | ng            |                      |             | 1       | ı                           |                        |
|                       |              |                     |                      | ND=0; Color codes show categori                            |                                                 |                            |          |                   |               | A B   | C        | D E       |          |         |       |                |         |          |     |                   | th              | ne metho  | d explained on P.   | 50            |          | - receiving | mere     |       | Oil             | - Ty       |           | 0             |                      |             |         |                             |                        |
|                       |              | - ,                 |                      |                                                            |                                                 |                            |          |                   |               |       |          |           |          |         |       |                |         |          |     |                   |                 |           |                     |               |          |             |          |       |                 |            |           |               |                      |             |         |                             |                        |

# 3) Fukushima Prefecture

#### i. Hamadori

In Hamadori, Fukushima Prefecture, surveys were conducted 17 to 35 times from September 2011 to February 2015 for river sediment samples collected at 53 locations.

Regarding concentration levels of detected values, 15 locations were categorized into Category A, two locations into Category B, 13 locations into Category C, 10 locations into Category D, and 13 locations into Category E (see Table 4.3-5 and Table 4.3-6).

Concentration levels were generally decreasing at 41 locations but were generally unchanged or varying at 12 locations.

Table 4.3-5 Categorization of detected values at respective locations (Hamadori, Fukushima Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                             |
|----------|--------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 15                  | No.7, No.9, No.10, No.11, No.12, No.13, No.14, No.20, No.21, No.23, No.24, No.25, No.26, No.27, No.31 |
| В        | Upper 5 to 10 percentile                         | 2                   | No.8, No.30                                                                                           |
| С        | Upper 10 to 25 percentile                        | 13                  | No.1, No.2, No.3, No.4, No.6, No.15, No.17, No.18, No.32, No.36, No.38, No.48, No.53                  |
| D        | Upper 25 to 50 percentile                        | 10                  | No.22, No.28, No.29, No.35, No.37, No.39, No.41, No.45, No.47, No.52                                  |
| E        | Lower than upper 25 to 50 percentile (lower 50%) | 13                  | No.5, No.16, No.19, No.33, No.34, No.40, No.42, No.43, No.44, No.46, No.49, No.50, No.51              |

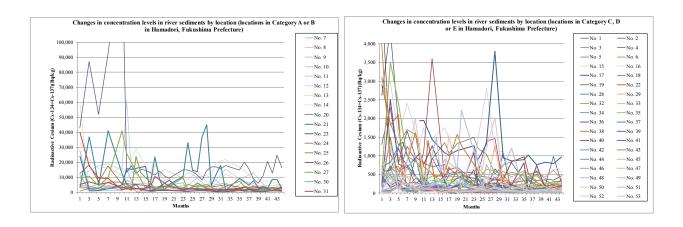
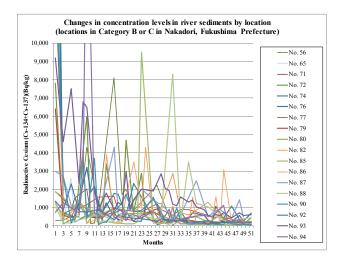



Figure 4.3-4 Changes in concentration levels over the years at respective locations (Hamadori, Fukushima Prefecture: river sediments)

Table 4.3-6 Detection of radioactive cesium at respective locations (Hamadori, Fukushima Prefecture: river sediments)

| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                 |       |                   |            |       |        |       |                                             |                              |                                                  |                                 |                            | Riv   | er sediments S | Radioactive Co | esianı (Cs-134 <b>+</b> Cs-137) Con | ncentration(Bq | kg)(*1)                       |                    |                       |                 |                               |            |                   |            |             |           |             |       |                           |         | Average | Code    | Scient of Trends |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-------|-------------------|------------|-------|--------|-------|---------------------------------------------|------------------------------|--------------------------------------------------|---------------------------------|----------------------------|-------|----------------|----------------|-------------------------------------|----------------|-------------------------------|--------------------|-----------------------|-----------------|-------------------------------|------------|-------------------|------------|-------------|-----------|-------------|-------|---------------------------|---------|---------|---------|------------------|
| No. Water area Location Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | 10    | FY2011            | -          | , ,   | 1      |       | 4 7                                         | S 9                          | 72012                                            | 1 11 12                         | -                          | ,     | 1 1            | 4              | 3 6                                 |                | 8 9                           | Y2013              |                       | 12              | 1 2                           | 1 4        | 3 6               | 7          | 3 PY        | 2004      | T 11 T 12   |       |                           | Changes | (*2)    |         | istice (*3)      |
| 1 Sangara Kinar Hamahata Bidge Shinchi Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             | 2,600           |       | 4,400             | 1,790      | -     | 18     | 990   | 54                                          | 940                          |                                                  | 320 0                           | 0                          | -     | -              |                | 620 95                              |                | 151                           | 0                  |                       | 1,100           | 34                            |            | 13 361            |            | 224         | 170       |             |       | 245                       | 1       | 656     | 1 1     | .55              |
| 2 Kolum Koor Kolum Bridge Some City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             | 5,300           | _     | 1,060             | 580        | -     | 740    | 231   | 460                                         | 142                          | 1                                                | 470 680                         | 480                        |       | +              | _              | 235 540                             |                | 1,400                         | 1,460              | -                     | 261             | 273                           |            | 333 114           |            | 181         | 158       | 24          | 7     | 214                       | -       | 707     | 2 1     | .55              |
| 3 Hyddin Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1             | 2,900           |       | 1,890             | 1,290      |       | 1,700  | 1,570 |                                             | 920                          |                                                  | 1,350 1,670                     | 1,330                      |       | 1              |                | 1,490 1,200                         |                | 1,040                         | 510                |                       | 750             | 840                           |            | 970 500           |            | 560         | 209       |             |       | 194                       | 500-    |         |         | 164              |
| 4 Cideorea River - Markada Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +             | 1.300           |       | 2.300             | 820        |       | 1.660  | 970   | 500                                         | 710                          | 1                                                | 760 530                         | 560                        |       | +              | _              | 550 370                             |                | 165                           | 650                | -                     | 390             | 820                           |            | 305 290           |            | 590         | 382       | 34          | 4     | 470                       | 1       | 720     | 4 0     | 168              |
| 5 Brokken Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 240             |       | 490               | 155        | 155   |        | 109   | 55                                          | 140                          | 1                                                | 84 23                           | 290                        |       | 1              | _              | 100 70                              |                | 84                            | 60                 |                       | 64              | 65                            |            | 83 46             |            | 149         | 24        | 21          |       | 60                        | Λ.,     | 112     |         | 196              |
| 6 Manuscra Rose Orbin Bidge Meanisons City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 4.000           | _     | 660               | 710        |       | 180    | 390   | 310                                         | 460                          | 1                                                | 450 410                         | 440                        | _     | 1              | _              | 224 350                             |                | 250                           | 236                | _                     | 490             | 225                           |            | 560 360           | +          | 500         | 183       | 30          |       | 300                       |         | 548     |         | .0               |
| 7 Mains Bides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _             | 28.000          | _     | 1.400             | 5,900      |       | 3.400  | _     | 1.820 15.900                                | 290                          | +                                                | 500 750                         | 4,400                      | _     | +              | _              | 6.400 161                           |                | 6.500                         | 3.500              | -                     | 5.100           | 6,200                         |            | 2.140 740         | _          | 3,650       | 4,400     | 1,9         | 10    | 3,340                     |         | 4.933   | 7 1     | 25               |
| S Nida River Greate State Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _             | 3,200           | -     | 1,290             | 1,990      | -     | 3,700  | _     | 1,090 4,800                                 | 770                          | 1                                                | 1,590 2,670                     | _                          | 5,700 | +              | _              | 630 1,870                           |                | 1,000                         | 960                | -                     | 510             | 400                           |            | 530 420           | _          | 1,260       | 1,130     |             |       | 980                       | A.A.    | 1,706   |         |                  |
| 9 Komina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +             | 4.900           |       | 4.400             | 2,900      | _     | 4.700  | _     | 1.100 7.900                                 | 5.400                        | +                                                | 4.300 2.900                     | _                          | 4,500 | +              | +              | 1400 1330                           |                | 3,300                         | 2.290              |                       | 1.810           | 2.050                         |            | 1270 1620         |            | 1070        | 3,690     |             |       | 990                       | W       |         |         |                  |
| 10 Kidoudi Brilge Meanines City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             | 11,200          |       | 2,600             | 1,570      | -     | 4,200  |       | 3,800 2,250 2,600                           | 2,900                        | 1                                                | 2,520 2,500                     | 1,850                      |       | _              | _              | 3,500 2,500                         | -              | 3,040                         | 760                |                       | 1,560           | 3,600                         |            | 1,320 1,270       |            | 4,500       | 2,240     |             |       | 3,350                     | 1       |         |         | us AAA           |
| II Substanta Mader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 13,000          |       | 620               | 1,140      | -     | 1,230  | _     | 1,530 3,300 3,400                           | 6,300                        | -                                                | 5,300 3,700                     | 1,070                      |       | +              | +              | 4,900 4,700                         |                | 9,500                         | 4,000              |                       | 8,400           | 1,420                         |            | 5,200 10,100      |            | 13,100      | 5,300     |             |       | 4.480                     | 4.4     |         |         | 125 AAA          |
| 12 Ota River Schinstade Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +             | 9,700           |       | 14,400            | 17,600     |       | 19.100 | _     | 14,700 61,000 14,100                        | 11,900                       | <del>                                     </del> | 8,700 9,300                     | 15,60                      |       | +              | +              | 9,500 13,400                        |                | 10.300                        | 11,300             |                       | 8,300           | 15,500                        | _          | 9,300 7,700       |            | 4,300       | 4,600     |             |       | 5,500                     | 1       |         |         | 136              |
| 13 Vanisorbilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             | 11,000          |       | 22.000            | 16,000     | -     | 17.700 | _     | 11,300 8,000 8,600                          | 17,000                       | -                                                | 5.200 15.400                    | 7.700                      |       | +              | +              | 10.900 5.400                        |                | 14,300                        | 7,400              |                       | 5 500           | 12,300                        |            | 8,400 7,400       |            | 5900        | 1150      | 2,0         | _     | 5,500                     |         | 10,000  |         | 164              |
| 14 Manufathian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +             | 60,000          |       | 2.900             | 2,900      | -     | 9.700  |       | 18.300 1.800 22.800                         | 29.000                       | +                                                | 12.500 23.400                   | 1,700                      |       | +              | +              | 2.090 2.520                         |                | 4.500                         | 2.400              |                       | 19,500          | 21,990                        |            | 16,500 15,000     |            | 8,700       | 7,500     |             | _     | 2.990                     |         | 10,000  | ., .    | .03              |
| 14 Michael Melgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +             | 2,600           |       | 1,000             | 1,510      | -     | 2,400  |       | 1290 1290 1290                              | 29,000                       | +                                                | 1.750 2.5400                    | 510                        |       | +              | +              | 630 1400                            | -              | 4,500                         | 1,110              |                       | 1 110           | 21,960                        |            | 480 368           |            | 620         | 7,900     | 7,8         | _     | 2,590                     | W.      |         |         | 163              |
| 15 Bill Tritinale Hedge<br>16 Manyane Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +             | 230             | -     | 71                | 1,510      | -     | 27     | -     | 121 190 123                                 | 92                           | +                                                | 1,750 1,470<br>48 53            | 45                         | +     | +              | +              | 53 60                               | $\vdash$       | 2,790                         | 1,110              |                       | 1,110           | 36                            |            | 480 368<br>27 68  | +          | 46          | .481      | 83          | _     | 16                        |         | 1,011   |         | 134              |
| 17 Odda For Shindana Bider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +-            | 2,00            | _     |                   | + "        | -     | /4     | -     | 1,940 1,950                                 | 1,490                        | +                                                | 1,090 1,020                     | 1,140                      | +-    | +              | +              | 1,270 890                           | -              | 1,310                         | 3,500              |                       | 940             | 360<br>860                    |            | 900 1,020         | +          | 760         | 830       |             |       | 970                       | -       |         | 17 0    |                  |
| 17 Odela Error Moneclassica Helgo<br>18 Zencho Brider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +             | 300             |       | 720               | 470        | _     | 1.250  | _     | 700 1,990                                   | 1,490                        | +                                                | 1,080 1,030                     | 690                        |       | +              | +              | 307 460                             | _              | 430                           | 3.99               |                       | 325             | 540                           |            | 970 510           |            | 329         | 358       | 22          |       | 365                       | ~/L     |         |         | .02              |
| 18 Consider Stridge 19 Materialum Stridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-            | 173             |       | 720<br>1,500      | 470<br>260 | -     | 1,250  | -     | 700 1,090<br>108 410 54                     | 3,600<br>78                  | +                                                | 360 620<br>18 42                | 690                        |       | +              | 1-             | 307 460<br>48 19                    | 1              | 430                           | 359<br>71          |                       | 325<br>52       | 840<br>20                     |            | 970 510<br>65 443 |            | 329<br>299  | 133       |             |       | 365                       | -/\     |         |         | .88              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-            | 43,000          |       | 1,500<br>87,000   | 52,000     | -     | 92,000 | -     | 165,000 13,400 17,900                       |                              | 1440                                             |                                 | 1,200 11,00                |       | 1-             | +              | 15,100 14,900                       | 11.000         |                               |                    |                       |                 | 15,700 18,000                 |            | 14,900 20,300     |            | 3,500 6,000 |           | 20,800 13,6 |       | 16,500                    | 1/2     |         |         | 25               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-            | 43,000<br>3,300 |       | \$7,000<br>37,000 | 52,000     | -     | 92,000 | -     | 165,000 13,400 17,800<br>12,400 5,600 3,700 | 12,800 15,600<br>5,200 1,370 | :4,600                                           | 13,400 11,600 1<br>5,600 23,700 | (,200 11,00<br>(,400 1,670 |       | +              | +              | 15,100 14,900<br>10,700 33,000      |                | 11,900 8,300<br>14,000 37,000 |                    |                       |                 | 15,700 18,000<br>18,000 1,510 |            | 9,400 7,300       |            | 7,900 3,190 |           |             |       | (500 16,500<br>(600 2,810 | W       |         |         |                  |
| 21 Ukdo feitge 22 Sannick River Before the confluence with Sannick City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +             | 3,300           | _     | 27,000            | 5,000      | -     | 47,000 | _     | 12,400 5,600 3,700<br>950 167 1,410         | 5,200 1,370                  | +                                                | 5,600 23,700                    | 640                        |       | 1-             | -              | 10,700 33,000                       | 14,700         | 14,000 37,000                 | 45,000             |                       | 116             | 1,510                         |            | 9,400 7,300       | 4,900      | 7,900 3,190 | 3,090     | 3,020 8,8   |       | ,600 2,810                | Mulha   |         |         | .02 AAA          |
| 22 Fanamah River Falancasma River Samus City 23 Ediana River Kein-Bridge Samir Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +             | 24.000          | -+    | 1.650             | 1.460      | -     | 2.400  | -     | 950 162 1,410<br>5,000 15,900 15,400        |                              | 17.400                                           | 165 176                         | 640                        | 8.100 | +              | +              | 231 220<br>770 860                  | 1              | 1.140                         | 1.370              |                       | 316<br>510      | 520                           |            | 111 175           | +          | 95<br>800   | 54        | 1.1         | _     | 1.140                     | 10      |         |         | 46               |
| 23 Editor Keer Keinsteinge Samir France M. March France Statement France Statement Sta | 1-            | 24,000          |       | 1,650             | 7,490      | -     | 2,400  | _     | 5,000 15,900 15,400<br>5,000 5,000          |                              | 17,400                                           | 1,370 1,830                     | 4700                       | _     | 1              | -              | 770 860                             |                | 1,140                         | 1,370              |                       | 4100            | 520                           |            | 1,370 1,100       | _          | 300         | 2.510     | 1,1         | _     | 1,140                     | Mr.     |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 149.00          |       | - epinear         | 1,100      |       | 17,600 |       | 1,010                                       |                              | 1,000                                            | 50.00                           | -                          |       |                | _              | 2010                                |                | 1,0100                        | 7,000              |                       | 1,000           | 1,000                         |            | 3,010             |            | 5,000       | 40.00     | 7,4         |       |                           | 1       |         |         | 190              |
| 25 Natahana Bidga Namir Yawa<br>26 Kanasana Kina National Restate and Manas Yawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _             | 3,900           |       | 2,900             | 2,700      |       | 7,000  |       | 6,700 2,900 1,310                           | 23,900 13,100                |                                                  | 6,500 2,260                     | 2,310                      |       | _              | _              | 9,900 2,040                         |                | 6,000                         | 2,749              |                       | 2,380           | 2,060                         |            | 1,360 3,770       |            | 1,560       | 1,830     |             |       | 690                       | Au      |         |         | .10              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 5,300           |       | 7,000             | 5,200      |       | 6,600  |       | 3,200 3,800                                 |                              | 1,610                                            |                                 | 1,380                      |       |                | _              | 1,070 2,640                         |                | 1,740                         | 2,290              |                       | 830             | 1,780                         |            | 3,000 1,880       |            | 1,970       | 2,360     |             |       | 1,230                     | - Lun   | 2,744   |         | 166              |
| 27 Mikama Itridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 9,600           |       | 10,800            | 4,500      | _     | 10,200 |       | 41,000 26,000                               |                              |                                                  | 3,500 2,460                     | 3,700                      |       | _              | _              | 2,850 5,300                         |                | 3,700                         | 5,300              |                       | 1,870           | 4,000                         |            | 7,400 4,400       |            | 2,400       | 2,340     |             |       | 1,960                     | Λ       |         | 27 1    |                  |
| 28 Tomicka Kroer Naholiana Bioligo Greanchi Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                 |       |                   |            |       |        |       |                                             | 330                          | 310                                              |                                 | _                          | 570   | 242            | _              | 350 235                             |                | 239                           | 276                |                       | 144             | 205                           |            | 230 339           |            | 172         | 100       |             |       | 156                       | -Anna   | 269     |         | 145              |
| 29 Sakagawa Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                 |       |                   | _          | _     |        |       |                                             | 490                          | -                                                | 440 710 566                     | _                          | 400   |                | _              | 550 690                             |                | 400                           | 340                |                       | 580             | 430                           |            | 600 500           |            | 570         | 430       |             |       | 366                       | -00,000 |         |         | 122 ~~*          |
| 30 National Restr 6, west - Esmisha Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 930             |       | 2,900             | 3,200      |       | 2,499  |       | 3,600 2,150                                 | 2,530                        |                                                  | 1,300 2,330                     | _                          | 1,540 |                | _              | 1,780 2,580                         |                | 2,179                         | 1,150              |                       | 1,540           | 1,400                         |            | 2,450 970         |            | 990         | 1,020     |             |       | 980                       | March   | 1,875   |         | · C              |
| 31 Kohama Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 40,000          |       | 17,600            | 9,500      |       | 9,400  |       | 1,940 2,470                                 | 2,530                        |                                                  | 3,600 10,700                    | _                          | 4,100 |                |                | 1,970 2,460                         |                | 2,730                         | 1,720              |                       | 2,390           | 1,390                         |            | 2,020 3,970       |            | 1,230       | 3,660     |             | _     | 3,520                     |         |         |         | B ~              |
| 32 Megana River Metagama Bridge Nasaba Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 530             |       | 3,500             | 2,400      |       | 990    |       | 780 320                                     | 460                          |                                                  | 310 340                         |                            | 410   |                |                | 310 370                             |                | 640                           | 590                |                       | 470             | 560                           |            | 460 168           |            | 228         | 244       | 29          | _     | 197                       | Λ       | 662     |         | .18              |
| 33 Canauchi River Gelenama Rener with Granuchi Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |       |                   |            |       |        |       |                                             | 181 290                      | 83                                               | 194 142                         |                            | 149   |                |                | 177 224                             |                | 154                           | 217                | 1 1                   | 170             | 148                           |            | 192 137           |            | 205         | 126       | 17          |       | 235                       | fre     | 177     | 33 0    | 127 ~~*          |
| 34 Kidogana Koor Nichiyana Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 111             | _     | 690               | 139        |       | 99     | _     | 198 81                                      | 36                           | 1                                                | 137 130                         | _                          | 271   |                |                | 16 38                               |                | 108                           | 111                |                       | 67              | 49                            | _          | 113 78            | _          | 82          | 100       | 6           |       | 62                        | Λ.      | 129     | 34 1    |                  |
| 35 Nassian Bides Nasia Sown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 400             |       | 530               | 970        |       | 670    |       | 320 121                                     | 178                          | 1                                                | 236 280                         | _                          | 217   | 1              |                | 259 390                             |                | 110                           | 58                 |                       | 117             | 94                            |            | 570 410           |            | 460         | 249       | 25          |       | 267                       | Λ       |         |         | 167 AAA          |
| 36 Kidolana Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 200             | _     | 2,500             | 780        |       | 680    | _     | 1,060 790                                   | 1,270                        | 1                                                | 320 154                         | _                          | 192   | 1              |                | 1,100 218                           |                | 226                           | 174                | _                     | 210             | 230                           |            | 810 74            | +          | 740         | 150       | 16          | ,     | 83                        | And     | 551     |         | .04              |
| 37 Assert Kiner Bode Bridge Herne Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 739             |       | 530               | 1.260      | 1,370 |        | 450   | 240                                         | 230                          | 1                                                | 153 200                         | _                          | 183   | 1              |                | 93                                  | 390            | 128                           | 187                |                       | 138             | 169                           |            | 77 124            |            | 57          | 95        | 90          |       | 95                        | Λ       |         |         | .0               |
| 28 Ohioa Kiror Kaprino Bridge Briski Cky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3,100           | _     | 1.520             | 2.100      | 450   |        | 1,620 | 710                                         | 430                          | 1                                                | 560                             | 1,570                      | 1,270 | 1              | 1              | 630                                 | 260            | 235                           | 370                | _                     | 760             | 273                           |            | 321 229           | +          | 256         | 159       | 93          |       | 182                       | 20.0    | 773     | 36 1    |                  |
| 29 Kohira Kiror Rengo Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             | 390             |       | 184               | 350        | 240   |        | 290   | 202                                         | 149                          |                                                  | 127                             | 400                        |       | 1              | 1              | 380                                 | 204            | 243                           | 262                | -                     | 191             | 96                            |            | 112 98            |            | 113         | 130       | 14          | 4     | 191                       | w.n.    |         |         | 140              |
| 40 Nida River Kasamida Ridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             | 460             |       | 148               | 250        | 123   |        | 156   |                                             | 68                           | 1                                                | 75 92                           | _                          | 85    | 1              | 1 -            | 14                                  |                | 41                            | 100                |                       | 17              | 47                            |            | 0 0               |            | 12          | 29        | 71          |       | 56                        | 7.      |         | 40 1    |                  |
| 4] Matsuba Brilgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 590             |       | 620               | 1,200      |       |        | 460   |                                             | 181                          |                                                  | 151 122                         | _                          | 250   | 1              | 1              | 195                                 |                | 211                           | 430                |                       | 50              | 224                           |            | 61 54             |            | 71          | 58        | 4           | -     | 96                        | A       | 288     |         |                  |
| 42 Natural Steam Chamback Strings One Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1             | 66              |       | 76                | 206        | 61    |        | 29    | 155                                         | 290                          | 1                                                | 172                             | 0                          |       | 1              | +              | 31                                  |                | 12                            | 42                 |                       | 21              |                               |            | 10 0              |            | 15          | 29        |             |       | 0                         | 40/4    |         |         |                  |
| 43 Kyndeys Bridge Brids City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +             | 80              |       | 440               | 117        | 400   |        |       |                                             | 116                          | _                                                | 149                             | 22                         |       | 1              | 1              | 42                                  |                | 0                             | 14                 |                       | 36              | 30                            |            | 12 11             |            | 23          | 12        | 4           |       | 20                        | N.      |         |         | s -              |
| 44 Relational Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +             | 45              |       | 55                | 210        | 96    |        | 66    |                                             | 47                           | 1                                                | 72                              | 63                         |       | 1              | _              | 99                                  |                | 65                            | 91                 |                       | 59              | 45                            |            | 21 26             |            | 17          | 56        | 100         |       | 109                       | 1/      |         |         | us AAA           |
| 45 Vinhim River Treasurers Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +             | 630             |       | 390               | 450        | 430   |        | 450   |                                             | 370                          | _                                                | 206                             | 330                        |       | 1              | 1              | 79                                  |                | 47                            | 175                |                       | 50              | 85                            | <b></b>    | 254 53            |            | 63          | 59        | 3-          |       | 49                        |         |         |         | 176              |
| Before the confluence with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +             | 192             |       | 440               | 480        | 237   |        | 69    | 63                                          | 246                          | 1                                                | 191 34                          | 45                         | _     | 1              | _              | 157                                 | 63             | 163                           | 37                 |                       | -               | 38                            |            |                   | _          | 15          | 20        |             | _     | 18                        | Л       |         |         | в 🔾              |
| 46 Nation Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             |                 |       |                   |            |       |        | _     |                                             |                              | _                                                | 191 34                          | _                          |       |                | 1              |                                     |                |                               |                    | -                     | 17              |                               |            |                   |            |             | _         |             | _     |                           | V~_     |         |         |                  |
| 47 Fejmen Keur Strine Stridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             | 64              |       | 157               | 630        | 610   |        | 102   | 126                                         | 55                           |                                                  |                                 | 46                         |       | 1              | -              | 38                                  | 96             |                               | 1,290              |                       | 100             | 78                            |            | 37 22             |            | 97          | 102       | 18          |       | 92                        | ساليہ   | 194     |         | э //\ <b>\</b>   |
| 45 Minute obashi Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 530             | _     | 239               | 520        | 450   |        | 1,000 |                                             | 1,490                        | 590                                              | 910                             | 630                        | 2,220 |                |                | 790                                 | 139            | 770                           | 369                | _                     | 730             | 1,200                         |            | 41 159            |            | 54          | 83        | 21          | _     | 53                        | when    |         |         | o= ΛΛΛ.          |
| 49 Sangara Keur Mosana Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             | 0               |       | 30                | 161        | 36    |        | 238   | 134                                         |                              |                                                  |                                 |                            |       | 1              | 1              | 68                                  | 278            | 41                            | 148                |                       | 45              | 45                            |            | 19 0              |            | 26          | 18        | 71          |       | 36                        | Mh      |         |         | .85              |
| 50 Namegova Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 78              |       | 440               | 91         | 157   |        | 136   |                                             | 0                            |                                                  | 106                             | 16                         |       |                |                | 64                                  | 109            |                               | 59                 |                       | 58              | 65                            |            | 48 71             |            | 48          | 68        | 55          |       | 91                        | h       |         |         |                  |
| 51 Shitaki Kirar Komuro Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1             | 74              |       | 121               | 122        |       |        | 149   |                                             | 265                          | 78                                               | 208 48                          |                            | 95    | 1              | 1              | 40                                  | 59             |                               | 41                 |                       | 45              | 41                            |            | 14 11             |            | 12          | 25        | 21          |       | 20                        | M       |         | 51 0    |                  |
| 52 Binda Krar Kobana Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 237             |       | 300               | 310        |       |        | 270   |                                             | 299                          |                                                  | 420 137                         |                            | 330   |                |                | 134                                 | 113            |                               | 132                |                       | 83              | 161                           |            | 98 81             |            | 77          | 99        | 10          |       | 60                        | ~~~     | 194     |         |                  |
| 53 Binds Bidge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1             | 570             |       | 1,350             | 66         | 260   |        | 1,980 | 420                                         | 960                          |                                                  | 540 1,540                       |                            | 156   | 1              | 1              | 1,180                               | 620            | 1,210                         | 2,620              |                       | 349             | 117                           |            | 201 246           |            | 162         | 174       | 60          |       | 64                        | WW      | 648     | 53 0    | 197 AV.          |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total num     | ber of samples  | 1,179 | Detection times   | 1,159      |       |        |       |                                             |                              |                                                  |                                 |                            |       |                |                |                                     |                |                               |                    |                       |                 |                               |            |                   |            |             |           |             |       |                           |         | 2,616   | Average |                  |
| *1: Hank cells are bearings where samples were not collected. The most *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | This december | Chilefondo I    | 0.7   |                   |            | J     |        |       |                                             |                              |                                                  |                                 |                            |       |                |                |                                     |                |                               |                    |                       |                 |                               | Decreasing |                   | Increasing | ~~*         | Unchanged | MA          | Varyi |                           |         |         |         |                  |
| *1. Hank cells are bearing where samples were not concend. The insult *1 *2. Arithmetic Average, calculated by assuming ND=0, Color codes show concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                 | -     |                   |            |       |        |       |                                             |                              |                                                  | A B C                           | D                          | - 1   |                |                |                                     | *3: Resu       | lts of the analysis of trends | at respective loca | rions using the meth- | od explained on | P.60                          | " memoria  |                   | manage     | ~~          | - America | 1009        | ***   | -                         |         |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |       |                   |            |       |        |       |                                             |                              |                                                  |                                 |                            |       |                |                |                                     |                |                               |                    |                       |                 |                               |            |                   |            |             |           |             |       |                           |         |         |         |                  |

#### ii. Nakadori


In Nakadori, Fukushima Prefecture, surveys were conducted 21 to 37 times from September 2011 to February 2015 for river sediment samples collected at 44 locations.

Regarding concentration levels of detected values, three locations were categorized into Category B, 15 locations into Category C, 10 locations into Category D, and 16 locations into Category E (see Table 4.3-7 and Table 4.3-8).

Concentration levels were generally decreasing at 40 locations but were generally unchanged or varying at four locations.

Table 4.3-7 Categorization of detected values at respective locations (Nakadori, Fukushima Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                      |
|----------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                         |
| В        | Upper 5 to 10 percentile                         | 3                   | No.74, No.76, No.93                                                                                            |
| С        | Upper 10 to 25 percentile                        | 15                  | No.56, No.65, No.71, No.72, No.77, No.79, No.80, No.82, No.85, No.86, No.87, No.88, No.90, No.92, No.94        |
| D        | Upper 25 to 50 percentile                        | 10                  | No.59, No.64, No.68, No.69, No.70, No.75, No.78, No.81, No.89, No.91                                           |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 16                  | No.54, No.55, No.57, No.58, No.60, No.61, No.62, No.63, No.66, No.67, No.73, No.83, No.84, No.95, No.96, No.97 |



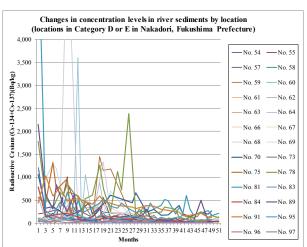
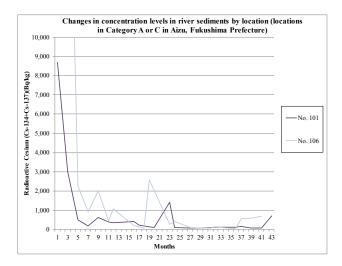



Figure 4.3-5 Changes in concentration levels over the years at respective locations (Nakadori, Fukushima Prefecture: river sediments)

Table 4.3-8 Detection of radioactive cesium at respective locations (Nakadori, Fukushima Prefecture: river sediments)

|                                         | Location                                      |                                              |           |               |            |      |            |           |           |          |       |             |          |            |          |            | River   | sediments | Radioac | tive Cesi     | um (Cs-1 | 34+Cs-1   | 37)/Conc    | entration | (Bq/kg)(*1                   | )         |               |         |            |       |         |         |           |       |          |             |               |         |                  | П       |                             |                        |
|-----------------------------------------|-----------------------------------------------|----------------------------------------------|-----------|---------------|------------|------|------------|-----------|-----------|----------|-------|-------------|----------|------------|----------|------------|---------|-----------|---------|---------------|----------|-----------|-------------|-----------|------------------------------|-----------|---------------|---------|------------|-------|---------|---------|-----------|-------|----------|-------------|---------------|---------|------------------|---------|-----------------------------|------------------------|
| No. Water area                          | Location                                      | Municipality                                 |           |               | FY20       |      |            | _         |           |          |       |             |          | FY2012     |          |            |         | ,         |         | Ъ,            |          |           | _           | FY20      |                              |           |               |         |            |       |         | _       | FY2014    |       |          | _           |               | Changes | Average<br>(*2)  | No.     | Coefficient of<br>variation | Trends<br>(*3)         |
|                                         |                                               |                                              | _         | _             | ) 11       |      |            | 3         |           | _        | 7     | 8           | 9        | 10         | 11       | 12         | 1       | 2         | 3       | 4             | 5        | 6         | 7           | _         | 10                           | _         | _             | _       | 4          | 5     |         | 8       | 9         |       | 1 12     | 1           | 2             | 3<br>A  |                  | -       |                             | $\overline{}$          |
| 54<br>Abukuma River                     | Habuto Bridge                                 | Nishigo Village                              | _         | 66            | 81         |      | 155        | 96        | 262       | _        | 44    |             |          | 31         | 49       | 144        | 89      | -         | _       | +             | 51       | 135       | ш           | 80        | 14                           | 53        |               | 25      |            |       | _       | 17      |           | 23    | 33       | 52          |               | MM      | 71               | 54      | 0.83                        | ->                     |
| 55                                      | Tamachi-ohashi Bridge                         | Shirakawa City                               | -         | 200           | 228        | _    | 270        | 280       | 1,010     | _        | 184   | 56 107      |          | 60         | 85       | 560        | 125     | 180       | 203     | 3 77          |          | 13 57     | 51          | 46 59     |                              | 33        | 53            |         | 40         | 47    |         | 4 30    |           | 24    | 22       | 12 36       | ,             | -h.h    | 134              | 55      | 1.41                        | <i>&gt;</i>            |
| 56 Yanta River                          | Before the confluence with<br>Abukuma River   |                                              |           | 290           | 330        | _    | 530        | 490       | 4,30      | 0        | 1,050 |             |          | 8,100      | 1,720    | 2,010      | 860     |           |         |               | 2,230    | 1,630     |             | 43        | 380                          | 212       | 2             | 234     |            | 243   | 244     | 215     |           | 279   | 240      | 241         |               |         | 1,176            | 56      | 1.57                        | <u> </u>               |
| 57 Yashiro River                        | Yashirogawa Bridge                            | Tanagura Town                                |           | 77            | 108        |      | 218 150    | )         | 870       |          | 290   |             |          | 129        | 300      | 246        |         |           |         |               | 170      | 132       |             | 159       | 135                          | 66        | 1             | 71      |            | 81    | 52      | 71      |           | 51    | 45       | 51          |               | <u></u> | 165              | 57      | 1.08                        | <b>\</b>               |
| 58 Kitasu River                         | Yanagi Bridge                                 | Hinta Village                                |           | 27            | 165        |      | 66         | 70        | 64        |          | 65    |             |          | 14         | 57       | 19         | 72      |           |         |               | 37       | 40        |             | 29        | 40                           | 11        |               | 21      |            | 21    | 17      | 19      |           | 16    | 0        | 17          |               | home    | 40               | 58      | 0.88                        | <b>\</b>               |
| 59 Imade River                          | Nekonaki Bridge                               | Ishikawa Town                                |           | 45            | 47         |      | 0          | 55        | 680       |          | 610   |             |          | 105        | 1,450    | 1,150      | 1,180   |           |         |               | 116      | 248       |             | 42        | 179                          | 15        | 1             | 20      |            | 78    | 0       | 139     |           | 14    | 63       | 203         |               | ~~      | 297              | 59      | 1.45                        | <b>&gt;</b>            |
| 60 Yashiro River                        | Oji Bridge                                    | ISHIKIWI TOWN                                |           | 35            | 36         |      | 51         | 52        | 145       | ;        | 50    |             |          | 55         | 98       | 100        | 98      |           |         | T             | 71       | 80        |             | 46        | 127                          | 64        |               | 54      |            | 16    | 24      | 24      |           | 22    | 23       | 78          | П             | M       | 61               | 60      | 0.57                        | ~                      |
| 61                                      | Kawanome Bridge                               | Tamakawa Village                             |           | 71            | 34         |      | 37         | 77        | 330       | 105 213  | 84    | 53 73       |          | 180        | 450      | 49         | 120 130 | 138       |         | 108           | 5        | 57 63     | 40          | 31 38     | 50                           | 72        | 69 (          | 69      | 15         | 57    | 78 18   | 8 49    | 24        | 58    | 33       | 64          | 58            | M       | 89               | 61      | 0.98                        |                        |
| Abukumu River<br>62                     | Emochi Bridge                                 |                                              |           | 0             | 124        |      | 390        | 24        | 380       | ,        | 193   | 330         |          |            | 350      | 72         | 48      |           |         | +             | 68       | 19        |             | 13        | 35                           | 13        |               | 17      |            | 39    | 12      | 10      |           | 11    | 12       | i           | 27            | M       | 99               | 62      | 1.35                        |                        |
| 63                                      | Sukagawa City water intake                    | Sukagawa City                                | _         | 72            | 97         | _    | 138        | 126       | 182       |          | 77    |             |          | 83         | 168      | 94         | 108     | 1         | +       | +             | 109      | 175       |             | 113       | 47                           | 63        |               | 51      |            | 37    | _       | 28      |           | 11    | 27       |             | 138           | 11-1    | 91               | 63      | 0.54                        | MÁ                     |
| Shakado River                           | Before the confluence with                    | 1                                            | _         | 550           | 89         | _    | 124        | 129       | 540       |          | 3.600 | 93 1.050    | -        | 117        | 890      | 440        | 96 85   | 75        | +       | 282           |          | 07 80     | 88          | 51 59     |                              | 18        | 73 (          |         | 80         | 66    | _       | 2 18    | 31        | 51    | 26       | 52          | 80            |         | 275              | 64      | 2.26                        |                        |
| 65 Sasahara River                       | Abukuma River<br>Shinbashi Bridge             |                                              | -         | 1,240         | 260        | _    | 2,600 480  | +         | 380       | _        | 1 470 | .,          | 227      |            | 200      | 1,540      | 1,300   | -         | +       | +             | 240      | 730       | -           | 102       | 106                          | 114       | +             | 99      |            |       |         | 99      |           | 114   | 85       | 131         | +             | 1       | 539              | 65      | 1.24                        |                        |
|                                         |                                               | Koriyama City                                | _         |               | 200        | _    |            | 1         | _         | _        | 1,470 |             | 237      |            | 200      |            | -       |           | _       | +             | 240      |           |             | 102       | 100                          | 114       | <del></del> - | .99     |            | -     | 148     |         |           | 114   | 25       | 19          | +             | ww      | ~                |         |                             |                        |
| 00 111191111111                         | Yatagawa Bridge                               |                                              | _         | 137           | /9         | _    | 184 160    | 1         | 236       | _        | 140   |             | 99       |            | 81       | 400        | 340     | +-        | +       | +             | 85       | 57        | $\vdash$    | 49        | 66                           | 39        | 1             | 01      |            | 49    | 01      | 25      |           | 17    |          | 19          | +             | ~~      | 110              | 66      | 0.93                        | -3                     |
| Otakine River                           | Funehiki Bridge<br>Before the confluence with | Tamura City                                  | _         | 27            | 119        | _    | 87 173     | 1         | 270       | _        | 52    |             | 96       |            | 133      | 120        | 239     | 1-        | -       | +             | 132      | 98        | $\vdash$    | .55       | 69                           | 110       | $\square$     | 15      |            |       |         | 53      |           | 42    | 25       | <del></del> | 112           | MM      | 99               | 67      | 0.65                        | ->4                    |
| 68                                      | Abukuma River<br>Before the confluence with   | ↓ ↓                                          | _         | 750           | 270        | _    | 134        | 360       | 6,40      | _        | 215   |             | 89       | 108        | $\sqcup$ | 1,340      | 242     | 1         | _       | $\bot$        | 213      | 49        | Ш           | 370       | 73                           | 66        | +             | 64      |            | 69    | _       | 64      |           | 60    | 51       | 60          | $\perp \perp$ |         | 503              | 68      | 2.68                        | <u></u>                |
| 69                                      | Babagawa River                                | ] [                                          |           | 700           | 960        | _    | ,290 1,19  | 10        | 183       |          | 164   |             | 1        | 10 370     |          | 199        | 700     |           |         | $\perp$       | 106      | 96        |             | 60        | 50                           | 56        | 1             | 87      |            | 90    | 71      | 64      |           | 66    | 49       | 18          | $\perp$       | 1~      | 304              | 69      | 1.30                        | >>                     |
| 70 Ouse River                           | Makunouchi Bridge                             | Koriyama City                                | 1         | 1,060         | 330        |      | 360 310    | )         | 163       |          | 240   |             | 440      | 209        |          | 420        | 610     |           |         |               | 450      | 660       |             | 241       | 298                          | 174       | 1             | 78      |            | 390   | 206     | 139     |           | 237   | 202      | 264         |               | hom     | <sub>~</sub> 345 | 70      | 0.62                        | >>                     |
| 71                                      | Before the confluence with<br>Abukuma River   | ,                                            | 1:        | 3,500         | 690        |      | 860 1,54   | 10        | 2,020     | 640 690  | 610   | 290 189     | 8        | 20 330     |          | 360        | 290 420 | 550       |         | 800           | 2/       | 41 390    | 232         | 224 295   | 129                          | 194       | 233 1         | 87      | 165        | 263   | 194 20  | 8 186   | 272       | 126   | 180      | 154         | 199           | L       | 796              | 71      | 2.78                        | <u></u>                |
| 72 Abukuma River                        | Akutsu Bridge                                 |                                              | 7         | 7,800         | 116        |      | 350 350    | )         | 6,000     | 148 169  | 1,410 | 269 3,400   |          | 610        | 400      | 4,700      | 740     | 2,880 5   | 20      | 220           | 15       | 97 280    | 400         | 233 251   | 113                          | 114       | 90 1          | 03      | 101        | 145   | 177 14  | 6       | 344 136   | 114   | 179      | 107         | 444           | MM.     | 938              | 72      | 1.91                        | 1                      |
| 73                                      | After the confluence with<br>Ishimuro River   | 1                                            | 1         | 1,210         | 184        |      | 99 122     | 2         | 96        |          | 74    |             |          | 50 116     |          | 158        | 63      |           |         | $\top$        | 83       | 85        |             | 42        | 21                           | 40        |               | 39      |            | 24    | 38      | 24      |           | 32    | 33       | 28          | $\top$        | \       | 121              | 73      | 2.05                        |                        |
| 74 Gohyaku River                        | Kamis ekishita Bridge                         |                                              | 2:        | 2,000         | 700        |      | 590 230    | )         | 590       | ,        | 450   |             | 1,       | 780 1,730  |          | 590        | 2,330   |           |         | $\top$        | 67       | 130       |             | 222       | 810                          | 134       | 1             | 16      |            | 181   | 134     | 124     |           | 1,080 | 362      | 174         | $\top$        |         | 1,569            | 74      | 2.93                        |                        |
| 75                                      | Before the confluence with<br>Abukuma River   | Motomiya City                                |           | 560           | 450        | 1    | 320 730    | )         | 960 2     | 201 580  | 89    | 111 470     | 3        | 30 114     |          | 167        | 137     | 150       | 99      | 9 88          | 1        | 57 310    | 179         | 59 101    | 49                           | 51        | 18            | 97      | 58         | 102   | 86 91   | 1 129   | 19        | 48    | 25       | 36          | 30            | h.      | 228              | 75      | 1.26                        |                        |
| 76 Abukum River                         | Takada Bridge                                 |                                              | 31        | 0.000         | 610        | _    | 600 440    | )         | 3.200 1   |          | _     | 720 1,260   |          | 490        | 268      | 770        | 250     | 268 5     | 70      | 1 570         |          | 40 285    | 360 1       | 020 256   |                              | 400       | 730           |         | 570        | _     | _       | 70      | 387 305   | 250   | 570      | 264         | 690           | 1       | 1.580            | 76      | 3.16                        | <u> </u>               |
| 77 Kuchibuto River                      | Kuchibutogawa Bridge                          | Nihonmatsu City                              |           | 1,880         | 1,440      |      | 990        | 950       | 1,16      |          | 1.570 |             |          | 620 920    |          |            | 790     | 780       |         | -             |          | 900       |             | 570       | 900                          | 880       |               |         |            |       | 470     | 490     |           | 365   | 283      | 363         | +             | VLA     | 911              | 77      | 0.49                        |                        |
| 78 Utsushi River                        | Osegawa Bridge                                | -                                            | _         | 1,780         | _          | _    | -          | +-        |           | _        | 1,370 |             | 1,9      | 610        | 1.260    | 750        | 250     | +-        | _       | -             |          |           | 200         |           |                              | 244       | +             |         | ***        |       | 179 13  | _       |           | _     | 130      | 162         | +             | 1 1     | 498              |         |                             |                        |
|                                         |                                               |                                              | _         | -             | 550        | _    | 330<br>460 | -         | _         | _        | -     | 234 530     | +        |            |          |            | 230     | 1,130 7   | _       | 2,380         |          | 91 144    | -           |           | 2 229                        |           | 350           | _       | 300        |       | _       | _       | 132 149   | _     | _        | 102         |               | www     | _                | 78      | 1.00                        |                        |
| 79 Mizuhara River                       | Getouchi Bridge                               | 4                                            | _         | 6,400         | 570        | _    |            | 1,410     | 520       | _        | 410   |             |          | 980        | 800      | 450        |         | 620       | _       | +             |          | 430       | - 1         | 229       | 302                          | 321       |               |         |            | 169   | _       | 171     |           | 268   | 165      | —           | 187           | Lun     | 759              | 79      | 1.76                        | ->-                    |
| 80 Megami River                         | Tsurumaki Bridge                              | <b>↓</b>                                     | _         | 1,870         | 1,570      | _    | 950        | 1,340     | 880       | _        | 550   |             |          | 1,010      | 900      | 650        |         | 690       | _       | $\perp \perp$ | 680      | 540       |             | 330       | 410                          | 440       | 5             | 510     |            | 233   |         | 600     |           | 169   | 200      | ь—          | 238           | ~~~     | 685              | 80      | 0.66                        | <u></u>                |
| 81 Abukuma River                        | Homi Bridge                                   | ] [                                          | 6         | 6,500         | 176        | _    | 171        | 460 3     | 70 660    | 290      | 500   | 242 255     |          | 340        | 440      | 530        | 370     | 330 4     | _       | 320           | 23       | 35 250    | 259         | 242 440   | 318                          | 390       | 520 4         | 190     | 198        | 341   | _       | 0 310   | 185       | 220   | 278      | 166         | 216           | L       | 508              | 81      | 2.04                        | <u></u>                |
| 82 Nigori River                         | Before the confluence with<br>Omori River     |                                              | 1         | 1,160         | 650        |      | 530        | 1,090     | 980       | )        | 590   |             |          | 610        | 410      | 300        |         | 1,180     |         |               | 650      | 1,030     | 2           | ,880      | 740                          | 610       |               |         |            | 1,290 | 1,050   | 720     |           | 370   | 299      | 322         |               | S       | 831              | 82      | 0.68                        | $\wedge \wedge \wedge$ |
| 83 Amkawa River                         | Hinokura Bridge                               |                                              | 1         | 1,160         | 270        |      | 167        | 114       | 139       |          | 77    | 79          |          |            | 45       | 42         |         | 22        |         |               | 61       | 77        |             | 72        | 22                           | 29        | 1             | 38      |            | 24    | 15      | 16      |           | 17    | 23       | 18          |               | L       | 115              | 83      | 2.10                        | <b>&gt;</b>            |
| 84 Sukawa River                         | Sukawa Bridge                                 | Fukushima City                               |           | 790           | 137        |      | 173        | 199       | 216       | ,        | 125   |             |          | 82         | 74       | 132        |         | 84        |         |               | 87       | 119       |             | 87        | 44                           | 99        |               |         |            | 33    | 38      | 31      |           | 75    | 60       | 40          |               | L.      | 130              | 84      | 1.23                        | /                      |
| 85 Amkawa River                         | Before the confluence with                    | 1                                            | 1         | 1,290         | 460        |      | 750        | 1,380 9   | 90 142    | 760      | 119   | 280 237     |          | 161        | 145      | 117        | 119 220 | 9,500     |         | 340           | 51       | 00 135    | 85          | 200 380   | 122                          | 143       | 112           |         | 96         | 85    | 70 71   | 1 79    | 76        | 66    | 67       | 67          | 61            | . 1     | 555              | 85      | 2.87                        | ~                      |
| 86 Matsukawa River                      | Abukuma River                                 |                                              | 1:        | 5,200         | 400        |      | 280        | 690 4,0   | 000 144   | 330      | 175   | 920 3,900   |          | 145        | 173      | 1,560      | 3,500   | 1,070 4,  | 300     | 149           | 1        | 19 152    | 137 1       | ,100 277  | 7 129                        | 137       | 1,580 1       | 05      | 257        | 167   | 305 1,5 | 90 71   | 3,060     | 98    | 25       | 287         | 75            | 1       | 1,295            | 86      | 2.08                        |                        |
| 87 Hattanda River                       | Hattanda Bridge                               | 1                                            | 1         | 3.000         | 2.700      | _    | ,100       | 1,090     | 620       | _        | 520   |             | _        | 300 610    | $\vdash$ | 750        |         | 2,010     | _       | +             | _        | 1,220     | H.          | 470       | 570                          | 1.560     |               | 480     |            | 510   | _       | 910     |           | 420   | 1,440    | 490         | +             | 2/22    | 1,306            | 87      | 0.78                        | $\overline{}$          |
| 88                                      | Totsuna Bridge                                | 1 1                                          | 1         | 1.040         | 186        | _    | 167 260    | +         |           | $\perp$  | 630   |             | 400      | 170        |          | 430        |         | 620       | _       | +             | 300      | 510       | ı e         | 300       | 176                          | 3,500     | -             | 250     |            | 1.050 | _       | 440     |           | 94    | 381      |             | 450           | 1       | 1,011            | 88      | 1.80                        | \\\\ <b>↓</b>          |
| Surikami River                          | Before the confluence with                    | <b>∤                                    </b> |           | 2,150         | 630        |      | 310 830    |           | 10 250    | 640      |       | 50 86       | 700      | 140        | 330      | 96         | 110 16  | _         | _       | 154           |          | 08 157    | 170         | 300 124   | 110                          | 64        | 50 (          |         | 112        | 52    |         | 9 58    | 33        | 500   | 44       | 33          | 44            | /h      | 243              | 89      | 1.56                        |                        |
| 90 Abukum River                         | Abukuma River                                 | Date Circ                                    |           | - +           | 2.700      | _    |            | +         | _         |          | -     |             | $\vdash$ |            | 1 200    |            | 780     | 850       | _       | 1.54          |          | _         | 102         | 297 1 00  | -                            | 00        | 122           | 62      |            |       | _       | _       |           | 110   | 27       | 85          |               | Manne   | ~                |         |                             | ->-                    |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Taisho Bridge                                 | Date City                                    | _         | 4,200         | 2,700      | _    | 153        |           | 800 410   | _        | -     | 172 219     |          | 770<br>410 | -        | ,740 1,130 | /80     |           | _       | 1,460         | _        | 50 285    | 193         | 297 1,00  |                              | 98        | 123 1         | 152     | 135        | 78    |         | 0       | 95 287    | 110   | 77       | 130         | 71            | M       | 1,082            | 90      | 2.26                        |                        |
| 91<br>Hirose River                      | Tatenokoshi Bridge                            | Kawamata Town                                | _         | 440           | 1,030      | _    | 590        | 770       | 490       | _        | 530   |             |          | _          | 590      | 480        |         | 390       | _       | +             | 350      | 319       | H           | 390       | 370                          | 300       | $\vdash$      | $\perp$ |            | 241   |         | 168     |           | 213   | 125      | 130         | +             | 1       | 404              | 91      | 0.55                        | ->                     |
| 92                                      | Jizogawara Bridge                             | <b>↓</b>                                     | _ ['      | 1,340         | 870        | 2    | 2,300      | 780       | 760       | <u> </u> | 890   |             | 3        | 30 580     |          | 480        | 410     | 390       | _       | $\bot$        | 257      | 370       | H           | 296       | 289                          | 197       | 1             | 93      |            | 297   | 211     | 177     |           | 207   | 196      | <b></b>     | 200           | 1       | 523              | 92      | 0.94                        | <u>^</u>               |
| 93 Oguni River                          | Before the confluence with<br>Hirose River    | Date City                                    | 9         | 9,200         | 4,600      | 7    | ,500       | 2,300 6,8 | 6,50      | 0 2,000  | 820   | 1,390 1,800 | 8        | 90 1,290   | 1,150 3  | ,000 880   | 1,430   | 2,010     |         | 1,910         | 2,8      | 860 2,070 | 1,930 1     | ,190 1,11 | 0 1,590                      | 1,310     | 1,420 1,      | 040     | 890        | 580   | 520 61  | 0 560   | 730       | 450   | 730      | 570         | 620           | M       | 2,061            | 93      | 1.03                        | ~ <u>~</u>             |
| 94 Hirose River                         | Before the confluence with                    | 1 }                                          | $\dashv$  | 740           | 1,280      | -    | 980        | 710 2,7   | 700 20,00 | 00 650   | 650   | 430 640     | $\vdash$ | 720        | 890      | 300 500    | 610     | 440       | +       | 790           | -        | 20 540    | 910         | 278 470   | 360                          | 490       | 510 5         | 50      | 560        | 530   | 530 71  | 0       | 1,140 246 | 254   | 344      | 153         | 152           | 1       | 1,177            | 94      | 2.77                        |                        |
| 95 Kurokawa River                       | Abukuma River<br>Tochigisakai                 | Shirakawa City                               | _         | 105           | 50         | _    | 114        | 133       | 82        | _        | 194   | 138         | $\vdash$ | 73         | 350      | 213        | 56      | +         | +       | +~            | _        | 153       | 7.0         | 65        | 64                           | 127       | 1             | 89      |            | 138   | _       | 52      | .,.+0 2+0 | 71    | 78       | 82          | +             | www     | 1,177            | 95      | 0.43                        | ~~*                    |
| 96 Kulokawa River                       | Matsuoka Bridze                               | Tanagura Town                                | _         | 39            | 23         | _    | 48 150     |           | 63        |          | 31    | 42          |          | 13         | 12       | 39         | 43      | +         | +       | +             | 11       | 55        | $\vdash$    | 40        | 12                           | 127       |               | 18      |            | 0     |         | 12      |           | 22    | 0        | 14          | +             | 1       | 32               | 96      | 1.00                        |                        |
| Kujigawa River                          |                                               |                                              | _         |               |            | _    | _          |           | _         | _        | -     |             | $\vdash$ |            | _        |            |         | +         | +       | +             | 41       |           | $\vdash$    |           |                              | 12        | H             | 10      | -          | 0     | 13      | _       |           | 22    | 0        |             | +             | Jun     | ~                |         |                             | ->_                    |
| 97                                      | Takachihara Bridge                            | Yamatsuri Town                               |           | 63            | 14         | _    | 41 44      |           | 13        |          | 14    | 24          |          |            | 16       | 18         | 0       | 1         |         | $\bot$        | 27       | 13        | Ш           | 14        | 10                           | 15        |               | 11      |            | 11    | 0       | 13      |           | 11    | 0        | 0           | ш             | Nym     | 17               | 97      | 0.91                        | <i>&gt;</i> 3          |
|                                         |                                               |                                              | Total nu  | amber 1,1     | 70 Deter   |      | ,160       |           |           |          |       |             |          |            |          |            |         |           |         |               |          |           |             |           |                              |           |               |         |            |       |         |         |           |       |          |             |               |         | 543              | Average |                             |                        |
|                                         |                                               | L                                            | of sam    |               | tim        |      |            |           |           |          |       |             |          |            |          |            |         |           |         |               |          | a2. n     | andra of a  |           | -Ct                          |           |               |         |            |       | _       |         |           |       |          |             |               |         |                  | لتسا    |                             |                        |
| 1: Blank cells are locations            | where samples were not co                     | Bected. The result "N                        | Not detec | ctable" is in | dicated as | "0." |            |           |           |          |       |             |          |            |          |            |         |           |         |               |          | ±3: Re    | esums of th | the metho | of trends at<br>od explained | d on P.60 | acations to   | ong 1   | Decreasing |       | / Incr  | reasing | ~ Unchan  | ged M | V Varyin | 3           |               |         |                  |         |                             |                        |
| 2: Arithmetic Average; ca               | kulated by assuming ND=0;                     | Color codes show ca                          | ategories | (see the ri   | tht).      |      | A          | В         | D         | E        |       |             |          |            |          |            |         |           |         |               |          |           |             |           |                              |           |               |         |            |       |         |         |           |       |          |             |               |         |                  |         |                             |                        |

#### iii. Aizu


In Aizu, Fukushima Prefecture, surveys were conducted 13 to 31 times from September 2011 to December 2014 for river sediment samples collected at 26 locations.

Regarding concentration levels of detected values, one location was categorized into Category B, one location into Category C, six locations into Category D, and 18 locations into Category E (see Table 4.3-9 and Table 4.3-10).

Concentration levels were generally decreasing at 18 locations but were generally unchanged or varying at eight locations.

Table 4.3-9 Categorization of detected values at respective locations (Aizu, Fukushima Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                                    |
|----------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                                       |
| В        | Upper 5 to 10 percentile                         | 1                   | No.106                                                                                                                                       |
| С        | Upper 10 to 25 percentile                        | 1                   | No.101                                                                                                                                       |
| D        | Upper 25 to 50 percentile                        | 6                   | No.102, No.105, No.107, No.116, No.120, No.121                                                                                               |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 18                  | No.98, No.99, No.100, No.103, No.104, No.108, No.109, No.110, No.111, No.112, No.113, No.114, No.115, No.117, No.118, No.119, No.122, No.123 |



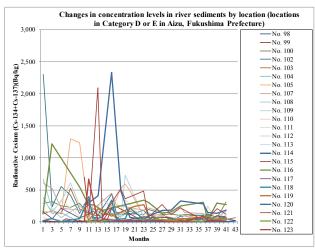
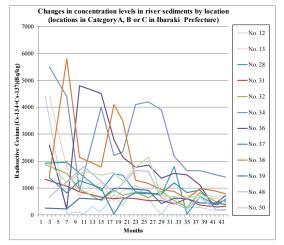



Figure 4.3-6 Changes in concentration levels over the years at respective locations (Aizu, Fukushima Prefecture: river sediments)

Table 4.3-10 Detection of radioactive cesium at respective locations (Aizu, Fukushima Prefecture: river sediments)

|           |                          | Location                                     |                               | Γ         |           |      |                   |            |     |     |            |     |       |           |       |       |       | River | se dime r | nts/Rad    | lioactive ( | Cesium   | (Cs-13     | +Cs-137      | )/Conce i  | ntration( | Bq/kg)(*   | 1)         |       |         |        |        |       |        |               |           |       |         |               | _   |             |                 | ,       |                             |                        |
|-----------|--------------------------|----------------------------------------------|-------------------------------|-----------|-----------|------|-------------------|------------|-----|-----|------------|-----|-------|-----------|-------|-------|-------|-------|-----------|------------|-------------|----------|------------|--------------|------------|-----------|------------|------------|-------|---------|--------|--------|-------|--------|---------------|-----------|-------|---------|---------------|-----|-------------|-----------------|---------|-----------------------------|------------------------|
| No.       | Water area               | Location                                     | Municipality                  |           |           |      | Y2011             |            |     |     |            |     |       |           | FY201 |       |       |       |           |            |             |          |            |              |            | Y2013     |            | ,          |       |         | L.     |        |       |        | FY20          |           |       |         |               |     | Changes     | Average<br>(*2) | No.     | Coefficient of<br>variation | Trends<br>(*3)         |
| 98        |                          |                                              |                               | 8         | 9         | 10 1 | 1 12              | 1          | 2   | 3 4 | 4 5        | 6   | -+    | 8 9<br>50 | 10    | 11    | 12    | - 1   | 2         | 2 3        | 4           | -        | 6          | 7            | 8          | 9         | 10 11      | 12         | 1 2   | 2 3     | 4      | 5      | 6 7   | 8      | 9             | 10 1      | 1 12  | 2 1     | 2 3           | 3   | ).          |                 | - 00    | 2.42                        | <u> </u>               |
| 98        | Agano River              | Tajima Bridge                                | Minamiaizu Town               |           | 27        | ,    | _                 | 0          |     | _   | 26         |     |       | 0         |       | 0     | +-    |       | -         | +          | -           | _        | 0          |              | 0          |           | 0          | 0          |       | -       |        | 0      |       | 0      | -             | 0         | 0     | +       | ++            | +   | 1           | 4               | 98      | 3.43                        |                        |
|           |                          | Okawa Bridge                                 |                               |           | _         | 1:   | 3                 | 0          |     | 0   | _          |     | Ü     |           | 123   | - 0   | 0     | -     |           |            | +           | 10       | 0          |              | 112        | _         | -          | 0          |       | +       |        | Ů      | 0     | 69     | -             | -         | 0     | +       | ++            | - 7 | 1-1-        | 4               | 99      | 2.18                        |                        |
| 100       |                          | Takimi Bridge                                | Aizuwakamatsu City            |           | 290       | 32   | -                 | 256<br>500 | _   | 28  | 290<br>640 | -   | 390   |           | 123   | _     | 124   | +     | _         | 11         |             | 1.410    | _          |              | 84         | _         | 24         | _          | 120   | -       | + 1    | 98 1   | _     |        |               | 312<br>82 | 720   | +       | ++            | -   | mand        | 171             | 100     | 0.48                        | ~~*                    |
| 101       | Yukawa River             | Shinyukawa Bridge Before the confluence with |                               |           | 8,700     | 3,0  | 00                |            |     | 75  | +          |     |       | 350       |       | _     | 0 236 | 1     | 10        | 04         |             | -        |            |              |            | -         |            | 106        | 117   | -       |        | 131 1  | _     | 80     | _             |           | 720   | -       | ++            | 1   |             | 837             | 101     |                             | -                      |
| 102       |                          | Agano River                                  |                               |           | 2,300     | 24   | 10                | 550        | 43  | 20  | 132        |     | 400   | 0         |       | 44    | 0 153 |       |           |            |             | 114      | 199        |              | 132        |           | 10         | 89         |       |         |        | 109    | 14    | 72     |               | 97        |       |         |               | b   | m_          | 310             | 102     | 1.68                        |                        |
| 103       | Miyakawa River           | Saikuna Bridge                               | Aizubange Town                |           | 126       | 17   | 15                | 126        | 5   | 30  | 203        |     | 133   | 99        |       | 12    | 2 55  |       | 17        | 70         |             | 69       | 62         |              | 82         |           | 48         | 56         | 53    |         |        | 16     | 72    | 41     |               | 36        | 67    |         |               | 1   | A           | 111             | 103     | 0.97                        |                        |
| 104       | Agano River              | Miyako Bridge                                | Anabange rown                 |           | 380       | 13   | 4                 | 142        |     |     | 0          |     | 17    | 42        |       | 0     | 0     |       | 1         | 1          |             | 0        | 0          |              | 0          |           | 0          | 0          | 0     |         |        | 11     | 0     | 0      |               | 0         | 0     | Ш       |               | 7   | · -         | 37              | 104     | 2.47                        | 1                      |
| 105       | Nippashi River           | Minami-ohashi Bridge                         | Kitakata City                 |           | 167       | 15   | 8                 | 130        | 1,3 | 300 | 1,240      | )   | 101   | 270       | 173 1 | 32 26 | 3 350 | 530   | 590 48    | 80         |             | 88       | 92         | 108 105      | 103        | 87        | 70         | 41         | 109 8 | 5       | 71     | 46     | 92 20 | 0      | 18            | 0         |       | ╙       |               |     | M           | 226             | 105     | 1.39                        | <b>\</b>               |
| 106       | Kyu-yukawa River         | Awanomiya Bridge                             | Yugawa Village                |           | 13,000    | 25,6 | 000               | 2,260      | 9:  | 30  | 2,010      | )   | 470 1 | ,080      |       | 20    | 7     | 72 2  | ,590      |            |             | 279      | 410        |              | 103        |           | 72         | 88         | 139   |         |        | 40 5   | 70    | 580    |               | 690       |       | $\perp$ |               | 1   |             | 2,530           | 106     | 2.37                        | >                      |
| 107       | Kyu-miyakawa River       | Josuke Bridge                                | Aizubange Town                |           | 610       | 52   | :0                | 216        |     |     | 181        |     | 257   | 202       |       | 45    | 0 265 |       |           |            |             | 181      | 219        |              | 161        | 1         | 31         | 236        | 142   |         |        | 134    | 54    | 68     |               | 172       |       | Ш       |               | 1   | ~~          | 234             | 107     | 0.63                        |                        |
| 108       | Tatsuki River            | Ohashi                                       |                               |           | 670       | 19   | 19                | 67         |     |     | 250        |     | 157   | 112       | 198   |       |       | 86    | 121       |            |             | 118      | 152        |              | 17         |           | 14         | 25         | 26    |         |        | 26     | 29    | 16     |               | 27        |       | ┸       |               | 1   |             | 122             | 108     | 1.25                        | ~                      |
| 109       | THE SAME POTCE           | Shimokawara Bridge                           | Kitakata City                 |           | 340       | 16   | i9                | 320        | 6   | 10  | 260        |     | 66    | 87        | 370   |       |       | 67    | 730       |            |             | 80       | 40         |              | 39         |           | 28         | 121        | 87    |         |        | 23     | 14    | 11     |               | 21        |       |         |               | V   | W           | 174             | 109     | 1.18                        | <b>\</b>               |
| 110       | Nigori River             | Nigorigawa Bridge                            |                               |           | 69        | 3    | 6                 | 30         |     |     | 57         |     | 71    | 28        |       | 24    | 1     | 16    | 51        |            |             | 11       | 0          |              | 47         |           | 10         | 0          | 48    |         |        | 10 2   | 49    | 16     |               | 12        |       | $\perp$ |               | ,   | Sun         | 41              | 110     | 1.33                        | $\wedge \wedge \wedge$ |
| 111       |                          | Yamazaki Bridge                              |                               |           | 180       | 13   | 9                 | 350        |     |     | 82         |     | 90    | 82        | 61    |       |       | 40    | 350       |            |             | 41       | 43         |              | 0          |           | 0          | 0          |       |         |        | 25     | 0     | 0      |               | 0         |       | $\perp$ |               | V   | W_          | 82              | 111     | 1.33                        | ->                     |
| 112       | Inagawa River            | Aoyagi Bridge                                | Minamiaizu Town               |           | 0         | 0    | )                 | 0          | -   | 0   | 0          |     | 0     | 0         |       | 0     | 0     |       | (         | 0          |             | 0        | 0          |              | 0          |           | 0          | 0          |       |         |        | 0      | 0     | 0      |               | 0         |       | ╙       |               |     |             | 0               | 112     | -                           | ~~*                    |
| 113       | iniga na Kirci           | Kurosawa Bridge                              | Tadami Town                   |           | 0         | (    |                   | 10         | 4   | 14  | 0          |     | 0     | 0         |       | 0     |       | 0     |           |            |             | 0        | 0          |              | 0          |           | 0          | 0          |       |         |        | 0      | 0     | 0      |               | 0         |       | $\perp$ |               | J   | ٨           | 3               | 113     | -                           | ~~*                    |
| 114       | Tadami River             | Nishitan i Bridge                            | Kaneyama Town                 |           | 0         | 0    | •                 |            |     |     | 0          |     | 0     | 0         | 0     |       |       | 0     | 0         |            |             | 0        | 0          |              | 0          |           | 0          | 0          | 0     |         |        | 0      | 0     | 0      |               | 0         | 19    |         |               |     |             | - 1             | 114     | -                           | ~~*                    |
| 115       |                          | Fuji Bridge                                  | Aizubange Town                |           | 14        | 0    | )                 | 0          | 51  |     | 13         |     | 0     | 32        | 12    | 22    | 6 241 |       |           |            |             | 12       | 36         |              | 11         |           | 0          | 0          |       |         |        | 13     | 21    | 99     |               | 56        |       | ┸       |               | _   | $\sim \sim$ | 44              | 115     | 1.62                        | $\wedge \wedge \wedge$ |
| 116       | Agano River              | Shingo Dam                                   | Kitakata City                 |           | 129       | 1,2  | 20                |            |     |     | 540        |     | 260   | 270       | 183   |       |       |       |           |            |             | 340      | 309        |              | 137        | 1         | 63         | 251        |       |         |        | 308    | 36    | 296    |               | 272       |       |         |               | 1   | 1-          | 314             | 116     | 0.88                        | <b>\</b>               |
| 117       | Sukawa River             | Sukawano                                     |                               |           | 161       | 5.   | 2                 | 218        |     |     | 61         |     | 123   | 169       | 58    | 39 21 | 3 86  | 18    |           |            |             | 83       | 76         | 44 73        | 70         | 78        | 63         | 21         |       |         | 55     | 79     | 78 2  | 34     | 46            | 50        | 24    |         |               | _   | Why         | 78              | 117     | 0.70                        |                        |
| 118       | Nagase River             | Kogane Bridge                                |                               |           | 24        | 5.   | 2                 | 0          |     |     | 52         |     | 360   | 71 59     | 78    | 34    | 0 42  | 47    | 55 22     | 20         |             | 40       | 35         | 87 23        | 42         | 19        | 45         | 32         | 24 6  | 2       | 36     | 61 1   | 25 3  | 26     | 94            | 65        |       | $\perp$ |               | ^   | Mrun        | 75              | 118     | 1.13                        |                        |
| 119       | Takahashi River          | Shinbashi Bridge                             | Inawashiro Town               |           |           |      |                   |            |     |     |            | 190 | 26    | 208       |       | 89    | )     |       |           | 24         | 4           | 267      | _          |              | 23         |           | 29         |            |       |         |        | 78     | 59    | 44     |               | 67        |       | $\perp$ | Ш             | _   | M           | 111             | 119     | 0.78                        | $\wedge \wedge \wedge$ |
| 120       | Koguro River             | Umeno Bridge                                 |                               |           |           |      |                   |            |     |     |            | 270 | 300   | 410       |       | 2,3   | 30    | 480   | 7.        | '3         |             | 42       | 94         |              | 183        | 1         | 84         | 324        |       |         |        | 284    | 49    | 133    |               | 188       |       | ┸       | Ш             | _   | 1_          | 363             | 120     | 1.54                        | >                      |
| 121       | Hishinuma River          | Sekido District                              |                               |           |           |      |                   |            |     |     |            | 700 | 90    | 2,09      | 67    |       |       | 520   | 360       |            |             | 480      | 74         |              | 272        | 1         | 15         | 223        |       |         |        | 28     | 56    | 211    |               | 122       |       | $\perp$ | $\perp \perp$ | _   | 1-          | 361             | 121     | 1.44                        | 1                      |
| 122       | Funatsu River            | Funatsu Bridge                               | Koriyama City                 | Ш         |           |      |                   | Ш          |     |     |            | 32  | 10    | 0         |       | 31    |       | 17    | 21        |            |             |          | 33         |              | 36         |           | 34         | 0          | 24    |         |        | 10     | 04    | 23     |               | 52        |       | $\perp$ | $\bot \bot$   | 4   | Low         | 29              | 122     | 0.84                        | $\wedge \wedge \wedge$ |
| 123       | Haragawa River           | Estuary, front                               | Aizuwakamatsu City            | Ш         |           |      |                   |            |     |     |            | 0   | 670   | 0         | 47    |       |       | 13    |           | 27         | 7           | 16       | 28         |              | 12         |           | 0          | 0          | 11    |         |        | 92     | 22    | 19     |               | 17        |       | 丄       |               | Ш   | 1           | 61              | 123     | 2.69                        | 1                      |
|           |                          |                                              |                               | Total n   |           |      | etection<br>times | 384        |     |     |            |     |       |           |       |       |       |       | *3: Resi  | ults of th | he analysis | of trend | ds at resp | ective locat | tions usin | g the me  | thod expla | ained on I | 2.60  |         |        |        |       |        |               |           |       |         |               |     |             | 243             | Average |                             |                        |
| *1: Blan  | cells are locations when | re samples were not collected. T             | he result "Not detectable" is | indicate  | d as "0." |      |                   |            |     |     |            |     |       |           |       |       |       |       |           |            |             |          |            |              |            |           |            |            |       | <u></u> | Decrea | sing - | nci   | easing | ~~ <b>^</b> 1 | Unchange  | d AVA | A Vary  | /ing          |     | L           |                 |         |                             |                        |
| *2: Aritl | netic Average; calculate | ed by assuming ND=0; Color coo               | des show categories (see the  | e right). |           |      |                   |            | A 1 | В   | C D        | Е   |       |           |       |       |       |       |           |            |             |          |            |              |            |           |            |            |       |         |        | -      |       | -      |               |           |       |         | •             |     |             |                 |         |                             |                        |
|           | -                        |                                              |                               |           |           |      |                   |            |     |     |            |     |       |           |       |       |       |       |           |            |             |          |            |              |            |           |            |            |       |         |        |        |       |        |               |           |       |         |               |     |             |                 |         |                             |                        |

### 4) Ibaraki Prefecture


In Ibaraki Prefecture, surveys were conducted 11 to 17 times from August 2011 to February 2015 for river sediment samples collected at 53 locations (this analysis excludes the survey results at 39 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, one location was categorized into Category A, two locations into Category B, nine locations into Category C, 27 locations into Category D, and 14 locations into Category E (see Table 4.3-11 and Table 4.3-12).

Concentration levels were generally decreasing at 45 locations but were generally unchanged or varying at eight locations.

Table 4.3-11 Categorization of detected values at respective locations (Ibaraki Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                                                                              |
|----------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 1                   | No.34                                                                                                                                                                                  |
| В        | Upper 5 to 10 percentile                         | 2                   | No.36, No.38                                                                                                                                                                           |
| С        | Upper 10 to 25 percentile                        | 9                   | No.12, No.13, No.28, No.31, No.32, No.37, No.39, No.48, No.50                                                                                                                          |
| D        | Upper 25 to 50 percentile                        | 27                  | No.1, No.2, No.5, No.6, No.7, No.11, No.14, No.17, No.18, No.19, No.20, No.21, No.22, No.23, No.24, No.25, No.26, No.27, No.29, No.33, No.40, No.41, No.42, No.46, No.49, No.52, No.53 |
| E        | Lower than upper 25 to 50 percentile (lower 50%) | 14                  | No.3, No.4, No.8, No.9, No.10, No.15, No.16, No.30, No.35, No.43, No.44, No.45, No.47, No.51                                                                                           |



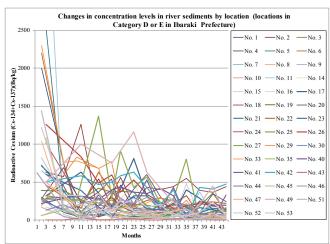
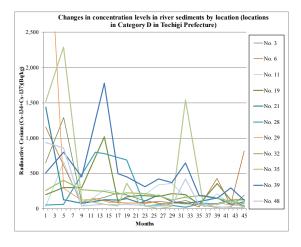



Figure 4.3-7 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: river sediments)

Table 4.3-12 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: river sediments)

|                            |                          | Locati             | ion                      |                                |                         |             |              |                |         |        |         |               |        |          | R     | ver sediment | ts/Radioa | active Cesium (Cs-13 | 4+Cs-137)/Concent         | ration(I | 3q/kg)(*1)         |                        |               |               |       |                  |        |         |       |               |                 |         |                           |                        |
|----------------------------|--------------------------|--------------------|--------------------------|--------------------------------|-------------------------|-------------|--------------|----------------|---------|--------|---------|---------------|--------|----------|-------|--------------|-----------|----------------------|---------------------------|----------|--------------------|------------------------|---------------|---------------|-------|------------------|--------|---------|-------|---------------|-----------------|---------|---------------------------|------------------------|
| 0.                         | Water are                | na .               | Location                 | Municipality                   |                         |             | FY2011       |                |         | 1      |         |               | FY201  |          |       |              |           |                      | F?                        | /2013    |                    |                        |               |               |       | Y2014            |        |         |       | Changes       | Average<br>(*2) | No. Co  | efficient of<br>variation | Trends<br>(*3)         |
|                            |                          |                    |                          |                                |                         |             | 1 12         |                | 2 3     | 3 4    | 5 6     | 7             |        | 10       |       | 1 2          | 3         |                      |                           | 10       | 11 12              |                        | -             | 6 7           | 8 9   |                  |        | - 1     | 2     | 3             |                 |         |                           |                        |
|                            |                          | Satone River       | Yamagoya Bridge          |                                |                         | 000         |              |                | 760     |        | 166     |               | 121    | _        | 153   |              | 105       | 97                   | 81                        |          | 52                 | 49                     | 55            |               | 44    |                  | 66     |         | 23    |               | 269             | 1       | 1.97                      | <u></u>                |
|                            |                          |                    | Murayama Bridge          |                                | 7                       | 10          |              | 4              | 150     |        | 125     |               | 540    |          | 176   | 460          |           | 126                  | 116                       |          | 187                | 128                    | 137           |               | 81    |                  | 234    |         | 137   | M             | 258             | 2       | 0.77                      |                        |
| 1                          |                          |                    | Kurabeishi               | Kitaibaraki City               | 2                       | 150         |              | 1              | 144     |        | 102     |               | 42     |          | 88    | 66           |           | 36                   | 45                        |          | 91                 | 94                     | 56            |               | 89    |                  | 60     |         | 21    | \~~~          | 85              | 3       | 0.68                      | 7                      |
| Tananan                    | River System             | Hanazono River     | Januar Bridge            |                                | 2                       | 00          | _            | 1 1            | 103     |        | 53      |               | 76     |          | 68    | 50           |           | 50                   | 38                        | 1        | 47                 | 89                     | 54            |               | 57    |                  | 112    | ,       | 155   |               | 89              | 4       | 0.77                      | <u> </u>               |
| -                          |                          |                    | Sakac Bridge             | Takahagi City                  |                         | 100         | -            | -              | 310     | _      | 101     |               | 50     |          | 87    | 14           | -         | 42                   | 21                        | +        | 30                 | 73                     | 12            |               | 0     | +                | 92     | +       | 11    | _~~           | 282             | 5       | 2.89                      | - 34                   |
| <u>'</u>                   |                          | Okita River        |                          |                                |                         |             |              |                | _       | _      |         |               |        |          |       | -            | _         |                      |                           | ╄        |                    |                        |               |               | -     |                  |        | _       |       |               |                 |         |                           | 1                      |
| 5                          |                          |                    | Sakai Bridge             | Kitaibaraki City               |                         | 200         |              |                | 750     |        | 109     |               | 103    |          | 310   | 186          |           | 101                  | 68                        |          | 98                 | 83                     | 50            |               | 50    |                  | 24     |         | 61    | \             | 300             | 6       | 1.93                      | <u> ^</u>              |
| 7                          |                          | Hananuki River     | Shinhananuki Bridge      | Takahagi City                  | 6                       | 50          |              | 4              | 100     |        | 248     |               | 82     |          | 82    | 102          |           | 135                  | 115                       |          | 140                | 101                    | 141           |               | 108   |                  | 182    |         | 151   | \             | 188             | 7       | 0.83                      | <u></u>                |
| 3                          |                          |                    | Yamagata                 | Hitachiomiya City              | 1,0                     | 040         |              | 1              | 157     |        | 62      |               | 0      |          | 10    | 111          |           | 60                   | 94                        | 1        | 45                 | 20                     | 16            |               | 24    |                  | 12     |         | 15    | \             | 119             | 8       | 2.26                      | $\overline{}$          |
| Kujigawa                   | tiver System             | Kujigawa River     | Sakaki Bridge            | Hitachi City/Tokai Village     |                         | 90          |              |                | 44      |        | 11 0    | 0             | 0 161  |          | 156   | 135          | _         | 55                   | 111                       | +        | 92                 | 0                      | 49            |               | 18    | -                | 14     | _       | 14    | \             | 68              | 9       | 1.19                      |                        |
|                            |                          |                    |                          | Hitachiamica City/Shimcata     |                         | 69          | _            |                |         |        | 13      | -             | 163    |          | 88    | 13           | -         |                      | 15                        | +        |                    |                        | 15            |               | 11    |                  |        | _       |       | 7~            | 42              |         |                           | - >4                   |
| 0                          |                          |                    | Noguchi                  | Town                           |                         |             | _            |                | 52      |        |         |               | 100    |          |       |              |           | 11                   |                           | 1        | 18                 | 12                     |               |               | **    |                  | 12     |         | 0     | V\            |                 |         | 1.35                      | >                      |
| 1                          | Nakagawa River           | Nakagawa River     | Shimokunii               | Mito Cityi                     |                         | 500         |              |                | 78      |        | 16      |               | 128    |          | 116   | 246          |           | 101                  | 131                       |          | 76                 | 249                    | 73            |               | 369   |                  | 62     |         | 142   | \             | 521             | 11      | 2.76                      | \\\\\                  |
| 2                          | - Hanagama Kiri Ci       |                    | Katsuta Bridge           | Mito City/<br>Hitachinaka City | 4,4                     | 400         |              |                | 60      |        | 86 34   | 330 1         | 76 114 |          | 760   | 340          |           | 1,110                | 600                       |          | 13                 | 670                    | 258           |               | 274   |                  | 170    |         | 202   | \             | 565             | 12      | 1.83                      | ~                      |
| 3                          |                          | Nakamuni River     | Yanagisawa Bridge        | Hitachinaka City               |                         | 4,400       |              | 1.             | ,810    |        | 690     |               | 1,200  | ,        | 510   | 890          |           | 1,110                | 880                       | T        | 700                | 560                    | 730           |               | 810   |                  | 700    |         | 680   | 1             | 1,119           | 13      | 0.89                      | <u> </u>               |
| , Nakagawa River           |                          | Himmonae River     | Nagaoka Bridge           |                                | +-+                     | 460         |              | + + +          |         | _      | 158     |               |        | -        | 109   |              | -         | 510                  | 90                        | +        | 226                | 193                    | 312           |               | 188   | _                | 61     | +       | 126   | \ \ \ \ \ \ . | 221             | 14      | 0.67                      |                        |
| 4 Nakagawa River<br>System |                          |                    |                          | 1                              | $\vdash$                |             | +            | ++             | +       | +-     |         | $\vdash$      | +      | ++       |       | +            | +         | 310                  |                           | +        |                    |                        |               | _             |       |                  | _      | +       |       | ~~            |                 |         |                           | × × ×                  |
| 5                          |                          | Hinuma River       | Takahashi                | Ibaraki Town                   | $\perp \perp$           | 84          |              |                |         |        | 270     |               |        | $\sqcup$ | 57    |              |           | 19                   | 39                        | 1        | 16                 | 18                     | 480           |               | 55    |                  | 16     |         | 13    | $\sim \wedge$ | 97              | 15      | 1.52                      | $\wedge \wedge \wedge$ |
| 6                          | Hinumagawa<br>River      | Kansei River       | Kansei Bridge            |                                |                         | 167         |              |                |         |        | 92      |               |        |          | 139   |              |           | 159                  | 82                        | L        | 79                 | 86                     | 51            |               | 24    |                  | 113    |         | 31    | ~~            | 93              | 16      | 0.52                      | <u></u>                |
| 7                          |                          | Daiya River        | Oya Bridge               | Hokota City                    |                         | 320         | T            |                | T       | T      | 630     |               | T      | $\Box$   | 143   |              | $\top$    | 810                  | 310                       | Г        | 204                | 68                     | 400           |               | 290   |                  | 137    | Т       | 77    | 1             | 308             | 17      | 0.76                      | <u></u>                |
| 8                          |                          | Hisuma River       | Hisuma Bridge            | Mito City/Oarai Town           |                         | 630         | 1            |                | 570     | +      | 1,260   |               | 36     | +        | 330   | 560          | -         | 190                  | 430                       | 1        | 400                | 440                    | 550           |               | 390   | 1 1              | 364    | $\top$  | 442   |               | 471             | 18      | 0.59                      | <u> </u>               |
| 0                          |                          | Hokota River       |                          |                                | -                       | 90          | +            |                | 390     | +      | 270     | +             | 420    |          | 370   | 380          | -+        | 270                  | 182                       | +        | 68                 | 73                     | 163           | -             | 182   | -                | 352    | +       | 113   |               | 266             | 19      | 0.49                      |                        |
| 7                          |                          |                    | Asahi Bridge             | 1                              |                         |             |              |                |         | -      |         | $\vdash$      | _      | + +      |       |              |           | 370                  |                           | +        |                    |                        |               | -             |       |                  |        | +       |       |               |                 |         |                           |                        |
| 0                          |                          | Tomoe River        | Shintomoegawa Bridge     | Hokota City                    |                         | :80         |              |                | 590     |        | 220     |               | 370    |          | 540   | 159          |           | 410                  | 600                       | 1_       | 314                | 87                     | 156           |               | 99    |                  | 348    | $\perp$ | 242   | /W~           | 323             | 20      | 0.58                      | /                      |
| 1                          |                          | Taiyo River        | Tazuka Bridge            |                                | 7.                      | 20          |              | 1 [            | - 1 -   |        | 108     |               | 330    | 1 T      | 159   | 172          | Г         | 320                  | 320                       | 1        | 136                | 198                    | 174           |               | 93    | 1 T              | 154    | 1       | 141   | ~~            | 233             | 21      | 0.72                      | <u></u>                |
| 2                          |                          | Takeda River       | Uchijuku-ohashi Bridge   |                                |                         | 460         |              |                |         |        | 152     |               | 630    | $\Box$   | 380   | 230          |           | 177                  | 260                       | T        | 291                | 254                    | 190           |               | 228   |                  | 238    |         | 220   | V~            | 285             | 22      | 0.47                      | /                      |
| 3                          | Kitaura River            | Yamada River       | Nioroshi Bridge          | 1                              | $\vdash$                | 600         | +            | +              | +       | +      | 390     | +             | 174    | +        | 35    | 190          | -+        | 304                  | 143                       | 1        | 137                | 217                    | 92            | _             | 165   | +                | 135    | 1       | 114   | · .           | 207             | 23      | 0.72                      | <del></del>            |
| -                          |                          |                    |                          | Namegata City                  | $\vdash$                |             | -            | ++             | -       | +      |         | $\vdash$      |        | -        | 290   |              | -+        | 304                  |                           | +        |                    |                        | 319           | _             |       |                  | _      | +       |       | \ \~~         |                 |         |                           |                        |
| 4                          |                          | Kurakawa River     | Kurakawa Bridge          | 4                              | $\vdash$                | 1,020       |              | $\perp$        |         | _      | 239     |               | 187    | -        |       | 183          |           | 98                   | 100                       | 1        | 105                | 222                    | 0.77          |               | 58    | -                | 117    | 1       | 121   | \~~           | 235             | 24      | 1.06                      | ~                      |
| 5                          |                          | Gantsu River       | JA Yokohashi Bridge      |                                | ш                       | 320         | $\perp$      |                | $\perp$ |        | 260     | Ш             | 223    |          | 264   | 166          |           | 211                  | 195                       | 丄        | 164                | 151                    | 185           |               | 77    |                  | 110    | $\perp$ | 122   | ~~~           | 188             | 25      | 0.36                      | <u></u>                |
| 6                          |                          | Nagare River       | Suhoi Bridge             | Kashima City                   |                         | 1,260       |              |                |         | T      | 830     |               | 490    |          | 590   | 370          |           | 530                  | 340                       | Г        | 236                | 156                    | 182           |               | 219   |                  | 188    | T       | 144   | ~~            | 426             | 26      | 0.76                      |                        |
| 7                          |                          | Sonobe River       | Sonobeshin Bridge        |                                | 2                       | 80          | 1            |                |         |        | 260     |               | 1,370  |          | 290   | 910          |           | 430                  | 570                       | 1        | 223                | 281                    | 800           |               | 11    | +                | 97     |         | 162   | _^            | 437             | 27      | 0.88                      | <u> </u>               |
|                            |                          | Sanno River        | Tokoro Bridge            | Omitama City                   |                         | 920         | +            | <del>   </del> | 950     | +      | 1.550   | +             | 900    |          | 1,510 | 1,470        | +         | 860                  | 820                       | +        | 730                | 1,800                  | 31            | _             | 680   | +                | 368    |         | 590   | 7100          | 1,084           | 28      | 0.56                      | ~ ~                    |
| 4                          |                          |                    |                          |                                |                         |             | +            | 1,             | ,,,,,   | +      | A       | $\vdash$      | _      |          |       |              | +         |                      |                           | +-       |                    |                        |               | $\rightarrow$ |       | ++               | _      | _       |       | ~~~~          |                 |         |                           | ~                      |
| 9                          |                          | Koise River        | Heiwa Bridge             | Ishioka City                   |                         | 94          |              |                |         |        | 830     |               | 680    | -        | 770   | 210          |           | 153                  | 135                       | 1        | 116                | 101                    | 263           |               | 34    |                  | 31     | _       | 70    | 1             | 276             | 29      | 1.03                      | $\searrow$             |
| 0                          |                          | Kajinashi River    | Kamishuku Bridge         | Namegata City                  |                         | :70         |              |                | _   _   |        | 42      |               | 197    | l l      | 172   | 226          |           | 154                  | 163                       | 1        | 97                 | 120                    | 57            |               | 88    | $\perp$ $\lceil$ | 55     | 1       | 68    | \~~           | 131             | 30      | 0.55                      | ~_^                    |
| 1                          |                          | Hishiki River      | Hishiki Bridge           |                                | 1,3                     | 320         |              | 1,             | ,070    |        | 860     |               | 660    |          | 610   | 630          |           | 600                  | 530                       | T        | 540                | 405                    | 610           |               | 364   |                  | 301    |         | 324   | /             | 630             | 31      | 0.45                      | ~_                     |
| 2                          |                          | Johingae River     | Kawanaka Bridge          | Kasumigaura City               |                         | 870         | +            |                | ,540    | +      | 950     | +             | 530    | +        | 920   | 730          | _         | 840                  | 650                       | +        | 880                | 530                    | 284           | -             | 830   | +                | 460    |         | 382   | \             | 814             | 32      | 0.53                      | <u> </u>               |
| -                          |                          |                    | Sakai Bridge/National    |                                |                         | 300         | +            |                |         | +-     |         | +             |        |          | -     | 100          | +         |                      |                           | +        |                    |                        | $\rightarrow$ | _             |       | ++               |        | _       | 1     |               |                 |         |                           | ~                      |
| 3                          | Kasumigaura<br>River     | Sakai River        | Route 354                | Tsuchiura City                 | 2,3                     | 500         |              |                | 760     | _      | 780     | $\perp$       | 680    | _        | 112   | 160          |           | 160                  | 224                       | 1        | 296                | 178                    | 70            |               | 37    | $\bot$           | 46     | _       | 80    | _             | 420             | 33      | 1.43                      | >                      |
| 4                          | River                    | Shinkawa River     | Shinten Bridge           |                                |                         | 5,500       |              |                | ,400    |        | 900     |               | 4,000  |          | 2,210 | 2,340        |           | 4,100                | 4,200                     | 丄        | 3,900              | 2,170                  | 1,640         |               | 1,640 |                  | 1,48   | 10      | 1,410 | ~             | 2,849           |         | 0.51                      | <u>^</u>               |
| 5                          |                          | Sakura River       | Eiri Bridge              | Tsuchiura City/Tsukuba City    | - 5                     | 58          | T            | 1              | 136     |        | 62      |               | 270    |          | 213   | 128          |           | 76                   | 52                        |          | 39                 | 126                    | 73            |               | 79    |                  | 21     |         | 37    | ~~            | 98              | 35      | 0.73                      |                        |
| 6 Tonegawa River<br>System |                          | Bizen River        | Bizengawa Bridge         |                                |                         | 2,600       | 1            |                | 228     | $\top$ | 4,800   |               | 4,500  |          | 2,800 | 2,150        | -         | 1,770                | 1,860                     | 1        | 1,360              | 1,540                  | 1,490         |               | 1,110 | 1 1              | 350    | $\top$  | 720   | 1             | 1,948           | 36      | 0.70                      | <u> </u>               |
| System                     |                          | Hanamuro River     |                          | Tsuchiura City                 | $\vdash$                | 1.390       | +            |                | 320     | _      | 1,280   | +             | 1,000  |          | 29    | 570          | -+        | 810                  | 790                       | +        | 790                | 1,200                  | 830           | _             | 930   |                  | 432    | +       | 396   | 5-            | 805             | 37      | 0.45                      |                        |
| 4                          |                          |                    | Shinwa Bridge            |                                | +                       | , r         | +            |                | _       | _      |         | $\vdash$      | _      |          | -     |              | -+        | 810                  |                           | +        |                    |                        | _             |               |       | -                | _      | +       |       | . ~~~         |                 |         | _                         |                        |
| 8                          |                          | Seimei River       | Katsuhashi Bridge        | Ami Town                       | $\perp \perp$           | 1,420       |              |                | ,800    | 4      | 2,130   | $\perp \perp$ | 1,790  |          | 4,100 | 3,500        |           | 1,290                | 1,170                     | 1_       | 940                | 870                    | 610           |               | 970   | +                | 920    | 4       | 790   | 1             | 1,879           | 38      | 0.82                      | >>                     |
| 9                          |                          | Onogawa River      | Okuhara-ohashi Bridge    | Ryugasaki City/Ushiku City     | 2                       | :60         |              | 2              | 220     | _L     | 620     | L I           | 570    | шl       | 980   | 990          | I         | 960                  | 910                       | 1        | 420                | 620                    | 610           |               | 450   |                  | 432    | Т       | 520   | _~~~          | 612             | 39      | 0.42                      | ~_^                    |
| 0                          |                          | Shintone River     | Shintone Bridge          | Inashiki City                  | 2                       | 20          |              |                |         |        | 330     |               | 270    |          | 400   | 440          |           | 370                  | 350                       |          | 420                | 318                    | 11            |               | 249   |                  | 199    |         | 194   | ~~~           | 290             | 40      | 0.41                      | ~~                     |
| 1                          |                          | Yorokoshi River    | Horinouchi Bridge        |                                |                         | 290         | 1            |                | $\neg$  |        | 310     |               | 290    | +        | 196   | 222          | -         | 210                  | 530                       | 1        | 117                | 430                    | 34            |               | 36    | +                | 22     | $\top$  | 329   | ~_^\vi        | 232             | 41      | 0.67                      | \/\ <b>\</b>           |
| -                          | Hitachitonegawa<br>River |                    |                          | Itako City                     | $\vdash$                | 510         | -            | +              | -       | +-     | 580     |               | 470    |          | 500   | 580          | +         | 630                  | 430                       | +        | 200                | 400                    | 16            | _             | 430   |                  | 409    | +       | 473   |               | 433             | 42      | 0.38                      | V V *                  |
| -                          |                          | Maekawa River      | Ayame Bridge             |                                | $\vdash$                |             | -            | ++             | -       | -      |         | $\vdash$      | _      | ++       | 500   | _            | -+        |                      |                           | +-       |                    |                        |               | -             |       | _                | _      | +       |       |               |                 |         |                           | - A A                  |
| 3                          |                          | Kinugawa River     | Kawashima Bridge         | Chikusei City                  |                         | 0           |              |                | 0       |        | 32      |               | 0      |          | 0     | 14           |           | 18                   | 0                         | 1        | 0                  | 16                     | 17            |               | 20    |                  | 0      |         | 0     |               | 8               | 43      | 1.29                      | ////                   |
| 4                          | Kinugawa River           |                    | Takishita Bridge         | Moriya City                    |                         | 130         |              | 2              | 202     |        | 100 40  | 119           | 1 196  |          | 380   | 289          |           | 187                  | 83                        | 1        | 113                | 133                    | 213           |               | 75    |                  | 56     |         | 90    | $\sim$        | 142             | 44      | 0.66                      | $\wedge \wedge \wedge$ |
| 5                          |                          | Tagawa River       | Tagawa Bridge            |                                |                         | 1,080       |              | 2              | 201     |        | 10      |               | 146    |          | 24    | 54           |           | 35                   | 40                        |          | 36                 | 52                     | 65            |               | 16    |                  | 17     |         | 16    | 1             | 128             | 45      | 2.18                      | /                      |
| 6                          |                          |                    | Kuroko Bridge            | Chikusei City                  | 620                     | +           | +            |                | 142     | +      | 213     | +             | 269    | +        | 153   | 262          | -         | 226                  | 300                       | +        | 186                | 275                    | 131           | _             | 13    | -                | 23     | +       | 76    | 1             | 206             | 46      | 0.73                      |                        |
| -                          |                          | Kokai River        |                          |                                |                         | +           | -            |                | _       | +      |         | $\vdash$      | _      | -        |       | _            | -+        |                      |                           | +        |                    |                        | _             | _             |       |                  | _      | +       |       | m             |                 |         | _                         | ->-                    |
| 7                          |                          |                    | Furnimaki Bridge         | Toride City                    | $\perp \perp$           | 500         |              | 3              | 310     | _      | 68      | $\sqcup$      | 350    | $\sqcup$ | 112   | 75           |           | 98                   | 73                        | 1        | 75                 | 120                    | 150           | $\perp$       | 57    | +                | 53     | _       | 50    | N_            | 149             | 47      | 0.92                      | >                      |
| 8                          | Kokaigawa River          | Yatagawa River     | Manayama Bridge          | 1                              |                         | 660         |              |                |         |        | 1,800   |               |        |          | 840   |              |           | 1,660                | 1,610                     | 1        | 620                | 440                    | 212           |               | 660   |                  | 171    | 1       | 177   | //\           | 805             | 48      | 0.76                      | /                      |
| 9                          |                          | Nishiyata River    | Sakaimatsu Bridge        | Tsukuba City                   |                         | 500         |              | 1 [            | -   -   |        | 1,000   |               |        | T        | 750   | 17           | Г         | 1,160                | 630                       | 1        | 420                | 244                    | 37            |               | 208   | T                | 450    | 1       | 30    | ~~            | 494             | 49      | 0.75                      | \ <u>\</u>             |
| 0                          |                          | Inari River        | Oguki Bridge             | 1                              |                         | 1,900       |              | 1.             | 190     |        | 1,610   |               | 1,470  |          | 1,580 | 1,250        |           | 1,770                | 2,150                     | 1        | 720                | 680                    | 640           |               | 710   |                  | 610    | ,       | 460   | ~~~           | 1,196           | 50      | 0.47                      | <u> </u>               |
| 1                          |                          |                    | Kurihashi Bridae         | Koga City                      | L .                     | 440         | -            | <b>⊢</b> F,    | 159     | +      | 52 48   | 42            | 8 123  | +        | 39    | 22           | -+        | 100                  | 55                        | +        | 23                 | 26                     | 149           |               | 42    | +                | 20     | +       | 29    |               | 141             |         | 2.40                      |                        |
| 4                          |                          |                    |                          |                                |                         |             | +            |                |         | +-     |         | 42            |        |          |       | 22           | +         | 107                  |                           | +        |                    |                        |               | _             |       |                  |        | +       |       |               |                 |         |                           | ->-                    |
| 2                          | Tonegawa River           | Tonegawa River     | Fukawa                   | Tone Town                      |                         | 20          |              |                | 330     |        | 320     |               | 95     | -        | 122   | $\perp$      |           | 290                  | 171                       | 1        | 202                | 62                     | 57            |               | 100   |                  | 236    |         | 65    | \~~           | 221             | 52      | 0.93                      | >                      |
| 3                          |                          |                    | Sawara                   | Inashiki City                  | 1,2                     | 220         |              | 3              | 330     |        | 195 202 | 181           | 140    |          | 133   | 256          |           | 117                  | 101                       | 1        | 115                | 88                     | -11           |               | 14    |                  | 90     |         | 15    | -             | 191             | 53      | 1.46                      |                        |
| •                          |                          | •                  | •                        | •                              |                         |             |              |                |         |        |         |               | -      |          |       |              |           |                      |                           |          |                    |                        |               |               |       |                  | -      |         |       |               |                 |         |                           |                        |
|                            |                          |                    |                          |                                | Total numl<br>of sample | ber 726 Det | tection time | s 711          |         |        |         |               |        |          |       |              |           |                      |                           |          |                    |                        |               |               |       |                  |        |         |       |               | 451             | Average |                           |                        |
|                            |                          |                    |                          |                                | or sample               |             |              |                |         |        |         |               |        |          |       |              |           |                      |                           |          |                    |                        |               |               |       |                  |        |         |       |               |                 |         |                           |                        |
| Disable 2                  |                          |                    | and War and Area         | and the first of the second    |                         |             |              |                |         |        |         |               |        |          |       |              |           | *3: Results o        | of the analysis of trends | at respe | ctive locations us | sing the method 🔍 Decr |               | <i>,</i> , .  |       | Dec              | ۸۸۸    |         |       |               |                 |         |                           |                        |
|                            |                          |                    |                          | ectable" is indicated as "0."  |                         |             |              | _              |         |        |         |               |        |          |       |              |           |                      | explain                   | ed on P. | 60                 | → Decr                 | easing        | Increasi      | ng    | Unchange         | 1 .414 | Varyin  | 16    |               |                 |         |                           |                        |
| Arithmetic Aver            | ge; calculated by        | assuming ND=0; Col | lor codes show categorie | es (see the right).            |                         |             |              |                | A B     | С      | D E     |               |        |          |       |              |           |                      |                           |          |                    |                        |               |               |       |                  |        |         |       |               |                 |         |                           |                        |
|                            |                          |                    |                          |                                |                         |             |              |                | _       |        |         |               |        |          |       |              |           |                      |                           | _        |                    |                        |               |               |       |                  |        |         |       |               |                 |         |                           |                        |

### 5) Tochigi Prefecture


In Tochigi Prefecture, surveys were conducted 11 to 23 times from October 2011 to February 2015 at 56 locations (rivers) in public water areas (this analysis excludes the survey results at 49 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, 11 locations were categorized into Category D and 45 locations were categorized into Category E (see Table 4.3-13 and Table 4.3-14).

Concentration levels were generally decreasing at 38 locations but were generally unchanged or varying at 18 locations.

Table 4.3-13 Categorization of detected values at respective locations (Tochigi Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                                                                                                                                                                                                             |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                                                                                                                                                                                                                                             |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                                                                                                                                                                                                                                                                                                             |
| D        | Upper 25 to 50 percentile                        | 11                  | No.3, No.6, No.11, No.19, No.21, No.28, No.29, No.32, No.35, No.39, No.48                                                                                                                                                                                                                                          |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 45                  | No.1, No.2, No.4, No.5, No.7, No.8, No.9, No.10, No.12, No.13, No.14, No.15, No.16, No.17, No.18, No.20, No.22, No.23, No.24, No.25, No.26, No.27, No.30, No.31, No.33, No.34, No.36, No.37, No.38, No.40, No.41, No.42, No.43, No.44, No.45, No.46, No.47, No.49, No.50, No.51, No.52, No.53, No.54, No.55, No.56 |



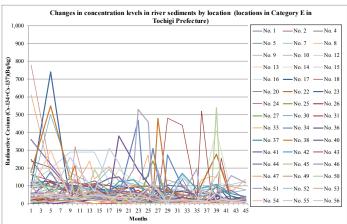
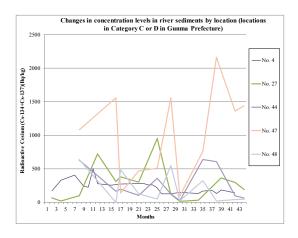



Figure 4.3-8 Changes in concentration levels over the years at respective locations (Tochigi Prefecture: river sediments)

Table 4.3-14 Detection of radioactive cesium at respective locations (Tochigi Prefecture: river sediments)

|            |             |             |                       |                                  |                                     |                   |               |                    |           |          |         |          |        |               |               |          |               |         |            |            | 1            |                   |                   |                  | _      | _         |         |           |         |               | _       |     |                  |         |         |               | _   |
|------------|-------------|-------------|-----------------------|----------------------------------|-------------------------------------|-------------------|---------------|--------------------|-----------|----------|---------|----------|--------|---------------|---------------|----------|---------------|---------|------------|------------|--------------|-------------------|-------------------|------------------|--------|-----------|---------|-----------|---------|---------------|---------|-----|------------------|---------|---------|---------------|-----|
|            |             |             | Location              | 1                                |                                     | -                 |               | 2011               |           | _        |         |          |        | 2012          |               | River    | sediments:    | Radioac | tive Cesiu | ım (Cs-134 |              | Concent<br>FY2013 | ration(Bq/kg)     | *1)              |        |           |         |           | FY2014  |               |         |     | 1                | Average | No.     | Coefficient o |     |
|            | V           | Vater area  |                       | Location                         | Municipality                        | 8 9               |               | 11 12              | 1 2       | 3 4      | 4 5     | 6        |        | 9             | 10 11         | 12       | 1 2           | 3 4     |            | 6          | 7 8          | 9                 | 10 11 12          |                  |        | 4 5       |         |           | 9       | 10 11         | 12 1    | 2 3 | Changes          | (*2)    |         | variation     | 1   |
|            |             |             | Nakamaya River        | Kuyobashishita                   | Navashiobara City                   |                   | 90            |                    | 96        |          |         |          | 42     | 93            |               | 19       | 15            |         | 13         |            | 12           | П                 | 14                | 2                | 3      |           | 18      | 26        |         | 12            |         |     | 1                | 36      | 1       | 0.91          | T   |
|            |             | - I         | Nasgawa Kiver         | Komei Bridge                     | Nasushboara CEy                     |                   | 250           |                    | 97        |          |         | 139      |        | 78            |               | 43       | 64            |         | 51         |            | 97           | П                 | 38                | 3                | 6      | 24        |         | 24        |         | 45            |         | 19  | ha               | 72      | 2       | 0.87          |     |
|            |             | - 1         | Taksomata River       | Takaomata Bridge                 |                                     |                   | 650           |                    | 1,290     |          |         | 89       |        | 162           |               | 221      | 197           |         | 133        |            | 76           | П                 | 79                | 1                | 16     | 52        |         | 20        |         | 25            | T       | 191 | 1                | 236     | 3       | 1.51          | _   |
|            |             |             | Yukawa River          | Yukawa Bridge                    | Nasu Town                           |                   | 240           | Т                  | 204       | Ħ        |         | 79       |        | 75            |               | 54       | 73            |         | 95         |            | 73           | П                 | 50                | 4                | 3      | 62        |         | 49        |         | 25            | T       | 43  | 1                | 83      | 4       | 0.76          | _   |
|            |             | ı           |                       |                                  | Name his home                       |                   | +             |                    |           | Ħ        | +       | $\top$   | $\top$ | $\dashv$      | _             | H        | $\pm$         | _       | +          |            |              | П                 | +                 | t                | ##     |           |         | +         | $\top$  | $\neg \neg$   | +       | tt  | W. 6             |         |         |               | ~   |
|            |             | - 1         | Nakagawa River        | Kamkuroiso                       | Nasushiobara<br>City/Nasumachi Town |                   | 101           |                    | 116       |          | 6       | 4 87     | 44     | 72 109        |               | 59       | 16            |         | 91         | 49         | 28 73        | 42                | 74                | 1                | 1      | 102       | 58      | 83 45     | 90      | 44            |         | 24  | AMM.             | 64      | 5       | 0.46          |     |
|            |             | - 1         | Yosasa River          | Yosasa Bridge                    |                                     |                   | 1,160         |                    | 610       | H        | +++     | 73       |        | 120           | _             | 91       | 79            |         | 78         |            | 105          | H                 | 85                |                  | 0      | 24        |         | 430       | ,       | 55            | _       | 820 | 1                | 273     | 6       | 1.20          | Λ   |
|            |             | ŀ           | Kurokawa River        | Shinden Bridge                   | Nasu Town                           | $\vdash$          | 64            | -                  | 500       | $\vdash$ | +       | 175      | +      | 105           | +             | 194      | 128           | _       | +~+        | 104        | 90           | $\vdash$          | 80                | 1 3              | 4      | 68        |         | 90        | -       | 62            | +       | 77  | ^                | 129     | 7       | 0.91          | +/- |
|            |             | - 1         | Yosasa River          | Kawada Bridge                    |                                     | ++                | 610           | -                  | 162       |          | +       | 12 102   |        | 139 139       | _             |          | 130           | _       | 102        | 109        | 274 77       |                   | 50                | 11               | -      | 75        | 134     | 152 146   |         | 61            | _       | 137 | 100              | 155     | 8       | 0.76          | +-  |
|            |             | - 1         |                       | -                                | 4                                   | $\vdash$          | 57            | -                  | 16.2      | $\vdash$ |         | 0 35     | 10.7   | 34 102        | _             | 209      | 130           | _       | 103        |            | 42 31        | 87                | 50                | 11               |        | -         |         | 63 23     |         | 19            | -       |     | me               |         | 9       |               | +   |
|            |             |             | Nakagawa River        | Kumbane                          |                                     |                   |               | _                  | 83        | ш        | -       |          |        |               | _             | 53       |               |         | 59         | 61         |              | 16                | 33                |                  | "      | 26        | 38      |           | -       | $\rightarrow$ |         | 25  | Mu               | 45      |         | 0.46          | 1   |
|            |             | - 1         | Matsuba River         | Tributary                        | Otawara City                        |                   | 780           |                    | 199       |          |         | 5 320    | 114 1  | 15 62         |               | 82       | 69            |         | 68         | 36         | 80 119       | 84                | 132               | 10               | 16     | 19        | 73      | 61 59     | _       | 96            |         | 79  | V-               | 126     | 10      | 1.25          |     |
|            |             | ŀ           | Sabigawa River        | Udagawa Bridge                   |                                     |                   | 32            |                    | 660       |          |         | 34       |        | 270           |               | 234      | 183           |         | 154        |            | 336          |                   | 360               | 10               | 52     |           | 66      | 212       | :       | 67            |         | 46  | 1-               | 201     | -11     | 0.86          |     |
| na River S | ystem       |             | Momata River          | Momunanaka Bridge                |                                     |                   | 114           |                    | 196       |          |         | 290      |        | 290           |               | 120      | 105           |         | 137        |            | 87           |                   | 107               | 1-               | 43     |           | 83      |           | 110     | 106           |         | 125 | $\wedge$         | 144     | 12      | 0.49          | 1   |
|            |             | Ī           |                       | Yunohata                         | Numbers City                        |                   | 83            |                    | 100       |          |         |          | 84     | 98            |               | 58       | 36            |         |            | 72         | 56           | П                 | 42                | П                |        |           | 12      | 16        |         | 11            |         | П   | ~                | 56      | 13      | 0.58          | _   |
|            |             |             |                       | Selaba Bridge                    | Nasushiobara City                   |                   | 126           |                    | 101       |          |         | 76       |        | 81            |               | 82       | 193           |         |            | 111        | 64           | П                 | 67                | 5                | 8      |           | 60      | 410       | )       | 75            |         | 106 | - ~ /            | 117     | 14      | 0.81          | Λ   |
|            |             | - 1         | Hokigawa River        | Iwai Bridge                      |                                     |                   | 16            |                    | 50        |          | +       | 66       |        | 79            | _             | 62       | 93            |         | 55         |            | 53           | П                 | 51                | 1                | 9      |           | 14      |           | 204     | 12            | $\top$  | 15  | /                | 56      | 15      | 0.89          | A   |
|            |             |             |                       | Hokigawa Bridge                  | Otawara City                        | $\vdash$          | 165           | $\pm$              | 89        | $\vdash$ |         | 0 72     | 54     | 34 52         | +             | 52       | 53            | +       | 17         | 21         | 46 18        | 11                | 36                | 1 1              | 5      | - 11      | 17      | 22 15     | 24      | 11            | +       | 17  | C. ~             | 39      | 16      | 0.90          | +<  |
|            |             | ŀ           | Nakagawa River        | Shinnaka Bridge                  | +                                   | ++                | 40            | +                  | 14        | $\vdash$ | 5       |          |        | 107 38        | +             | 56       | 16            | +       | 33         | 19         | 14 57        |                   | 94                | 1 1              |        | 19        | 17      | 19 15     | 42      | 15            | +       | 12  | when             | 33      | 17      | 0.80          | +   |
|            |             | ŀ           | Mumonawa River        | Kosci Bridne                     | Nakagawa Town                       | $\vdash$          | 28            | +                  | 26        |          |         |          | 30 1   | _             | +             | 43       | 30            | +       | 21         | 22         | 20 19        | 16                | 14                | ++1              | -      | 19        | 17      | 19 15     |         | 16            | +       | 15  | - M              | 19      | 17      | 0.80          | +   |
|            |             | - 1         | mumogawa River        |                                  |                                     | ++                |               | $\perp$            |           |          |         |          | 14     | 54            | +             | _        |               |         | 31         | 22         |              | 16                |                   | 11               | 3      |           | - 11    |           |         |               | _       |     | ~~               |         |         |               | +   |
|            |             | Į           | Ankawa River          | Sukachi Bridge                   | Shioya Town                         | $\perp \perp$     | 198           | $\perp$            | 300       | $\vdash$ | _       | 300      |        | 1,020         |               | 102      | 168           | _       | 191        |            | 176          | ш                 | 217               | 2                | -      | 65        |         | 355       | _       | 125           |         | 126 | 1                | 253     | 19      | 0.95          | 1   |
|            |             | Į           |                       | Renjo Bridge                     | Sakura City                         | $\sqcup \bot$     | 0             | $\perp$            | 33        | ш        |         | 32       |        | 44            |               | 15       | 33            |         | 63         |            | 0            | ш                 | 12                | 1                | 1      | 13        |         | 0         |         | 13            |         | 11  | M                | 20      | 20      | 0.94          | 1   |
|            |             | [           | Uchikawa River        | Tanaka Bridge                    | Yaita City                          | $\Box$            | 1,440         | L]                 | 130       | Ш¯       | $\Box$  | 78       |        | 127           | $\perp L^{-}$ | 122      | 143           |         | 85         | T          | 195          | ப                 | 103               | 7                | 2      | 105       | _       | 152       | டு      | 63            | ⊥⁻      | 97  | \                | 208     | 21      | 1.78          | 1   |
|            |             | - 1         | Ochazna River         | Asahi Bridge                     | Sakura City                         |                   | 18            |                    | 77        | П        |         | 82       |        | 114           |               | 101      | 82            |         | 94         |            | 100          | П                 | 72                | 6                | 8      | 54        |         | 279       | ,       | 19            |         | 33  | /                | 85      | 22      | 0.75          | T,  |
|            |             | - 1         | Ankawa River          | Mukada Bridge                    |                                     |                   | 90            |                    | 740       |          | 1       | 1 12 4   | 19 30  | 84            |               | 75       | 99            |         | 84         | 27         | 30 85        | 58                | 19                | 3                | 5      | 16        | 10      | 20 39     | 73      | 12            |         | 21  | Λ                | 75      | 23      | 2.02          | T   |
|            |             |             | Egawa River           | Tributary                        | Nasu Karasuyama City                | $\vdash$          | 162           |                    | 130       |          | 5       | 8 85 5   | 52 51  | 58            | _             | 66       | 63            |         | 45         | 18         | 84 24        | 20                | 480               | 4                | 40     | 21        | 520     | 36 28     | 255     | 20            | $\top$  | 18  | - M              | 119     | 24      | 1.31          | 1   |
|            |             |             | Kimuman Piter         | Kawaji Daiichi Power             |                                     |                   | 19            | -                  | 40        | H        | +++     |          | 36     |               | _             | 19       | 45            | _       | +          | 38         | 33           | _                 | 71                | Н,               | 7      | 21        |         | 13        |         | 17            | +       | 13  | ~~^              | 33      | 25      | 0.62          | ť   |
|            |             | - 1         | Yunishi River         | Station, front<br>Macsawa Bridge | -                                   | $\vdash$          | 25            | -                  | 100       | $\vdash$ | ++      | -        | 10     |               | _             | l"H      | 0             | _       | +          | 13         |              | +                 |                   | Н:               | -      | 0         |         | 11        | -       | 21            | +       |     | ~~~              | 8       | 26      | 1.09          | +   |
|            |             | - 1         |                       |                                  | 4                                   | $\vdash$          | $\overline{}$ | _                  | $\vdash$  | ш        |         | _        | _      | $\overline{}$ | _             | $\vdash$ | $\overline{}$ | _       | +          |            | 0            | Н                 | 0                 | Н.               | 2      | _         |         |           | -       | $\rightarrow$ | _       | -   | N/V              |         |         |               | 4   |
|            |             | - 1         | Ojka River            | Tributary                        |                                     | $\vdash$          | 37            | -                  | 32        | ш        | $\perp$ |          | 36     |               | _             | 16       | 15            | _       | $\perp$    | 14         | 240          | ш                 | 17                | 3                | 3      | - 11      |         | 14        | 1       | 20            | _       | 11  | /\_              | 37      | 27      | 1.66          | 1   |
|            |             | - 1         | Kinugawa River        | Kosagoe                          |                                     | $\perp$           | 55            | $\perp$            | 63        | ш        | $\bot$  |          | 800    | _             |               | ш        | 690           |         | $\perp$    | 35         | 59           | ш                 | 47                | 2                | 3      | 66        |         | 73        | $\perp$ | 118           |         | 36  | 7 \_             | 219     | 28      | 1.45          | 1   |
|            |             | ŀ           | Itaana River          | Tributary                        | Niklo City                          |                   | 4,900         |                    | 290       |          |         | 120      | 146    | 113           | 91 91         | 86       |               |         |            | 75 81      | 94 86        | 43                | 73                |                  |        | 62        | 41      | 72 53     | 75      | 5.5           |         | 47  | 1                | 319     | 29      | 3.38          |     |
|            |             | ŀ           | Yukawa River          | Tributary                        |                                     |                   | 118           |                    |           |          |         |          | 63     | 60            |               | 114      | 72            |         |            | 0          | 0            |                   | 11                | 1                | 37     | 0         |         | 10        |         | 0             |         |     | $\sim \sim$      | 49      | 30      | 1.07          | 1   |
|            |             | - 1         | Daiya River           | Shinkyo Bridge                   |                                     |                   | 47            |                    | 123       | П        |         | 58       |        | 37            |               | 54       | 38            |         |            | 75         | 21           | П                 | 33                | 1                | 5      | 12        |         | 20        |         | 17            |         | 20  | Mr.              | 41      | 31      | 0.76          | Т   |
|            |             |             | Shidobuchi River      | Sujichigai Bridge                | 1                                   |                   | 260           |                    | 400       |          |         | 270      |        | 245           |               | 203      | 226           |         |            | 212        | 182          | П                 | 123               | 10               | 52     |           | 189     | 150       | )       | 108           |         | 67  |                  | 200     | 32      | 0.38          | Ŧ   |
|            |             | - 1         | Daiya River           | Kaishin Bridge (Barigai)         | 1                                   | $\vdash$          | 13            |                    | 45        |          | +       | 45       | 24     | 69            | 15 0          | 57       | 13            |         | 1          | 16 15      | 0 15         | 11                | 18                | 1                | 2      |           | 24 11   | 13 0      | 12      | 0             | $\top$  | 0   | AL .             | 19      | 33      | 0.99          | †   |
|            |             | ŀ           | Kinugawa River        | Samulai                          | Shioya Town                         |                   | 20            | -                  | 177       | H        | +++     | 11       | 29     | 109           | 18 12         | 74       | 42            | _       |            | 470 134    | 154 310      | H                 | 17 274            |                  | 7      | _         | 14 0    |           | 20      | 0             | +       | 19  | a. Ma            | 87      | 34      | 1.41          | +   |
| Kin        | nagawa Riv  | er System   | Nishi-Kirusawa River  | Nichi-Kinugaya Bridge            |                                     |                   |               | -                  |           | $\vdash$ |         | 126      | _      |               |               | 45       | 260           | +       |            |            |              | $\vdash$          | 22                | 1                |        | +         | 32      | 69        |         | 108           | +       | 18  | 1                | 447     | 35      | 1.72          | +   |
|            |             | - 1         | Name and American     | Kinugawabashi Bridge             | Utsunomiya City                     | $\vdash$          | 28            | -                  | 2,290     | ⊢⊢       | ++      |          | _      | 24            | _             | 20       | 14            | _       | 36         |            | -            | Н                 | 31                | - 1              | 540    | +         | 0       | 13        |         | 103           | +       | 10  | 1 - A            | 10      | 36      |               | +   |
|            |             | - 1         | Kinugawa River        | (Hoshakuji Temple)               |                                     |                   |               | -                  | 0         | ш        | $\perp$ | 10       |        |               | _             |          | $\overline{}$ | _       | 31         |            | 0            | $\vdash$          | 0                 | Ш,               | ,      |           |         |           | +       | 0             | _       | 0   | $V^{\vee} \cup$  | 4       |         | 1.18          | 4   |
|            |             | į.          |                       | Duideirumi Bridge                | Mooka City                          |                   | 0             |                    | 12        | ш        |         | 24       |        | 30            |               | 42       | 51            |         | 0          |            | 10           | ш                 | 11                |                  | )      |           | 22      | 95        |         | 43            |         | 0   | ~                | 24      | 37      | 1.11          | 1   |
|            |             |             | Egawa River           | Tributary                        | Shimotsuke City                     |                   | 175           |                    | 550       |          |         | 37 214 5 | 56 62  | 58            |               | 49       | 88            |         | 41         | 30         | 34 17        | _                 | 70                | 5                | 1      | 38        | 46      | 13 20     | _       | 19            |         | 11  | 1                | 98      | 38      | 1.47          | 1   |
|            |             |             | Alaberi River         | Nikko City Hall, front           | Niklo City                          |                   | 510           |                    | 800       |          |         | 450      |        | 1,780         |               | 500      | 450           |         |            | 310        | 420          |                   | 370               | 60               | 50     | 191       |         | 150       |         | 293           |         | 117 | ~~~              | 499     | 39      | 0.83          | ı   |
| 12         |             | - 1         |                       | Kiwadajima                       |                                     |                   | 117           |                    | 125       | П        |         | 104      |        | 93            |               | 40       | 380           |         |            | 187        | 78           | IJ                | 61                | 6                | 0      | 48        |         | 41        | П       | 26            | T       | 25  | 1                | 100     | 40      | 0.94          | Τ   |
| stem       |             |             | Tagana River          | Orobashi Bridge                  |                                     |                   | 62            |                    | 57        | П        | 2       | 8 69 10  | 04 28  | 101           |               | 142      | 150           |         | 64         | 23         | 18 13        | 36                | 17                | 3                | 5      | 20        | 12      | 27 12     | 13      | 14            | T       | 16  | Mm               | 46      | 41      | 0.91          | T   |
| - [        |             | - 1         | Karragawa River       | Tsukushi Bridge                  | Utsunomiya City                     | $\Box$            | 182           | $\top$             | 65        | П        | $\top$  | 99       |        | 78            | $\neg$        | 68       | 123           | $\neg$  | 133        |            | 27           | $\Box$            | 50                | 1 10             | 59     | 81        |         | 107       | ,       | 56            |         | 40  | Low              | 91      | 42      | 0.51          | †   |
| - [        |             | - 1         |                       | Meiji Bridge                     | Kaminokawa Town                     | tt                | 10            | $\top$             | 10        | Ηt       |         | 122      | $\top$ | 101           |               | 18       | 29            | _       | 32         |            | 31           | $\vdash$          | 76                | 1 14             |        | 0         |         | 17        | +       | 14            | $\top$  | 0   | Λ.               | 36      | 43      | 1.05          | †   |
| - [        |             | - 1         | Tagana River          | Yanabashi Bridee                 | Ovarra City                         | +                 | 360           | +                  | 223       | $\vdash$ |         | 86       | +      | 128           | +             | 73       | 69            | +       | 66         |            | 43           | $\vdash$          | 104               |                  | 6      | 42        |         | 57        | -       | 74            | +       | 27  | 7                | 103     | 44      | 0.86          | +   |
| H          |             | -           |                       | Kaiirra Bridge                   | Kanama City                         | ++                | 109           | +                  | 93        | +        |         | 11       | +      | 46            | +             | 30       | 0,            | +       | 19         | -          | - 2          | $\vdash$          | 15                | <del>+ 1</del> 3 |        | 10        | -       | 14        |         | 0             | +       | 0   | 1                | 25      | 45      | 1.44          | +   |
| - [        |             | - 1         | Kurokawa River        | ,                                |                                     | +                 |               | +                  |           | $\vdash$ | +       |          | +      | 40            | +             | 30       | 0             | +       |            |            | 0            | $\mapsto$         | 13                | ++1              |        | 10        | -       |           |         | -             | +       |     | h                |         |         |               | +   |
| - [        |             |             |                       | Onari Bridge                     | Mibu Town                           | +                 | 56            | +                  | 38        | $\vdash$ | ++      | 75       | +-     | 32            | +             | 15       | $\overline{}$ | -       | 13         |            | 0            | $\vdash$          | 0                 | 1                | -      | +         | 0       | 0         | -       | 0             | _       | 0   | 1                | 18      | 46      | 1.40          | 4   |
| - [        | J.          | Omoi River  | OashiRiver            | Akaishi Bridge                   | Kanuma City                         | Ш                 | 10            | $\perp$            | 14        | ш        |         | 15       |        | 0             | $\perp$       | 11       | - 11          | _       | 0          |            | 0            | ш                 | 0                 | ш                |        | 0         |         | 0         |         | 18            |         | 0   | $\sim$           | 6       | 47      | 1.26          | 4   |
| - [        |             |             | Koyabu River          | Koyabu Bridge                    |                                     | $\sqcup \bot$     | 940           | $\perp$            | 860       | Ш        |         | 42       |        | 65            | $\perp$       | 56       | 65            | $\perp$ | 46         |            | 36           | ш                 | 49                | 4                | 20     | 60        |         | 29        |         | 19            | $\perp$ | 18  | $\perp_{\wedge}$ | 193     | 48      | 1.68          | ⅃   |
| - [        |             | [           | Omei River            | Tametsu Bridge                   | Tochigi City                        |                   | 30            |                    | 66        | П        |         | 12       |        | 79            |               | 10       | 0             |         |            | 0          | 119          | Ш                 | 0                 |                  | )      |           | 0       | 0         |         | 0             | $\perp$ | 0   | M                | 23      | 49      | 1.73          | I   |
| gr-        | starane     | - 1         | Cream REVET           | Otome-ohashi Bridge              | Oyama City                          |                   | 186           | П                  | 40        | П        | 15      | 54 34 10 | 06 27  | 191           |               | 46       | 0             |         | 62         | 13         | 15 101       | П                 | 53 0              | П,               | )      | 15        | 43      | 65 540    | 0       | 0             | T       | 0   | man              | 74      | 50      | 1.62          | T   |
| Riv        | er Area     | Ibuma River | Unum River            | Unuma Bridge                     | Tochigi City                        | $\vdash$          | 95            | $\top$             | 0         | П        | 8       | 2 135 8  | 39 89  | 34            | $\neg$        | 52       | 56            | $\neg$  | 192        | 530        | 460 44       | 186               | 26                | 5                | 0      | 195       | 0       | 115 82    | 69      | 157           |         | 116 |                  | 124     | 51      | 1.07          | †   |
| - [        | ľ           |             |                       | war and the second               | Nikio City                          | tt                | 63            | $\top$             | 34        | Ηt       |         |          | 20 38  | 55            | 53            | 34       | 27            | _       | 18         | 19         | 32 54        | H.                | 20 15             | 2                | 3      | 15        | 90      | 18 15     | _       | 18            | $\top$  | 28  | WAL.             | 32      | 52      | 0.62          | †   |
| - [        |             |             |                       | Hajka Bridge                     |                                     | +                 | 26            | +                  | 48        |          | +       | 34       |        | 80            | +             | 36       | 46            | +       | 59         |            | 28           |                   | 16                | <del>+ 1</del> : |        | 0         |         | 15        | _       | 0             | +       | 14  | ~ Cui            | 30      | 53      | 0.78          | +   |
| - [        | J.          | Waterane    |                       | Najahashi Bidan                  | Ashkaga City                        | +                 | 71            | +                  | 48<br>300 |          | +       |          | +      |               | +             | 12       |               | +       | 0          | -          | 28           | $\mapsto$         | 16                | H                | -      | -         | 10      | -         | _       | $\rightarrow$ | +       |     | ^ -              | 9       | 54      | 2.27          | +   |
| - [        | ŀ           | River Anna  | Watarase River        |                                  |                                     | $\vdash$          |               | +                  | .900      | $\vdash$ |         | 37       |        | 22            | +             | 12       | 53            | -       |            |            | 0            | $\vdash$          | -                 | 11               | '      | +         |         | 0         |         | 0             | +       | 0   | 1                | 36      |         |               | 4   |
| - [        |             |             |                       | Watarase-obashi Bridge           | Tandrayashi City                    | $\perp \perp$     | 128           | $\perp$            | 30        | ш        |         | 260      |        | 67            | $\perp$       | 310      | 228           | _       | 21         |            | 112          | ш                 | 0                 | 1 10             | 50     | _         | 0       | 59        | -       | 12            |         | 0   | Ww.              | 99      | 55      | 1.06          | 4   |
|            |             |             |                       | Shinkai Bridge                   | Tochigi City                        | ш                 | 48            | ┸                  | 57        | Ш        | 4       | 3 164 1  | 27 46  | 45            |               | 40       | 36            |         | 29         | 34         | 30 16        | 13                | 19                | 2                | 2      |           | 17 11   | 77 16     | 24      | Ш             | 18      | 11  | 1                | 41      | 56      | 0.92          | ⅃   |
|            |             |             |                       |                                  |                                     | Total<br>number o | of 935        | Detection<br>times | 849       |          |         |          |        |               |               |          |               |         |            |            |              |                   |                   |                  |        |           |         |           |         |               |         |     |                  | 104     | Average |               | _   |
|            |             |             |                       |                                  |                                     | samples           | 933           | times              | 047       |          |         |          |        |               |               |          |               |         |            |            |              |                   |                   |                  |        |           |         |           |         |               |         |     |                  | 104     | Average |               |     |
| lk ove lee | cations wit | ere samples | were not collected. T | he result "Not detectable"       | " is indicated as "0."              | -                 |               |                    |           |          |         |          |        |               |               |          |               |         |            | *3: Re     | sults of the | analysis o        | f trends at respo | ctive locati     | ms 🗸 D | ecreasine | -> Incr | casing ~~ | Unchan  | ed M/v        | arying  |     |                  |         |         | •             |     |
|            |             |             |                       | les show categories (see t       |                                     |                   |               |                    | _         |          | C D I   | _        |        |               |               |          |               |         |            |            |              |                   | l explained on P  | .cu              |        |           |         |           |         |               |         |     |                  |         |         |               |     |

### 6) Gunma Prefecture


In Gunma Prefecture, surveys were conducted 8 to 23 times from November 2011 to January 2015 at 48 locations (rivers) in public water areas (this analysis excludes the survey results at eight locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, one location was categorized into Category C, four locations into Category D, and 43 locations into Category E (see Table 4.3-15 and Table 4.3-16).

Concentration levels were generally decreasing at 33 locations but were generally unchanged or varying at 15 locations.

Table 4.3-15 Categorization of detected values at respective locations (Gunma Prefecture: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                                                                                                                                                                                              |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                                                                                                                                                                                                                              |
| С        | Upper 10 to 25 percentile                        | 1                   | No.47                                                                                                                                                                                                                                                                                               |
| D        | Upper 25 to 50 percentile                        | 4                   | No.4, No.27, No.44, No.48                                                                                                                                                                                                                                                                           |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 43                  | No.1, No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10, No.11, No.12, No.13, No.14, No.15, No.16, No.17, No.18, No.19, No.20, No.21, No.22, No.23, No.24, No.25, No.26, No.28, No.29, No.30, No.31, No.32, No.33, No.34, No.35, No.36, No.37, No.38, No.39, No.40, No.41, No.42, No.43, No.45, No.46 |



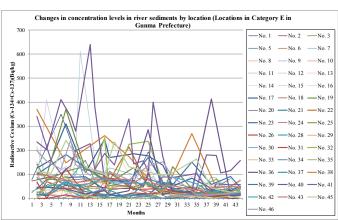
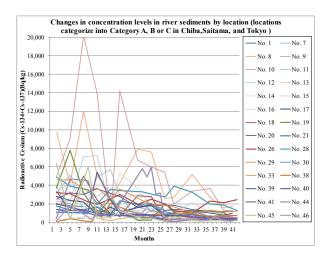



Figure 4.3-9 Changes in concentration levels over the years at respective locations (Gunma Prefecture: river sediments)

Table 4.3-16 Detection of radioactive cesium at respective locations (Gunma Prefecture: river sediments)

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                  |                       | ocation              | I                                     |          |          |          | 201       | 1      |     |          |               |     |     |          | E27   | 2012    | Rive        | r sedimen | ts/Radios | active Ce   | sium (Cs-13   | +Cs      | -137)/Concen   |           | q/kg)(*1)   |          |           |       |          | FY2014        |         |          |      |         |                          | Average | No.     | Coefficient of | Trends    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-----------------------|----------------------|---------------------------------------|----------|----------|----------|-----------|--------|-----|----------|---------------|-----|-----|----------|-------|---------|-------------|-----------|-----------|-------------|---------------|----------|----------------|-----------|-------------|----------|-----------|-------|----------|---------------|---------|----------|------|---------|--------------------------|---------|---------|----------------|-----------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No.                               | Water a          | rea                   | Location             | Municipality                          | 8        | 9        | 10       |           |        | 1 2 | 3        | 4             | 5 ( | 5 7 | 8        |       |         | 12          | 1 2       | 3         | 4 5         | 6             | 7        |                |           | 12 1        | 2 3      | 4 5       | 6     | 7 8      |               | 10 11   | 12       | 1 3  | 2 3     | Changes                  |         | No.     |                | (*3)      |
| Marcha   M   | 1                                 |                  |                       | Hisose Bridge        |                                       | Ť        | F        | T .      | _         |        | -   |          | - 1           | 50  |     |          | _     |         |             | -         | Ħ         |             | 72            | Ė        | -              | 52        | 6           | 1        |           |       | 3        | 1             | 83      | 1        |      | -       | Λ                        | 103     | 1       | 0.90           |           |
| The content of the    | 2                                 |                  | Tonegawa River        |                      | Minshami Tourn                        | -        | -        | +        | -         | -      | 07  | +        | - 1           | 02  | 27  | 66 6     | _     |         | $\vdash$    | 71        | +         | _           |               | 47       |                | 60        | ,           |          | +         |       |          |               | 20      | +        | 61   | +       | 10                       |         | ,       |                |           |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                 |                  |                       |                      | - Inning to the                       | -        |          | +        | _         | -      | 07  | - 02     | _             | _   | 31  | 33 .     | _     |         | +           | 112       | +         | +           |               | 4/       |                | 12        | ,           | 0        | +         |       | 25 5     | , 20          | 30      | +        | 24   | +       |                          |         |         |                | - 3       |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                 |                  |                       |                      |                                       | -        |          |          | +         | -      |     | 92       | _             | _   |     | <b>.</b> | _     |         |             | 113       | $\vdash$  |             |               |          |                | 13        | 9           | 0        |           |       | 1        | /             | 19      |          | 24   | _       |                          |         |         |                | ->4       |
| Martin   Section   Secti   | 4                                 |                  | Sakura River          |                      |                                       | _        | -        |          | $\perp$   | ****   | 330 | 1        | _             |     | 244 | 227 5    | _     |         |             | 271       | $\vdash$  | -           |               |          |                | 129       | 14          | 17       |           | -     | ***      |               | 141     |          | -    | _       | 10000                    |         |         |                | ->-       |
| Paris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                 |                  |                       | Kirinoki Bridge      | Katashina Village                     |          |          |          |           | -      |     | 63       | -             | _   |     |          | _     | 31      |             |           | ш         |             |               |          | -              | 17        | 3           | 4        | 15        |       |          |               | 17      |          |      |         | ~\                       | 41      |         |                | 7         |
| Section   Sect   | 6                                 |                  | Katashina River       | Tonemachitakatoya    | Numata City                           |          |          |          |           | 10     |     | 15       |               | 0   | 10  | 0 1      | 5 0   | 0       |             |           |           |             | 10 10         | 0        |                | 0         | (           | )        | 42        | 0     | 0 0      | 0             | 0       |          |      |         | mrl                      |         | 6       | 1.88           | WW        |
| The column   The   | 7                                 |                  |                       | Futae Bridge         |                                       |          |          |          | 30        |        | 51  |          |               | 39  | 86  | 96 1     | 54 47 | 74      |             | 126       |           |             | 99 80         | 95       | 74 92          | 39        | 3           | 4        | 54        | 110   | 53 89    | 9 85          | 30      |          | 36   |         | Man                      | 73      | 7       | 0.46           | ~~*       |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                 | _                | A gatsuma River       | Shinto Bridge        | Naganohara Town                       |          |          |          |           | 0      | 24  |          |               | 11  |     | 187      |       | 95      |             | 0         |           |             | 0             |          | 0              | 0         | (           |          |           | 38    | 2        | 7             | 0       |          | 10   |         | $\Lambda_{\sim}$         | 28      | 8       | 1.88           | 1         |
| Section   Sect   | 9                                 | Tonegawa River   | Shirasuna River       | Shuttatsu Bridge     | Nakanojo Town                         |          |          |          |           | 12     |     |          |               |     |     |          | 12    |         |             |           |           |             | 0             |          | 12             | 0         | (           | )        |           | 10    | 0        |               | 0       |          | 0    |         | $-\sqrt{\Lambda}\Lambda$ | 5       | 9       | 1.30           | 1         |
| Section   Sect   | 10                                |                  | A gatsuma River       | Downstream of Azuma  | Higashi-Agatsuma Town                 | 1        |          |          | $\dagger$ | 0      | 0   | П        |               | 11  | 22  | 0 1      | 4 14  | 10      | П           | 0         | H         | 0           | 0             | 0        | 12 0           | 0         | - (         | ,        | 0         | 0     | 0 0      | - 11          | 0       | T        | 0    |         | MIL                      | 4       | 10      | 1.63           | /         |
| Section   Sect   | 11                                |                  |                       | Tonoda Bridge        |                                       | 1        |          | t        | +         | 215    | 73  | Н        | _             | 13  | 33  |          | 81    | 85      | H           | 83        | t         | +           | 68            | -        |                | 60        | 3           | 8        | +         | 19    | 1:       | 5             | 17      | H        | 21   |         | h                        | 72      | 11      |                |           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                |                  | A autonom Dinar       | A antrumo Bridas     |                                       | +        |          | +        | -         | -      | 22  | +        | -             | _   | _   | 170 6    | _     |         | $\vdash$    | 11        | +         | 16          |               |          |                | 46        |             |          |           |       | 11 1     |               | 12      | +        | 17   | +       | ٨                        |         |         |                | <u></u>   |
| Martine   Mart   |                                   |                  | _                     |                      | Shibukawa City                        | -        | -        | -        | +         |        | 33  | $\vdash$ | _             | _   | _   |          | -     |         | -           |           | $\vdash$  | 10          |               |          |                | 40        | - 1         | -        |           | _     |          |               | 13      | +        |      | +       | W\                       |         |         |                | V V V     |
| Part      | 13                                |                  | -                     |                      |                                       | -        | -        | -        | +         | -      | 34  | $\vdash$ | -             | _   | _   | 30 0     | 19    |         | -           |           | +         | 40          |               | -        |                | 13        |             | 0        | _         | _     |          |               | 33      | $\vdash$ | 33   | +       | ~~                       |         |         |                | ////*     |
| The content of the    | 14                                |                  | I akuswa River        | -                    |                                       | +        | 1        | -        | +         |        | 97  | $\vdash$ | _             |     | _   | 1        |       |         | -           | 2-0       | $\vdash$  | _           |               |          |                | 24        | 3           | , I      |           |       |          |               |         | $\vdash$ |      | _       | 7                        |         |         |                | - 3       |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                |                  | Tonegawa River        |                      |                                       | 1        |          |          | ш         | -      | 410 | Ш        | _             | _   | _   |          | _     |         |             | 53        | $\sqcup$  | $\perp$     |               | Ш        |                | 12        | 4           | 3        | _         | -     |          | _             |         | Ш        | 80   | $\perp$ | 1                        |         |         |                | ->-       |
| Target   Sample   S   | 16                                |                  |                       | Fukushima Bridge     | Tamamura Town                         | 1        | <u> </u> | _        | $\perp$   | 112    | 23  | Ш        |               | _   | _   |          | _     |         | 46          | 39        | ш         |             |               |          |                | 0         | (           |          |           | 1     | -        |               | 85      | Ш        | 16   | $\perp$ | Lw                       |         |         | 0.79           | /V/V+     |
| Section   Sect   | 17                                |                  | Nagai River           | Kamigonda Bridge     | Tokosoki City                         |          |          |          |           | _      |     | 160      |               | _   | _   |          | _     |         |             | 170       |           |             |               |          |                | 137       | 5           | 2        | 84        |       |          |               | 31      |          | 51   |         | ~~                       |         | 17      |                | 1         |
| Target   Section   Secti   | 18                                |                  | Karasu River          | Karasugawa Bridge    | · · · · · · · · · · · · · · · · · · · | $\perp$  | <u> </u> | L        | $\perp$   | 77     |     | 88       |               | 5   | 2   |          |       |         | 45          | 39        |           |             | 41            | L]       | 30             | 19        | 1           | 9        | $\perp$   | 26    | 1:       | 3             | 11      | L        | 35   |         | ~                        | 39      | 18      | 0.58           |           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                | 1                | Mari Maria            | Nakase Bridge        | Annaka City                           |          |          |          |           | 106    | 94  |          | T             | 3   | 70  |          | 120   |         | 95          | 63        | ПΤ        |             | 127           |          | 57             | 19        | 13          | 11       |           | 17    | 2        | 7             | 26      |          | 22   |         | 1                        | 91      | 19      | 1.00           | >>        |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                |                  | Usui Kwer             | Hanataka Bridge      | Takasaki City                         |          |          |          |           | 38     | 78  |          |               | 7   | 4   |          | 82    |         | 40          | 61        |           |             | 47            |          | 68             | 12        | (           | )        | 0         |       | 0        |               | 13      |          | 0    |         | rm.                      | 37      | 20      | 0.88           | >         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                |                  |                       | Tadakawa Bridge      | Shimonita Town                        |          |          |          |           | 17     | 11  | П        |               | 5   | 6   |          | 29    |         | 15          | 17        | П         | 0           |               |          | 13             | 0         | (           | ,        | 17        |       | 13       | 2             | 0       | T        | 0    |         | Λ                        | 13      | 21      | 1.14           | /         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                |                  | Kabura River          | Kaburagawa Bridge    | Takasaki City/Fuijoka City            | 1        |          | 1        | +         | 0      | 69  | Н        | _             | 4   | 2   |          | 38    |         | 91          | 73        | Ħ         | 214         |               |          | 49             | 50        | 2           | 2        | 24        |       | 2        | 3             | 27      | T        | 43   |         |                          | 55      | 22      | 0.94           | ۸۸۸       |
| Part      | 23                                |                  | Oeawa River           | -                    |                                       | +        |          | 1        | +         |        |     | Н        |               | _   | _   |          | _     |         | 36          | 13        |           | 13          |               |          |                | 63        | 3           | 6        |           | 13    | 3        | 7             | _       | +        | 18   |         | 7 ~                      | 37      |         | 0.77           |           |
| Second    | 24 7                              | Various Pieses   |                       |                      | l                                     | +        |          |          | +         |        |     | Н        | -             | _   | _   |          | _     |         | 10          | 0         | +         | 12          |               |          |                | 0         |             |          |           | 1     | -        | ,             |         | +        |      | +       | 1                        |         |         |                | \ .       |
| Second    | 24 Tonegawa<br>River<br>25 System | Karasu Kirti     |                       |                      |                                       | +        | -        | +-       | +         | 142    |     | +        | -             | _   | _   | -        | _     |         |             |           | +         | 13          | 47            | -        |                | 24        |             |          | - 22      | 1     |          |               | 20      | +        | 1.7  | +       | n                        |         |         |                | - 3       |
| Reserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 System                         |                  |                       |                      |                                       | -        |          | -        | +         | -      | /3  | +        | -             | _   | _   | <u> </u> | _     |         | 6/          | 33        | $\vdash$  | +           |               | $\vdash$ |                | 24        | 3           | 3        | 23        |       |          |               | 20      | $\vdash$ | 1/   | -       | , ~~                     |         |         |                | - 3       |
| Section   Processing   | 26                                |                  |                       |                      |                                       | _        |          |          | $\perp$   |        | 0   |          |               | _   | _   | ļ        | _     |         | 11          | 0         | $\vdash$  | -           | 23            |          |                | 23        | 3           | 9        | 46        |       | 10       |               | 12      | $\perp$  | 14   | _       | V\                       |         |         |                | ->        |
| No.   Section    | 27                                |                  | Karasu River          | Iwakura Bridge       | Takasaki City/Tumamura Town           | _        |          |          |           | 67     | 19  |          | _             |     |     |          | _     |         | 310         | 380       |           | 302         |               |          | 950            | 122       | 1           | 6        | _         | 1     |          | 362           | 296     |          | 192  |         | ~\~                      |         |         |                | /VV¥      |
| Marie New North Marie North Annihology   Section Trans   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                |                  | Kanna River           | Shinkaname Bridge    | Ueno Village                          |          |          |          |           |        |     |          |               | 3   | 7   |          | 0     |         | 16          | 0         |           | 16          |               |          |                | 0         |             |          | 17        |       |          |               | 0       |          |      |         | m                        | - 11    | 28      | 1.24           | 1         |
| Section   Sect   | 29                                |                  | Kanna River           | Morko Bridge         | Kanna Town                            |          |          |          |           | 0      | 0   |          |               | -   | )   |          | 0     |         | 0           | 0         |           | 0           |               |          |                | 0         |             |          | 13        |       |          |               | 0       |          |      |         | $-\Delta$                | 1       | 29      | 3.16           |           |
| Program Research Management   Prog   | 30                                |                  | Kanna River           | Tobukyo Bridge       | Fujioka City/Kamikawa Town            |          |          |          |           | 0      | 0   |          |               | -   | )   |          | 0     |         | 43          | 0         |           | 0           |               |          |                | 0         |             |          | 0         |       |          |               | 0       |          |      |         | _/                       | 4       | 30      | 3.16           |           |
| Nagastation from   Nagastation   | 31                                |                  | Kanna River           | Kannagawa Bridge     | Kamis ato Town                        |          |          |          |           | 0      | 0   |          |               | 1   | 4   |          | 0     |         | 36          | 107       |           |             | 36            |          |                | 42        |             |          | 16        |       |          |               | 0       |          |      |         | ~~                       | 25      | 31      | 1.33           | W         |
| Manuscal River   Processing     | 32                                |                  | Tonegawa River        | Bando-ohashi Bridge  | Honjo City                            |          |          |          |           | 22     | 46  |          |               | 9   | 3   |          | 0     |         | 252         | 17        |           | 224         |               |          | 237            | 66        | 5           | 3        | 33        |       |          | 79            | 11      |          | 39   |         | M                        | 84      | 32      | 1.04           | W         |
| Austral Brown Progress Rose Reactions Bridge Responsibility Respon | 33                                |                  | A kagis hirakawa Rive | r In Shimohosoi Town |                                       |          |          |          |           | 108    | 15  |          |               | 4   | 0   |          | 78    |         | 61          | 41        |           |             | 63            |          | 17             | 18        | 1           | 3        | 25        |       | 4        | 7             | 15      |          | 10   |         | ma                       | 39      | 33      | 0.75           | 1         |
| Austral Brown Progress Rose Reactions Bridge Responsibility Respon | 34                                |                  |                       |                      | Maebashi City                         | H        |          |          | T         | 27     | 15  | П        | $\dashv$      | 7   | 5   | 1        | 14    |         | 41          | 0         | Ħ         |             |               | $\vdash$ | 16             | 0         | 1           | 3        | 19        | 1     | 10       | s             | 17      | П        | 15   |         | M                        |         |         |                |           |
| Transgrava Brow Residence  | 35                                |                  | Amto River            | -                    | 1                                     | $\vdash$ |          |          | +         | 0      | 48  | H        | $\dashv$      | +   | +   |          | _     |         | 0           | 0         | Ħ         | +           | 0             | $\dashv$ | 0              | 26        | 1           | 0        | 10        | 1     | -        |               | 10      | Н        | 0    | +       | 1                        |         |         |                | _         |
| Second Reserve   Second Column   Second Colu   | 36                                | Tonegawa Ri-     |                       |                      |                                       | ╁        | <b>†</b> |          | $\vdash$  | -      | 46  | Н        | $\dashv$      | ١,  | 9   | 1        |       |         | 31          | 16        | $\vdash$  | 21          |               | -        |                | 15        | Η,          |          | - 10      | +     |          | +             | 17      | Н        | 13   | -       | _ ^ ^                    |         |         |                | VVV       |
| Figure   Responsibility   Figure     | 37                                |                  |                       |                      | Israeki City                          | $\vdash$ | <u> </u> | $\vdash$ | +         | -      | 17  | Н        | $\dashv$      | _   | _   | 1        | _     |         | 0           | 35        | +         |             |               |          |                | 57        | 1           |          | 10        | 1     |          |               | 17      | +        | 18   | +       | ~ ~ ~                    |         |         |                |           |
| Figure   F   | 20                                | 1                | aose raver            |                      | - Cay                                 | $\vdash$ | 1        | 1        | +         |        | 17  | Н        | +             | _   | _   | 1        | 41    |         | 201         | 35        | $\vdash$  | 1.7-        |               |          |                | 3/        | 4           |          | 19        |       | 3.       |               | 1/      | $\vdash$ | 72   | +       | 1 W ~                    |         |         |                | / / / / * |
| Total park   Fire   F   | 30                                |                  | Hayakawa River        |                      | -                                     | 1        | <u> </u> | $\vdash$ | $\vdash$  | -      |     | Н        | $\dashv$      | _   | _   | 1        | +     |         | 201         | +         | $\vdash$  | 1/3         | -             | -        |                | _         | H 9         |          | _         |       | ++       | _             | 31      | $\vdash$ |      | -       | . 00                     |         |         |                | V V V     |
| Companies   Comp   | 39                                | 1                |                       | -                    |                                       | +        | <u> </u> | 1        | +         | -      | +   | $\vdash$ | $\rightarrow$ | -   | -   | 1        | +     |         | 77          | -         | $\vdash$  | 70          | <u> </u>      | -        |                | 67        | 5           | ۰        |           |       | 51       | $\rightarrow$ | 91      | $\vdash$ | 44   | +       |                          |         |         |                | /VV¥      |
| Fairs and   Main City   See    | 40                                |                  |                       |                      |                                       | 1        | <u> </u> | <u> </u> | $\perp$   | -      | 203 | Ш        | _             | -   | _   |          |       |         | 72          | 83        | ш         | _           |               |          |                | 172       | 2           | 8        | 23        |       | 181      |               | 116     | $\perp$  | 158  | _       | ~~                       |         |         |                | -7        |
| ## datase Rose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41                                | 1                | Koguro River          | .,                   |                                       | 1        |          |          | Ш         | -      |     | 158      | - 1           |     | 100 | 198      |       | 228 120 | 187         | 139       | $\sqcup$  | _           | 143           |          |                | 90        | 8           | 7        |           |       |          |               |         | Ш        |      | $\perp$ |                          |         |         |                |           |
| Marker Row   Figure Row   Fig   | 42                                |                  | Watarase River        |                      |                                       | 1_       |          | <u> </u> |           |        | 50  | Ш        |               | _   | _   |          | 56    |         | 84          |           | ш         |             |               |          |                | 36        | 8           | 9        | _         |       |          |               | - "     | Ш        |      | $\perp$ | ~~~                      |         |         |                | >         |
| Water From Park Way & Earn Water From Water F  | 43                                | 1                |                       |                      | Kiryu City                            |          |          |          |           | 98     | 96  |          |               | 82  | 69  | 66       |       | 74 80   | 76          | 81        |           | 78          | 65            | 90       | 78 62          | 53        | 5           | 2        |           | 35 35 | 20 4     | 5 46          | 49      |          | 47   |         | ~~~                      | 64      | 43      | 0.32           | 1         |
| Area  Kays (Cry Cry Cry Cry Cry Cry Cry Cry Cry Cry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                | Watarase River   | Tatara River          | Ejiri Bridge         | Oura Town                             | Π        |          | Г        |           |        |     | П        | $\top$        | 63  | 30  |          | T     |         | 164         | 197       | ГΤ        | 104         |               |          | 360            | 126       | 2           | 6        |           | 640   | 61       | 0             | 101     | П        | 64   | T       | W                        | 275     | 44      | 0.88           | WV        |
| Saaii Balge   Cays (Op)-Ashlape (Cay   1988   155   1922   245   140   95   118   105   104   76   135   132   88   14   12   22   26   1360   1440   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | 45                                | Area             |                       | Kannon Bridge        | Kiryu City                            |          |          |          | П         | 110    |     | 104      | T             | 24  | 40  |          | 128   |         | 100         | 235       |           | 131         |               |          | 110            | 94        | 10          | 17       |           | 164   | 4:       | 3             | 25      | П        | 27   |         | M                        | 116     | 45      | 0.56           |           |
| Transports Rore: Topoda Risidge: Micross Townshiduan Towns    Topoda Risidge: Micross Townshiduan Towns   Micross Townshiduan  | 46                                | 1                | Kayu River            | Sakai Bridge         | Kiryu City/Ashikaga City              | T        |          |          | Ħ         | 198    | 155 | П        | 1             | 22  | 243 | 140      | 1     | 95 118  | 105         | 104       | П         | 76          |               | П        | 135            | 152       | 8           | 8        |           | 14    | 13       | 2             | 22      | П        | 26   |         | M                        | 106     | 46      | 0.61           | \         |
| Transports Rore: Topoda Risidge: Micross Townshiduan Towns    Topoda Risidge: Micross Townshiduan Towns   Micross Townshiduan  | 47                                |                  | Tsuruuda River        | Lake Jonuma          | Tatebayashi City                      | T        |          | T        | П         | $\Box$ |     | П        | $\dashv$      | 10  | 80  |          |       |         | 1560        | 141       | Ħ         | 470         |               |          | 510            | 1560      | 9           | 2        | $\top$    | 760   | 210      | so            | 1360    |          | 1440 | 1       | 1.1                      | 1,012   | 47      | 0.66           | ΛΛΛ       |
| Total number of samples   7/5   Detection of  | 48                                |                  |                       |                      |                                       | t        |          | t        | $\vdash$  | H      |     | Н        | $\dashv$      | 6   | 10  |          | +     |         | 0           | 490       | Ħ         | _           |               | -        |                | 550       | 2           | s        | +         | 320   | 2:       | 2             | 40      | Н        | 48   | 1       | 1000                     |         | 48      |                |           |
| of samples   172   times   008     173   times   008     174   times   008     175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   175   times   008   times   | 1                                 |                  |                       |                      |                                       | Terri    | l marks  | $\vdash$ | n.        |        |     |          |               |     |     | 1        |       |         | <del></del> |           |           | 1           |               |          |                | 1.7       | 1 1         |          |           |       | 1 1 -    | 1 1           |         | <u> </u> |      |         | NAN                      |         |         |                | - 3       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                  |                       |                      |                                       | ofs      |          | 715      |           |        | 508 |          |               |     |     |          |       |         |             |           |           | 42          | Damle -60     | and he   | is of tru-     | narma-ti- | location-   | ring the |           | _     |          |               |         |          |      |         |                          | 93      | Average |                |           |
| Arithmetic Average; calculated by assuming ND-0; Color codes show categories (see the right).  A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                  |                       |                      |                                       |          |          |          |           |        |     |          |               |     |     |          |       |         |             |           |           | <b>~3</b> : | resurs of the | met      | thod explained | on P.60   | acations in | sang me  | ecreasing | lncr  | easing ~ | ✓ Unchanged / | V/ Vary | ing      |      |         |                          |         |         |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2: Arithmetic /                   | Average; calcula | ted by assuming NE    | ≠0; Color codes show | categories (see the right).           |          |          |          |           |        | A   | В        | С             | D I | 3   |          |       |         |             |           |           |             |               |          |                |           |             |          |           |       |          |               |         |          |      |         |                          |         |         |                |           |

### 6) Chiba and Saitama Prefectures and Tokyo Metropolis


In Chiba and Saitama Prefectures and Tokyo Metropolis, surveys were conducted 12 to 22 times from October 2011 to February 2015 at 51 locations (rivers) in public water areas (47 locations in Chiba Prefecture, two locations in Saitama Prefecture, and two locations in Tokyo Metropolis).

Regarding concentration levels of detected values, three locations were categorized into Category A, 11 locations into Category B, 14 locations into Category C, 14 locations into Category D, and nine locations into Category E (see Table 4.3-17 and Table 4.3-18).

Concentration levels were generally decreasing at 37 locations but were generally unchanged or varying at 14 locations.

Table 4.3-17 Categorization of detected values at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                      |
|----------|--------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 3                   | No.8, No.10, No.28                                                                             |
| В        | Upper 5 to 10 percentile                         | 11                  | No.1, No.11, No.12, No.15, No.16, No.18, No.19, No.20, No.26, No.29, No.44                     |
| С        | Upper 10 to 25 percentile                        | 14                  | No.7, No.9, No.13, No.14, No.17, No.21, No.30, No.33, No.38, No.39, No.40, No.41, No.45, No.46 |
| D        | Upper 25 to 50 percentile                        | 14                  | No.3, No.4, No.5, No.22, No.23, No.25, No.27, No.31, No.32, No.42, No.43, No.47, No.50, No.51  |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 9                   | No.2, No.6, No.24, No.34, No.35, No.36, No.37, No.48, No.49                                    |



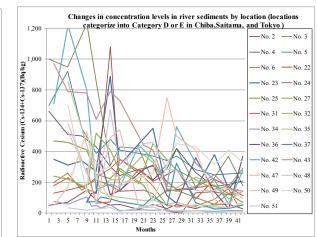



Figure 4.3-10 Changes in concentration levels over the years at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments)

Table 4.3-18 Detection of radioactive cesium at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments)

|                       |                                   |                                           | cation                                                |                              |           |                       | FV     | 2011          |         |     |               |               |          | FY2012   |       | Riverses | iments/Rac      | dioactive ( | Cesium (Cs-   |                | 7)/Concentrati<br>/2013 | on(Bq/kg)(*1)   |         | 1             |         |          | FY2014        |           |                |     |                 | Average | No.     | Coefficient  | Tren     |
|-----------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------|-----------|-----------------------|--------|---------------|---------|-----|---------------|---------------|----------|----------|-------|----------|-----------------|-------------|---------------|----------------|-------------------------|-----------------|---------|---------------|---------|----------|---------------|-----------|----------------|-----|-----------------|---------|---------|--------------|----------|
| Prefecture            | W                                 | ater area                                 | Location                                              | Municipality                 | 8         | 9 1                   |        |               | 1 2     | 3 4 | 5             | 6 7           |          | 9 10     | 11 1  | 2 1 2    | 3 4             | 4 5         | 6 7           | 8 9            | 10 11                   | 12 1            | 2 3     | 4 5           | 6       | 7 8      |               | 10 11 1   | 2 1            | 2 3 | Changes         | (*2)    | - 10    | of variation | (*3      |
|                       |                                   |                                           | Fukama-ohashi Bridge                                  |                              | П         |                       | 1,910  |               | 1,780   |     | Ħ             | 1,660         | 1,190    | T        | 1,200 | 590      |                 | 1,800       |               | 1,750          | 1,840                   | 1,810           |         | 1,37          | 0       | 1,210    | 0             | 1,150     | 1,170          |     | ~               | 1,459   | 1       | 0.27         | ~~       |
|                       |                                   | Shogen River                              | Shinbei Bridge                                        | Inzai City /Sakae Town       | $\Box$    | 5                     | 50     | $\vdash$      | 72      | _   | $\top$        | 149           | 81       | $\vdash$ | 54    | 56       | H               | 26          |               | 56             | 31                      | 55              | _       | 31            |         | 57       | $\top$        | 59        |                | 27  | Λ               | 57      | 2       | 0.54         | _        |
|                       |                                   |                                           | Intake at Maeshinden Water                            |                              | +         |                       | 000    | ++            | 950     | -   |               | 1,230         | 850      | +        | 310   | 430      | +               | 420         |               | 210            | 320                     | 420             | +       | 17            | +       | 229      |               | 369       | 1              |     | -               | 506     | 3       | 0.69         | $\vdash$ |
|                       | Tonegawa River                    | Nagato River                              | Purification Plant<br>Nagato Bridge                   | Sakae Town                   | $\vdash$  | ,                     | 60     | $\vdash$      | 250     |     | 500           | 1,2,0         | 430      | +        | 300   | 244      | -               | 285         |               | 217            | 291                     | 420             |         | 26            |         | 173      |               | 185       |                |     | _~~             | 335     | 4       | 0.44         | ₩        |
|                       | System                            | Nagato River                              |                                                       | Sakae I own                  | $\square$ |                       |        | $\perp$       | 510     |     |               | _             |          | _        |       |          | $\perp$         | 285         |               |                |                         |                 | _       |               |         |          |               |           |                |     | ~               |         | 4       |              | Ļ        |
|                       |                                   |                                           | Fujimi Bridge                                         |                              |           | 70                    | 00     |               | 920     |     | 550           |               | 390      |          | 480   | 410      |                 | 390         |               | 370            | 340                     | 370             |         | 28            |         | 248      | 1             | 255       | 2              | 58  | ~               | 426     | 5       | 0.44         |          |
|                       |                                   | Ryudai River                              | Ryumatsuno Bridge                                     | Nanta City                   |           |                       | 197    |               | 260     |     | 147           |               | 234      |          | 290   | 350      |                 |             | 236           | 177            | 49                      | 45              |         | 46            |         | 89       |               | 161       | 48             |     | ~               | 166     | 6       | 0.60         | `        |
|                       |                                   | Nekona River                              | Shinkawa Floodgate                                    | Nama City                    |           |                       | 2,300  | )             | 2,010   |     | 910           |               | 1,620    |          | 640   | 1,080    |                 |             | 720           | 1,330          | 1,020                   | 910             |         | 92            |         | 1,160    | 0             | 580       | 221            |     | Some            | 1,102   | 7       | 0.51         |          |
|                       |                                   | Ohori River                               | Kitakashiwa Bridge                                    | Kashiwa City                 | $\Box$    |                       | 9,700  | )             | 4.100   |     | 12,000        |               | 5.100    |          | 3.000 | 4.200    |                 | 7.900       |               | 7.600          | 2,560                   | 2.690           |         | 5,20          | 0       | 2.660    | 0             | 1,550     | 1.700          |     | Ws.             | 4.997   | 8       | 0.64         | _        |
|                       |                                   |                                           | Sanno Bridge, under                                   | Kamagaya City                | +         | +                     | 3,900  |               | 440     |     | 390           |               | 2.140    | +        | 900   | 710      |                 | 1,600       |               | 1,250          | 930                     | 820             |         |               | 1,120   | 610      |               | 680       | 470            | +   | 1               | 1,140   | 9       | 0.82         | -        |
|                       |                                   | Otsu River                                |                                                       | Kanagaya Cay                 | +         | -                     |        |               | 9,000   |     | 0.70          |               |          | +        |       |          | -               | 6.700       |               |                |                         |                 |         | -             |         |          | -             |           |                | _   | V~~             |         |         |              | Ł        |
|                       | Feeder rivers of                  |                                           | Kaminuma Bridge                                       | Kashiwa City                 |           |                       | 5,000  |               | .,,     |     | 20,200        |               | 14,000   |          | 380   | 14,200   |                 | 6,700       |               | 6,000          | 5,400                   |                 |         | 3,36          |         | 3,640    |               | 1,290     | 1,220          |     | W-              | 6,597   | 10      | 0.89         | L        |
|                       | Lake Teganuma                     | Someiriotoshi                             | Someishinbashi Bridge                                 |                              |           |                       | 3,100  | )             | 5,100   |     | 990           |               | 4,900    |          | 5,700 | 2,900    |                 | 305         |               | 430            | 1,310                   | 1,190           |         | 1,10          | 0       | 1,160    | 0             | 900       | 790            |     | 1               | 2,134   | 11      | 0.87         |          |
|                       |                                   | Kanayamaztoshi                            | Downstream of Kamizawasakai<br>Bridge                 | Kamagaya City /Shiroi City   |           |                       | 2,500  | )             | 2,260   |     | 7,100         |               | 7,200    |          | 1,300 | 1,430    |                 | 920         |               | 820            | 460                     | 460             |         | 44            |         | 440      | )             | 440       | 305            |     | 1               | 1,863   | 12      | 1.26         | 1        |
|                       |                                   | Kanayamaotoshi                            | Nauchi Bridge                                         | Shinoi City                  | $\Box$    |                       | 2,200  | )             | 2,400   |     | 1,800         |               | 1,270    |          | 1,330 | 1,210    |                 | 1,280       |               | 1,170          | 750                     | 710             |         | 125           |         | 510      | ,             | 510       | 392            |     | ~               | 1,119   | 13      | 0.60         | 1        |
|                       |                                   | Kamenari River                            | Kamenari Bridge                                       | Inzai City                   | +         | 25                    | 56     | +             | 360     | _   | 600           | $\rightarrow$ | 560      | +        | 1,620 | 5,300    | +               | 3,600       | $\vdash$      | 2,680          | 162                     | 222             | _       | 26:           | _       | 390      |               | 410       | 419            | +   |                 | 1,203   | 14      | 1.31         | Λ        |
|                       | -                                 | lausasuiro Channel                        | Downstream of leusasuiro                              |                              | +         | - 12                  |        | +             | 4 100   |     |               |               |          |          | _     | 2,750    | +               | 5,000       | 2 000         |                |                         | 970             | _       |               |         |          | -             |           |                | 70  | <del></del>     |         |         |              | ₩        |
|                       |                                   |                                           | Channel                                               | Kamagaya City                | $\sqcup$  | $\vdash \!\!\! \perp$ | 3,500  |               | 1,1100  |     | 3,200         |               | 2,800    |          | 3,500 |          | $\vdash$        |             | 2,980         | 1,890          | 800                     |                 |         | 2,07          | ٥       | 1,060    | -             | 740       | 7              | 20  | ~~              | 2,222   | 15      | 0.54         | Ļ        |
|                       |                                   | Futae River                               | Tomigaya Bridge                                       | Funabashi City /Shiroi City  | $\perp$   |                       | 2,700  |               | 3,300   |     | 1,640         |               | 1,760    |          | 1,150 | 1,460    | ш               | 1,150       | oxdot         | 1,480          | 760                     | 760             |         |               | 730     | 640      | -             | 600       | 456            |     | . /~~~          | 1,328   | 16      | 0.62         | L        |
|                       |                                   | Kanzaki River                             | Kanzaki Bridge                                        | Yachiyo City /Inzai City     | 1 1       |                       | 2,800  | )             | 2,380   |     | 2,170         |               | 830      |          | 1,650 | 1,150    |                 | 1,590       |               | 1,790          | 680                     | 670             |         | 850           |         | 550      | ıΠ            | 458       | 309            |     | m               | 1,277   | 17      | 0.62         | 1        |
|                       |                                   | Kanno River                               | Kanno Bridge                                          |                              |           |                       | 3,300  | )             | 1,250   |     | 5,000         |               | 2,410    |          | 880   | 730      |                 | 2,840       |               | 2,780          | 126                     | 58              |         | 26:           |         | 620      | ,             | 640       | 540            |     |                 | 1,531   | 18      | 0.97         | _        |
|                       |                                   | Inha Discharge Channel<br>(Upper reaches) | Yachiyo Bridge                                        | Yachiyo City                 | H         |                       | 3,700  |               | 7,800   |     | 3,200         |               | 910      | $\top$   | 2,530 | 1,280    |                 | 202         |               | 231            | 2,030                   | 1,080           |         | 1,25          | 0       | 1,220    | 0             | 1,050     | 352            |     | 1               | 1,915   | 19      | 1.04         | 1        |
|                       | Feeder rivers of<br>Lake Inbanuma | Tegun River                               | Mumei Bridge                                          | Sakura City                  | $\vdash$  | +                     | 2.500  |               | 3 200   |     | 3.000         |               | 3 600    | +        | 3 100 | 2.780    | +               | 1.620       |               | 1,900          | 1,280                   | 1 200           | -       | 1.24          | 0       | 1 000    | 0             | 760       | 1 000          | +   | ~~              | 2,027   | 20      | 0.48         | H        |
|                       |                                   |                                           |                                                       |                              | $\perp$   |                       |        |               | 2,000   |     | 5,000         |               | .,000    |          | 3,100 |          | ш               | 1,020       |               |                |                         | 1,390           |         |               |         | .,000    |               | 700       | 1,000          |     | ~~              |         |         |              | L        |
|                       |                                   | Monto River                               | Moroto Bridge                                         | In zai City                  |           |                       | 1,760  | )             | 1,290   |     | 1,340         |               | 1,640    |          | 850   | 2,330    |                 | 1,910       |               | 2,020          | 810                     | 1,010           |         | 54            |         | 420      |               | 234       | 408            |     | $\sim$          | 1,183   | 21      | 0.57         | `        |
|                       |                                   | Kashima River                             | Iwatomi Bridge                                        |                              |           |                       | 178    |               | 230     |     | 170           |               | 218      |          | 179   | 144      |                 | 284         |               | 307            | 205                     | 154             |         | 16            |         | 181      |               | 126       | 153            |     | ~~~             | 193     | 22      | 0.27         | -        |
|                       |                                   | Takasaki River                            | Rvuto Bridge                                          | Sakura City                  | $\vdash$  |                       | 350    |               | 310     |     | 340           |               | 270      | $\pm$    | 890   | 310      | H               | 450         |               | 550            | 143                     |                 | 154     | 15            | 1       | 380      | _             | 155       | 232            |     | -M -            | 335     | 23      | 0.60         | t        |
| Chiba                 |                                   | Kashina River                             | Kashima Bridee                                        |                              | $\vdash$  | $\vdash$              | 130    | $\perp$       | 149     |     | 122           | _             | 126      | +        | 1.080 | 143      | $\vdash$        |             | 140           | 127            | 12                      |                 |         | 13:           |         | 139      | $\perp$       | 120       | 126            | +   | 1               | 186     | 24      | 1.41         | ₩        |
| Prefecture            |                                   |                                           |                                                       |                              | +         | $\perp$               |        |               |         |     | 1/3           | _             |          | _        | ,     |          | $\vdash$        | _           | 149           |                |                         |                 | 0       |               | 1       |          |               |           | 120            | _   | <del>-</del> /\ |         |         |              | 1        |
|                       |                                   | Inbasuiro Channel                         | Tsurumski Bridge                                      | Inzai City                   | $\perp$   |                       | 470    | _             | 460     |     | -             | 410           | 250      |          | 226   | 291      | $\sqcup \sqcup$ |             | 182           | 81             | 150                     | 149             |         | 99            |         | 58       |               | 125       | 1              | 70  | ~~              | 216     | 25      | 0.66         | L        |
|                       |                                   | Toneunga Canal                            | Unga Bridge                                           | Nagareyama City/Noda City    |           | $\perp \perp$         | 3,200  | )             | 3,100   | L   | ┸┚            | 2,210         | 1,950    | ╙        | 2,550 | 3,000    | $\perp \perp$   | 1,940       |               | 2,480          | 2,000                   | 1,240           | L       | 98            | 1       | 2,270    | 0             | 2,100     | 2,4            | 450 | ~~~             | 2,248   | 26      | 0.28         | Ľ        |
|                       |                                   | Edogawa River                             | Nagareyama Bridge                                     | Nagareyama City/Misato City  | П         |                       | 240    |               | 220     | Т   | П             | 166           | 520      | T        | 410   | 275      |                 | 191         |               | 450            | 348                     | 282             | $\top$  | 210           |         | 155      |               | 175       | 2              | 92  | 2               | 281     | 27      | 0.40         | ^        |
|                       |                                   | Sakagawa River                            | Benten Bridge                                         |                              | $\Box$    |                       | 4,900  |               | 3,900   |     | $T^{\dagger}$ | 3,500         | 1,990    | $\neg$   | 3,600 | 3,400    | $\vdash$        |             | 3,300         | 3,040          | 2,730                   | 3,900           |         | 3,24          | 0       | 2,000    | 0             | 1,840     | 1.3            | 260 | ~~              | 3,043   | 28      | 0.32         | _        |
|                       |                                   | Shinsaka River                            | Sakane Bridge                                         | Matsudo City                 | $\vdash$  | +                     | 4.600  | +             | 4.600   | -1- | +             | 3.300         | 3 700    | +        | 2.520 | 3.600    | +               | +           | 2.350         | 1.950          | 1,820                   | 1,600           | -       | 99            |         | 1 330    |               | 1 100     | 1 1            | 200 | ~               | 2.481   | 29      | 0.51         | ┢        |
|                       |                                   |                                           |                                                       |                              | +         | +                     |        |               | 4,000   | _   |               | ,,,,,         | 5,700    | +        |       | 17       | +               | +           | 2,350         | 7              |                         | 1,080           | -       |               | 1       | 1,900.0  |               | 13100     | 1,.            | -~  | 5               |         |         |              | ₩        |
|                       |                                   |                                           | Shinkatsushika Bridge                                 | Matsudo City/Katsushika City | $\sqcup$  | $\vdash$              | 1,360  | 1             | 1,010   | _   | +             | 1,120         | 1,110    | $\perp$  | 740   | 700      | $\vdash$        | +           | 890           | 820            | 1,150                   | 920             | _       | 630           | +       | 670      | 1             | 570       | 4              | 90  |                 | 870     | 30      | 0.29         | H        |
|                       |                                   |                                           | Ichikawa Bridge                                       |                              |           |                       |        |               |         |     |               | 290           | 64       |          | 73    | 350      |                 |             | 258           | 206            | 250                     | 287             |         | 92            |         | 219      | 1             | 171       | 1              | 14  | M               | 198     | 31      | 0.48         | 1^       |
|                       |                                   | Edogawa River                             | Vicinity of Keiyo Road                                | Ichikawa City/Edogawa City   | $\vdash$  | +                     | +      | ++            | +       | -   | +             | 145           | 127      | +        | 210   | 216      | +               | +           | 380           | 220            | 1                       | 164             | +       | 1 1           | +       | 100      | +             | - 03      | -              | 42  | 1               | 201     | 22      | 0.11         | _        |
|                       |                                   |                                           | Vicinity of Keiyo Road<br>Gyotokukadozeki Weir (unner |                              | +         | $\vdash$              |        | ++            | $\perp$ |     | _             | 145           | 137      | _        | 218   | 216      | $\vdash$        | _           |               | 330            | 175                     |                 | _       | 23:           |         | 180      | -             | 93        |                | 42  |                 | 201     | 32      | 0.41         | _        |
|                       |                                   |                                           | reaches)                                              | Ichikawa City                |           |                       |        |               |         |     |               | 350 420       | 1,140 3  | 300      | 190   | 370      |                 |             | 660 550       | 580 960        | 1,020 420               | 330             |         | 520           | 390     | 500 400  | 680           | 540       | 4              | 90  | Min             | 541     | 33      | 0.46         | ^        |
|                       |                                   |                                           | Shingyotokubashi Bridge                               |                              |           |                       | 78     |               | 59      |     |               | 104 44        | 48       | 35       | 53    | 17       |                 |             | 20            | 19             | 20                      | 12              |         | 16            |         | - 11     |               | 15        | 1              | 16  | 1/2             | 35      | 34      | 0.76         | `        |
|                       | Edogawa River<br>System           |                                           | Edogawa Floodgate, down                               |                              |           |                       |        |               | 850     |     |               |               | 1        | 136      | 109   | 103      |                 |             | 83            | 84             | 56                      | 70              |         | 38            |         | 42       |               | 31        |                | 50  |                 | 138     | 35      | 1.65         |          |
|                       | System                            |                                           | 8 kmPoint to the estuary                              | lchikawa City/Edogawa City   |           |                       |        |               | $\neg$  |     | T             | 71 128        | 134 3    | 340      | 121   | 145      | -               |             | 283           | 310            | 112                     | 65              |         | 36            |         | 139      | ,             | 30        | 3              | 68  | M               | 186     | 36      | 0.64         | Λ        |
|                       |                                   | Kyu-Edogawa River                         | Imai Bridge                                           |                              | $\vdash$  | $\vdash$              | +      | +             | +       |     | -             | 70 75         | _        | 104      | 92    | 75       | +               | +           | 48            | 108            | 50                      | 323             | _       | 67            | +       | 27       | +             | 31        | ++:            | 54  | V 0 0           | 86      | 37      | 0.85         | ĺΛ       |
|                       |                                   |                                           |                                                       |                              | $\vdash$  | $\vdash$              | +      | ++            | +       |     | +             |               |          |          |       |          | $\vdash$        | +           |               |                |                         |                 | +       |               | 1       |          | -             |           |                |     | ~~/\_           | -       |         |              | -        |
|                       |                                   |                                           | Urayasu Bridge                                        | Urayasu City/Edogawa City    | $\perp$   | $\perp \perp$         | 75     | $\perp \perp$ | 380     |     | ш             | 70 71         | 1,360 5  | 580      | 2,050 | 1,640    | $\perp \perp$   |             | 700 380       |                | 0.0                     | 940             |         | 92            | 840     |          | 650           | 760       | 7              | 00  | 2               | 736     | 38      | 0.65         | Λ        |
|                       |                                   | Managawa River                            | Nemoto Floodgate                                      |                              |           |                       | 1,100  | )             | 1,050   |     | Ш             | 960           | 700      |          | 700   | 750      | Ш               |             | 480           | 480            | 222                     | 295             |         | 27            | <u></u> | 335      | الللا         | 260       | 2              | 55  | ~~              | 562     | 39      | 0.56         | Ľ        |
|                       |                                   | Kokubu River                              | Suwada Bridge                                         | Ichikawa City                | T         |                       | 2,020  | )             | 1,610   |     | $\Box$        | 1,200         | 5,400    |          | 2,390 | 970      |                 |             | 790           | 730            | 770                     | 770             |         | 52            |         | 530      | ı T           | 406       | 4              | 30  | 7               | 1,324   | 40      | 1.00         | Γ        |
|                       |                                   | Haruki River                              | Before the confluence with                            | 1                            | П         |                       | 1,380  |               | 1.270   |     | $T^{\dagger}$ | 1,210         | 930      | 1        | 840   | 760      |                 |             | 730           | 710            | 304                     | 309             |         | 30            |         | 321      |               | 286       | 2              | 77  | 1               | 688     | 41      | 0.58         | Γ.       |
|                       |                                   |                                           | Kokubu River                                          |                              | +         | $\vdash$              | -      | +             | -,-,-   |     | +             | _             |          | -        | +     |          | +               | _           |               |                | -                       |                 | _       |               | +       | -        | +             |           | $+$ $+$ $^{-}$ | -   | _               |         |         |              | t        |
|                       |                                   | Hasen-okashiwa River                      | Downstream of<br>Nakazawashinbashi Bridge             | Kamagaya City/Ichikawa City  |           |                       | 710    |               | 1,220   |     |               | 800           | 153      |          | 189   | 166      |                 | 440         |               | 350            | 178                     | 560             |         | 32            | 1       | 215      |               | 56        | 2              | 77  | 'Lv.            | 403     | 42      | 0.80         | 1        |
|                       |                                   | Okashiwa River                            | Sengen Bridge                                         |                              |           |                       | 970    | Ħ             | 790     |     | Ħ             | 780           | 610      | $\top$   | 790   | 730      | Ħ               |             | 440           | 410            | 158                     | 141             |         | 17:           |         | 251      |               | 156       | 1              | 44  | 7               | 468     | 43      | 0.65         | _        |
|                       |                                   | Mamagawa River                            | Mitomic Bridge                                        | Ichikawa City                | $\vdash$  | +                     | 430    | +             | 4 700   | +   | +             | 4,500         | 920      | +        | 580   | 2,020    | +               | +           | 5,800 4,900   | 5 000 2 01     | 0.2.190.720             | 34              | +       | 29.           | 1,060   | 730 314  | 411           | 670       | 1 .            | 60  | n 1             | 2,003   | 44      | 1.04         | H        |
|                       |                                   | managawa rover                            |                                                       |                              | +         | $\vdash$              |        |               | 151.00  | -   | _             |               | _        | _        |       |          | $\vdash$        | _           |               | _              | 0 3,180 138             |                 | _       | 29.           | _       | 750 514  | -             |           | 4              | 00  | 14 L            |         | 44      | 1.04         | 1        |
|                       | Ebigawa River                     |                                           | Yachiyo Bridge                                        | Funabashi City               | $\perp$   |                       | 6,400  |               | 340     |     | $\perp$       | 6,000         | 410      |          | 530   | 1,160    | $\sqcup \bot$   | $\perp$     | 410           | 460            | 80                      | 640             |         | $\perp \perp$ | 108     | 167      | -             | 213       | 52             |     | V               | 1,212   | 45      | 1.76         | L        |
|                       | Channel (lower                    |                                           | Shinhanamigawa Bridge                                 | Chiba City                   | LI        | ш                     | 167    | L l           | 1,770   |     | LΙ            | 530 208       | 1,020 1, | ,730     | 2,900 | 1,270    | Ll              |             | 960 1,640     | 1,130 1,68     | 0 1,590 146             | 232             |         | <u> </u>      | 329 154 | 174 284  | 570           | 131       | 160            |     | Mar             | 853     | 46      | 0.90         | 1`       |
|                       | Miyako River                      |                                           | Miyako Bridge                                         | Contra City                  |           |                       | 50     |               | 171     |     | П             | 530           | 241      |          | 91    | 193      |                 |             | 238           | 259            | 750                     | 500             |         | 410           | 1       | 85       |               | 56        | 125            |     | 1               | 264     | 47      | 0.79         | 1        |
|                       |                                   | Arakawa River Middle<br>Reaches           | Onari Bridge                                          | Konosu City                  | +         |                       | +      | +             | 25      |     | T             | 19            | 25       | _        | 22    | 12       | Ħ               | 2,          |               | 38             | 10                      | 10              |         | 1             | 1       |          | +             | 10        | 11.            | 10  | Wh.             | 20      | 48      | 0.60         | ۴        |
| Saitama<br>Prefecture |                                   |                                           |                                                       |                              | $\perp$   | $\perp \perp$         |        | $\perp \perp$ | 33      |     | $\perp$       |               | 2.5      |          | 3/    |          | $\perp \perp$   | 34          |               |                |                         | 19              |         | 17            | 1       | l o      | $\perp \perp$ | 10        |                |     |                 |         |         |              | 1        |
|                       | Arakawa River                     | Arakawa River Lower<br>Reaches            | Sasame Bridge                                         | Toda City                    |           |                       |        | ш             | 530     |     | Ш             | 266           | 61       |          | 490   | 540      | Ш               | 41          | oxdot         | 49             | 67                      | 36              |         | 53            |         | 48       | ш             | 35        |                | 58  | V               | 176     | 49      | 1.17         | Τ,       |
| Tokyo                 | System                            |                                           | Kasai Bridge                                          | Koto City /Edogawa City      |           |                       | T      |               | 700     |     |               | 131 520       | 217 2    | 280      | 300   | 175      |                 |             | 248           | 75             | 316                     | 450             |         | 430           |         | 317      |               | 410       | 3              | 30  | how             | 327     | 50      | 0.49         | ſ        |
| Metropolis            |                                   | Sumida River                              | Ryogoku Bridge                                        | Chuo City                    | +         | $\vdash$              | 1      | $T^{\dagger}$ | 580     |     | $\Box$        | 260 370       | _        | 300 470  | 670   | 310      | T               |             | 450           | 460            | 283                     | 278             |         | 14:           | 1       | 147      | 1             | 160       |                | 96  | Wh              | 332     | 51      | 0.50         | r        |
|                       |                                   |                                           |                                                       | í - '                        | Detec     |                       | 38 Det | ection<br>mes | 136     |     | 1 1           | 1             |          | - 1      | 1 1   | 1 1      |                 |             | 1             | 1 1            | 1 1                     | 1               |         | 1 1           | 1       | <u> </u> |               | [ ]       | 1 1            |     |                 | 1,082   | Average |              | _        |
| lank cells are i      | ocations where sar                | mples were not collected.                 | The result "Not detectable" i                         | is indicated as "0."         | time      | nes /3                | ti     | mes           |         | ВС  |               |               |          |          |       |          |                 |             | *3: Results o | f the analysis | of trends at res        | ective location | using 🔍 | L Decreasing  | Incre   | ısing ∼⊶ | Unchang       | ged M⁴ Va | rying          |     |                 | 1,002   | Analoge | J            |          |

### (2)-2 Lakes

### 1) Miyagi Prefecture

In Miyagi Prefecture, surveys were conducted 7 to 13 times from October 2011 to December 2014 for lake sediment samples collected at 21 locations.

Regarding concentration levels of detected values, six locations were categorized into Category D and 15 locations were categorized into Category E (see Table 4.3-19 and Table 4.3-20).

Concentration levels were generally decreasing at 12 locations but were generally unchanged or varying at nine locations.

Table 4.3-19 Categorization of detected values at respective locations (Miyagi Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                        |
|----------|--------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                           |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                           |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                                                                                           |
| D        | Upper 25 to 50 percentile                        | 6                   | No.8, No.9, No.13, No.15, No.16, No.17                                                           |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 15                  | No.1, No.2, No.3, No.4, No.5, No.6, No.7, No.10, No.11, No.12, No.14, No.18, No.19, No.20, No.21 |

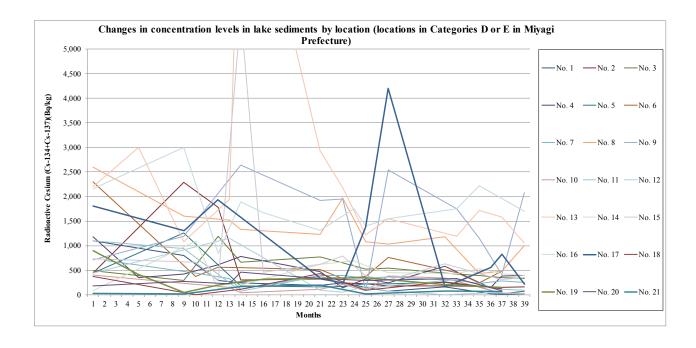


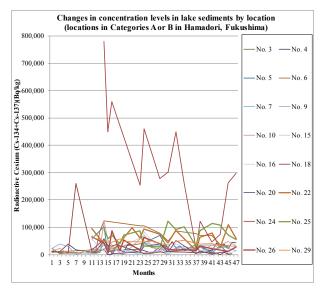

Figure 4.3-11 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: lake sediments)

Table 4.3-20 Detection of radioactive cesium at respective locations (Miyagi Prefecture: lake sediments)

|                                                                  | Location                     |           |                       |          |   |       |       |         |     |    |   |       |       |     |        |         |      | Lake Se | diments/ | Radioa | ctive Ces | ium (C  | s-134+     | Cs-137).                | Concen     | tration(Bo         | /kg)(*   | °1)          |   |            |        |        |      |          |         |         |     |                                        |                 |         |                         | T                      |
|------------------------------------------------------------------|------------------------------|-----------|-----------------------|----------|---|-------|-------|---------|-----|----|---|-------|-------|-----|--------|---------|------|---------|----------|--------|-----------|---------|------------|-------------------------|------------|--------------------|----------|--------------|---|------------|--------|--------|------|----------|---------|---------|-----|----------------------------------------|-----------------|---------|-------------------------|------------------------|
| No. Water a                                                      |                              | Location  | Municipality          |          |   | I     | FY201 | 11      |     |    |   |       |       | I   | FY2012 |         |      |         |          |        |           |         |            | F                       | Y2013      |                    |          |              |   |            |        |        | FY20 | 14       |         |         |     | Changes                                | average<br>(*2) | No.     | coefficient of variatio | Trends (*3)            |
| No. Water a                                                      | iica                         | Location  | Municipality          | 8        | 9 | 10    | 11    | 12      | 1 2 | 3  | 4 | 5 6   | 7     | 8 5 | 9 10   | 11      | 12 1 | 1 2     | 3        | 4      | 5 6       | 7       | 8          | 9                       | 10 11      | 12                 | 1        | 2            | 3 | 4 5        | 6 7    | 8      | 9    | 10 1     | 1 12    | 1       | 2 3 | Changes                                | (-)             |         |                         | ( -)                   |
| 1                                                                | Kunkoma Dam                  | Damsite   | Kurihara City         |          |   | 1,100 |       |         |     |    |   | 800   |       | 25  | 90     | 242     |      |         |          |        | 193       |         | 241        | 1                       | 54         | 69                 |          |              |   | 164        |        |        | 23   | 14       | 18      |         |     | ~                                      | 276             | 1       | 1.21                    | <u></u>                |
| 2                                                                | Hanayama Dam                 | Damsite   |                       |          |   | 440   |       |         |     |    |   | 2,290 | )     | 1,7 | 780    | 300     |      |         |          |        | 320       |         | 243        | 2                       | 25         | 184                |          |              |   | 185        |        | 168    |      | 153      | 161     |         |     | $\wedge$                               | 537             | 2       | 1.33                    | >>                     |
| 3 Kitakami River System                                          | Narugo Dam                   | Damsite   | Osaki City            |          |   | 490   |       |         |     |    |   | 290   |       | 1,1 | 190    | 660     |      |         |          |        | 770       |         | 650        | 5                       | 20         | 540                |          |              |   |            | 420    | 394    |      | 350      | 331     |         |     |                                        | 550             | 3       | 0.45                    | <u></u>                |
| 4                                                                | Lake Naganuma                | Damsite   | OSARICHY              |          |   | 1,180 |       |         | 35  | 0  |   | 420   |       | 6   | 10     | 780     |      |         |          |        | 470       |         | 146        | 3                       | 18         | 238                |          |              |   | 580        |        |        | 141  | 384      | 392     |         |     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 462             | 4       | 0.61                    | 1                      |
| 5                                                                | Shukunos awatamei<br>ke Pond | Pond exit | Kurihara City         |          |   | 440   |       |         |     |    |   | 1,260 | )     |     |        | 183     |      |         |          |        | 161       |         | 176        | 2                       | 16         | 225                |          |              |   | 246        |        | 164    |      | 19       | 76      |         |     | _                                      | 288             | 5       | 1.18                    | 1                      |
| 6                                                                | Futatsuishi Dam              | Damsite   | Kami Town             |          |   | 2,300 |       |         |     |    |   |       | 370   | 51  | 60     | 550     |      |         |          |        | 510       |         | 331        | 3                       | 69         | 760                |          |              |   |            | 450    | 245    |      | 480      |         |         |     | \                                      | 630             | 6       | 0.91                    | 1                      |
| 7 Natuse River System                                            | Urushizawa Dam               | Damsite   | Kami Iown             |          |   |       | 700   |         |     |    |   |       | 440   |     | 330    | 115     |      |         |          |        | 390       |         | 390        | 3                       | 43         | 364                |          |              |   |            | 286    | 231    |      | 284      | 252     |         |     | ~~                                     | 344             | 7       | 0.41                    |                        |
| 8                                                                | Minamikawa Dam               | Damsite   | Taiwa Town            |          |   | 2,600 |       |         |     |    |   | 1,600 | )     |     | 1,520  | 0 1,330 |      |         |          |        | 1,230     | D       | 1,970      | 1,                      | 080        | 1,030              |          |              |   | 1,180      |        | 432    |      | 476      | 1,000   |         |     | ~~                                     | 1,287           | 8       | 0.46                    | 7                      |
| 9 Sunaoshi River System                                          | Sonoseki Dam                 | Damsite   | Rifu Town             |          |   | 710   |       |         |     |    |   | 1,190 | )     |     |        | 2,640   |      |         |          |        | 1,920     | D       | 1,950      | 8                       | 38         | 2,540              |          |              |   |            | 1,750  | 1,150  |      | 415      | 2,080   |         |     | ~                                      | 1,494           | 9       | 0.57                    | \\\\                   |
| 10 Nanakita River System                                         | Nanakita Dam                 | Damsite   |                       |          |   | 400   |       |         |     |    |   | 232   |       |     | 148    | 44      |      |         |          |        | 107       |         | 213        | 8                       | 30         | 380                |          |              |   | 340        |        |        | 91   | 33       | 20      |         |     | ~                                      | 174             | 10      | 0.79                    | \\\\                   |
| 11 Marutazawatameike Pond                                        |                              | Pond exit | Sendai City           |          |   | 1,100 |       |         |     |    |   | 940   |       |     |        | 69      |      |         |          |        | 380       |         | 222        | 1                       | 29         | 181                |          |              |   |            | 313    |        | 165  | 109      | 94      |         |     | ~~                                     | 337             | 11      | 1.05                    | 1                      |
| 12 Natori River System                                           | Okura Dam                    | Damsite   | Sendar City           |          |   | 440   |       |         |     |    |   |       |       |     | 1,150  | 0       |      |         |          |        | 88        |         | 47         | 1                       | 75         | 68                 |          |              |   | 0          |        |        | 41   | 46       | 35      |         |     | \                                      | 209             | 12      | 1.70                    | 1                      |
| 13 Lake Amanuma                                                  |                              | Lake exit |                       |          |   | 2,200 |       |         | 3,0 | 00 |   | 1,080 | )     |     | 1,940  | 0 9,700 |      |         |          |        | 2,930     | D       | 2,180      | 1,                      | 220        | 1,550              |          |              |   |            | 1,190  | 1,720  | 1    | ,580     | 1,050   |         |     | ~~                                     | 2,411           | 13      | 0.95                    | 1                      |
| 14 Natori River System                                           | Kamafusa Dam                 | Damsite   | Kawasaki Town         |          |   | 85    |       |         |     |    |   |       | 1,090 | 1:  | 26     | 204     |      |         |          |        | 620       |         |            | 690 5                   | 90         | 450                |          |              |   |            | 430    | 530    |      | 431      | 395     |         |     | 1                                      | 470             | 14      | 0.58                    | \\\\                   |
| 15<br>Abukuma River System                                       | Kawarago Dam                 | Damsite   | Shiroishi City        |          |   | 730   |       |         |     |    |   |       | 660   | 2   | 80     | 5,700   | 46   | 50      |          |        | 620       |         | 790        | 3                       | 80         | 297                |          |              |   | 630        |        | 430    |      | 306      | 352     |         |     |                                        | 895             | 15      | 1.62                    | \\\\ <b>\</b>          |
| 16                                                               | Shichikashuku Dam            | Damsite   | Shichikashuku<br>Town |          |   | 2,160 |       |         |     |    |   | 3,000 | )     | 8-  | 40     | 1,890   | 1,6  | 70      |          |        | 1,310     | D       | 1          | 1,750 1,                | 400        | 1,550              |          |              |   |            | 1,750  | 2,220  | 1    | ,960     | 1,700   |         |     | ~~~                                    | 1,785           | 16      | 0.29                    | ~~*                    |
| 17 Lake Bagyunuma                                                |                              | Lake exit | Shiroishi City        |          |   | 1,810 |       |         |     |    |   | 1,310 | )     | 1,9 | 940    |         |      |         |          |        | 340       |         | 231        | 1,                      | 380        | 4,200              |          |              |   | 160        |        |        | 560  | 830      | 215     |         |     | $\sim \sim$                            | 1,180           | 17      | 1.01                    | $\wedge \wedge \wedge$ |
| 18 Abukuma River System                                          | Murata Dam                   | Damsite   | Murata Town           |          |   | 370   |       |         |     |    |   |       | 0     |     |        | 115     |      |         |          |        | 430       |         |            | 9                       | 92         |                    |          |              |   | 259        |        |        |      | 121      |         |         |     |                                        | 198             | 18      | 0.80                    | $\wedge \wedge \wedge$ |
| 19 Kitakami River System                                         | Lake Izunuma                 | Lake exit | Tome City             |          |   | 900   |       |         | 42  | 0  |   | 48    |       | 15  | 95     | 270     | 32   | 20      |          |        | 340       |         |            | 3                       | 50         |                    |          |              |   | 208        |        |        |      | 149      |         |         |     | \                                      | 320             | 19      | 0.72                    | <b>^</b>               |
| 20 Natori River System                                           | Tarumizu Dam                 | Damsite   | Natori City           |          |   | 185   |       |         |     |    |   | 270   |       |     | 222    | 460     |      |         |          |        | 326       |         |            | 2                       | 88         |                    |          |              |   |            | 329    |        |      | 79       |         |         |     | ~~                                     | 270             | 20      | 0.42                    | ~~*                    |
| 21 Naruse River System                                           | Miyatoko Dam                 | Damsite   | Taiwa Town            |          |   | 31    |       |         |     |    |   | 12    |       |     |        | 163     |      |         |          |        | 195       |         |            | 1                       | 18         |                    |          |              |   | 75         |        |        |      | 66       |         |         |     |                                        | 80              | 21      | 0.90                    | $\wedge \wedge \wedge$ |
| *1: Blank cells are locations w<br>*2: Arithmetic Average; calcu |                              |           |                       | ectable" |   |       |       | times 2 | 31  | В  | С | D E   |       |     |        |         |      |         |          |        | *3: F     | Results | of the ana | ilysis of t<br>method e | rends at i | respective on P.60 | location | ns using the | 7 | Decreasing | / Incr | easing |      | Inchange | - ///A• | Varying |     | _                                      | 676             | average | <u> </u>                |                        |

# 2) Fukushima Prefecture

#### i. Hamadori


In Hamadori, Fukushima Prefecture, surveys were conducted 5 to 33 times from September 2011 to February 2015 for lake sediment samples collected at 41 locations.

Regarding concentration levels of detected values, eight locations were categorized into Category A, eight locations into Category B, 16 locations into Category C, six locations into Category D, and three locations into Category E (see Table 4.3-21 and Table 4.3-22).

Concentration levels were generally decreasing at 21 locations, generally unchanged or varying at three locations, and generally increasing at three locations.

Table 4.3-21 Categorization of detected values at respective locations (Hamadori, Fukushima Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                     |
|----------|--------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 8                   | No.5, No.6, No.10, No.22, No.24, No.25, No.26, No.29                                                          |
| В        | Upper 5 to 10 percentile                         | 8                   | No.3, No.4, No.7, No.9, No.15, No.16, No.18, No.20                                                            |
| С        | Upper 10 to 25 percentile                        | 16                  | No.8, No.11, No.13, No.17, No.19, No.21, No.23, No.27, No.28, No.30, No.31, No.32, No.33, No.34, No.35, No.36 |
| D        | Upper 25 to 50 percentile                        | 6                   | No.1, No.14, No.38, No.39, No.40, No.41                                                                       |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 3                   | No.2, No.12, No.37                                                                                            |



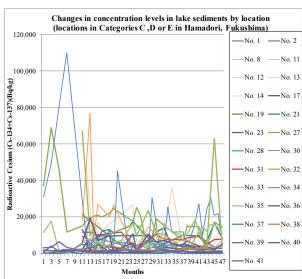
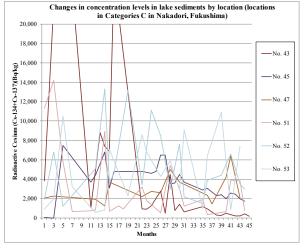



Figure 4.3-12 Changes in concentration levels over the years at respective locations (Hamadori, Fukushima Prefecture: lake sediments)

Table 4.3-22 Detection of radioactive cesium at respective locations (Hamadori, Fukushima Prefecture: lake sediments)

|                                    | Location              |                         | 1           |                     |          |                 |               |         |          |     |        |          |               |           |           | L      | ake Sedii   | nents/Radio | active Ce    | esium (C | Cs-134+Cs-   | 137)/Concer  | ntration(Bq/k    | g)(*1)           |              |               |          |        |             |                    |                 |                 |                  |           | 1               | $\overline{}$ | <del></del>                 |                           |
|------------------------------------|-----------------------|-------------------------|-------------|---------------------|----------|-----------------|---------------|---------|----------|-----|--------|----------|---------------|-----------|-----------|--------|-------------|-------------|--------------|----------|--------------|--------------|------------------|------------------|--------------|---------------|----------|--------|-------------|--------------------|-----------------|-----------------|------------------|-----------|-----------------|---------------|-----------------------------|---------------------------|
| o. Locatio                         |                       | Municipality            |             |                     | 1        | FY2011          |               |         |          |     |        |          | F             | Y2012     |           |        |             |             | I            | (        |              | ,            | FY2013           | a)( -)           |              |               |          |        |             | FY20               | 014             |                 |                  |           | average<br>(*2) | No.           | coefficient of<br>variation | Trends<br>(*3)            |
| o. Locatio                         | on                    | Municipality            | 8           | 9                   | 10       | 11 12           | 1             | 2 3     | 4        | 5 6 | 7      | 8        | 9 10          | 11        | 12        | 1      | 2           | 3           | 4            | 5        | 6            | 7            | 8 9              | 10 11            | 12           | 1 2           | 3 4      | 5      | 6           | 7 8 9              | 10 11           | 12 1            | 2                | 3 Changes | (-2)            |               | variation                   | (-3)                      |
| 1 Soso                             | Takei                 | Shinchi Town            |             | 140                 |          | 129             | 154           | 209     |          |     | 5,100  |          | 1,58          | 4,400     | 6,300     | 2,18   | 0           | 1,560       | )            |          | 4,300        | 1,280        | 2,650            | 3,700            | 4,400        | 2,580         |          | 5,200  | 4,800       | 3,530              | 2,830           | 2,740           | 2,730            | MM        | 2,841           | 1             | 0.64                        | 1->                       |
| (farm pond)                        | Uchizawa              |                         |             | 250                 |          | 45              | 830 2         | ,140    |          |     |        |          |               |           |           |        |             |             |              |          | 350          | 370          | 530              | 340              | 277          | 254           |          | 390    | 222         | 307                | 213             | 282             | 239              | 1         | 440             | 2             | 1.10                        | 1                         |
| 3 Matsugabo Dam (Lake Utagawa      | i)                    | Soma City               |             | 22,000              |          | 3,600           | 7,500         |         |          |     | 1      | 1,900 7  | ,800 59,0     | 00 23,400 | )         |        |             |             |              |          | 42,000       | 26,200       | 20,900           | 10,800           | 15,400       | 16,800        |          | 36,900 | 10,400      | 17,200             | 25,100          | 28,800          |                  | Jhr       | 21,039          | 3             | 0.68                        | W                         |
| 4 Mano Dam                         |                       |                         |             | 9,900               |          | 11,500          | 39,000        | 17,400  |          |     |        | ,800 1   | 4,400 19,0    | 00 42     | 1,270 21  | 800    | 9,400       | 8,000       | 1            | 9,800    |              | 5,000 17,500 | 17,200 36,00     | 0 25,500 48,00   | 00 22,600 3  | 2,800 13,900  |          | 20,400 | 27,200      | 17,600 12,400 41,0 | 00 31,700 38,30 | 00 21,100 45,00 | 00 42,700        | MAM       | 22,694          | 4             | 0.58                        | AAA                       |
| Soso                               | Ainosawa              |                         |             |                     |          |                 |               |         |          |     | 59,000 | 1        | 103,0         | 00 8,100  | 15,50     | ,      |             |             | 1            | 9,400    | 43,000       |              | 70,000           | 22,700           | 14,200       |               |          | 28,700 | 33,900      | 7,200              | 33,000          | 3,530           |                  | 100       | 32,945          | 5             | 0.85                        | $\equiv$                  |
| 6 Ganbe Dam Reservoir              |                       | litate Village          |             | 8,200               |          | 12,200          |               |         |          | _   | $\pm$  | 8 000 8  | 7,000 123,0   | 00 121.00 | )         | _      | 1           |             |              | 06.000   | 106,000      |              | 78,000           | 50,000           | 87,000       |               |          | 77 000 | 71,000      | 71,000             | 36,800          | 32,800          | +                | 7         | 67,813          | 6             | 0.56                        | MM                        |
| 7                                  | Fugane Dam            | 1                       |             | -,                  |          |                 |               |         |          |     | 12.000 |          | _             | 00 26,600 |           |        | 1           | _           | ,            | _        | 41,000       |              | 32.000           | 4.100            | 19,900       | 30.900        |          | 17 800 | 26,900      | 3.610              | 33,000          | 22,400          | 14.100           | 1 NW      | 20,866          | 7             | 0.54                        | $\Lambda \Lambda \Lambda$ |
| Soso (farm pond)                   | Sasatoge              |                         | -           |                     |          |                 |               |         |          | -   | 4,700  | $\dashv$ | _             | 0 2,900   |           | _      | -           |             | -            | 3 200    | 1,030        |              | 7,500            | 5,100            | 6,600        | 30,700        |          | 1 090  | 2,960       | 3,090              | 3,390           | 980             | 14,100           | M.        | 3,879           | 8             | 0.60                        | 1 A A A                   |
| 9 Takanokura Dam Reservoir         | .asaroge              |                         | +           | *****               | -        | 39 000          |               | 1.560   |          | -   | 4,700  |          | 9.100 35.0    |           |           | _      | +           |             | ľ            | 5,200    | 7.300        | 9.800        | -                | 960              | + +          | 23.400        |          | 1,000  | 33.900      | 35 100             |                 | 35 200          | +                |           | 22.091          | 9             |                             | ////\                     |
|                                    |                       |                         | $\vdash$    | 22,000              | -        | ,               | 30,000        | , , , , |          | _   |        | , · ·    | , , , , , , , | .,        |           |        | -           |             | $\vdash$     | _        | .,           | -,           | 13,200           |                  | 26,800       | 23,400        |          | 27,200 | ,           | 30,100             | 24,200          | ,               | +                | Wr        | ,,,,            |               | 0.53                        | (A A A                    |
| Yokokawa Dam Reservoir             |                       |                         |             | 13,800              | 2        | 23,000          | 4,500         | 3,500   |          |     |        | -        | 4,200 125,0   |           | )         | 2,90   | +           |             |              |          | 72,000       | 29,300       | 12,500           | 24,300           | 12,300       |               |          | 22,900 | 11,900      | 34,700             | 35,700          | 48,000          | 32,200           | M         | 28,744          | 10            | 0.99                        | /VV¥                      |
| 1                                  | Tarayachi             | Minamisoma City         |             |                     |          |                 |               |         |          |     | 420    | ,600 2   | 0,500 7,20    | _         |           |        | 6,40        | 10          |              |          |              |              |                  |                  |              |               |          |        |             |                    |                 |                 |                  | L         | 8,424           | 11            | 0.87                        | <u> </u>                  |
| 2                                  | Takeshiyachi          |                         | Ш           |                     |          |                 |               |         |          |     |        |          | 1,18          | 0 1,340   | 1,240     | 790    |             |             |              | _        | 550 1,180    |              | 600              | 410              | 520          | 600           |          | 1,240  | 294         | 293                | 1,080           | 265             | 225              | W         | 738             | 12            | 0.55                        | >3                        |
| 3                                  | Ryugasaku             |                         |             |                     |          |                 |               |         |          |     | 4      | 7,000    | 1,08          | 0 17,400  | 12,50     |        |             |             |              | 26       | 5,600 6,600  |              | 6,600            | 7,400            | 8,000        | 36,000        |          | 3,670  | 16,300      | 1,590              | 2,410           | 4,140           | 15,600           | MA        | 13,306          | 13            | 0.99                        | $\wedge \wedge \wedge$    |
| 4 Soso<br>(farm pond)              | Uwatashiro            | Kawamata Town           | l T         |                     | L T      |                 | $\Box \Gamma$ |         | $\Box$   |     | 4,200  | Γ        | 5,10          | 690       | 820       |        |             |             | LΤ           | 380      | 1,060        |              | 780              | 311              | 140          |               |          | 165    | 193         | 190                | 226             | 660             | $\perp$ $\Gamma$ | 1         | 1,065           | 14            | 1.46                        | 1                         |
| 5                                  | Koakuto               | Namie Town              |             |                     |          |                 |               |         |          |     | 56,000 |          | 13,0          | 00 32,000 | 13,000    | 1      |             |             | 6            | 1,000    | 51,000       |              | 14,600           | 12,500           | 40,000       |               |          | 3,260  | 16,300      | 1,530              | 8,900           | 10,300          |                  | Ww        | 23,814          | 15            | 0.85                        | 1                         |
| 6                                  | Yosouchi              | litate Village          | Ħ           |                     |          |                 |               |         |          |     | 70,000 | T        | 33,0          | 00 44,000 | 27,70     | ,      |             |             |              | 520      | 84,000       |              | 20,700           | 3,030            | 8,900        |               |          | 11,300 | 4,000       | 25,300             | 17,300          | 7,300           | 13,000           | V         | 24,670          | 16            | 1.00                        |                           |
| 7                                  | Myobusaku No. 2       | Minamisoma City         |             |                     |          |                 |               |         |          |     | 2,240  | ,800 1   | ,180 83       | 5,100     |           |        |             | 2,250       | )            | 10       | 0,800 1,750  |              | 6,400            | 11,800           | 14,000       | 4,000         |          | 4,900  | 6,800       | 4,080              | 3,760           | 2,460           | 5,000            | wh        | 5,175           | 17            | 0.72                        | ΛΛĀ                       |
| 8 Ogaki Dam                        |                       | Namie Town              | 1           | 13,100              | -        | 8.400           | 5.100         | 260,000 | ,        |     | 8,200  | 3.600    | 51.0          | 00 35.000 | 30,000 37 | 000    | 1           |             | 8            | 3.100    | 2,800        | 4,500        | 9.300 8.300      | 13,100 11,00     | 0 9.300 1    | 0.000         |          |        | 6.000       | 10,100 6,800 6,10  | 00 740 8.90     | 0 2,440 3,09    | 0                | ٨         | 21,554          | 18            | 2.28                        |                           |
| 0                                  | Uenokawa              | Katsurao Village        | 1           |                     |          |                 |               |         |          | _   | 21,200 |          |               |           |           |        | +           |             |              | 1.100    | 3,600        |              | 6,400            | 2,420            | 3,050        |               |          | 2.580  | 2,450       | 2.030              | 1,070           | 810             | 710              | 1/-       | 3,952           | 19            | 1.43                        |                           |
| 90                                 | Heigoiri              | litate Village          | H           |                     |          |                 |               |         |          | _   | 17,600 | +        | 56.0          | 00 34,000 | 2,790     |        | 1           |             | -            |          | 31,000       |              | 39.000           | 9,400            | 52,000       |               |          | 4,200  | 12,600      | 1,910              | 7,700           | 10,800          | 710              | 1,70      | 20,636          | 20            | 0.89                        | <u>~</u>                  |
| Soso<br>(farm pond)                | - 0                   | mate vinage             | +           |                     | -1       |                 | $\vdash$      | _       | $\vdash$ | _   | + +    | $\dashv$ |               | 7,900     | 1         | _      | 0 11,5      |             | +            |          |              |              | 8,300            | 6,300            | 5,200        |               |          | +      |             | 9,700              | 6,500           |                 | 8,300            | ~\\\      | 10,635          |               | 0.33                        | /VV*                      |
|                                    | Mekurasawa No. 2      | Namie Town              | $\vdash$    |                     | $\vdash$ |                 | $\vdash$      | _       |          |     | 11,700 | -        |               |           |           |        | 0 11,5      | _           | <b>⊢</b> ⊢ i |          | 17,400       |              | -                |                  | + +          |               | $\vdash$ | 10,000 | 9,700       |                    |                 | 16,800          | + +              |           |                 | 21            |                             | ~~ <b>^</b>               |
| 2 Furumichigawa Power Plant        | Joroku                |                         | $\sqcup$    |                     |          |                 |               |         |          |     | 96,000 | _        | _             | 00 23,800 |           | '      | -           | 98,00       | -            |          | 93,000       |              | 74,000           | 43,000           | 89,000       |               |          | 16,000 | 64,000      | 79,000             | 25,600          | 110,000         | 58,000           | VWW       | 61,338          | 22            | 0.52                        | \\\\                      |
| 3 Furumichigawa Power Plant<br>Dam |                       | Tamura City             |             |                     |          |                 |               |         |          | _   |        | ,600 1   | ,580 11,0     | 9,500     |           |        | <u> </u>    |             | 9            | 9,800    |              | 9,900        | 10,000           | 3,200            | 2,980        | 3,100         |          | 1,620  | 2,830       | 3,750              | 87              | 161             | $\perp \perp$    | 1 4       | 5,141           | 23            | 0.78                        | \\\\\                     |
| 4 (farm pond)                      | Sawairi No. 1         | Futaba Town             |             |                     |          |                 |               |         |          |     |        |          | 780,0         | 00 450,00 | 560,00    | 0      |             |             | 25           | 54,000   | 460,000      |              | 279,000          | 302,000          | 450,000      | 266,000       |          | 20,500 | 121,000     | 46,000             | 74,000          | 263,000         | 297,000          | m         | 308,167         | 24            | 0.67                        | \                         |
| 15                                 | Suzunai No. 4         | Okuma Town              |             |                     |          |                 |               |         |          |     |        |          | 91,0          | 59,000    | 72,000    | 40,00  | 0 71,0      | 00          | 8            | 8,000    | 32,000       |              | 27,700           | 123,000          | 92,000       | 102,000       |          | 31,600 | 88,000      | 114,000            | 108,000         | 72,000          | 55,000           | MM        | 74,488          | 25            | 0.40                        | ~~*                       |
| 16                                 | Nishihaguro           | Futaba Town             |             |                     |          |                 |               |         |          |     | 65,000 |          | 43,0          | 5,200     | 87,00     | 13,90  | 0 54,0      | 00          | 1            | 5,100    | 63,000       |              | 39,000           | 18,500           | 17,100       | 18,200        |          | 13,800 | 31,000      | 22,600             | 17,200          | 12,900          | 28,300           | W         | 31,378          | 26            | 0.72                        | <b>\</b>                  |
| 7 Sakashita Dam                    |                       |                         |             | 37,000              |          | 69,000          | 46,000        | 11,800  | )        |     | 15,100 | 7,600    | 20,6          | 20,70     | 20,10     | 21,90  | 0 24,6      | 00          |              | 17       | 7,700 25,000 | 20,700       | 350              | 18,800           | 15,300       |               |          | 7,200  | 14,800      | 14,700             | 2,600           | 17,100          | 14,300           | 1         | 20,563          | 27            | 0.69                        |                           |
| 8 Soso                             | Atamamori 2           | Okuma Town              |             |                     |          |                 |               |         |          |     | 9,400  |          | 6,30          | 5,700     | 2,790     | 13,00  | 0 5,90      | 10          | 5            | 5,700    | 3,900        |              | 7,000            | 4,900            | 4,500        |               |          | 4,100  | 4,200       | 1,160              | 6,300           | 3,470           | 3,620            | Vinn      | 5,408           | 28            | 0.50                        | /                         |
| 9 (farm pond)                      | Yonomori              | Tomioka Town            | Ħ           |                     |          |                 |               |         |          | _   | 62,000 | 5        | 4,000         | 47,000    | 45,00     | 57,00  | 0 48,0      | 00          | $\Box$       |          | 47,000       | 50,000       | 42,000           | 36,000           | 48,000       | 53,000        |          | 41,000 | 39,000      | 39,900             | 31,600          | 32,800          | 30,900           | www       | 44,678          | 29            | 0.20                        |                           |
| () Takikawa Dam                    |                       | Kawauchi Village        |             | 31,000              | -        | 50.000          | 80.000        | 110,000 |          |     | 28,000 | 7.600    | 4.10          | 0 8,600   | 760 6     | 30 690 | 850         | 5.000       |              | 990      | 1,320        | 4,700        | 2.320 30.40      | 0 17,300 2,13    | 0 930 2      | 5.500 11.800  |          | 11.900 | 1,740       | 16,300 27,100 10,2 | 00 23.900 30.40 | 00 21.000 21.90 | 0 7.400          | Λ.        | 19,287          | 30            | 1.24                        | $\overline{}$             |
| 1                                  | Takinosawa            | Tomioka Town            | H           | . ,                 |          | .,              |               |         |          |     | 13,200 | 4        | ,700          | 10,300    | _         | _      |             | 11.80       | 0            | _        | 100 2,060    |              | 7,400            | 10,500           | 7,800        |               |          | 7.500  | 8,600       | 9,300              | 4,800           | 7,600           | 7,900            | Mar       | 7,991           | 31            | 0.37                        |                           |
| Soso<br>(farm nond)                | Kamisigeoka No. 1     |                         | $\vdash$    |                     | $\vdash$ |                 | $\vdash$      | +       | $\vdash$ | +   | 67,000 | - 0      | ,500 14,8     |           |           | 10,40  | 0           | ,00         | ++           |          | 5,000 9,800  |              | 23,400           | 11,000           | 10,600       | +             | $\vdash$ | 2,940  | 590         | 11,800             | 2,370           | 63,000          | 3,890            | 1 1       | 16,331          | 32            | 1.22                        | ΛΛΛ                       |
| (farm pond)                        | Shimoshigeoka         | Naraha Town             | $\vdash$    |                     | $\vdash$ |                 |               |         | +        |     | 18,100 | - 1      | 7,000 8,40    | -         |           | 20,10  | _           | 00          | ++           | _        | 900 2,660    |              | 14,600           | 9,500            | 7,900        | 5,100         |          | 7 600  | 7,600       | 2,410              | 5,300           | 2,600           | 7 100            | m         | 14,126          | 33            | 1.24                        | , v v •                   |
| 4 Komachi Dam                      |                       | Ono Town                | $\vdash$    | 1,730               | H.       | 1.460           | $\vdash$      | +       | $\vdash$ | +   | 10,100 | 2.480    |               | 0 8,200   |           | 20,10  | 20,4        |             | ++           | 4,       | 3.100        | 2.790        | 6.300            | 2.860            | 3,700        | 4.800         | $\vdash$ | 7,000  | 3.320 3.650 |                    | 3,100           | 1.690           | 7,100            | M         | 3,660           | 34            | 0.56                        | <u>~</u>                  |
| 4 Komachi Dam                      |                       | One fown                | $\vdash$    |                     | H        | 1,460           | 810           | 290     | $\vdash$ | _   | +      | 7.400    |               |           | 4,700 4,  |        | 1           | 7.200       | +            | -        | - 7 - 1      |              |                  | 7                | .,           | ,             | $\vdash$ | 9.500  | ., .,       | 7                  | .,              | -30.0           | 1                | - "       | - 21 - 1        |               |                             | /∀∀*                      |
| Soso                               | 1                     | Naraha Town             | $\vdash$    | 11,400              |          | 17,600          | 810           | 290     | $\vdash$ |     |        | ,400     |               |           |           |        | <del></del> | 7,200       | 1            |          | 16,200       | 14,800 4,200 | 820 3,900        | 14,300 5,40      | -            | 3,300         | $\vdash$ | .,     | 10,300      |                    | 00 12,200 16,00 |                 | .,               | www       | 9,966           | 35            | 0.56                        | =                         |
| (farm pond)                        | Otsutsumi             |                         |             |                     |          |                 |               |         | $\sqcup$ | _   | 6,200  | 1        | 9,300 13,2    | _         | 1         | 9,70   | 1,45        | 0           | $\sqcup$     | 5,       | ,700 1,470   |              | 10,500           | 6,500            | 7,100        |               | $\vdash$ | 3,650  | 4,500       | 2,390              | 2,370           | 1,840           | 5,300            | hm        | 6,375           | 36            | 0.74                        | ->->                      |
| (farm pond)                        | Shinike               |                         | Ш           | 310                 |          | 540             | 050           | 510     | $\sqcup$ |     | 1,780  | 500      | 13:           | _         | <u> </u>  |        | 1           |             | $\sqcup$     |          | 89           | 78           | 112              | 68               | 111          | 750           |          | 18     | 141         | 380                | 610             | $\perp \perp$   | 304              | 1         | 404             | 37            | 1.05                        | 1                         |
| 8 Kodama Dam Reservoir (Lake Ko    | odama)                |                         | Ш           |                     |          | 1,360           | 600 1         | ,710    |          |     |        | 2,280    | 213 3,20      | 960       |           | 4,000  | 3,80        | 10          | Ш            |          | 1,740        | 2,020        | 1,730            | 1,770            | 2,300        | 1,740         |          | 2,340  | 3,190       | 2,520              | 2,790           | 1,290           | 1,480            | my        | 2,049           | 38            | 0.48                        | ~~*                       |
| 9 [waki<br>(farmpond)              | Kanoritsutsumishita   | Iwaki City              |             | 600                 | 4        | 4,000           | 820 1         | ,200    |          |     | 48     | 2,800    | 3,60          | 5,000     |           | 990    | 1,24        | 10          |              |          | 170          | 500          | 510              | 82               | 730          | 1,310         |          | 32     | 92          | 53                 | 80              | 150             | 140              | M         | 1,098           | 39            | 1.31                        | >>                        |
| Takashiba Dam Reservoir (Lake      | Takashiba)            |                         | ΙŢ          | 1,940               | l T      | 1,430           | 1,410         | 1,920   | LΤ       |     | T      | 800 1    | ,070 79       | 690       |           | 700    | 71          | )           | I I          | 790      |              | 870          | 880              | 1,050            | 1,530        | 1,140         |          | 1,050  | 860         | 720                | 780             | 950             | 990              | ~~        | 1,049           | 40            | 0.36                        | \ <u></u>                 |
| 1 Shitoki Dam Reservoir            |                       |                         |             | 3,000               | 1        | 3,300           | 6,400         | 3,300   |          |     |        | 930      | 980 1,12      | 0 1,310   |           | 1,69   | 1,40        | 10          | 1            | 1,820    |              | 1,120        | 1,200            | 1,270            | 2,000        | 1,340         |          | 1,230  | 900         | 1,110              | 1,200           | 1,220           | 1,130            | 1         | 1,771           | 41            | 0.71                        | 1                         |
| •                                  |                       | •                       | total nur   | mber of samples     | 745      | Detection times | 745           |         |          |     |        |          |               |           |           |        |             |             |              |          |              |              |                  |                  |              | ,             |          |        |             |                    |                 |                 |                  |           | 24,209          | average       |                             |                           |
| : Blank cells are locations where  | s samples were not co | llected. The result "N- | ot detected | ble" is indicated a | as "0 "  |                 |               |         |          |     |        |          |               |           |           |        |             |             |              |          |              | *3: R        | esults of the ar | alysis of trends | s at respect | ive locations | J Dave   | rasine | ر<br>Incres | sing \             | hanced M        | Varvine         |                  |           |                 |               |                             |                           |
| cens are acanonis where            | ques were aut co      | ric result 10           |             | o morested a        |          |                 |               |         |          |     |        |          |               |           |           |        |             |             |              |          |              |              | using the        | method explai    | ined on P.60 | 0             | 2,000    |        |             | Oile               | geu             | ,               |                  |           |                 |               |                             |                           |
| : Arithmetic Average; calculated   | d by assuming ND=0;   | Color codes show cat    | egories (s  | ee the right).      |          |                 |               | A B     | С        | D E |        |          |               |           |           |        |             |             |              |          |              |              |                  |                  |              |               |          |        |             |                    |                 |                 |                  |           |                 |               |                             |                           |
|                                    |                       |                         |             |                     |          |                 |               |         |          |     |        |          |               |           |           |        |             |             |              |          |              |              |                  |                  |              |               |          |        |             |                    |                 |                 |                  |           |                 |               |                             |                           |

#### ii. Nakadori


In Nakadori, Fukushima Prefecture, surveys were conducted 15 to 27 times from September 2011 to February 2015 for lake sediment samples collected at 12 locations.

Regarding concentration levels of detected values, six locations were categorized into Category C, four locations into Category D, and two locations into Category E (see Table 4.3-23 and Table 4.3-24).

Concentration levels were generally decreasing at four locations, generally unchanged or varying at six locations, and generally increasing at two locations.

Table 4.3-23 Categorization of detected values at respective locations (Nakadori, Fukushima Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                |
|----------|--------------------------------------------------|---------------------|------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                   |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                   |
| С        | Upper 10 to 25 percentile                        | 6                   | No.43, No.45, No.47, No.51, No.52, No.53 |
| D        | Upper 25 to 50 percentile                        | 4                   | No.42, No.44, No46, No.49                |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 2                   | No.48, No.50                             |



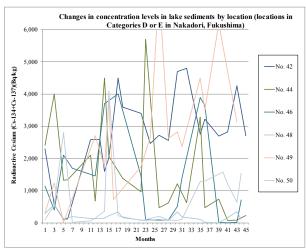



Figure 4.3-13 Changes in concentration levels over the years at respective locations (Nakadori, Fukushima Prefecture: lake sediments)

Table 4.3-24 Detection of radioactive cesium at respective locations (Nakadori, Fukushima Prefecture: lake sediments)

|       | Location                       |                    |            |           |          |               |         |         |       |   |   |    |           |       |        |       | I.     | ake Se  | dimen | ts/Radio | active | Cesium (C   | s-134+C  | s-137)/   | Conce  | ntratio   | n(Bq/l   | kg)(*1)      |           |     |        |         |            |        |          |         |          |                     |       |       |               |                 |         |                          |                            |
|-------|--------------------------------|--------------------|------------|-----------|----------|---------------|---------|---------|-------|---|---|----|-----------|-------|--------|-------|--------|---------|-------|----------|--------|-------------|----------|-----------|--------|-----------|----------|--------------|-----------|-----|--------|---------|------------|--------|----------|---------|----------|---------------------|-------|-------|---------------|-----------------|---------|--------------------------|----------------------------|
| No    | Location                       | Municipality       |            |           |          | FY2011        |         |         |       |   |   |    |           | FY    | 2012   |       |        |         |       |          |        |             |          | F         | Y2013  | 3         |          |              |           |     |        |         |            |        | FY       | 2014    |          |                     |       |       | Changes       | average<br>(*2) | No.     | coefficient of variation | Trends<br>(*3)             |
| 140.  | Location                       | wuncipanty         | 8          | 9         | 10       | 11 1          | 2       | 1 2     | 3     | 4 | 5 | 6  | 7 8       | 9     | 10     | 11    | 12     | 1       | 2     | 3 4      | 5      | 6           | 7        | 8         | 9      | 10        | 11       | 12 1         | . 2       | 3   | 4      | 5       | 6          | 7      | 8        | 9 1     | 0 11     | 12                  | 1     | 2 3   | Cianges       | ( -)            |         |                          | ( - /                      |
| 42    | Surikamigawa Dam Reservoir     | Fukushima City     |            | 2,300     |          | 570           | 1       | 04 11   | 6     |   |   | 2, | 580       | 2,600 | 1,600  | 2,020 |        | 4,500 3 | ,600  |          |        | 3,400       | 2,470    | 2,7       | 20     | 2,56      | 60       | 4,700        | 4,800     | 0   | 2      | 2,750   | 3,220      |        | 2,690    | 2,      | 820      | 4,250               | 2     | 2,700 | VYV           | 2,685           | 42      | 0.48                     | _>                         |
| 43    | Lake Handanuma (farm pond)     | Kori Town          |            | 3,800     |          | 21,900        | 35      | ,000    |       |   |   | 1, | 050       | 8,800 | 7,400  | 6,900 | 24,900 |         |       |          |        | 930 890     | 1,260    | 2,7       | 70 52  | 0 4,50    | 790      | 1,400 63     | 10        |     |        | 1,190   | 920        | 317    | 257 5    | 600 3   | 46 216   | 233                 | 437   | 176   | \V            | 4,742           | 43      | 1.83                     | \\\\                       |
| 44    | Oike Pond (farm pond)          | Motomiya City      |            | 2,400     |          | 4,000         | 1       | 320 1,3 | 40    |   |   | 2, | 110 680   |       | 4,500  | 2,070 | 1,840  | 1.      | ,380  |          |        | 960 5,700   | 0        | 47        | 0      | 620       | )        | 1,220        | 630       | ,   | 1      | 3,280   | 470        |        | 730      | 1       | 1        | 85                  |       | 226   | Wh            | 1,641           | 44      | 0.92                     | 7                          |
| 45    | Miharu Dam                     | Miharu Town        |            | 69        |          | 0             | 7       | 500     |       |   |   | 3, | 700 4,400 |       | 6,800  | 3,100 | 4,800  |         |       |          |        | 4,800       | 4,600 4, | 800 6,5   | 00 6,5 | 00 3,50   | 3,60     | 0 4,500 3,7  | 00        |     |        | 2,880   | 3,040      | 2,310  | 2,410 1, | ,990 2, | 580 2,44 | 0 1,960             | 1,740 |       | Mh            | 3,624           | 45      | 0.52                     | 1                          |
| 46    | Hounokusa (farm pond)          | Koriyama City      |            | 1,140     |          | 400           | 2       | 100     | 1,700 |   |   |    | 1,450     |       | 3,700  |       |        | 4,000   |       |          |        | 1,460 92    |          | 8.        | 3      | 88        |          | 510 1,4      | 00        |     |        | 3,900   | 3,640      |        | 18       |         | 0        | 13                  | 710   |       | $\mathcal{M}$ | 1,390           | 46      | 1.03                     | $\wedge \wedge \wedge$     |
| 47    | Lake Hatori                    | Tenei Village      |            | 2,060     |          | 2,240         |         |         |       |   |   |    | 1,950     |       | 1,270  | 3,700 |        |         |       |          |        | 2,210       | 2,750    | 2,6       | 30     | 5,00      | 10       | 3,700        |           |     |        | -       | 2,340 1,44 | 0      | 4,       | ,200 6, | 400      | 2,080               |       |       | ~~\           | 2,931           | 47      | 0.48                     | ~~*                        |
| 48    | Hirodaira (farmpond)           | Sukagawa City      |            | 290       |          | 570           | 1       | 19      | 191   |   |   | 1  | 39 133    |       | 148    | 217   |        | 340 1   | 63    |          |        | 88 75       |          | 10        | 6      | 69        |          | 340 17       | 19        |     |        | 104     | 16         |        | 0        | 1       | 59       | 351                 | 107   |       | Lu            | 177             | 48      | 0.74                     | $\wedge \wedge \wedge$     |
| 49    | Sengosawa Dam Reservoir        | Ishikawa Town      |            | 300       |          | 1,240         |         | 17      |       |   |   |    | 2,700     |       | 1,740  | 3,800 | 720    |         |       |          |        | 1,740       | 2,670    | 7,3       | 00     | 2,62      | :0       | 2,830 2,3    | 70        |     | 4      | 4,500   | 3,500      |        | 6,200    | 4,      | 700      | 3,140               |       |       | MM            | 2,894           | 49      | 0.67                     |                            |
| 50    | Watariike Pond (farmpond)      | Yabuki Town        |            | 102       |          | 550           | 2       | 800     | 17    |   |   | 6  | 63 144    |       | 360    | 4,100 |        | 222     |       |          |        | 75 99       |          | 20        | 2      | 88        |          | 68 10        | 17        |     |        | 1,280   | 1,300      |        | 1,       | ,570 1, | 210      | 640                 | 1,540 |       | M             | 787             | 50      | 1.34                     | $\wedge \wedge \wedge$     |
| 51    | Izumikawa (farm pond)          | Shirakawa City     |            | 11,300    |          | 14,200        | 5       | 800     | 660   |   |   | 7. | 20 820    |       | 8,900  | 710   |        | 1,270 9 | 40    |          |        | 3,200 1,770 | 0        | 54        | 0      | 5,40      | 10       | 3,000 1,2    | 00        |     |        | 1,880   | 326        |        | 6        | i70 3,  | 890      | 3,860               | 780   |       | Um            | 3,265           | 51      | 1.16                     | /                          |
| 52    | Hokkawa Dam                    | Nishigo Village    |            | 1,920     |          | 6,800         | 1.      | 210     |       |   |   |    | 5,100     |       | 13,300 | 3,600 | 4,600  |         | 13    | ,200     |        | 3,400       | 11,10    | 0 8,5     | 00     | 2,97      | 0        | 7,600 2,1    | 80        |     |        | 1,480   | 3,900      |        | 4,400    | 6,      | 600      | 3,480               | 2,990 |       | M             | 5,417           | 52      | 0.68                     | $\wedge \wedge \wedge$     |
| 53    | Lake Nanko                     | Shirakawa City     |            | 900       |          | 1,980         | 10      | ,500    | 3,200 |   |   |    | 580       |       | 820    | 7,100 |        |         | 2,    | 300      |        | 8,600 6,80  | 0        | 4,3       | 00     | 5,90      | 10       | 2,870 9,1    | 00        |     |        | 970     | 6,400      |        | 10,900   | 8       | 40       | 7,400               |       |       | MM            | 4,814           | 53      | 0.73                     | $\wedge \wedge \downarrow$ |
| *1: I | Blank cells are locations when | e samples were not |            |           | <u> </u> | Detection to  |         | _       | 10    |   |   |    |           |       |        |       |        |         |       |          |        |             | *3: Resu | lts of th | analy  | sis of tr | rends at | t respective | locations | s 🗸 | Decrea | ising - | Incre      | easing | ~~u      | nchang  | ed ///   | <sup>4</sup> Varyin | 3     |       |               | 2,864           | average |                          |                            |
| 2: /  | Arithmetic Average; calculate  | d by assuming ND=  | 0; Color c | odes show | categor  | ries (see the | right). | A       | В     | С | D | Е  |           |       |        |       |        |         |       |          |        |             |          |           |        |           |          | 00           |           |     |        |         |            |        |          |         |          |                     |       |       |               |                 |         |                          |                            |

#### iii. Aizu

In Aizu, Fukushima Prefecture, surveys were conducted 10 to 30 times from September 2011 to February 2015 for lake sediment samples collected at 31 locations.

Regarding concentration levels of detected values, eight locations were categorized into Category D and 23 locations were categorized into Category E (see Table 4.3-25 and Table 4.3-26).

Concentration levels were generally decreasing at four locations, generally unchanged or varying at 24 locations, and generally increasing at three locations.

Table 4.3-25 Categorization of detected values at respective locations (Aizu, Fukushima Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                                                                                                       |
|----------|--------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                                                                                          |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                                                                                          |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                                                                                                                                                          |
| D        | Upper 25 to 50 percentile                        | 8                   | No.54, No.55, No.56, No.58, No.59, No.60, No.74, No.78                                                                                                          |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) |                     | No.57, No.61, No.62, No.63, No.64, No.65, No.66, No.67, No.68, No.69, No.70, No.71, No.72, No.73, No.75, No.76, No.77, No.79, No.80, No.81, No.82, No.83, No.84 |

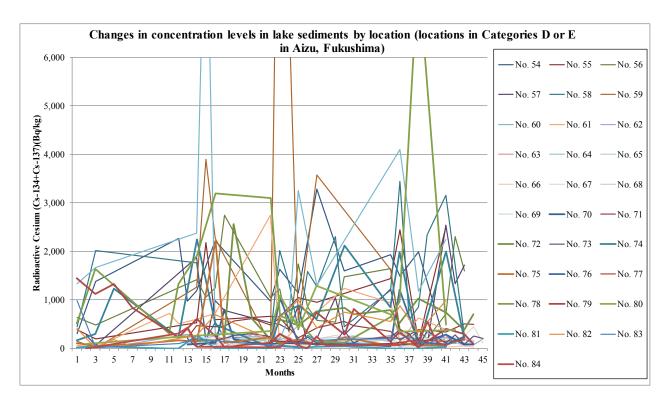



Figure 4.3-14 Changes in concentration levels over the years at respective locations (Aizu, Fukushima Prefecture: lake sediments)

Table 4.3-26 Detection of radioactive cesium at respective locations (Aizu, Fukushima Prefecture: lake sediments)

|                                           | Location                                                                                 |                      |           |                     |         |                    |       |     |   |     |        |        |           |         |        | Lake Se | dime nts/ | Radioa | active Ces | ium (Cs | -134+C     | s-137)/Co            | ncentration                     | n(Bq/kg)(                  | (*1)             |             |   |             |          |           |       |          |       |         |        |    |         |                 |         |                          | T                      |
|-------------------------------------------|------------------------------------------------------------------------------------------|----------------------|-----------|---------------------|---------|--------------------|-------|-----|---|-----|--------|--------|-----------|---------|--------|---------|-----------|--------|------------|---------|------------|----------------------|---------------------------------|----------------------------|------------------|-------------|---|-------------|----------|-----------|-------|----------|-------|---------|--------|----|---------|-----------------|---------|--------------------------|------------------------|
|                                           | Location                                                                                 | Municipality         |           |                     | FY      | 72011              |       |     |   |     |        |        | FY2012    |         |        |         |           |        |            |         |            | F                    | Y2013                           |                            |                  |             |   |             |          |           | FY    | 2014     |       |         |        |    | Changes | average<br>(*2) | No.     | coefficient<br>variation |                        |
| NO.                                       | Location                                                                                 | Municipanty          | 8         | 9                   | 10 1    | 1 12               | 1     | 2 3 | 4 | 5 6 | 7      | 3 9    | 10        | 1       | 1 12   | ! 1     | 2 3       | 4      | 5          | 6       | 7 8        | 9                    | 10                              | 11                         | 12               | 1 2         | 3 | 4 5         | 6        | 7 8       | 9     | 10       | 11    | 12      | 1 2    | 3  | Changes | ( -)            |         | Variation                | ( )                    |
| 54 Niechu Dam                             |                                                                                          | Kitakata City        |           | 298                 | 1,3     | 380                |       |     |   |     | 2,     | 70 970 | 1,190     | 2,2     | 20     |         |           |        | 970        | ,630    | 1,14       | 0                    | 3,280                           | 1                          | 1,590            |             |   | 1,930       | 1,490    | 1,990     | )     | 43       |       |         |        |    | my      | 1,493           | 54      | 0.54                     | <b>&gt;</b> 3          |
| 55 Lake Sohara                            |                                                                                          |                      |           | 380                 | 1       | 96                 |       |     |   |     |        |        | 530 2,1   | 180 59  | 90     |         |           |        | 660        | 650     | 1,04       | 0                    | 950                             |                            |                  |             |   | 1,440       | 2,450    | 130       |       | 2,50     | )     |         |        |    | 1-1     | 1,054           | 55      | 0.79                     | _>>                    |
| 56 Lake Hibara                            |                                                                                          | Kitashiobara Village |           | 630                 | 4       | 80                 |       |     |   |     |        |        | 1,420 1,0 | 060 1,2 | 50 2,7 | 50      |           |        | 1,040      | ,220 3  | 42 1,74    | 0 850                | 570                             | 540 1                      | 1,470            |             |   | 1,640       | 287 1    | 96 373    | 192   | 710      | 2,300 | 1,590   |        |    | MW      | 1,030           | 56      | 0.67                     | \/\\                   |
| 57 Lake Onogawa                           |                                                                                          |                      |           |                     | 270 5   | 7                  |       |     |   |     |        |        | 1,870 11  | 11 98   | 30 78  | 0       |           |        | 530        | 490 3   | 80 870     | 86                   | 210                             | 1,040                      | 282              |             |   | 1,220       | 309 1    | 68 97     | 62    | 2,54     | 1,330 | 1,720   |        |    | Sout    | 700             | 57      | 0.98                     | \/\ <b>\</b>           |
| 58 Lake Akimoto                           |                                                                                          | lnawashiro Town      |           | 440                 | 2,0     | )20                |       |     |   |     |        |        | 1,760 17  | 77 54   | 10 21  | 9       |           |        | 214        | ,010 1, | 340 380    | 1,580                | 1,270                           | 2,300                      | 450              |             |   | 1,200       | 3,440 5  | 90 850    | 2,340 | 3,15     | 1,710 | 257     |        |    | MM      | 1,284           | 58      | 0.76                     | \/\\                   |
| 59 Lake Bishamonnuma                      |                                                                                          | Kitashiobara Village |           | 150                 |         | 0                  |       |     |   |     |        |        | 1,260 3,9 | 2,2     | 60     |         |           |        | 82         | 3,400   | 570        |                      | 3,570                           |                            |                  |             |   | 1,620       | 400      | 140       |       | 11       |       |         |        |    | _h      | 2,105           | 59      | 1.73                     | WW                     |
| 60 Lake Oguninuma                         |                                                                                          |                      |           | 1,330               | 1,6     | 570                |       |     |   |     |        |        | 2,370 10, | 200 3   | 10     |         |           |        |            | 198 6   | 20 3,25    | 0                    | 1,300                           |                            |                  |             |   | -           | 4,100 2, | 570 1,180 | )     | 2,24     | )     |         |        |    | Lm      | 2,418           | 60      | 1.08                     | \\\\                   |
| 61 Aizu<br>(farm pond)                    | Lake Onuma                                                                               | Nishizizu Town       |           | 61                  | 2       | !8                 |       |     |   |     | 720 5  | 10     | 600       | 7.      | 20     |         |           |        |            | 59      | 480        |                      | 740                             | -                          | 1,230            |             |   | 930         | 129      | 620       |       | 385      |       |         |        |    | M       | 663             | 61      | 1.01                     | \\\\ <b>\</b>          |
| 62                                        | Center                                                                                   | Aizuwakamatsu City   |           | 0                   |         | 0                  | 44    | 93  |   |     |        | 286    | 133       | 7       | 6 33   | 126     | 12        | 2      |            | _       | 29 86      | 103                  | 215                             | -                          | 237 2:           | 56 199      |   | 149         | 29 1     | 14 63     | 319   | 97       | 119   |         | 67 19  | 3  | Now     | 135             | 62      | 0.62                     | \/\ <b>\</b>           |
| 63                                        | Takahashi River Estuary                                                                  |                      |           |                     |         |                    |       |     |   |     |        | 86     | 154       | 2       | 70 16  | 6 128   | 28        | 4      |            | 300     | 130        |                      | 147                             |                            | 153 13           | 39          |   | 261         | 291      | 142       |       | 233      |       | 195     | 98     |    | MM      | 186             | 63      | 0.37                     | ~~*                    |
| 64                                        | Oguro River Estuary                                                                      |                      |           |                     |         |                    |       |     |   |     |        | 200    | 76        | 13      | 79 11  | 4 127   | 24        | 5      | 110        | _       | 163        |                      | 130                             | -                          | 114 13           | 26          |   | 90          | 99       | 95        |       | 96       |       | 110     | 88     |    | W~      | 125             | 64      | 0.36                     | ~~*                    |
| 65                                        | Tenjinhama Beach                                                                         | lnawashiro Town      |           |                     |         |                    |       |     |   |     |        | 111    |           | 9       |        | 2 135   |           |        | 208        | _       | 80         |                      | 157                             | -                          | 105 8            | 13          |   | 198         |          | 106       |       | 201      |       |         | 148    |    | ~M      | 126             | 65      | 0.36                     | ~~*                    |
| 66                                        | Hishinuma River Estuary                                                                  |                      |           |                     |         |                    |       |     |   |     |        | 83     | 108       | 3       | 9 90   | 89      | 68        | 3      | 85         | 50      | 57         |                      | 82                              | +                          | 60 1             | 5           |   | 39          | _        | 49        |       | 25       |       |         | 23     |    | mm      | 59              | 66      | 0.45                     | >>                     |
| 67<br>Lake Inawashiro                     | Intake of Asakasosui                                                                     |                      |           |                     |         |                    |       |     |   |     |        | 126    | 118       | 1       | 15 25  | 1 108   | 11        | 6      | 236        | 249 1   | 72 123     | 241                  | 194                             | -                          | 216 22           | 22 152      |   | 182         | 91 2     | 55 247    | 201   | 160      | 170   | 248     | 440 10 | 13 | hm      | 192             | 67      | 0.40                     | ~~*                    |
| 68                                        | Hamajihama Beach                                                                         |                      |           |                     |         |                    |       |     |   |     |        | 235    |           | 24      | 10 16  | 9 242   | 22        | 1      |            | 162     | 151        |                      | 205                             | -                          | 228              |             |   |             |          | 151       |       | 206      |       |         | 161    |    | ~~~     | 198             | 68      | 0.15                     | ~~*                    |
| 69                                        | Funatsu Port                                                                             | Koriyama City        |           |                     |         |                    |       |     |   |     |        | 223    | 213       | 18      | 36 37  | 0 182   | 22        | 3      | 186        | 141     | 187        |                      | 107                             | -                          | 138 1            | 60          |   | 192         | 382      | 101       |       | 141      |       | 224     | 109    |    | Anh     | 193             | 69      | 0.40                     | ~~*                    |
| 70                                        | Offshore of Funatsu River Estuary                                                        |                      |           |                     |         |                    |       |     |   |     |        | 74     | 86        | 1       | 18 80  | 0 186   | 11        | 6      | 88         | 97      | 107        |                      | 92                              |                            | 70               |             |   | 87          | 74       | 91        |       | 278      |       | 73      | 79     |    |         | 148             | 70      | 1.19                     | \/\\                   |
| 71                                        | Seishogahama Beach                                                                       |                      |           |                     |         |                    |       |     |   |     |        | 220    | 470       | 44      | 40 46  | 0 560   | 61        | 0      | 480        | 620     | 211        |                      | 420                             |                            | 550 4            | 70          |   | 344         | 174      | 387       |       | 331      |       | 500     | 490    |    | WW      | 430             | 71      | 0.30                     | ~~*                    |
| 72                                        | Haragawa River Estuary                                                                   | Aizuwakamatsu City   |           |                     |         |                    |       |     |   |     |        | 390    | 151       | 16      | 58 21  | 5 2,560 | 61        | 0      | 176        | 590     | 470        |                      | 760                             |                            | 830 70           | 00          |   | 790         | 520      | 1,030     | )     | 740      |       | 379     | 700    |    | S       | 654             | 72      | 0.83                     | \\\\                   |
| 73                                        | Koishigahama Floodgate                                                                   | Inawashiro Town      |           |                     |         |                    |       |     |   |     |        | 206    | 22        | 16      | 51 20  | 9 263   | 30        | 6      | 241        | 133 1   | 44 134     | 228                  | 111                             | 133                        | 361 1            | 14 195      |   | 226         | 389 3    | 03 30     | 363   | 109      | 274   | 89      | 257 20 | 0  | NWW     | 200             | 73      | 0.49                     | ~~*                    |
| 74 Higashiyama Dam Reservoir              |                                                                                          | Aizuwakamatsu City   |           | 157                 | _       | 90                 | 1,230 |     |   |     | 2      | 20     | 2,250     |         | _      |         |           |        |            | 680     | 880        | $\perp$              | 600                             |                            | 2,110            |             |   | 850         |          | 18        |       | 2,00     |       | 214     |        |    | M       | 875             | 74      | 0.91                     | \\\\                   |
| 75                                        | Center                                                                                   |                      |           | 100                 | 5       | 9                  | 63    | 84  |   |     | 1      | 50     | 138       | 2,2     | 10 12  | 0       |           |        | 219        | 90      | 191        |                      | 62                              |                            | 221              |             |   | 57          | 127      | 58        |       | 70       |       | 197     |        |    |         | 235             | 75      | 2.11                     | \\\\                   |
| 76 Lake Numazawa                          | Midpoint between the center of the<br>lake and off the estuary (at the depth<br>of 30 m) | Kaneyama Town        |           |                     |         |                    |       |     |   |     |        |        |           |         |        |         |           |        | 146        | ,030    | 118        |                      | 77                              |                            | 103              |             |   | 37          | 1,200    | 129       |       | 74       |       | 237     |        |    |         | 315             | 76      | 1.35                     | \\\\                   |
| 77                                        | Offshore of Maenosawa River<br>Estuary                                                   | 1                    |           |                     |         |                    |       |     |   |     |        |        |           |         |        |         |           |        | 144        | 139     | 134        |                      | 79                              |                            | 54               |             |   | 98          | 118      | 163       |       | 148      |       | 163     |        |    | ~       | 124             | 77      | 0.29                     | ~~*                    |
| 78 Aizu (farmpond)                        |                                                                                          | Aizumisato Town      |           | 510                 | 1,6     | 540                |       |     |   |     | 310 1, | 30     | 1,910     | 3,2     | 200    |         |           |        | 3,100      | 660     | 540        |                      | 142                             |                            | 117              |             |   | 640         | 970      | 7,800     | )     | 490      |       |         |        |    | ~~ 1    | 1,557           | 78      | 1.27                     | W                      |
| 79 Okawa Dam Reservoir                    | •                                                                                        | Aizuwakamatsu City   |           | 1,450               | 1,      | 120                | 1,320 | 830 |   |     | 2      | 18     | 610       | 24      | 12 35  | 44 (    | 59        |        | 120        | 297     | 49         |                      | 740                             |                            | 286 8            | 10          |   | 139         | 344      | 14        |       | 400      |       | 298     | 90     |    | ~~~     | 433             | 79      | 1.00                     | ->                     |
| 80 Tagokura Reservoir                     |                                                                                          |                      |           |                     | 90      |                    |       |     |   |     | 2      | 29     |           | T       | İ      |         |           |        | 360        | ,090    | 410        |                      | 1,290                           |                            |                  |             |   | 700         | 343      | 360       |       |          | 378   |         |        |    |         | 525             | 80      | 0.73                     | _                      |
| 81 Minamiaizu<br>(farm pond)              | Fukui                                                                                    | Tadami Town          |           | 22                  | 4       | 17                 |       |     |   |     | 0      | )      | 270       | -       | )      |         |           |        | 0          | 70      | 12         |                      | 28                              |                            | 39               |             |   | 0           | 0        | 0         |       | 30       |       |         |        |    | -A-     | 35              | 81      | 1.99                     | \/\\\                  |
| 82 Tajima DamReservoir (Lake<br>Funchana) | 1                                                                                        | Minamiaizu Town      |           | 410                 |         | 0                  | 177   | 34  |   |     | 2      | )7     | 270       | 70      | 00     |         |           |        | 175        | 630     | 1,00       | 0                    | 420                             |                            | 740              |             |   | 550         | 870      | 333       |       | 980      |       |         |        |    | WW      | 469             | 82      | 0.69                     | ~                      |
| 83 Okutadami Reservoir                    |                                                                                          | Tadami Town          |           | 980                 | 1       | 8                  |       |     |   |     |        | 7      | 190       |         |        |         |           |        |            | 38 2    | 24 34      | 259                  | 160                             | 180                        |                  |             |   |             | 209 2    | 36 148    | 86    | 277      | 103   |         |        |    |         | 190             | 83      | 1.20                     | ~                      |
| 84 Lake Ozenuma                           |                                                                                          | Hinoemata Village    |           |                     | 0       |                    |       |     |   |     | 3      | 10 430 | 34        |         |        |         |           |        |            | 13 2    | 02 51      | 0                    | 242 57                          |                            |                  |             |   |             | 70 1     | 60 117    | 550 1 | 22 59    |       |         |        |    | Lnd     | 151             | 84      | 1.06                     | $\wedge \wedge \wedge$ |
|                                           |                                                                                          |                      |           | number of<br>imples |         | Detection<br>times | 527   |     |   | •   |        |        |           |         | -      |         |           | •      |            |         |            |                      |                                 |                            |                  |             |   |             |          | •         |       |          |       |         |        | •  |         | 590             | average |                          |                        |
|                                           | there samples were not collected. The                                                    |                      |           |                     | as "0." |                    |       |     |   |     |        |        |           |         |        |         |           |        |            | *3      | 3: Results | of the anal<br>the n | ysis of trends<br>nethod explai | s at respect<br>ined on P. | ctive loca<br>60 | tions using | D | ecreasing . | Inc      | reasing   | ₩ Ui  | nchanged | WA    | Varying | 3      |    |         |                 |         |                          |                        |
| : Arithmetic Average; calcul              | lated by assuming ND=0; Color code                                                       | es show categorie:   | s (see tl | ne right).          |         |                    |       | A B | С | D E |        |        |           |         |        |         |           |        |            |         |            |                      |                                 |                            |                  |             |   |             |          |           |       |          |       |         |        |    |         |                 |         |                          |                        |

# 3) Ibaraki Prefecture

In Ibaraki Prefecture, surveys were conducted 8 to 14 times from September 2011 to February 2015 for lake sediment samples collected at 19 locations.

Regarding concentration levels of detected values, one location was categorized into Category C, four locations into Category D, and 14 locations into Category E (see Table 4.3-27 and Table 4.3-28).

Concentration levels were generally decreasing at 11 locations, generally unchanged or varying at seven locations, and generally increasing at one location.

Table 4.3-27 Categorization of detected values at respective locations (Ibaraki Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                               |
|----------|--------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                  |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                  |
| С        | Upper 10 to 25 percentile                        | 1                   | No.13                                                                                   |
| D        | Upper 25 to 50 percentile                        | 4                   | No.12, No.14, No.15, No.16                                                              |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 14                  | No.1, No.2, No.3, No.4, No.5, No.6, No.7, No.8, No.9, No.10, No.11, No.17, No.18, No.19 |

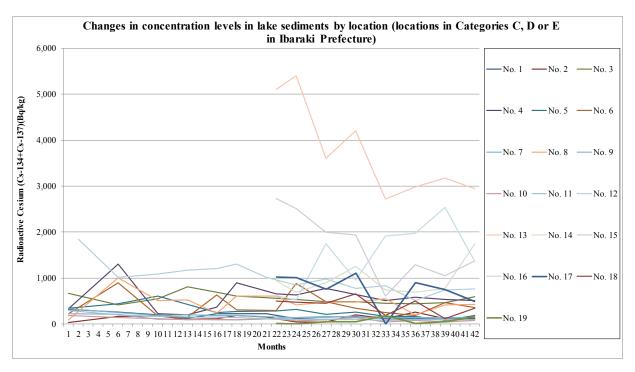



Figure 4.3-15 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: lake sediments)

Table 4.3-28 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: lake sediments)

|                     | Location                   |                   |             |          |         |           |         |        |        |         |   |       |   |   |       |      | L    | ake Se | dimen | s/Radi | oactive | e Cesi | ium (Cs- | 134+0     | S-137    | )/Conce   | entrati | on(Bq/    | kg)(*   | )     |       |         |      |         |      |         |        |         |      |        |           | auara c         |         | coefficient | of Tren |
|---------------------|----------------------------|-------------------|-------------|----------|---------|-----------|---------|--------|--------|---------|---|-------|---|---|-------|------|------|--------|-------|--------|---------|--------|----------|-----------|----------|-----------|---------|-----------|---------|-------|-------|---------|------|---------|------|---------|--------|---------|------|--------|-----------|-----------------|---------|-------------|---------|
| Loca                | ation                      | Municipality      |             |          |         | FY201     |         |        |        |         |   |       |   |   | FY2   |      |      |        |       | _      |         |        |          |           |          | Y2013     |         |           |         |       |       |         |      |         | FY20 |         |        |         |      |        | Changes   | average<br>(*2) | No.     | variation   |         |
|                     |                            | 1,                | 8           | 9        | 10 1    | 11 1      | 2       | 1 :    | 2 3    | 3 4     | 5 | 6     | 7 | 8 | 9     | 10 1 | 11 1 | 12 1   | 1 2   | 3      | 4       | 5      | 6        | 7 8       | 9        | 10        | 11      | 12        | 1       | 2 3   | 4     | 5       | 6 7  | 8       | 9    | 10 11   | 1 12   | 2 1     | 2    | 3      |           |                 |         |             |         |
|                     | Hiroura                    |                   |             | 320      |         |           |         | 20     | 60     |         |   | 200   |   |   | 122   |      | 2    | 19     | 21    | 9      |         | 221    |          | 11        | 4        |           | 155     |           |         | 165   |       | 136     |      | 111     |      | 13      | 6      |         | 94   |        | √~        | 177             | 1       | 0.36        |         |
| Hinuma              | Miyamae                    | Ibaraki Town      |             | 37       |         |           |         | 16     | 62     |         |   | 179   |   |   | 98    |      | 1    | 18     | 18-   | 4      |         | 146    |          | 49        | )        |           | 49      |           |         | 204   |       | 119     |      | 264     |      | 12      | 0      |         | 119  | 1      | $\sim$    | 132             | 2       | 0.50        | \\\\\   |
|                     | Oyazawa                    |                   |             | 670      |         |           |         | 43     | 20     |         |   | 550   |   |   | 810   |      | 6    | 590    | 61    | 0      |         | 570    |          | 54        | 0        |           | 490     |           |         | 490   |       | 450     |      | 442     |      | 46      | 0      |         | 590  | $\vee$ | $\sim$    | 556             | 3       | 0.21        | ~~~     |
|                     | Offshore of<br>Tamatsukuri | Namegata City     |             | 330      |         |           |         | 1,3    | 300    |         |   | 228   |   |   | 201   |      | 3    | 70     | 89    | 0      |         |        | 650      | 63        | 0        |           | 770     |           |         | 640   |       | 510     |      | 580     |      | 54      | 0      |         | 510  | Λ      | <i></i>   | 582             | 4       | 0.51        | W       |
|                     | Offshore of<br>Kakeuma     | Ami Town          |             | 340      |         |           |         | 4      | 40     |         |   | 610   |   |   | 430   |      | 2    | 252    | 27    | 0      |         |        | 280      | 32        | 0        |           | 208     |           |         | 257   |       | 165     |      | 168     |      | 78      | 8      |         | 182  | _      | Ly        | 286             | 5       | 0.49        |         |
| Lake Kasumigaura    | Center                     | Miho Village      |             | 221      |         |           |         | 91     | 00     |         |   | 178   |   |   | 151   |      | 6    | 30     | 31    | 0      |         |        | 300      | 88        | 0        |           | 490     |           |         | 340   |       | 242     |      | 192     |      | 46      | 0      |         | 360  | Λ      | M         | 404             | 6       | 0.63        | W       |
| =                   | Offshore of Aso            | Inashiki City     |             | 330      |         |           |         | 2:     | 50     |         |   | 183   |   |   | 202   |      | 1    | 86     | 18.   | 3      |         |        | 150      | 13        | 9        |           | 164     |           |         | 138   |       | 143     |      | 134     |      | 13      | 9      |         | 138  |        | ~~        | 177             | 7       | 0.32        |         |
|                     | Offshore of                | Namegata City     |             | 90       |         |           |         | 10     | 000    |         |   | 510   |   |   | 520   |      | 2    | 139    | 61    | +      |         |        | 610      | 41        | +        |           | 470     |           |         | 470   |       | 550     |      | 203     |      | 41      | +      |         | 429  | Λ.     | 7/-1-     | 466             | 8       | 0.48        | -       |
| Lake Kitaura        | Kamaya<br>Jingu Bridge     |                   |             | 220      | +       |           |         | - 1    | 17     | +       | + | 106   |   |   | 103   |      | -    | 93     | 95    | -      |         |        | 121      | 13        | -        |           | 139     |           |         | 172   |       | 99      |      | 107     |      | 11      | +-     |         | 86   | /      | V - V     | 129             | 9       | 0.34        |         |
|                     | Lake                       | Itako City        |             | 184      | +       |           |         | +      | 43     | +       | - | 110   |   |   | 97    |      | -    | 02     | 93    | -      |         |        | 113      | 66        | +        |           | 91      |           |         | 141   |       | 49      | -    | 76      |      | 42      |        |         | 79   |        | ~\lambda_ | 99              |         |             |         |
| Hitachitone River   | Sotonasakaura              |                   |             |          |         |           |         | +      | -      |         | - |       |   |   |       |      | +    | _      |       | -      |         |        |          |           | -        |           |         |           |         |       |       |         |      |         |      | _       | -      |         |      |        |           |                 | 10      | 0.40        |         |
|                     | Ikisu<br>Center of Lake    | Kamisu City       |             | 290      | -       |           | -       | +      | 05     | -       | - | 168   |   |   | 152   |      | -    | 54     | 14.   | _      |         |        | 104      | 10        | -        |           | 108     |           |         | 98    |       | 74      |      | 97      |      | 95      | +      |         | 91   | \ \    | ~~        | 134             | 11      | 0.44        |         |
| Lake Ushikunuma     | Ushikunuma                 | Ryugasaki City    |             | 1,       | ,840    |           |         | 1,0    | )20    |         | - | 1,090 |   |   | 1,170 |      | 1,2  | 210    | 1,30  | 10     |         | 1,010  |          | 85        | 0        |           | 980     |           |         | 770   |       | 840     |      | 510     |      | 74      | +-     |         | 760  |        | 7         | 1,006           | 12      | 0.32        |         |
| Mizunuma Dam        |                            | Kita ibaraki City |             |          |         |           |         |        |        |         |   |       |   |   |       |      | _    |        |       |        |         |        | 5,100    | 5,40      | 00       |           | 3,600   |           | _       | 1,200 |       | 2,720   |      | 2,980   |      | 3,11    | 70     |         | 2940 |        | 7         | 3,764           | 13      | 0.28        |         |
| Koyama Dam          |                            | Takahagi City     |             |          |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 940      | 69        | 0        |           | 890     |           |         | 1,250 |       | 740     |      | 690     |      | 77      | 0      |         | 1750 |        | $\sim$    | 965             | 14      | 0.21        | ~~~     |
| Hananuki Dam        |                            |                   |             |          |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 2,730    | 2,52      | 20       |           | 2,000   |           |         | ,940  |       | 610     |      | 1,290   |      | 1,0     | 50     |         | 1380 |        | 7~        | 1,690           | 15      | 0.46        |         |
| Jyuou Dam           | Center                     | Hitachi City      |             |          |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 620      | 52        | 0        |           | 1,750   |           |         | 950   |       | 1,920   |      | 1,980   |      | 2,5     | 40     |         | 1360 |        | M         | 1,455           | 16      | 0.53        |         |
| Ryuji Dam           |                            | Hitachiota City   |             |          |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 1,020    | 1,0       | 10       |           | 760     |           |         | 1,110 |       | 0       |      | 900     |      | 74      | 0      |         | 490  |        | 1         | 754             | 17      | 0.50        | /       |
| Fujiigawa Dam       |                            | Shirosato Town    |             |          |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 500      | 48        | 0        |           | 450     |           |         | 650   |       | 193     |      | 498     |      | 11      | 7      |         | 346  |        | $\sim$    | 404             | 18      | 0.47        | _       |
| lida Dam            |                            | Kasama City       |             | ĺ        |         |           |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         |        | 18       | 0         |          |           | 45      |           |         | 53    |       | 180     |      | 11      |      | 55      | 5      |         | 156  |        | N         | 65              | 19      | 0.93        | \\\\    |
| 1                   |                            | •                 | tot<br>numb |          | 24 E    | Detection |         | 22     |        |         |   |       |   |   |       |      |      | -      |       | -      |         |        |          |           |          |           |         |           |         |       |       |         |      |         |      |         | -      |         |      |        | V /       | 697             | average |             |         |
|                     |                            |                   | sam         | oles     |         | times     |         |        |        |         |   |       |   |   |       |      |      |        |       |        |         | *3-    | Results  | of the an | alvsis ( | of trends | at res  | pective l | locatio | ns    |       |         | 7    |         |      |         | . A.A  | ۸.      |      |        |           |                 |         | _           |         |
| Blank cells are loc | ations where sam           | nples were not co | ollected    | The re   | sult "N | ot dete   | ctable' | is ind | icated | as "0." |   |       |   |   |       |      |      |        |       |        |         | ٥.     |          |           |          | d explair |         |           |         | 7     | Decre | asing / | Incr | reasing | ~~t  | nchange | :d /V\ | /♥ Vary | ing  |        |           |                 |         |             |         |
| Arithmetic Averag   | e; calculated by a         | assuming ND=0;    | ; Color     | codes sh | now cat | tegories  | s (see  | the    | A E    | 3 C     | D | Е     |   |   |       |      |      |        |       |        |         |        |          |           |          |           |         |           |         |       |       |         |      |         |      |         |        |         |      |        |           |                 |         |             |         |

# 4) Tochigi Prefecture

In Tochigi Prefecture, surveys were conducted 10 to 14 times from October 2011 to December 2014 for lake sediment samples collected at eight locations.

Regarding concentration levels of detected values, one location was categorized into Category C, one location into Category D, and six locations into Category E (see Table 4.3-29 and Table 4.3-30).

Concentration levels were generally decreasing at one location, generally unchanged or varying at four locations, and generally increasing at three locations.

Table 4.3-29 Categorization of detected values at respective locations (Tochigi Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                          |
|----------|--------------------------------------------------|---------------------|------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                             |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                             |
| С        | Upper 10 to 25 percentile                        | 1                   | No.4                               |
| D        | Upper 25 to 50 percentile                        | 1                   | No.2                               |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 6                   | No.1, No.3, No.5, No.6, No.7, No.8 |

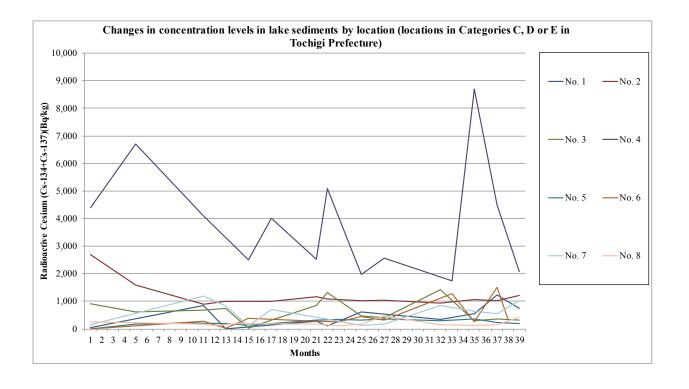



Figure 4.3-16 Changes in concentration levels over the years at respective locations (Tochigi Prefecture: lake sediments)

Table 4.3-30 Detection of radioactive cesium at respective locations (Tochigi Prefecture: lake sediments)

|       |                          | Location                 |             |                       |        |                         |           |         |         |       |   |     |   |     |        |       | Lake  | Se dime i | ıts/Rac | lioactiv | e Cesi | um (Cs-      | 134+0 | 's-137) | Concent    | ration(B   | q/kg)(*1 | 1)  |        |        |       |           |             |          |        |        |     |                    |                 |         |                             | I                      |
|-------|--------------------------|--------------------------|-------------|-----------------------|--------|-------------------------|-----------|---------|---------|-------|---|-----|---|-----|--------|-------|-------|-----------|---------|----------|--------|--------------|-------|---------|------------|------------|----------|-----|--------|--------|-------|-----------|-------------|----------|--------|--------|-----|--------------------|-----------------|---------|-----------------------------|------------------------|
| No    | River System             | Location                 |             | Municipality          |        |                         |           | FY20    | 11      |       |   |     |   |     | FY2    | :012  |       |           |         |          |        |              |       | FY2     | 013        |            |          |     |        |        |       |           | FY2         | 2014     |        |        |     | Changes            | average<br>(*2) | No.     | coefficient of<br>variation | Trends<br>(*3)         |
| 110.  | raver bysiem             | Locuson                  |             | .vitane-pancy         | 8      | 9                       | 10        | 11      | 12 1    | 2     | 3 | 4 5 | 6 | 7 8 | 9      | 10    | 11 12 | 1 :       | 2 3     | 4        | 5      | 6            | 7 8   | 9       | 10 11      | 1 12       | 1 2      | 2 3 | 4      | 5      | 6     | 7 8       | 9           | 10 1     | 1 12   | 1      | 2 3 | Changes            | ` ′             |         |                             | ( - /                  |
| 1     | Nakagawa                 | Miyama Dam Reservoir     | Center      | Nasushiobara City     |        |                         | 48        |         |         |       |   |     |   | 85  | 50     | 11    |       |           |         |          |        | 284 10       | 06    |         | 610        |            |          |     |        | 343    |       | 560       |             | 1,230    | 740    | 1      |     | 1~                 | 478             | 1       | 0.82                        | ->                     |
| 2     | River System             | Shiobara Dam Reservoir   | Center      | Nasusinooaia City     |        |                         | 2,700     |         |         | 1,590 |   |     |   | 90  | 00     | 1,000 | 990   | 1,0       | 000     |          |        | 1,160 1,0    | 080   |         | 1,020      | 1,040      |          |     |        | 930    |       | 1,06      | D           | 1,030    | 1,210  | D      |     |                    | 1,194           | 2       | 0.39                        | 1                      |
| 3     |                          | Kawaji Dam Reservoir     | Center      |                       |        |                         | 920       |         |         | 610   |   |     |   | 69  | 90     | 750   | 25    | 3:        | 20      |          |        | 850 1,3      | 320   |         | 460        | 410        |          |     | 1      | ,420   |       | 307       |             | 355      | 330    |        |     | $\neg \mathcal{M}$ | 626             | 3       | 0.64                        | $\wedge \wedge \wedge$ |
| 4     |                          | Ikari Dam Reservoir      | Center      |                       |        |                         | 4,400     |         |         | 6,700 |   |     |   | 4,1 | 00     | 3,300 | 2,500 | 4,0       | 000     |          |        | 2,530 5,1    | 100   |         | 1,980      | 2,560      |          |     |        | 1      | 1,740 | 8,70      | D           | 4,500    | 2,090  | D      |     | ~~                 | 3,871           | 4       | 0.51                        | $\wedge \wedge \wedge$ |
| 5     | Kinugawa<br>River System | Kawamata Dam Reservo ir  | Center      | Nikko City            |        |                         | 0         |         |         | 176   |   |     |   | 212 |        | 190   | 140   |           |         |          |        | 330          | 350   | )       | 321        | 370        |          |     |        | 293    |       | 354       |             | 232      | 196    |        |     |                    | 243             | 5       | 0.44                        | ->                     |
| 6     |                          | Lake Yuno                | Center      |                       |        |                         | 0         |         |         |       |   |     |   | 27  | 70     | 28    | 390   |           |         |          |        | 286          | 248   |         | 440        | 320        |          |     |        | 1      | 1,270 | 250       |             | 1,500 33 | 39     |        |     | ~~~                | 445             | 6       | 1.03                        | _>                     |
| 7     |                          | Lake Chuzenji            | Center      |                       |        |                         | 153       |         |         |       |   |     |   | 1,1 | 80     | 830   | 115   | 7         | 10      |          |        | 420          | 270   | )       | 122        | 168        |          |     |        | 840    |       | 640       |             | 550      | 1,010  | D      |     | 1                  | 539             | 7       | 0.67                        | $\wedge \wedge \wedge$ |
| 8     | Watarase River<br>System | Watarase Reservoir       | Center      | Tochigi City          |        |                         | 251       |         |         |       |   |     |   | 16  | 55 134 | 1     | 97    |           |         |          |        | 177          | 113   |         | 164        | 460        |          |     |        | 146    |       | 134       |             | 144      | 421    |        |     | $\sim \sim$        | 209             | 8       | 0.55                        | <b>/</b> √/ <b>4</b>   |
|       |                          |                          |             |                       | numi   | otal<br>ber of<br>uples | 102       | Detecti |         | D     |   |     |   |     |        |       |       |           |         |          |        |              |       |         |            |            |          |     |        |        |       |           |             |          |        |        |     |                    | 951             | average |                             |                        |
| *1: E | lank cells are le        | ocations where samples   | were not co | llected. The result " | Not de | tectable                | e" is inc | dicated | as "0." |       |   |     |   |     |        |       |       |           |         |          |        | sults of the |       |         | nds at res | spective l | ocations | >   | Decrea | sing - | /7 Ir | ncreasing | ~~ <b>^</b> | Unchang  | ed /// | Varyin | g   |                    |                 |         |                             |                        |
| *2: / | rithmetic Aver           | age; calculated by assur | ming ND=0;  | Color codes show c    | ategor | ies (see                | the rig   | ght).   |         | Α     | В | C D | Е |     |        |       |       |           |         |          |        |              |       |         |            |            |          |     |        |        |       |           |             |          |        |        |     |                    |                 |         |                             |                        |

### 5) Gunma Prefecture

In Gunma Prefecture, surveys were conducted 8 to 14 times from November 2011 to December 2014 for lake sediment samples collected at 24 locations.

Regarding concentration levels of detected values, 11 locations were categorized into Category D and 13 locations were categorized into Category E (see Table 4.3-31 and Table 4.3-32).

Concentration levels were generally decreasing at four locations, generally unchanged or varying at 15 locations, and generally increasing at five locations.

Table 4.3-31 Categorization of detected values at respective locations (Gunma Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                                                                             |
|----------|--------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                                                                                |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                                                                                |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                                                                                |
| D        | Upper 25 to 50 percentile                        | 11                  | No.1, No.2, No.5, No.7, No.9, No.10, No.12, No.14, No.15, No.20, No.24                |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 13                  | No.3, No.4, No.6, No.8, No.11, No.13, No.16, No.17, No.18, No.19, No.21, No.22, No.23 |

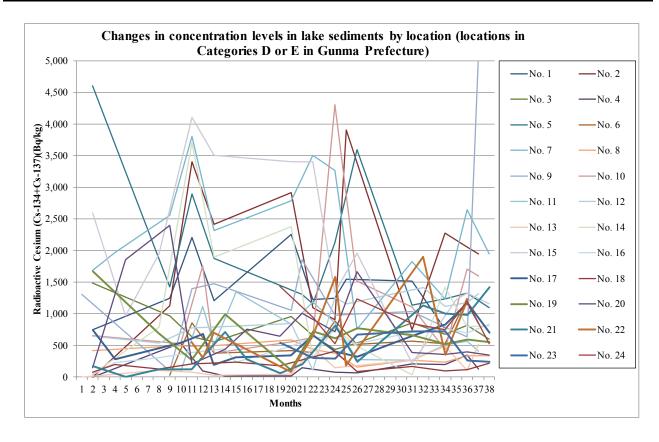



Figure 4.3-17 Changes in concentration levels over the years at respective locations (Gunma Prefecture: lake sediments)

Table 4.3-32 Detection of radioactive cesium at respective locations (Gunma Prefecture: lake sediments)

|                           | Locatio                           | n             |                                       | T T  |      |        |      |       |   |       |       |       |        |       | Lake  | Sedime | nts/Radi | ioactive | Cesium     | (Cs-13- | + Cs-13                   | 7)/Conce  | entrati  | on(Bq/kg    | )(*1)   |       |         |       |         |          |           |         |         |        |           |                 | 1       |                             |                         |
|---------------------------|-----------------------------------|---------------|---------------------------------------|------|------|--------|------|-------|---|-------|-------|-------|--------|-------|-------|--------|----------|----------|------------|---------|---------------------------|-----------|----------|-------------|---------|-------|---------|-------|---------|----------|-----------|---------|---------|--------|-----------|-----------------|---------|-----------------------------|-------------------------|
|                           |                                   |               |                                       |      |      | FY20   | 11   |       |   |       |       |       | FY2012 |       |       |        |          |          |            |         |                           | Y2013     |          |             | , ,     |       |         |       |         | FY201    | 4         |         |         |        | - CI      | average<br>(*2) | No.     | coefficient of<br>variation | Trends<br>(*3)          |
| No. Water area            | Location                          |               | Municipality                          | 8    | 9 10 | 11     | 12 1 | 2 3   | 4 | 5 6   | 7     | 8     | 9 10   | 11    | 12    | 1 2    | 3        | 4        | 5 6        | 7       | 8 9                       | 10        | 11       | 12 1        | 2       | 3 4   | 5       | 6 7   | 8       | 9 1      | 0 11      | 12      | 1 2     | 2 3    | Changes   | (+2)            |         | variation                   | (-3)                    |
| 1                         | Lake Okutone (Yagisawa Dam)       | Center        |                                       |      |      |        | 750  |       |   |       | 1,250 | 2,    | 210    | 1,210 |       |        |          | Ш        | 2,26       | )       | 1,230                     | 1,250     | 1,550    |             |         |       | 1,520   |       | 760     | 1,       | 170 850   |         |         |        | ~~        | 1,334           | 1       | 0.37                        | ~~*                     |
| 2                         | Lake Naramata (Naramata Dam)      | Center        | Minakami Town                         |      |      |        | 0    |       |   |       | 1,130 | 3,    | 400    | 2,420 |       |        |          | Ш        | 2,92       | )       | 1,100                     | 910       | 3,900    |             |         |       | 750     |       | 2,280   | 2,0      | 060 1,950 | 0       |         |        | M         | 1,902           | 2       | 0.61                        | _>                      |
| 3                         | Lake Dogen (Sudagai Dam)          | Center        |                                       |      |      | 1      | ,490 |       |   |       | 970   | 6     | i40    | 560   |       |        |          | Ш        | 960        |         | 660                       | 440       |          | 540         |         |       | 860     |       | 680     | 8        | 20        | 600     |         |        | \\\\\     | 768             | 3       | 0.37                        | <u></u>                 |
| 4                         | Lake Marunuma (Marunuma<br>Dam)   | Center        | Katashina Village                     |      |      |        | 0    |       |   |       |       | 540   | 98     |       | 16    |        |          | Ш        | 21         | 151     |                           | 81        |          | 74          |         |       | 211     |       | 201     | 3        | 49 127    |         |         |        | 1~        | 156             | 4       | 1.00                        | $\wedge \wedge \wedge$  |
| 5 Tonegawa River          | Lake Fujiwara (Fujiwara Dam)      | Center        | Minakami Town                         |      |      | 4      | ,600 |       |   |       | 1,430 | 2,    | 900    | 1,880 |       |        |          | Ш        |            | 1,310   | 1,160                     | 2,130     | 3        | 3,590       |         |       | 1,140   |       | 1,240   | 1,       | 330       | 1,100   |         |        | $\sim$    | 1,984           | 5       | 0.57                        | <u></u>                 |
| 6                         | Lake Tanbara (Tanbara Dam)        | Center        | Numata City                           |      |      |        |      |       |   |       | 33    | 8     | 60     | 380   |       |        |          | Ш        | 420        |         | 390                       | 890       |          | 520         |         |       | 570     |       | 530     | 1,2      | 250       |         |         |        | ~         | 584             | 6       | 0.58                        | $\wedge \wedge \wedge$  |
| 7                         | Lake Akaya (Aimata Dam)           | Center        | Minakami Town                         |      |      | 1      | ,690 | 1,970 |   |       | 2,560 | 3,    | 800    | 2,320 |       |        |          | Ш        | 2,79       | )       | 3,500                     | 3,260     |          | 760         |         |       | 1,830   |       | 1,240   | 2,       | 550       | 1,950   |         |        | ~~~       | 2,332           | 7       | 0.38                        | ~~*                     |
| 8                         | Lake Sonohara (Sonohara Dam)      | Center        | Numata City                           |      |      |        | 420  |       |   |       |       | 500 4 | 90     | 500   |       |        |          |          | 590        |         | 440                       | 380       |          | 164         |         |       | 266     |       | 237     | 3        | 42        | 336     |         |        |           | 389             | 8       | 0.32                        | ~~*                     |
| 9                         | Lake Akagionuma                   | Center        | Maebashi City                         |      |      | 1,310  |      |       |   |       | 104   | 1,    | 400    | 1,480 |       |        |          |          | 1,06       | 1,860   |                           | 980       | 1        | 1,000       |         |       | 1,040   |       | 790     | 6        | 40 5,10   | 0       |         |        | }         | 1,397           | 9       | 0.89                        | $\wedge \wedge \wedge$  |
| 10                        | Lake Okushima (Shimagawa<br>Dam)  | Center        | Nakanojo Town                         |      |      |        | 560  |       |   |       | 4.5   | 530   | 1,76   | 0 380 |       |        |          |          | 560        |         | 630                       | 4,300     | 1        | 1,520       |         |       | 1,110   |       | 438     | 1,       | 710 1,60  | 0       |         |        | ~~        | 1,267           | 10      | 0.86                        | $\wedge \wedge \wedge$  |
| 11 Agatsuma River<br>Area | Lake Shimako (Nakanojo Dam)       | Center        | Nakanojo Town                         |      |      |        |      |       |   |       |       | 94    | 1,12   | 0 510 | 1,    | 350    |          |          | 840        |         | 1,190                     | 860       |          | 278         |         |       | 266     |       | 510     | 5        | 70 410    |         |         |        | $\sim$    | 667             | 11      | 0.60                        | $\wedge \wedge \wedge$  |
| 12                        | Lake Tashiro (Kazawa Dam)         | Center        | Tsumagoi Village                      |      |      |        | 550  |       |   | 540   |       | 7     | '80    |       | 800   |        |          |          | 850        |         | 110                       | 1,260     | 1,160    |             |         |       |         | 1,420 | 1,120   | 1,       | 1,320     | 0       |         |        |           | 933             | 12      | 0.41                        | _>                      |
| 13                        | Lake Haruna                       | Center        | Takasaki City/Higashi-Agatsum<br>Town | a    |      | 0      |      |       |   | 114   |       |       | 76     | 30    |       |        |          |          | 47         |         | 460                       | 148       |          |             |         |       | 266     |       | 490     | 1        | 12 520    | ,       |         |        |           | 206             | 13      | 0.95                        | _>                      |
| 14                        | Lake Kirizumi (Kirizumi Dam)      | Center        | Annaka City                           |      |      |        | 49   |       |   | 790   |       | 3,    | 700    | 1,900 |       |        |          |          | 2,38       | )       | 310                       | 770       |          | 490         |         |       | 38      |       | 1,420   | 8        | 00        | 810     |         |        | M         | 1,121           | 14      | 0.96                        | $\wedge \wedge \wedge$  |
| 15                        | Lake Usui (Sakamoto Dam)          | Center        | Annaka City                           |      |      | 2      | ,600 | 970   |   | 1,950 |       | 4,    | 100    | 3,500 |       |        |          |          | 3,40       | )       | 3,400                     | 1,340     | 1        | 1,960       |         |       | 215     |       |         | 1,230 1, | 330       | 1,160   |         | T      | $\sqrt{}$ | 2,089           | 15      | 0.57                        | /                       |
| 16<br>Karasu River        | Lake Arafune (Dodairagawa<br>Dam) | Center        | Shimonita Town                        |      |      |        | 37   | 233   |   | 310   |       | 3     | 90     |       | 450 2 | 39     |          |          | 490        |         | 630                       | 620       |          | 530         |         |       | 710     |       | 770     | 7        | 00        | 840     |         | T      | ~~        | 496             | 16      | 0.47                        | _>                      |
| 17                        | Lake Oshio (Oshio Dam)            | Center        | Tomioka City                          |      |      |        | 740  | 280   |   |       |       | 540   | 680    | 196   | 3     | 10     |          |          | 340        |         | 660                       | 400       |          | 320         |         |       | 650     |       | 830     | 1,       | 170       | 700     |         | T      | 111       | 558             | 17      | 0.48                        | ~~*                     |
| 18                        | Lake Kanna (Shimokubo Dam)        | Center        | Fujioka City/Kamkawa Town             |      |      |        | 75   | 197   |   | 128   |       | 2     | 13     |       | 228 2 | 42     |          | 1        | 78         |         | 320                       | 410       |          | 93          |         |       | 173     |       | 100     | 1        | 19        | 222     |         | T      | ~~~~      | 193             | 18      | 0.48                        | ~~*                     |
| 19                        | Lake Hebikami (Shiozawa Dam)      | Center        | Kanna Town                            |      |      | 1      | ,670 |       |   | 690   |       | 2     | 70     |       | 990   |        |          |          | 111        |         | 720                       | 610       |          | 770         |         |       | 660     |       | 520     | 5        | 90        | 550     |         |        | Vm        | 679             | 19      | 0.57                        | /                       |
| 20 Watarase River         | Lake Kusaki (Kusaki Dam)          | Center        | Midori City                           |      |      |        | 147  | 1,860 |   |       | 2,400 | 2     | :07    |       | 440   | 76     | 0        | 1        | 50         | 1,010   |                           | 720       | 1        | 1,670       |         |       | 390     |       | 361     | 4        | 00        | 345     |         | $\top$ | Min       | 811             | 20      | 0.85                        | $\Lambda\Lambda\Lambda$ |
| 21 Area                   | Lake Umeda (Kiryugawa Dam)        | Center        | Kiryu City                            |      |      |        | 179  | 0     |   | 123   |       | 1     | 29     |       | 710   | 28     | 0        | i        | 62         | 203     |                           | 810       |          | 245         |         |       |         | 1,130 | 1,000   | 9        | 80        | 1,420   |         | $\top$ | - ~~      | 519             | 21      | 0.91                        |                         |
| 22 Nakatsu River          | Lake Nozori (Nozori Dam)          | Center        | Nakanojo Town                         |      |      |        |      |       |   |       |       | 5     | 50 300 | 700   |       |        |          | i        | 82         |         | 660                       | 1,580     | 181      |             |         |       |         | 1,900 | 358     | 1,3      | 220       |         |         | $\top$ | ~//       | 753             | 22      | 0.82                        | ΛΛΛ                     |
| 23 Watarase River         | Lake Jonuma                       | Center        |                                       |      |      |        |      |       |   |       |       |       |        |       |       |        |          |          | 40         |         | 301                       | 291       |          | 670         |         |       | 720     |       | 720     | 2        | 60        | 241     |         | $\top$ | - V       | 468             | 23      | 0.46                        | ~~*                     |
| 24 Area                   | Lake Tataranuma                   | Center        | Tatebayashi City                      |      |      |        |      |       |   |       |       |       |        |       |       |        |          | 1        | 440        |         | 950                       | 530       | 1        | 1,240       |         |       | 850     |       | 750     | 1,3      | 200       | 530     |         | $\top$ | V         | 936             | 24      | 0.36                        | ~~^                     |
|                           |                                   |               |                                       | tota |      | Detect |      |       |   | U.    |       |       |        | -     |       | - 1    | 1        |          |            |         |                           | 1 1       |          |             | - 1     | ı     |         |       |         |          |           |         |         |        |           | 939             | average |                             |                         |
|                           |                                   |               |                                       | samp |      | time   | 5    | ]     |   |       |       |       |        |       |       |        |          | #2 · P - | who of the | anah-   | of trar 1                 | at race-  | otiva 1- | ontions :   | ing the |       |         | -     |         |          |           |         |         |        |           |                 |         |                             |                         |
|                           | ations where samples were no      |               |                                       |      | "0." |        |      |       |   |       |       |       |        |       |       |        |          | -5: Kes  | suns of th | met     | s of trends<br>hod explai | ned on P. | .60      | cations usi | ing ine | ⅓ Dec | reasing | Inc   | reasing | ~~• Uı   | nchanged  | I ///\/ | Varying |        |           |                 |         |                             |                         |
| *2: Arithmetic Averag     | ge; calculated by assuming ND     | =0; Color cod | es show categories (see the rig       | ht). |      |        |      | A B   | С | D E   |       |       |        |       |       |        |          |          |            |         |                           |           |          |             |         |       |         |       |         |          |           |         |         |        |           |                 |         |                             |                         |

### 6) Chiba Prefecture

In Chiba Prefecture, surveys were conducted 14 times from November 2011 to February 2015 for lake sediment samples collected at eight locations.

Regarding concentration levels of detected values, one location was categorized into Category C, one location into Category D, and six locations into Category E (see Table 4.3-33 and Table 4.3-34).

Concentration levels were generally decreasing at six locations but were generally unchanged or varying at two locations.

Table 4.3-33 Categorization of detected values at respective locations (Chiba Prefecture: lake sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                          |
|----------|--------------------------------------------------|---------------------|------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                             |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                             |
| С        | Upper 10 to 25 percentile                        | 1                   | No.4                               |
| D        | Upper 25 to 50 percentile                        | 1                   | No.3                               |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 6                   | No.1, No.2, No.5, No.6, No.7, No.8 |

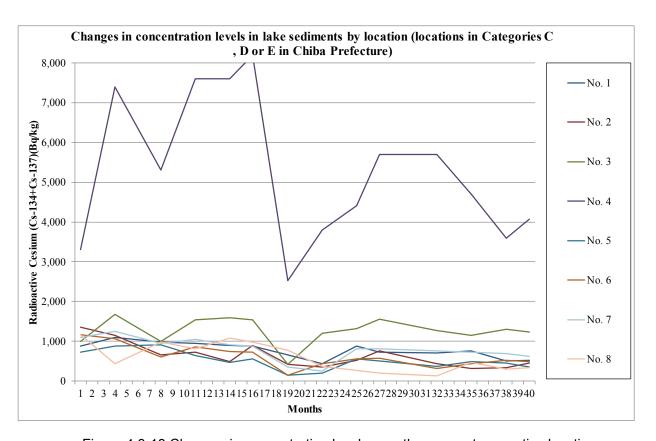



Figure 4.3-18 Changes in concentration levels over the years at respective locations (Chiba Prefecture: lake sediments)

Table 4.3-34 Detection of radioactive cesium at respective locations (Chiba Prefecture: lake sediments)

|       |               | Location                              |                                  |                         |            |        |           |              |       |     |       | I     | ake Sedim | nts/Radio | active Ces | ium (Cs-13 | 4+Cs    | -137)/Conce                  | ntratio | n(Bq/kg)(*                     | 1)  |            |      |            |       |          |         |            |         |           |                 |         |                             |                |
|-------|---------------|---------------------------------------|----------------------------------|-------------------------|------------|--------|-----------|--------------|-------|-----|-------|-------|-----------|-----------|------------|------------|---------|------------------------------|---------|--------------------------------|-----|------------|------|------------|-------|----------|---------|------------|---------|-----------|-----------------|---------|-----------------------------|----------------|
| NT.   |               | T                                     | Municipality                     |                         |            | FY     | 2011      |              |       |     |       | FY    | 2012      |           |            |            |         |                              | FY2     | 013                            |     |            |      |            |       | FY2      | 2014    |            |         | Changes   | average<br>(*2) | No.     | coefficient of<br>variation | Trends<br>(*3) |
| NO.   |               | Location                              | Nuncipality                      | 8                       | 9          | 10     | 11        | 12 1         | 2 3   | 4 5 | 6 7   | 8 9   | 10 11     | 12 1      | 2 3        | 4 5        | 6       | 7 8                          | 9       | 10 11                          | 12  | 1 2 :      | 3 4  | . 5        | 5 7   | 8 9      | 10 1    | 1 12       | 1 2     | 3 Changes | (2)             |         | variation                   | ( )            |
| 1     |               | Fusashita                             |                                  |                         |            |        | 870       |              | 1,090 |     | 980   | 940   |           | 900       | 880        | 66         | 0       | 440                          |         | 880                            | 7   | 30         |      | 7          | 10    | 750      |         | 500        | 520     | ~         | 775             | 1       | 0.25                        | 1              |
| 2     | Lake          | Shimoteganuma Chuo                    | Inzai City                       |                         |            |        | 1,350     |              | 1,140 |     | 650   | 720   |           | 490       | 900        | 42         | 0       | 349                          |         | 520                            | 7   | 60         |      | 4          | 40    | 320      |         | 325        | 443     | w         | 631             | 2       | 0.50                        | 7              |
| 3     | Teganuma      | Teganuma Chuo                         |                                  |                         |            |        | 990       |              | 1,670 |     | 990   | 1,54  |           | 1,580     | 1,540      | 42         | 0       | 1,20                         | 0       | 1,320                          | 1,: | 550        |      | 1,:        | 270   | 1,150    |         | 1,300      | 1,230   | ~~        | 1,268           | 3       | 0.26                        | ~~*            |
| 4     |               | Nedoshita                             | Abiko City/Kashiwa City          |                         |            |        | 3,300     |              | 7,400 |     | 5,300 | 7,60  |           | 7,600     | 8,200      | 2,5        | 30      | 3,80                         | 0       | 4,400                          | 5,  | 700        |      | 5,         | 700   | 4,700    |         | 3,600      | 4,060   | ~~        | 5,278           | 4       | 0.35                        | ~~*            |
| 5     |               | Kita-Inbanuma Chuo                    | Inzai City/Narita City           |                         |            |        | 730       |              | 880   |     | 910   | 630   |           | 460       | 560        | 15         | 1       | 195                          |         | 550                            | 5   | 00         |      | 3          | 50    | 480      |         | 450        | 350     | ~         | 515             | 5       | 0.43                        | \              |
| 6     | Lake          | Ipponmatsushita                       | Inzai City                       |                         |            |        | 1,160     |              | 1,070 |     | 600   | 860   |           | 740       | 730        | 15         | 2       | 440                          |         | 560                            | 5   | 70         |      | 3          | 13    | 430      |         | 520        | 490     | ~~        | 617             | 6       | 0.45                        | 1              |
| 7     | Inbanuma      | Lower area of Josuido water<br>intake | Sakura City                      |                         |            |        | 1,100     |              | 1,250 |     | 940   | 1,050 |           | 910       | 880        | 34         | 0       | 251                          |         | 800                            | 8   | 00         |      | 7          | 50    | 730      |         | 690        | 620     | ~~        | 794             | 7       | 0.34                        | \              |
| 8     |               | Asobashi Bridge                       | Yachiyo City                     |                         |            |        | 1,160     |              | 440   |     | 980   | 800   |           | 1,080     | 970        | 77         | 0       | 360                          |         | 266                            | 2   | 02         |      | 1          | 21    | 460      |         | 304        | 338     | W         | ~ 589           | 8       | 0.60                        | 1              |
|       |               |                                       |                                  | total number of sa      | amples     | 112    | Detection | on times 112 | 2     |     |       |       |           |           |            |            |         |                              |         |                                |     |            |      |            |       |          |         |            |         |           | 1,308           | average |                             |                |
| *1: B | lank cells ar | e locations where samples             | were not collected. The result " | "Not detectable" is inc | dicated as | s "0." |           |              | _     |     |       |       |           |           |            | *          | 3: Resu | ilts of the ana<br>using the |         | trends at resp<br>explained on |     | ocations \ | √ De | creasing _ | Incre | asing ~~ | Unchang | ged //√\v\ | /arying |           |                 |         | ='                          |                |
| *2: A | rithmetic A   | verage; calculated by assur           | ning ND=0; Color codes show of   | categories (see the rig | ght).      |        |           |              | A B   | C D | Е     |       |           |           |            |            |         |                              |         |                                |     |            |      |            |       |          |         |            |         |           |                 |         |                             |                |

### (2)-3 Coastal areas

### 1) Iwate Prefecture

In Iwate Prefecture, surveys were conducted 7 times from January 2012 to November 2014 for coastal area sediment samples collected at two locations.

Regarding concentration levels of detected values, both two locations were categorized into Category E (see Table 4.3-35 and Table 4.3-36).

Concentration levels were generally unchanged or varying at these two locations.

Table 4.3-35 Categorization of detected values at respective locations (Iwate Prefecture: coastal area sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations  |
|----------|--------------------------------------------------|---------------------|------------|
| A        | Upper 5 percentile                               | 0                   | (None)     |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)     |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)     |
| D        | Upper 25 to 50 percentile                        | 0                   | (None)     |
| E        | Lower than upper 25 to 50 percentile (lower 50%) | 2                   | No.1, No.2 |

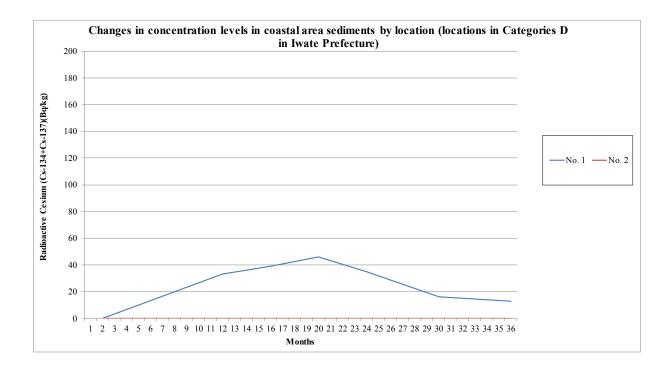



Figure 4.3-19 Changes in concentration levels over the years at respective locations (lwate Prefecture: coastal area sediments)

# Table 4.3-36 Detection of radioactive cesium at respective locations (Iwate Prefecture: coastal area sediments)

|     | Location                                      |                       |         |          |                   |          |           |        |           |     |   |   |        | C    | oastal | area se | diments/ | Radioa | ctive Ce | sium (Cs | -134    | ⊢Cs-13   | 7)/Con               | e ntratio             | on(Bq/l             | kg)(*1)     |            |       |       |         |     |         |     |           |                |           |             |         | m:                          |                        |
|-----|-----------------------------------------------|-----------------------|---------|----------|-------------------|----------|-----------|--------|-----------|-----|---|---|--------|------|--------|---------|----------|--------|----------|----------|---------|----------|----------------------|-----------------------|---------------------|-------------|------------|-------|-------|---------|-----|---------|-----|-----------|----------------|-----------|-------------|---------|-----------------------------|------------------------|
| No  | x .:                                          |                       |         | I        | Y2011             |          |           |        |           |     |   |   | FY2012 | 2    |        |         |          |        |          |          |         | FY2      | 013                  |                       |                     |             |            |       |       |         | F   | Y2014   |     |           |                | CI.       | average(*2) | No.     | coefficient of<br>variation | Trends(*3)             |
| No. | Location                                      | 8                     | 9       | 10 1     | 1 12              | 1        | 2 3       | 3      | 4 :       | 5 6 | 7 | 8 | 9 1    | 0 11 | 12     | 1       | 2 3      | 4      | 5        | 6 7      | 8       | 9        | 10                   | 11 12                 | 1                   | 2           | 3 .        | 4 5   | 6     | 7 8     | 8 9 | 10      | 11  | 12 1      | 2              | 3 Changes |             |         | variation                   |                        |
| 1   | Ofunato Bay (A)                               |                       |         |          |                   | 0        |           |        |           |     |   |   |        | 33   |        |         | 39       |        |          | 46       |         |          |                      | 35                    |                     |             |            | 16    |       |         |     |         | 13  |           |                |           | 26          | 1       | 0.64                        | $\wedge \wedge \wedge$ |
| 2   | Hirota Bay                                    |                       |         |          |                   | 0        |           |        |           |     |   |   |        | 0    |        |         | 0        |        |          | 0        |         |          |                      | 0                     |                     |             |            | 0     |       |         |     |         | 0   |           |                |           | 0           | 2       | -                           | ~~*                    |
|     |                                               | tota<br>numbe<br>samp | er of   | 14       | etection<br>times | 6        |           |        |           |     |   |   |        |      |        |         |          |        |          |          |         |          |                      |                       |                     |             |            |       |       |         |     |         |     |           |                |           | 13          | average |                             |                        |
|     | ank cells are locations v<br>ted as "0."      | where san             | nples w | vere not | collected         | The re   | sult "Not | detect | table" is | s   |   | _ |        |      |        |         |          |        |          | *3: F    | Results | of the a | nalysis o<br>e metho | f trends<br>d explain | at respe<br>ed on P | ective loca | ations usi | ing 📐 | Decre | nsing / | Inc | reasing | ~~₁ | Inchangeo | i \\\ <b>√</b> | Varying   |             |         |                             |                        |
|     | rithmetic Average; calcories (see the right). | ulated by             | assumi  | ing ND=  | 0; Color          | codes sh | now A     | A      | В         | C D | Е |   |        |      |        |         |          |        |          |          |         |          |                      |                       |                     |             |            |       |       |         |     |         |     |           |                |           |             |         |                             |                        |

### 2) Miyagi Prefecture

In Miyagi Prefecture, surveys were conducted 7 to 27 times from October 2011 to February 2015 for coastal area sediment samples collected at 12 locations.

Regarding concentration levels of detected values, one location was categorized into Category A, one location into Category C, five locations into Category D, and five locations into Category E (see Table 4.3-37 and Table 4.3-38).

Concentration levels were generally decreasing at three locations, generally unchanged or varying at eight locations, and generally increasing at one location.

Table 4.3-37 Categorization of detected values at respective locations (Miyagi Prefecture: coastal area sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                      |
|----------|--------------------------------------------------|---------------------|--------------------------------|
| A        | Upper 5 percentile                               | 1                   | No.8                           |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                         |
| С        | Upper 10 to 25 percentile                        | 1                   | No.7                           |
| D        | Upper 25 to 50 percentile                        | 5                   | No.2, No.3, No.6, No.9, No.11  |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 5                   | No.1, No.4, No.5, No.10, No.12 |

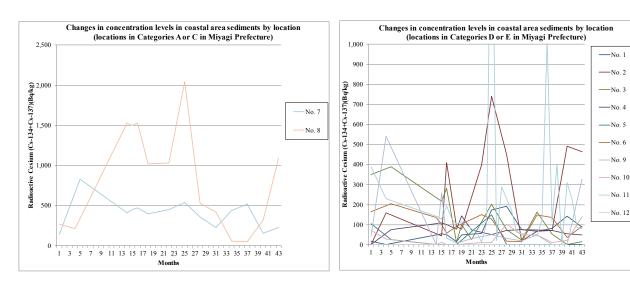
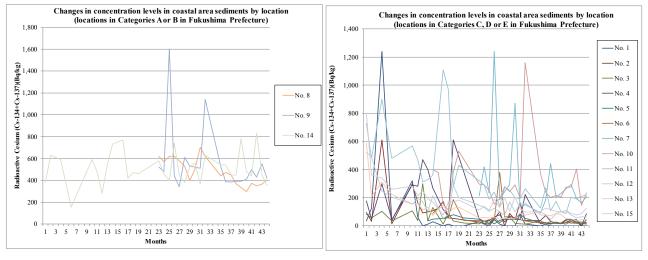



Figure 4.3-20 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: coastal area sediments)

Table 4.3-38 Detection of radioactive cesium at respective locations (Miyagi Prefecture: coastal area sediments)

|      | Location                                     |                                       |           |                       |            |                    |     |     |   |   |     |   |   |   |        | (          | Coastal a | rea sec | liments | /Radio: | active ( | Cesiun   | n (Cs-134    | + Cs-1                | 37)/Co              | ncentrati             | on(Bq/   | kg)(*1)  | )     |       |         |         |         |        |        |        |         |       |           |                 | 1      | Τ.      |    |                   |
|------|----------------------------------------------|---------------------------------------|-----------|-----------------------|------------|--------------------|-----|-----|---|---|-----|---|---|---|--------|------------|-----------|---------|---------|---------|----------|----------|--------------|-----------------------|---------------------|-----------------------|----------|----------|-------|-------|---------|---------|---------|--------|--------|--------|---------|-------|-----------|-----------------|--------|---------|----|-------------------|
| No   | Locati                                       | on                                    |           |                       | F          | FY2011             |     |     |   |   |     |   |   | F | FY2012 | 2          |           |         |         |         |          |          |              | F                     | Y2013               |                       |          |          |       |       |         |         |         | FY     | 2014   |        |         |       | Changes   | average<br>(*2) | No.    | coeffic |    | Trends<br>(*3)    |
| 140. | Locati                                       | on                                    | 8         | 9                     | 10 1       | 1 12               | 1   | 2   | 3 | 4 | 5 6 | 7 | 8 | 9 | 10     | 11 12      | . 1       |         | 2 3     | 4       | 5        | 6        | 7            | 8                     | 9                   | 10 11                 | 12       | 1        | 2     | 3 4   | 5       | 6 7     | 8       | 3 9    | 10     | 11     | 12 1    | 2     | 3 Changes | (-)             |        |         |    | ( -)              |
| 1    | Kesennuma Bay (B)                            | Offshore of Hachigasaki               |           |                       | 17         |                    | 0   |     |   |   |     |   |   |   |        | 54         | 50        | 1       | 6 48    | 3       |          |          | 57           | 174                   |                     | 191                   | 1        |          | 76    |       | 67      |         | 83      | 2      |        | 141    |         | 87    | $\sim$    | 76              | - 1    | 0.7     | 75 | >                 |
| 2    | Kesennuma Bay (C)                            | Offshore of Oshimakita                |           |                       | 0          |                    | 158 |     |   |   |     |   |   |   |        | 44         | 410       | ) 9     | 1 78    | 3       |          |          | 400          | 740                   |                     | 450                   | )        |          | 19    |       | 68      |         | 7:      | 2      |        | 490    |         | 464   | ~~        | 249             | 2      | 0.9     | 94 | $\mathbb{W}^{4}$  |
| 3    | All other neighboring sea areas              | Oppa Bay (Jyusanhama Beach)           |           |                       | 350        |                    |     | 390 |   |   |     |   |   |   |        | 216        | 5 281     | 1       | 2 10    | 1       | 26       |          |              | 203                   |                     | 76                    |          |          | 23    |       | 163     |         | 53      | 2      |        | 0      |         | 15    | M         | 136             | 3      | 0.9     | 97 | 1                 |
| 4    | Neighboring sea area of Ishinomaki (C)       | Lake Mangokuura, M-6 (center)         |           |                       | 0          |                    |     | 75  |   |   |     |   |   |   |        | 109        | 101       |         | 7 14    | 5       | 74       |          |              | 51                    |                     | 71                    |          |          | 76    |       | 74      |         | 7       | 1      |        | 54     |         | 48    | ~~~       | 73              | 4      | 0.4     | 45 | ~~*               |
| 5    | Neighboring sea area of Ishinomaki (B-<br>3) | Offshore of Kitakami River<br>Estuary |           |                       | 105        |                    |     | 25  |   |   |     |   |   |   |        | 0 0        | 0         |         | D       |         |          |          | 109          | 148                   |                     | 0                     |          |          | 0     |       | 0       |         | 0       | )      |        | 0      |         | 0     |           | 28              | 5      | 1.8     | 87 | $\bigvee \bigvee$ |
| 6    | Neighboring sea area of Ishinomaki (C)       | Offshore of Naruse                    |           |                       | 165        |                    |     | 205 |   |   |     |   |   |   |        | 136 101    | 1 56      | 9       | 13      |         |          |          | 151          | 128                   |                     | 17                    |          |          | 16    |       | 149     |         | 13      | 36     |        | 36     |         | 93    | ~~        | / 106           | 6      | 0.5     | 54 |                   |
|      | * * * *                                      | Nishihama Beach                       |           |                       | 139        |                    |     | 830 |   |   |     |   |   |   |        | 410 450    | 470       | ) 4     | 00      |         |          | 450      |              | 540                   |                     | 360                   | )        |          | 229   |       | 440     |         | 52      | 20     |        | 155    |         | 230   | <b>/</b>  | 402             | 7      | 0.4     | 45 | /                 |
| ٥ ا  | Neighboring sea area of Sendai Port<br>(A)   | Naiko Inner Port, 4-Nai               |           |                       | 270        |                    | 213 |     |   |   |     |   |   |   |        | 1,530 1,50 | 0 1,53    | 0 1,0   | 020     |         |          | 1,030    |              | 2,040                 |                     | 530                   | )        |          | 420   |       | 55      |         | 5       | 4      |        | 322    |         | 1,090 | ~~        | 829             | 8      | 0.7     | 78 | WV                |
| 9    | Neighboring sea area of Sendai Port<br>(B)   | Gamo-3                                |           |                       | 44         |                    | 540 |     |   |   |     |   |   |   |        | 0 258      | 33        | 1       | 0       |         |          | 35       |              | 50                    |                     | 31                    |          |          | 19    |       | 49      |         | 0       | )      |        | 0      |         | 327   | 1         | 100             | 9      | 1.6     | 61 | W                 |
| 0    | All other neighboring sea areas              | Ido-5                                 |           |                       | 71         |                    | 28  |     |   |   |     |   |   |   |        | 0 12       | 0         |         | 0       |         |          | 10       |              | 12                    |                     | 102                   | 2        |          | 48    |       | 49      |         | 1       | 1      |        | 21     |         | 140   |           | 36              | 10     | 1.1     | 18 | WV                |
| 1    | Offshore of Abukuma River Estuary            |                                       |           |                       | 390        |                    | 230 |     |   |   |     |   |   |   |        | 142 128    | 193       | 131 1   | 03 11   | 5       |          | 61       | 13 108       | 2,030                 | 21                  | 290                   | 170      | 62       | 55    |       | 45      | 126 1,0 | 20 11   | 18 400 | 0      | 311    | 226 86  | 80    |           | 246             | 11     | 1.6     | 66 | WW                |
| 2    | Offshore of Tsuyagawa River Estuary          |                                       |           |                       | 0          |                    |     |     |   |   |     |   |   |   |        | 0          |           |         | 0       |         |          |          | 0            |                       |                     | 0                     |          |          |       |       | 0       |         |         |        |        | 0      |         |       | -         | 0               | 12     |         | -  | ~~*               |
|      |                                              |                                       | numb      | tal<br>per of<br>ples |            | Detection<br>times | 146 |     |   |   |     |   |   |   | •      |            |           |         |         |         |          |          |              |                       |                     | ·                     |          |          |       |       |         |         |         |        |        |        | ·       |       |           | 190             | averag | şc      |    |                   |
| l: B | Blank cells are locations where samples w    | vere not collected. The result "Not d | letectal  | ble" is i             | ndicated a | as "0."            |     |     |   |   |     |   |   |   |        |            |           |         |         |         | *3: Re   | esults o | of the analy | sis of tr<br>ethod ex | ends at<br>cplained | respective<br>on P.60 | location | ns using | the \ | ≥ Dec | reasing | Inc     | reasing | g ~~   | Unchar | nged / | \\\ Var | ying  |           |                 |        |         |    |                   |
| ΞA   | Arithmetic Average; calculated by assumi     | ing ND=0; Color codes show categor    | ories (se | ee the r              | right).    |                    |     | Α   | В | C | D E |   |   |   |        |            |           |         |         |         |          |          |              |                       |                     |                       |          |          |       |       |         |         |         |        |        |        |         |       |           |                 |        |         |    |                   |

# 3) Fukushima Prefecture


In Fukushima Prefecture, surveys were conducted 20 to 33 times from October 2011 to February 2015 for coastal area sediment samples collected at 15 locations (this analysis excludes the survey results at eight locations where the survey was conducted only once in 2011).

Regarding concentration levels of detected values, one location was categorized into Category A, two locations into Category B, three locations into Category C, five locations into Category D, and four locations into Category E (see Table 4.3-39 and Table 4.3-40).

Concentration levels were generally decreasing at 11 locations but were generally unchanged or varying at four locations. There was no location where an increasing trend was observed.

Table 4.3-39 Categorization of detected values at respective locations (Fukushima Prefecture: coastal area sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                       |
|----------|--------------------------------------------------|---------------------|---------------------------------|
| A        | Upper 5 percentile                               | 1                   | No.9                            |
| В        | Upper 5 to 10 percentile                         | 2                   | No.8, No.14                     |
| С        | Upper 10 to 25 percentile                        | 3                   | No.7, No.10, No.11              |
| D        | Upper 25 to 50 percentile                        | 5                   | No.2, No.4, No.12, No.13, No.15 |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 4                   | No.1, No.3, No.5, No.6          |



(\*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-21 Changes in concentration levels over the years at respective locations (Fukushima Prefecture: coastal area sediments)

Table 4.3-40 Detection of radioactive cesium at respective locations (Fukushima Prefecture: coastal area sediments)

|                                                                                                                                                                                                                                                                                                               | Location                                                          |                    |      |       |               |       |     |     |     |   |     |     |     |      |         | Co    | astal ar | ea sedim | ents/Ra | dioactiv | e Cesi | um (Cs- | 134+0   |       | _      |       | ion(Bq/ | kg)(*1 | )     |      |     |     |     |       |       |       |       |       |       |       |   |         |                 |         |                            | c               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|------|-------|---------------|-------|-----|-----|-----|---|-----|-----|-----|------|---------|-------|----------|----------|---------|----------|--------|---------|---------|-------|--------|-------|---------|--------|-------|------|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|---|---------|-----------------|---------|----------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                               | Location                                                          |                    |      | FY2   |               |       |     | Ι   |     |   |     |     | _   | FY20 |         |       |          |          |         |          |        |         |         |       | FY20   | 13    |         |        |       |      |     |     |     |       |       | FY201 | 4     |       | Ţ     |       |   | Changes | average<br>(*2) | No.     | coefficient o<br>variation | f Trend<br>(*3) |
|                                                                                                                                                                                                                                                                                                               | LACULANI                                                          | 8                  | 9 10 | 11    | 12            | 1     | 2 : | 3 4 | 4 5 | 6 | 7   | 8   | 9   | 10   | 11      | 12    | 1        | 2        | 3       | 4        | 5      | 6       | 7       | 8     | 9      | 10    | 11      | 12     | 1     | 2    | 3 4 | 5   | 6   | 7     | 8     | 9 1   | 0 1   | 1 1   | 2     | 1 2   | 3 | Cinnges | ` ′             |         |                            | ,               |
| Neighboring sea area of<br>Soso                                                                                                                                                                                                                                                                               | Approx 2,000 m offshore of<br>Tsurushihama Fishing Port           |                    | 35   | 123   |               | 1,240 | 3   | 8   |     |   | 320 | 62  | 0   | 11   | 30      | 0     | 11       | 0        | 0       |          | :      | 28 1    | 2 0     | 44    | 4 10   | 0     | 0       | 0      | 81    | 11   |     | 0   | 12  | 0     | 0     | 0 (   | 0 (   | 0 (   | )     | 0     |   | h       | 63              | 1       | 3.50                       | /               |
| Matsukawaura sea area                                                                                                                                                                                                                                                                                         | Around center of Fishing Right Area-1 in<br>Matsukawaura sea area |                    | 94   | 32    |               | 610   | 1   | 5   |     |   | 300 | 164 | 90  | 1    | 105 123 | 175   | 55       | 53 48    |         |          |        | 26 1    | 8 11    | 48    | 8 101  | 0     | 89      | 45     | 164   | 39   |     | 38  | 73  | 32    | 17    | 19 4  | 13 4  | 5 2   | 6     | ) 44  | ı | Mun     | 83              | 2       | 1.36                       | /               |
| Neighboring sea area of<br>Soso                                                                                                                                                                                                                                                                               | Approx 2,000 m offshore of Manogawa<br>River                      |                    | 81   | 57    |               | 102   | 3   | 6   |     |   | 106 | 38  | 300 | 36   | 131     | 11    | 91       | 35       | 19      |          |        | 15 3    | 6 17    | 55    | 5 23   | 48    | 61      | 16     | 13    | 11   |     | 35  | 18  | 17    | 20    | 17 1  | 0 3   | 1 2   | 4 1   | 7 12  | 2 | Munu    | 47              | 3       | 1.18                       | /               |
| Neighboring sea area of                                                                                                                                                                                                                                                                                       | Approx 1,000 m offshore of Niida River                            |                    | 177  | 7 49  |               | 300   | 4   | 14  |     |   | 290 | 280 | 470 | 400  | 268     | 114   | 67       | 610      |         |          |        | 51 3    | 3 38    | 61    | 1 79   | 27    | 70      | 48     | 43    | 221  |     | 13  | 20  | 12    | 27    | 18 2  | 2 4   | 1 4   | 3     | 85    | 5 | www     | 126             | 4       | 1.21                       | /               |
| Haramachi City                                                                                                                                                                                                                                                                                                | Approx 1,000 m offshore of Ota River                              |                    |      |       |               |       |     |     |     |   |     |     |     | 36   | 48      | 53    |          | 78       | 57      |          |        | 47 1    | 4 38    | 15    | 5 38   | 47    | 44      | 51     | 81    | 54   |     | 24  | 22  | 18    | 17    | 15 3  | 8 2   | 1 2   | 6 2   | 6 24  | 1 | W.      | 37              | 5       | 0.50                       | W               |
|                                                                                                                                                                                                                                                                                                               | Approx 1,000 m offshore of Odaka River                            |                    |      |       |               |       |     |     |     |   |     |     |     |      | 88 127  | 50    | 59       | 187      | 37      |          |        | 38 3    | 1 44    | 39    | 9 380  | 64    | 64      | 59     | 45    | 35   |     | 20  | 18  | 28    | 22    | 18 2  | 2 2   | 1 1   | 6 1   | 0 21  | 1 | ML      | 59              | 6       | 1.28                       | W               |
| Neighboring sea area of                                                                                                                                                                                                                                                                                       | Approx 2,000 m offshore of Ukedo River                            |                    |      |       |               |       |     |     |     |   |     |     |     |      |         |       |          |          |         |          | 2      | 214 42  | 234     | 1,24  | 40 187 | 7 243 | 294     | 870    | 133   | 152  |     | 90  | 182 | 440 2 | 205 2 | 30 20 | 63 29 | 93 19 | 94 1  | 53 20 | 6 | Mn      | 313             | 7       | 0.88                       | /               |
| Soso District                                                                                                                                                                                                                                                                                                 | Approx 1,000 m offshore of Kumagawa<br>River                      |                    |      |       |               |       |     |     |     |   |     |     |     |      |         |       |          |          |         |          | 6      | 520 57  | 0 620   | 620   | 580    | 530   | 400     | 500    | 700   | 620  |     | 440 | 470 | 450 3 | 368 3 | 33 2  | 97 3  | 74 35 | 50 3  | 55 40 | 3 | V~      | 481             | 8       | 0.25                       | /               |
|                                                                                                                                                                                                                                                                                                               | Approx 1,000 m offshore of Tomioka<br>River                       |                    |      |       |               |       |     |     |     |   |     |     |     |      |         |       |          |          |         |          | 5      | 520 48  | 0 1,600 | 0 44  | 0 340  | 610   | 530     | 520    | 510 1 | ,140 |     | 530 | 388 | 385   | 390 3 | 90 4  | 10 5  | 00 43 | 30 5: | 50 41 | 7 | M       | 554             | 9       | 0.54                       | /               |
| Neighboring sea area of<br>Naraha Town                                                                                                                                                                                                                                                                        | Approx 1,000 moffshore of Kidogawa<br>River                       |                    |      |       |               |       |     |     |     |   |     |     |     | 4    | 400 380 | 154   | 113      | 380 53   | 0       |          | 2      | 295 29  | 0 251   | 1 15- | 4 191  | 278   | 243     | 290    | 198 1 | ,160 |     | 370 | 240 | 201 2 | 215 2 | 03 2  | 74 2  | 75 40 | 04 1  | 14 23 | 4 | M       | 303             | 10      | 0.66                       | W               |
| Approx 1,000 m offshore o                                                                                                                                                                                                                                                                                     | of Asami River Estuary                                            |                    | 730  | 0 480 |               | 900   | 4   | 80  |     |   | 570 | 470 | 310 | 330  | 360     | 1,110 | 970      | 277 43   | 0       |          | 3      | 320 29  | 0 190   | 24    | 1 143  | 3 272 | 254     | 202    | 192   | 262  |     | 127 | 268 | 105 1 | 73 1  | 00 8  | 18 2  | 05 18 | 88 20 | 09 21 | 9 | Mm      | 347             | 11      | 0.73                       | /               |
| Approx 1,000 m offshore o                                                                                                                                                                                                                                                                                     | of Ohisa River Estuary                                            |                    | 520  | 490   |               | 246   | 20  | 05  |     |   | 153 | 196 | 170 | 102  | 213     | 54    | 80       | 290 20   | 0       |          | 1      | 149 13  | 1 102   | 2 12: | :5 96  | 75    | 167     | 100    | 155   | 161  |     | 75  | 76  | 43    | 84 1  | 01 10 | 05 7  | 6 5   | 5 6   | 4 65  | 5 | Lum     | 149             | 12      | 0.74                       | /               |
| Neighboring sea area of<br>Iwaki City                                                                                                                                                                                                                                                                         | Approx 1,500 m offshore of Natsui River                           |                    | 590  | 211   |               | 310   | 22  | 23  |     |   | 156 | 159 | 113 | 133  | 74      | 150   | 86       | 125 13   | 2       |          |        | 55 6    | 0 55    | 63    | 3 47   | 57    | 49      | 53     | 90    | 76   |     | 101 | 80  | 70    | 89    | 78 5  | i4 5  | 0 3   | 5 4   | 5 44  | 1 | hmm     | 113             | 13      | 0.93                       | /               |
| Onahama Port                                                                                                                                                                                                                                                                                                  | Approx 400 m north of Nishibouhatei<br>No. 2                      |                    | 380  | 630   |               | 590   | 15  | 56  |     |   | 590 | 480 | 280 | 550  | 730     | 770   | 420      | 470 46   | 0       |          | 5      | 580 46  | 0 400   | 74    | 0 450  | 380   | 520     | 560    | 370   | 630  |     | 540 | 540 | 450 4 | 150 7 | 80 4  | 80 4  | 40 83 | 30 4  | 19 35 | 4 | MMM     | 512             | 14      | 0.29                       | ~~              |
| Johan coastal sea area                                                                                                                                                                                                                                                                                        | Approx 1,000 m offshore of Binda River                            |                    | 800  | 360   |               | 340   | 20  | 60  |     |   | 280 | 214 | 249 | 193  | 167     | 77    | 168      | 169 18   | 4       |          | 1      | 112 13  | 9 108   | 3 18  | 9 129  | 200   | 104     | 205    | 122   | 98   |     | 104 | 124 | 114   | 102 9 | 96 10 | 08 8  | 8 7   | 5 8   | 4 12  | 5 | L       | 178             | 15      | 0.75                       | /               |
|                                                                                                                                                                                                                                                                                                               |                                                                   | total nu<br>of san |      |       | ection<br>nes | 413   |     |     |     |   |     |     |     |      |         |       |          |          |         |          |        |         |         |       |        |       |         |        |       |      |     |     |     |       |       |       |       |       |       |       |   |         | 224             | average |                            |                 |
| Blank cells are locations where samples were not collected. The result "Not detectable" is indicated as "0."  *3: Results of the analysis of trends at respective locations using Decreasing Muchanged Warying  *Arthmetic Average; calculated by assuming ND=0; Color codes show categories (see the right). |                                                                   |                    |      |       |               |       |     |     |     |   |     |     |     |      |         |       |          |          |         |          |        |         |         |       |        |       |         |        |       |      |     |     |     |       |       |       |       |       |       |       |   |         |                 |         |                            |                 |

# 4) Ibaraki Prefecture

In Ibaraki Prefecture, surveys were conducted 15 to 17 times from October 2011 to February 2015 for coastal area sediment samples collected at five locations.

Regarding concentration levels of detected values, all five locations were categorized into Category E (see Table 4.3-41 and Table 4.3-42).

Concentration levels were generally decreasing at four locations but were generally varying at one location.

Table 4.3-41 Categorization of detected values at respective locations (Ibaraki Prefecture: coastal area sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                    |
|----------|--------------------------------------------------|---------------------|------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                       |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                       |
| С        | Upper 10 to 25 percentile                        | 0                   | (None)                       |
| D        | Upper 25 to 50 percentile                        | 0                   | (None)                       |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 5                   | No.1, No.2, No.3, No.4, No.5 |

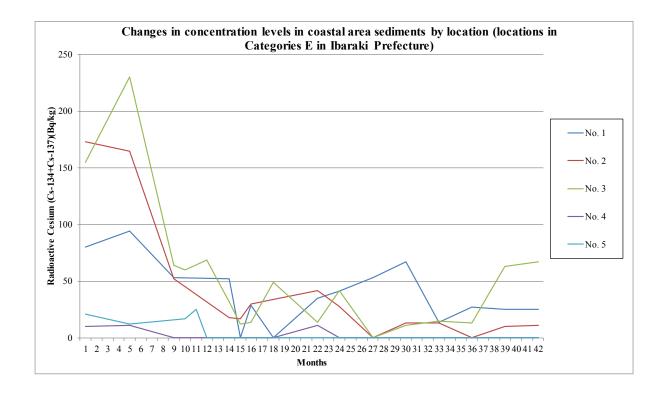



Figure 4.3-22 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: coastal area sediments)

Table 4.3-42 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: coastal area sediments)

| Location                                                                                                                   |                      |          |     |                   |    |     |   |   |     |       |    |        | Co   | astal: | area se | dime nt | s/Radio | active  | Cesi   | um (Cs-1    | 34+0                | 's-137)/               | Conc            | entrati  | ion(Bq  | /kg)(*    | 1)    |       |         |       |          |     |         |        |               |     |   |         |                 |         |                             |                        |
|----------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----|-------------------|----|-----|---|---|-----|-------|----|--------|------|--------|---------|---------|---------|---------|--------|-------------|---------------------|------------------------|-----------------|----------|---------|-----------|-------|-------|---------|-------|----------|-----|---------|--------|---------------|-----|---|---------|-----------------|---------|-----------------------------|------------------------|
| No. Location                                                                                                               |                      |          | F   | Y2011             |    |     |   |   |     |       | 1  | FY201: | 2    |        |         |         |         |         |        |             |                     | FY20                   | 013             |          |         |           |       |       |         |       |          | FY2 | 014     |        |               |     |   | Changes | average<br>(*2) | No.     | coefficient of<br>variation | of Trends<br>(*3)      |
| No. Location                                                                                                               | 8                    | 9 1      | 0 1 | 1 12              | 1  | 2   | 3 | 4 | 5 6 | 7     | 8  | 9      | 10 1 | 1 1    | 12 1    | 2       | 3       | 4       | 5      | 6 7         | 8                   | 9                      | 10              | 11       | 12      | 1         | 2     | 3 4   | 5       | 6     | 7 8      | 9   | 10 1    | 1 1:   | 2 1           | 2   | 3 | Changes | (2)             |         | variation                   | (3)                    |
| 1 Offshore of Satone River Estuary                                                                                         |                      | 8        | 0   |                   |    | 94  |   |   | 53  |       |    |        | 52 ( | 0 2    | 29      | 0       |         |         |        | 35          | 41                  |                        |                 | 53       |         |           | 67    |       | 14      |       | 27       |     | 2       | 5      |               | 25  |   | 7~~     | 40              | - 1     | 0.69                        | 1                      |
| 2 Offshore of Okita River Estuary                                                                                          |                      | 1        | 73  |                   |    | 165 |   |   | 52  |       |    |        | 18 1 | 7 3    | 30      | 34      |         |         |        | 42          | 28                  |                        |                 | 0        |         |           | 13    |       | 13      |       | 0        |     | 1       | 0      |               | 11  |   | ~       | 40              | 2       | 1.34                        | 1                      |
| 3 Offshore of Momiya River/Kujigawa River<br>Estuaries                                                                     |                      | 1        | 55  |                   |    | 230 |   |   | 64  | 60    | 69 |        | 32 1 | 2 1    | 14      | 49      |         |         |        | 14          | 42                  |                        |                 | 0        |         |           | 11    |       | 15      |       | 13       |     | 6       | 3      |               | 67  |   | 1       | 54              | 3       | 1.10                        | 1                      |
| 4 Neighboring water body of Ken-o Offshore<br>of Nakagawa River                                                            |                      | 1        | 0   |                   |    | 11  |   |   | 0   | 0     | 0  |        | 0 (  | 0 (    | 0       | 0       |         |         |        | 11          | 0                   |                        |                 | 0        |         |           | 0     |       | 0       |       | 0        |     |         | )      |               | 0   |   |         | 2               | 4       | 2.23                        | $\wedge \wedge \wedge$ |
| 5 Offshore of Tonegawa River Estuary                                                                                       |                      | 2        | 1   |                   |    | 12  |   |   |     | 17 25 | 0  |        | 0 (  | 0 (    | 0       |         | 0       |         |        | 0           | 0                   |                        |                 | 0        |         |           | 0     |       | 0       |       | 0        |     |         | )      |               | 0   |   | 4       | 4               | 5       | 1.94                        | 1                      |
|                                                                                                                            | tot<br>numbe<br>samp | er of 8  | 1   | etection<br>times | 49 |     |   |   |     |       |    |        |      |        |         |         |         |         |        |             |                     |                        |                 |          |         |           |       |       |         |       |          |     |         |        |               |     |   |         | 28              | average |                             |                        |
| *1: Blank cells are locations where samples we<br>as "0."<br>*2: Arithmetic Average; calculated by assuming<br>the right). | re not o             | ollected |     |                   |    |     |   |   | C D | Е     |    |        |      |        |         |         |         | *3: Res | ults o | f the analy | sis of t<br>ethod o | trends at<br>explained | respe<br>I on P | ctive lo | eations | s using t | the ` | → Dec | reasing | ) Inc | creasing | ~~  | Unchang | ed ∧∖\ | <b>√</b> Vary | ing |   |         |                 | 1       | _1                          |                        |

# 5) Chiba Prefecture and Tokyo Metropolis

In Chiba Prefecture and Tokyo Metropolis, surveys were conducted 13 to 22 times from May 2012 to February 2015 for coastal area sediment samples collected at eight locations in total.

Regarding concentration levels of detected values, two locations were categorized into Category C and six locations were categorized into Category E (see Table 4.3-43 and Table 4.3-44).

Concentration levels were generally decreasing at two locations but were generally unchanged or varying at six locations.

Table 4.3-43 Categorization of detected values at respective locations (Chiba Prefecture and Tokyo Metropolis: coastal area sediments)

| Category | Percentile (percentile in all detected values)   | Number of locations | Locations                          |
|----------|--------------------------------------------------|---------------------|------------------------------------|
| A        | Upper 5 percentile                               | 0                   | (None)                             |
| В        | Upper 5 to 10 percentile                         | 0                   | (None)                             |
| С        | Upper 10 to 25 percentile                        | 2                   | No.6, No.7                         |
| D        | Upper 25 to 50 percentile                        | 0                   | (None)                             |
| Е        | Lower than upper 25 to 50 percentile (lower 50%) | 6                   | No.1, No.2, No.3, No.4, No.5, No.8 |

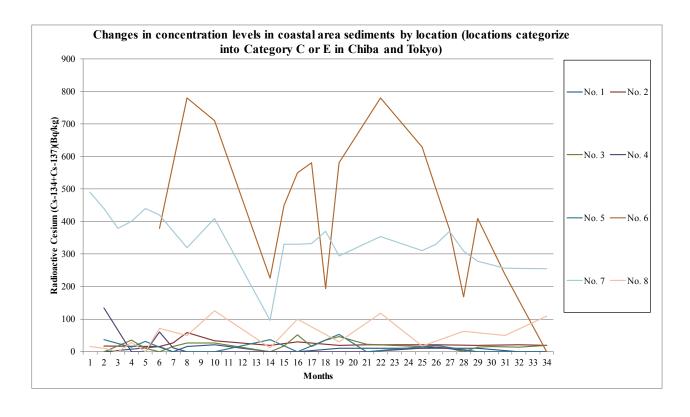



Figure 4.3-23 Changes in concentration levels over the years at respective locations (Chiba Prefecture and Tokyo Metropolis: coastal area sediments)

Table 4.3-44 Detection of radioactive cesium at respective locations (Chiba Prefecture and Tokyo Metropolis: coastal area sediments)

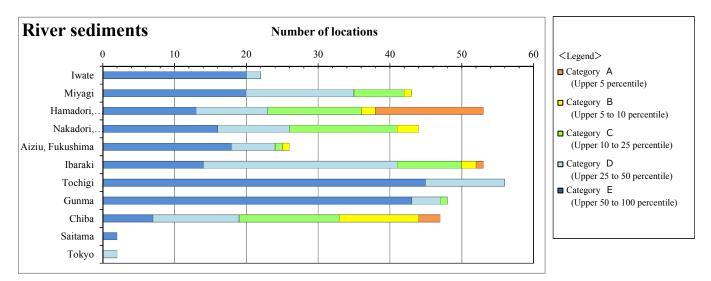
|                           | Location                                              |                                                             |                                 |            |        |     |     |     |     |     |     |     |       | С    | oastal | area s | edimer | nts/Radi | active ( | Cesiun  | m (Cs-1          | 134+              | Cs-1    | 37)/Co              | nce ntr        | ation(   | Bq/kg)   | )(*1)    |         |       |        |        |       |       |         |    |         |     |    |               |                 |         |                             |                            |
|---------------------------|-------------------------------------------------------|-------------------------------------------------------------|---------------------------------|------------|--------|-----|-----|-----|-----|-----|-----|-----|-------|------|--------|--------|--------|----------|----------|---------|------------------|-------------------|---------|---------------------|----------------|----------|----------|----------|---------|-------|--------|--------|-------|-------|---------|----|---------|-----|----|---------------|-----------------|---------|-----------------------------|----------------------------|
| No. Prefecture            | т.                                                    | ocation                                                     |                                 | FY         | 2011   |     |     |     |     |     |     |     | FY201 | 2    |        |        |        |          |          |         |                  |                   | FY20    | 013                 |                |          |          |          |         |       |        |        | FY    | 2014  |         |    |         |     |    | Changes       | average<br>(*2) | No.     | coefficient of<br>variation | Trends<br>(*3)             |
| No. Freiecture            |                                                       | ocation                                                     | 8 9                             | 10 11      | 12     | 1 2 | 2 3 | 3 4 | 5   | 6   | 7   | 8   | 9 1   | 0 11 | 12     | 1      | 2      | 3 4      | 5        | 6       | 7                | 8                 | 9       | 10                  | 11 1           | 2        | 1 2      | 3        | 4       | 5 6   | 5 7    | 8      | 9     | 10    | 11      | 12 | 1       | 2   | 3  | Changes       | (2)             |         | runation                    | (3)                        |
| 1                         | Tokyo Bay 7                                           | Offshore of Yorogawa River<br>Estuary                       |                                 |            |        |     |     |     |     | 0   |     |     | 1     | 5 0  | 15     |        | 21     |          |          | 0       |                  | 0                 |         |                     | 11             | 1        | 1        |          |         | 1     | 1      |        | 11    |       |         | 0  |         | 0   | N  |               | 7               | 1       | 1.03                        | $\wedge \wedge \wedge$     |
| 2                         | Tokyo Bay 5                                           | Offshore of Miyako River<br>Estuary                         |                                 |            |        |     |     |     |     | 17  |     |     | 1     | 5 27 | 59     |        | 33     |          |          | 19      |                  | 30                |         |                     | 19             | 2        | 21       |          |         | 2     | 1      |        | 20    |       |         | 21 |         | 20  | 7  | \             | 25              | 2       | 0.46                        | ~~*                        |
| 3 Chiba Prefecture        | Coastal sea area of Makuhan                           | Offshore of Inbanuma<br>Discharge Channel                   |                                 |            |        |     |     |     |     | 0   |     | 35  | 10    | ) 16 | 27     |        | 26     |          |          | 0       | 17               | 52                | 15      | 36                  | 17             | 2        | !3       |          |         | 1     | 4 11   | 0      | 14    | 16    |         | 14 |         | 19  | V- | W             | 19              | 3       | 0.78                        | $\wedge \wedge \downarrow$ |
| 4                         | Approx. 1 km offshore of<br>Ebigawa River Estuary     | Coastal area of Keiyo Port                                  |                                 |            |        |     |     |     |     | 134 |     | 0   | 0 6   | 0 12 | 0      |        | 0      |          |          | 0       |                  | 0                 |         |                     | 0              | -        | 0        |          |         | 1     | 3      |        | 0     |       |         | 0  |         | 0   | V  | >             | 15              | 4       | 2.50                        | 1                          |
| 5                         | Approx. 1 km offshore of<br>Edogawa River Estuary     | (Ebigawa River Estuary)                                     |                                 |            |        |     |     |     |     | 37  |     | 14  | 31 1  | 3 0  | 0      |        | 0      |          |          | 38      |                  | 0                 |         |                     | 54             | -        | 0        |          |         | 1     | 9      |        | 0     |       |         | 0  |         | 0   | V  | $\mathcal{M}$ | 14              | 5       | 1.32                        | $\wedge \wedge \downarrow$ |
| 6                         | Approx. 1 km offshore of<br>Kyu-Edogawa River Estuary |                                                             |                                 |            |        |     |     |     |     |     |     |     | 3     | 80   | 780    | )      | 710    |          |          | 226     | 450 5            | 550 5             | 580     | 193 5               | 80             |          | 78       | 0        | 6       | 30 50 | 00 375 | 168    | 8 409 |       | 237     |    |         | 0   | 1  | $\mathcal{N}$ | 444             | 6       | 0.51                        | $\wedge \wedge \wedge$     |
| 7 Tokyo Metropolis        | St-8                                                  | Offshore of Arakawa<br>River/Kyu-Edogawa River<br>Estuaries |                                 |            |        |     |     |     | 490 | 440 | 380 | 400 | 440 4 | 20   | 320    | )      | 410    |          |          | 97      | 330              | 330               | 332     | 370 2               | 94             |          | 35       | 4        | 3       | 11 33 | 370    | 309    | 9 278 |       | 257     |    | 2       | 255 | ~  | \<br>\        | 342             | 7       | 0.24                        | 1                          |
| 8                         | Southwestern area of<br>Toyosu Wharf                  | Offshore of Sumida River<br>Estuary                         |                                 |            |        |     |     |     | 16  | 11  | 0   | 29  | 0 7   | 2    | 49     |        | 126    |          |          | 12      | 1                | 100               |         |                     | 30             |          | 11       | 8        |         | 18    |        | 62     | :     |       | 49      |    | 1       | 109 | 1  | $\mathcal{M}$ | 50              | 8       | 0.86                        | $\wedge \wedge \wedge$     |
|                           |                                                       |                                                             | total<br>number of l<br>samples |            | ection | 100 |     |     |     |     |     |     |       |      |        |        |        |          |          |         |                  |                   |         |                     |                |          |          |          |         |       |        |        |       |       |         |    |         |     |    |               | 114             | average |                             |                            |
| *1: Blank cells are locat | ons where samples were not                            | collected. The result "Not detec                            | ctable" is indica               | ited as "0 | L**    |     |     |     |     |     |     |     |       |      |        |        |        |          | *3: I    | Results | of the using the | analysi<br>he met | is of t | rends at<br>xplaine | respection P.6 | ctive lo | ocations | <u> </u> | Decreas | ing / | Incr   | easing | , ~~  | Uncha | inged / | W. | Varying | В   |    | '             |                 | •       | -                           |                            |
| *2: Arithmetic Average;   | calculated by assuming ND=                            | ); Color codes show categories                              | (see the right)                 |            |        | 1   | A E | ВС  | D   | Е   |     |     |       |      |        |        |        |          |          |         |                  |                   |         |                     |                |          |          |          |         |       |        |        |       |       |         |    |         |     |    |               |                 |         |                             |                            |

# (3) Conclusion

Concentration levels of detected values for sediment samples from public water areas (rivers, lakes, and coastal areas) and their changes shown so far are summarized as follows (see Figure 4.3-24 and Table 4.3-45).

# 1) Concentration levels of detected values

#### Rivers


Within all surveyed locations (396 locations in total), the number of locations categorized into Category A or B, which fall under the upper 10%, was the largest in Hamadori in Fukushima Prefecture (17 locations). Such locations were also found in Miyagi Prefecture, Nakadori and Aizu in Fukushima Prefecture, Ibaraki Prefecture and Chiba Prefecture.


#### Lakes

Locations categorized into Category A or B were found in Hamadori in Fukushima Prefecture.

#### Coastal areas

Locations categorized into Category A or B were found in Miyagi and Fukushima Prefectures.





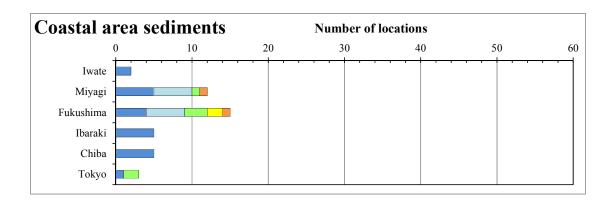



Figure 4.3-24 Categorization by concentration levels of detected values for sediment samples (upper: rivers; middle: lakes; lower: coastal areas)

(\* Figure 4.3-24 shows the aforementioned Table 3.1-1 graphically.)

# 2) Changes in detected values

# Rivers

A decreasing trend was observed at most locations.

#### · Lakes

Detected values were generally decreasing or unchanged at most locations except for some locations showing fluctuations. An increasing trend was also observed at several locations.

# · Coastal areas

A decreasing trend was observed at most locations except for some locations showing fluctuations.

Table 4.3-45 Changes in detected values for sediment samples from public water areas (rivers, lakes, and coastal areas)

#### <Rivers>

|            |       |        |                  |                  |      | -       | Number o | flocations |       |         |       |                     |            |
|------------|-------|--------|------------------|------------------|------|---------|----------|------------|-------|---------|-------|---------------------|------------|
| Trends     |       |        | I                | Fukushima        |      |         |          |            |       |         |       | Total               |            |
| Trends     | Iwate | Miyagi | Hamadori<br>Area | Nakadori<br>Area | Aizu | Ibaraki | Tochigi  | Gunma      | Chiba | Saitama | Tokyo | Number of locations | Percentage |
| Decreasing | 17    | 34     | 41               | 40               | 18   | 45      | 38       | 33         | 34    | 2       | 1     | 303                 | 76.5       |
| Unchanged  | 0     | 1      | 2                | 1                | 4    | 4       | 1        | 1          | 6     | 0       | 1     | 21                  | 5.3        |
| Varying    | 5     | 8      | 10               | 3                | 4    | 4       | 17       | 14         | 7     | 0       | 0     | 72                  | 18.2       |
| Increasing | 0     | 0      | 0                | 0                | 0    | 0       | 0        | 0          | 0     | 0       | 0     | 0                   | 0.0        |
| Total      | 22    | 43     | 53               | 44               | 26   | 53      | 56       | 48         | 47    | 2       | 2     | 396                 | 100.0      |

## <Lakes>

|            |        |                  |                  |      | Numb    | er of locat | ions  |       |                     |            |
|------------|--------|------------------|------------------|------|---------|-------------|-------|-------|---------------------|------------|
| Trends     |        |                  | Fukushima        |      |         |             |       |       | Tota                | al         |
|            | Miyagi | Hamadori<br>Area | Nakadori<br>Area | Aizu | Ibaraki | Tochigi     | Gunma | Chiba | Number of locations | Percentage |
| Decreasing | 12     | 21               | 4                | 4    | 11      | 1           | 4     | 6     | 63                  | 38.4       |
| Unchanged  | 2      | 4                | 1                | 9    | 3       | 0           | 7     | 2     | 28                  | 17.1       |
| Varying    | 7      | 13               | 5                | 15   | 4       | 4           | 8     | 0     | 56                  | 34.1       |
| Increasing | 0      | 3                | 2                | 3    | 1       | 3           | 5     | 0     | 17                  | 10.4       |
| Total      | 21     | 41               | 12               | 31   | 19      | 8           | 24    | 8     | 164                 | 100.0      |

# <Coastal areas>

|            |       |          |             | Num     | ber of location | ons   |                     |            |
|------------|-------|----------|-------------|---------|-----------------|-------|---------------------|------------|
| Trends     | Iwate | Miyagi   | Fukushima   | Ibaraki | Chiba           | Tokyo | Total               |            |
|            | Iwate | Iviiyagi | Tukusiiiiia | Toaraki | Ciliba          | TOKYO | Number of locations | Percentage |
| Decreasing | 0     | 3        | 11          | 4       | 1               | 1     | 20                  | 47.6       |
| Unchanged  | 1     | 2        | 1           | 0       | 1               | 0     | 5                   | 11.9       |
| Varying    | 1     | 6        | 3           | 1       | 3               | 2     | 16                  | 38.1       |
| Increasing | 0     | 1        | 0           | 0       | 0               | 0     | 1                   | 2.4        |
| Total      | 2     | 12       | 15          | 5       | 5               | 3     | 42                  | 100.0      |

# 3) Summary by prefecture

Concentration levels of detected values and their changes are summarized by prefecture as follows (see Figures 4.3-25 to 4.3-27).

#### i. Iwate Prefecture

- Surveyed locations for rivers were all categorized into Category D or E. Concentration levels were relatively low as a whole, and a decreasing trend was observed at most locations.
- Surveyed locations for coastal areas were all categorized into Category E. Concentration levels were relatively low as a whole, and were generally unchanged or varying at all locations.

# ii. Miyagi Prefecture

- Over 80% of surveyed locations for rivers were categorized into Category D or E, and concentration levels were relatively low as a whole. Some locations in the lower reaches were categorized into Category B or C. A decreasing trend was observed at most locations.
- Surveyed locations for lakes were all categorized into Category D or E, and concentration levels were relatively low as a whole. A decreasing trend was observed at most locations except for several locations showing fluctuations.
- Over 80% of surveyed locations for coastal areas were categorized into Category D or E, and concentration levels were relatively low as a whole. There was a location categorized into Category A in the Sendai Port. Concentration levels were generally decreasing or unchanged at most locations except for several locations showing fluctuations.

#### iii. Hamadori, Fukushima Prefecture

- Approximately 60% of surveyed locations for rivers were categorized into Category A, B, or C, and concentration levels were relatively high as a whole. Locations categorized into Category A or B were found in the north and northwest of the Fukushima Daiichi NPS, and locations categorized into Category C were in the northern part and in the southern part of the prefecture. A decreasing trend was observed at most locations.
- Approximately 80% of surveyed locations for lakes were categorized into Category A, B, or C, and concentration levels were relatively high as a whole. Locations categorized into Category A or B were found in the northwest of the Fukushima Daiichi NPS. A decreasing trend was observed generally at most locations except for several locations showing fluctuations.
- 60% of surveyed locations for coastal areas were categorized into Category D or E and the rest were categorized into Category A, B, or C. Locations categorized into Category A or B were found in coastal areas within 10 km from the Fukushima Daiichi NPS and off the Onahama Port located in the southern part of the prefecture. Concentration levels were mostly decreasing with some fluctuations.

# iv. Nakadori, Fukushima Prefecture

• Approximately 60% of surveyed locations for rivers were categorized into Category D or E and the rest were categorized into Category B or C. Locations categorized into Category B or C were found from the center of the Abukuma River to the northern part of its tributaries. A decreasing trend was observed at

most locations.

• 50% of surveyed locations for lakes were categorized into Category D or E and the rest were categorized into Category C. Locations categorized into Category C were found from the upper to the lower reaches of the Abukuma River. Concentration levels were generally increasing at two locations and were generally decreasing or unchanged at five other locations with some fluctuations observed at several locations.

#### v. Aizu. Fukushima Prefecture

- •Over 90% of surveyed locations for rivers were categorized into Category D or E, and concentration levels were relatively low as a whole. A location categorized into Category B was found in the northwestern part of the prefecture. Concentration levels were mostly decreasing with some fluctuations.
- Surveyed locations for lakes were all categorized into Category D or E, and concentration levels were relatively low as a whole. Many locations showed fluctuations, but concentration levels were generally increasing at three locations and were generally unchanged or decreasing at 13 other locations.

#### vi. Ibaraki Prefecture

- Over 70% of surveyed locations for rivers were categorized into Category D or E and the rest were categorized into Category A, B, or C. Locations categorized into Category A or B were found in rivers flowing into Lake Kasumigaura. A decreasing trend was observed at most locations.
- Over 90% of surveyed locations for lakes were categorized into Category D or E, and concentration levels were relatively low as a whole. A location categorized into Category C was found in the northern part of the prefecture. Concentration levels were mostly decreasing or unchanged with some fluctuations.
- Surveyed locations for coastal areas were all categorized into Category E, and concentration levels were relatively low as a whole. A decreasing trend was observed at most locations.

#### vii. Tochigi Prefecture

- Surveyed locations for rivers were all categorized into Category D or E, and concentration levels were relatively low as a whole. Concentration levels were mostly decreasing with some fluctuations.
- Over 80% of surveyed locations for lakes were categorized into Category D or E, and concentration levels were relatively low as a whole. A location categorized into Category C was found in the northern part of the prefecture. Concentration levels were generally increasing at three locations and were generally decreasing at one location with some fluctuations observed at several locations.

#### viii. Gunma Prefecture

- Over 90% of surveyed locations for rivers were categorized into Category D or E, and concentration levels were relatively low as a whole. A location categorized into Category C was found in the lower reaches of the Watarase River area. Concentration levels were mostly decreasing with some fluctuations observed at several locations.
- Surveyed locations for lakes were all categorized into Category D or E, and concentration levels were relatively low as a whole. Concentration levels were generally increasing at five locations and were generally unchanged or decreasing at 11 locations with some fluctuations observed at several locations.

#### ix. Chiba and Saitama Prefectures and Tokyo Metropolis

- Over 50% of surveyed locations for rivers were categorized into Category A, B, or C, and concentration levels were relatively high as a whole. Locations categorized into Category A or B were found in rivers flowing into Lake Teganuma or Lake Inbanuma and in part of the tributaries to the Edogawa River. Concentration levels were mostly decreasing with some fluctuations.
- Over 80% of surveyed locations for lakes were categorized into Category D or E, and concentration levels were relatively low as a whole. A location categorized into Category C was found in Lake Teganuma. A decreasing trend was observed at most locations.
- Over 70% of surveyed locations for coastal areas were categorized into Category E and the rest were categorized into Category C. Locations categorized into Category C were found off the mouths of the Arakawa River, Kyuedogawa River, and Sumida River. Concentration levels were generally decreasing or unchanged at most locations except for several locations showing fluctuations.

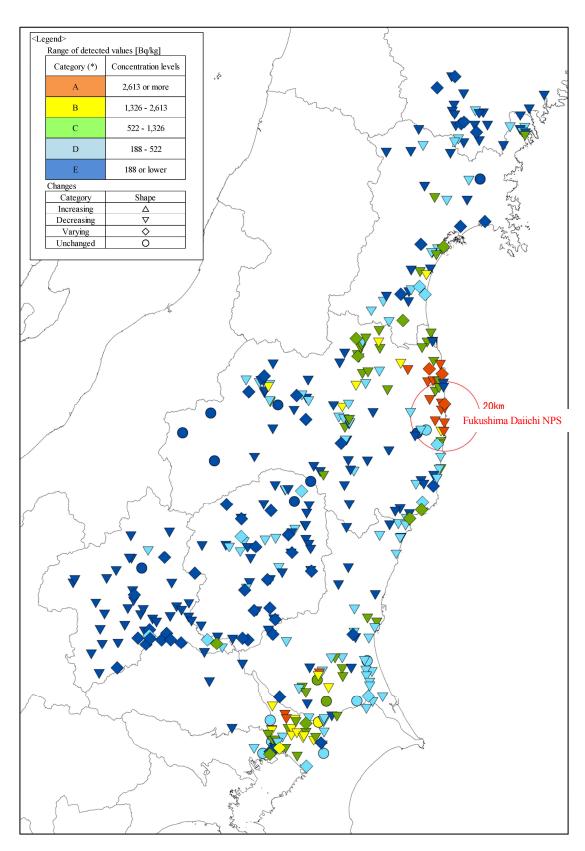



Figure 4.3-25 Categorization of and changes in concentration levels for river sediment samples from

public water areas

(\*) Categories A to E show relative concentration levels for river sediment samples and cannot be compared with those for lake sediment samples or coastal area sediment samples.

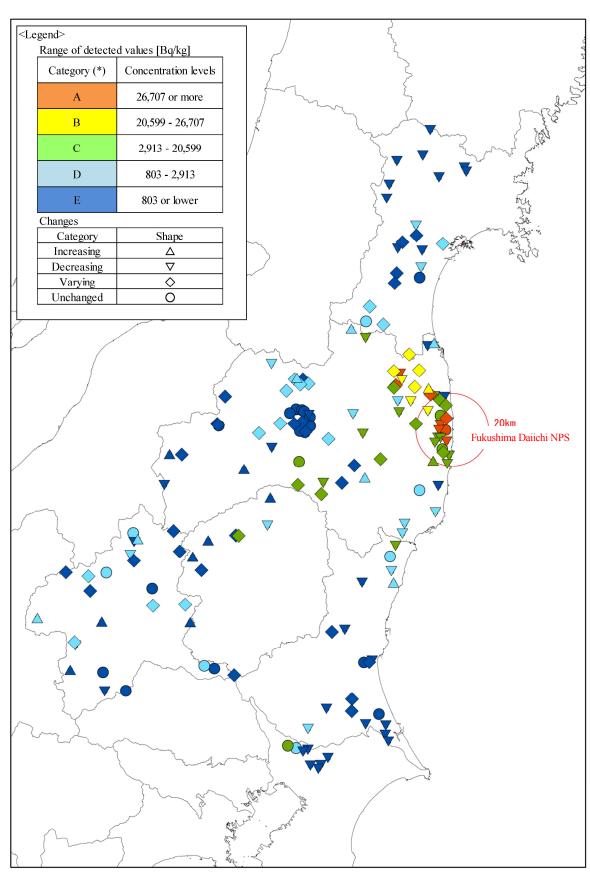



Figure 4.3-26 Categorization of and changes in concentration levels for lake sediment samples from

public water areas

(\*) Categories A to E show relative concentration levels for lake sediment samples and cannot be compared with those for river sediment samples or coastal area sediment samples.

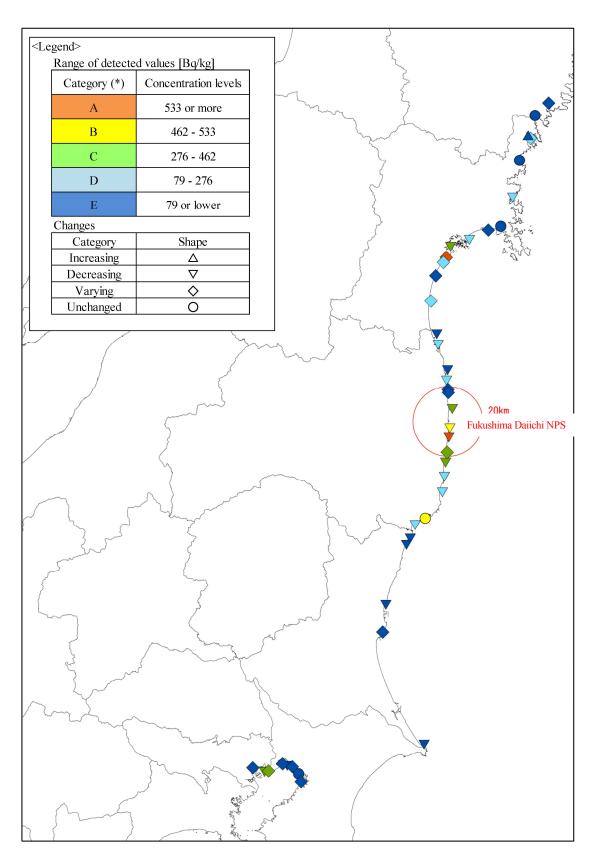



Figure 4.3-27 Categorization of and changes in concentration levels for coastal area sediment samples from public water areas

<sup>(\*)</sup> Categories A to E show relative concentration levels for coastal area sediment samples and cannot be compared with those for river sediment samples or lake sediment samples

# 5. Results (Radionuclides Other than Radioactive Cesium)

# 5.1 Radioactive iodine (I-131)

# (1) Water

#### 1) Public water areas

Detection of radioactive iodine (I-131) in water samples from public water areas (rivers, lakes, and coastal areas) were as shown in Table 5.1-1.

Surveys were conducted for public water areas with regard to approx. 3,000 river water samples, approx. 1,400 lake water samples, and approx. 700 coastal area water samples in total in FY2011 and FY2012, but I-131 was not detectable at any surveyed locations (detection limit: 1 Bq/L).

## 2) Groundwater

Detection of radioactive iodine (I-131) in groundwater samples was as shown in Table 5.1-2.

Surveys were conducted with regard to approx. 3,800 groundwater samples from FY2011 to FY2014, but I-131 was not detectable at any surveyed locations (detection limit: 1 Bq/L).

#### (2) Sediments

Detection of radioactive iodine (I-131) in sediment samples from public water areas (rivers, lakes, and coastal areas) were as shown in Table 5.1-3.

Surveys were conducted for public water areas with regard to approx. 3,000 river sediment samples, approx. 900 lake sediment samples, and approx. 400 coastal area sediment samples in total in FY2011 and FY2012, but I-131 was not detectable at any surveyed locations (detection limit: 10 Bq/kg).

Table 5.1-1 Detection of I-131 in water samples from public water areas (rivers, lakes, and coastal areas)

|          |            | FY2               | 011             | FY2               | 012             | Tot               | al              |
|----------|------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| Property | Prefecture | Number of samples | Detection times | Number of samples | Detection times | Number of samples | Detection times |
|          | Iwate      | 18                | 0               | 64                | 0               | 82                | 0               |
|          | Miyagi     | 114               | 0               | 204               | 0               | 318               | 0               |
|          | Yamagata   | 10                | 0               | 0                 | -               | 10                | 0               |
|          | Fukushima  | 452               | 0               | 854               | 0               | 1,306             | 0               |
|          | Ibaraki    | 128               | 0               | 214               | 0               | 342               | 0               |
| Rivers   | Tochigi    | 161               | 0               | 277               | 0               | 438               | 0               |
|          | Gunma      | 90                | 0               | 216               | 0               | 306               | 0               |
|          | Saitama    | 2                 | 0               | 8                 | 0               | 10                | 0               |
|          | Chiba      | 82                | 0               | 202               | 0               | 284               | 0               |
|          | Tokyo      | 3                 | 0               | 12                | 0               | 15                | 0               |
|          | Total      | 1,060             | 0               | 2,051             | 0               | 3,111             | 0               |
|          | Miyagi     | 34                | 0               | 90                | 0               | 124               | 0               |
|          | Yamagata   | 4                 | 0               | 0                 | -               | 4                 | 0               |
|          | Fukushima  | 211               | 0               | 581               | 0               | 792               | 0               |
| Lakes    | Ibaraki    | 48                | 0               | 93                | 0               | 141               | 0               |
| Lakes    | Tochigi    | 24                | 0               | 54                | 0               | 78                | 0               |
|          | Gunma      | 51                | 0               | 144               | 0               | 195               | 0               |
|          | Chiba      | 32                | 0               | 50                | 0               | 82                | 0               |
|          | Total      | 404               | 0               | 1,012             | 0               | 1,416             | 0               |
|          | Iwate      | 5                 | 0               | 8                 | 0               | 13                | 0               |
|          | Miyagi     | 94                | 0               | 96                | 0               | 190               | 0               |
| Coastal  | Fukushima  | 116               | 0               | 189               | 0               | 305               | 0               |
| areas    | Ibaraki    | 45                | 0               | 62                | 0               | 107               | 0               |
| areas    | Chiba      | 0                 | -               | 62                | 0               | 62                | 0               |
|          | Tokyo      | 0                 | -               | 38                | 0               | 38                | 0               |
|          | Total      | 260               | 0               | 455               | 0               | 715               | 0               |

Table 5.1-2 Detection of I-131 in groundwater samples

|            | FY2               | 2011            | FY2               | 2012            | FY2               | 2013            | FY2               | 2014            | To                | tal             |
|------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| Prefecture | Number of samples | Detection times |
| Iwate      | 42                | 0               | 44                | 0               | 44                | 0               | 22                | 0               | 152               | 0               |
| Miyagi     | 79                | 0               | 44                | 0               | 48                | 0               | 24                | 0               | 195               | 0               |
| Yamagata   | 79                | 0               | 0                 | 0               | 0                 | 0               | 0                 | 0               | 79                | 0               |
| Fukushima  | 540               | 0               | 543               | 0               | 766               | 0               | 771               | 0               | 2620              | 0               |
| Ibaraki    | 89                | 0               | 54                | 0               | 54                | 0               | 27                | 0               | 224               | 0               |
| Tochigi    | 76                | 0               | 54                | 0               | 54                | 0               | 27                | 0               | 211               | 0               |
| Gunma      | 40                | 0               | 40                | 0               | 42                | 0               | 21                | 0               | 143               | 0               |
| Chiba      | 54                | 0               | 46                | 0               | 46                | 0               | 23                | 0               | 169               | 0               |
| Total      | 999               | 0               | 825               | 0               | 1054              | 0               | 915               | 0               | 3793              | 0               |

Table 5.1-3 Detection of I-131 in sediment samples from public water areas (rivers, lakes, and coastal areas)

|          |            | FY:               | 2011            | FY2               | 2012            | To                | tal             |
|----------|------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| Property | Prefecture | Number of samples | Detection times | Number of samples | Detection times | Number of samples | Detection times |
|          | Iwate      | 18                | 0               | 64                | 0               | 82                | 0               |
|          | Miyagi     | 113               | 0               | 199               | 0               | 312               | 0               |
|          | Yamagata   | 10                | 0               | 0                 | -               | 10                | 0               |
|          | Fukushima  | 441               | 0               | 847               | 0               | 1,288             | 0               |
|          | Ibaraki    | 128               | 0               | 214               | 0               | 342               | 0               |
| Rivers   | Tochigi    | 159               | 0               | 275               | 0               | 434               | 0               |
|          | Gunma      | 88                | 0               | 211               | 0               | 299               | 0               |
|          | Saitama    | 2                 | 0               | 8                 | 0               | 10                | 0               |
|          | Chiba      | 83                | 0               | 199               | 0               | 282               | 0               |
|          | Tokyo      | 2                 | 0               | 12                | 0               | 14                | 0               |
|          | Total      | 1,044             | 0               | 2,029             | 0               | 3,073             | 0               |
|          | Miyagi     | 24                | 0               | 58                | 0               | 82                | 0               |
|          | Yamagata   | 2                 | 0               | 0                 | -               | 2                 | 0               |
|          | Fukushima  | 147               | 0               | 389               | 0               | 536               | 0               |
| Lakes    | Ibaraki    | 24                | 0               | 48                | 0               | 72                | 0               |
| Lakes    | Tochigi    | 12                | 0               | 27                | 0               | 39                | 0               |
|          | Gunma      | 26                | 0               | 72                | 0               | 98                | 0               |
|          | Chiba      | 16                | 0               | 32                | 0               | 48                | 0               |
|          | Total      | 251               | 0               | 626               | 0               | 877               | 0               |
|          | Iwate      | 3                 | 0               | 4                 | 0               | 7                 | 0               |
|          | Miyagi     | 52                | 0               | 48                | 0               | 100               | 0               |
| Coastal  | Fukushima  | 80                | 0               | 97                | 0               | 177               | 0               |
| areas    | Ibaraki    | 28                | 0               | 31                | 0               | 59                | 0               |
| areas    | Chiba      | 0                 | -               | 31                | 0               | 31                | 0               |
|          | Tokyo      | 0                 | -               | 19                | 0               | 19                | 0               |
|          | Total      | 163               | 0               | 230               | 0               | 393               | 0               |

# 5.2 Radioactive strontium (Sr-90 and Sr-89)

# (1) Public water areas

#### 1) Outline

Regarding radioactive strontium, surveys of Sr-90 were conducted with regard to sediment samples from public water areas (rivers, lakes, and coastal areas) from FY2011 to FY2014, while a survey of Sr-89 was conducted with regard to sediment samples from public water areas (rivers and lakes) in FY2011. Details and results of these surveys are as shown in Table 5.2-1 (detection limit: approx. 1 Bq/kg (dry) for Sr-90 and approx. 2 Bq/kg (dry) for Sr-89).

Sr-90 was detected as detailed below.

A survey of Sr-89 was conducted with regard to 22 samples (13 river sediment samples and nine lake sediment samples) only in FY2011 but Sr-89 was not detectable in any of these samples.

# 2) Detection of Sr-90 in sediment samples

#### i. River sediments

Surveys of Sr-90 were conducted with regard to approx. 120 river sediment samples in four years and Sr-90 was detected in 67 samples (detection rate: approx. 55%).

The detection rate was high for Fukushima Prefecture and was also relatively high for other prefectures. Detected values in FY2014 were below 1 Bq/kg (dry) except for Fukushima Prefecture (see Table 5.2-1).

Sr-90 was continuously detected since FY2011 at some locations in the Ota River and the Ukedo River in Fukushima Prefecture, but detected values gradually decreased to fall below 2 Bq/kg (dry) in FY2014 (see Figure 5.2-1).

#### ii. Lake sediments

Surveys of Sr-90 were conducted with regard to approx. 180 lake sediment samples in four years and Sr-90 was detected in 168 samples (detection rate: approx. 90%) (see Table 5.2-1).

Sr-90 was continuously detected in all surveyed prefectures until FY2014.

In agricultural reservoirs in the Soso district in Fukushima Prefecture, Sr-90 was detected at levels exceeding 40 Bq/kg (dry) at the maximum. However, detected values were gradually decreasing (see Figure 5.2-1).

#### iii. Coastal area sediments

Surveys of Sr-90 were conducted with regard to approx. 80 coastal area sediment samples in four years and Sr-90 was detected three times in Fukushima Prefecture (see Table 5.2-1). Detected values were from 0.3 to 0.6 Bq/kg (dry): lower than in the cases of river sediment samples and lake sediment samples.

Table 5.2-1 Detection of Sr-90 and Sr-89 in river sediment samples, lake sediment samples, and coastal area sediment samples

# o Sr-90

|          |                  |                          | 1                           | FY2011                      |                                             |                       | FY                          | 72012                       |                                             |                       | F                              | Y2013                       |                                             |                          | F                              | Y2014                       |                                             | Total                    |                                |                             |                                             |
|----------|------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------------|-----------------------|-----------------------------|-----------------------------|---------------------------------------------|-----------------------|--------------------------------|-----------------------------|---------------------------------------------|--------------------------|--------------------------------|-----------------------------|---------------------------------------------|--------------------------|--------------------------------|-----------------------------|---------------------------------------------|
| Property | Prefecture       | Number of<br>samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>[Bq/kg(dry)] | Number of samples [A] | Number of<br>detections [B] | Detection rate<br>(B/A) (%) | Range of<br>measured values<br>[Bq/kg(dry)] | Number of samples [A] | Number of<br>detections<br>[B] | Detection rate<br>(B/A) (%) | Range of<br>measured values<br>[Bq/kg(dry)] | Number of<br>samples [A] | Number of<br>detections<br>[B] | Detection rate<br>(B/A) (%) | Range of<br>measured values<br>[Bq/kg(dry)] | Number of<br>samples [A] | Number of<br>detections<br>[B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>[Bq/kg(dry)] |
|          | Miyagi           | 2                        | 2                           | 100.0                       | 0.40 - 1.1                                  | 7                     | 1                           | 14.3                        | ND - 1.2                                    | 5                     | 3                              | 60.0                        | ND - 0.56                                   | 4                        | 3                              | 75.0                        | ND - 0.52                                   | 18                       | 9                              | 50.0                        | ND - 1.2                                    |
|          | Fukushima        | 7                        | 7                           | 100.0                       | 1.2 - 4.1                                   | 25                    | 15                          | 60.0                        | ND - 12                                     | 16                    | 10                             | 62.5                        | ND - 2.9                                    | 14                       | 9                              | 64.3                        | ND - 1.5                                    | 62                       | 41                             | 66.1                        | ND - 12                                     |
|          | Ibaraki          | 1                        | 1                           | 100.0                       | 1.6 - 1.6                                   | 4                     | 1                           | 25.0                        | ND - 1.8                                    | 6                     | 4                              | 66.7                        | ND - 1.8                                    | 6                        | 2                              | 33.3                        | ND - 0.89                                   | 17                       | 8                              | 47.1                        | ND - 1.8                                    |
| Rivers   | Tochigi          | 1                        | 1                           | 100.0                       | 1.3 - 1.3                                   | 2                     | 0                           | 0.0                         | -                                           | 2                     | 1                              | 50.0                        | ND - 0.23                                   | 2                        | 1                              | 50.0                        | ND - 0.53                                   | 7                        | 3                              | 42.9                        | ND - 1.3                                    |
|          | Gunma            | 1                        | 1                           | 100.0                       | 0.70 - 0.70                                 | 2                     | 0                           | 0.0                         | -                                           | 2                     | 1                              | 50.0                        | ND - 0.44                                   | 1                        | 0                              | 0.0                         | -                                           | 6                        | 2                              | 33.3                        | ND - 0.70                                   |
|          | Chiba            | 1                        | 1                           | 100.0                       | 1.1 - 1.1                                   | 4                     | 0                           | 0.0                         | -                                           | 4                     | 2                              | 50.0                        | ND - 0.49                                   | 4                        | 1                              | 25.0                        | ND - 0.40                                   | 13                       | 4                              | 30.8                        | ND - 1.1                                    |
|          | Total            | 13                       | 13                          | 100.0                       | 0.4 - 4.1                                   | 44                    | 17                          | 38.6                        | ND - 12                                     | 35                    | 21                             | 60.0                        | ND - 2.9                                    | 31                       | 16                             | 51.6                        | ND - 1.5                                    | 123                      | 67                             | 54.5                        | ND - 12                                     |
|          | Miyagi           | 1                        | 1                           | 100.0                       | 1.6 - 1.6                                   | 3                     | 2                           | 66.7                        | ND - 2.1                                    | 5                     | 5                              | 100.0                       | 0.3 - 2.2                                   | 6                        | 5                              | 83.3                        | ND - 0.96                                   | 15                       | 13                             | 86.7                        | ND - 2.2                                    |
|          | Fukushima        | 3                        | 3                           | 100.0                       | 3.3 - 6.8                                   | 41                    | 41                          | 100.0                       | 2.1 - 93                                    | 40                    | 40                             | 100.0                       | 0.7 - 55                                    | 39                       | 39                             | 100.0                       | 0.70 - 50                                   | 123                      | 123                            | 100.0                       | 0.7 - 93                                    |
|          | Ibaraki          | 2                        | 2                           | 100.0                       | 0.70 - 3.3                                  | 6                     | 1                           | 16.7                        | ND - 7.0                                    | 6                     | 5                              | 83.3                        | ND - 5.2                                    | 6                        | 6                              | 100.0                       | 0.57 - 3.0                                  | 20                       | 14                             | 70.0                        | ND - 7.0                                    |
| Lakes    | Tochigi          | 1                        | 1                           | 100.0                       | 1.3 - 1.3                                   | 2                     | 1                           | 50.0                        | ND - 1.6                                    | 2                     | 2                              | 100.0                       | 0.74 - 0.93                                 | 2                        | 2                              | 100.0                       | 1.0 - 1.1                                   | 7                        | 6                              | 85.7                        | ND - 1.6                                    |
|          | Gunma            | 1                        | 1                           | 100.0                       | 2.0 - 2                                     | 2                     | 2                           | 100.0                       | 1.9 - 2.2                                   | 2                     | 1                              | 50.0                        | ND - 1.7                                    | 2                        | 2                              | 100.0                       | 1.5 - 1.7                                   | 7                        | 6                              | 85.7                        | ND - 2.2                                    |
|          | Chiba            | 1                        | 1                           | 100.0                       | 1.4 - 1.4                                   | 4                     | 1                           | 25.0                        | ND - 4.4                                    | 2                     | 1                              | 50.0                        | ND - 1.8                                    | 4                        | 3                              | 75.0                        | ND - 2.5                                    | 11                       | 6                              | 54.5                        | ND - 4.4                                    |
|          | Total            | 9                        | 9                           | 100.0                       | 0.7 - 6.8                                   | 58                    | 48                          | 82.8                        | ND - 93                                     | 57                    | 54                             | 94.7                        | ND - 55                                     | 59                       | 57                             | 96.6                        | ND - 50                                     | 183                      | 168                            | 91.8                        | ND - 93                                     |
|          | Miyagi           | 0                        | 0                           | -                           | -                                           | 2                     | 0                           | 0.0                         | -                                           | 4                     | 0                              | 0.0                         | -                                           | 2                        | 0                              | 0.0                         | -                                           | 8                        | 0                              | 0.0                         | -                                           |
| Coastal  | Fukushima        | 0                        | 0                           | -                           | -                                           | 21                    | 0                           | 0.0                         | -                                           | 30                    | 1                              | 3.3                         | ND - 0.33                                   | 30                       | 2                              | 6.7                         | ND - 0.58                                   | 81                       | 3                              | 3.7                         | ND - 0.58                                   |
| areas    | Tokyo Metropolis | 0                        | 0                           | -                           | -                                           | 2                     | 0                           | 0.0                         | -                                           | 0                     | 0                              | -                           | -                                           | 0                        | 0                              | -                           | -                                           | 2                        | 0                              | 0.0                         | -                                           |
|          | Total            | 0                        | 0                           | -                           | -                                           | 25                    | 0                           | 0.0                         | -                                           | 34                    | 1                              | 2.9                         | ND - 0.33                                   | 32                       | 2                              | 6.3                         | ND - 0.58                                   | 81                       | 3                              | 3.7                         | ND - 0.58                                   |

ND = Not detectable

# o Sr-89 (FY2011)

|            | Riv               | rers            | Lake              |                 |  |  |  |
|------------|-------------------|-----------------|-------------------|-----------------|--|--|--|
| Prefecture | Number of samples | Detection times | Number of samples | Detection times |  |  |  |
| Miyagi     | 2                 | 0               | 1                 | 0               |  |  |  |
| Fukushima  | 7                 | 0               | 3                 | 0               |  |  |  |
| Ibaraki    | 1                 | 0               | 2                 | 0               |  |  |  |
| Tochigi    | 1                 | 0               | 1                 | 0               |  |  |  |
| Gunma      | 1                 | 0               | 1                 | 0               |  |  |  |
| Chiba      | 1                 | 0               | 1                 | 0               |  |  |  |
| Total      | 13                | 0               | 9                 | 0               |  |  |  |

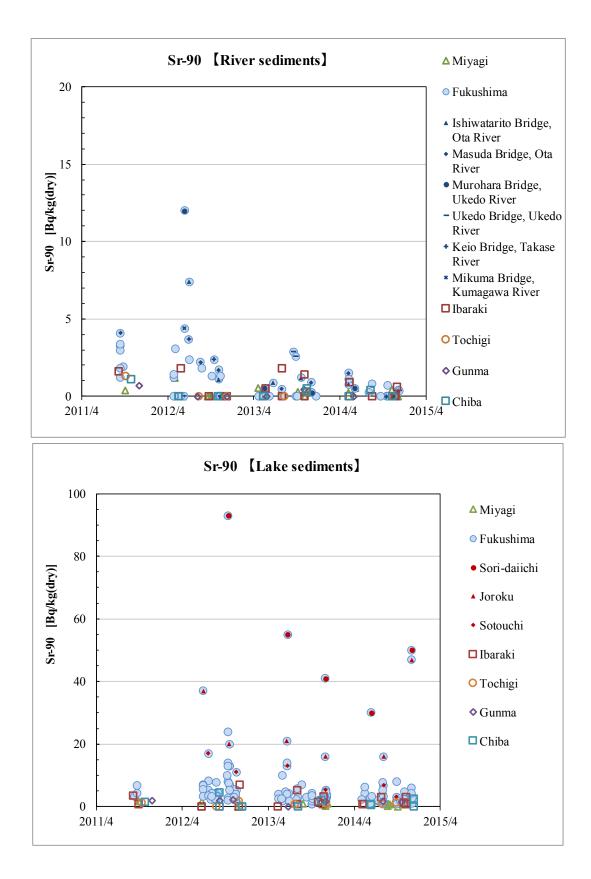



Figure 5.2-1 Detection of Sr-90 in sediment samples from public water areas (upper: rivers; lower: lakes)

#### (2) Groundwater

Surveys of Sr-89 and Sr-90 were conducted with regard to approx. 190 groundwater samples collected in Fukushima Prefecture from January 2012 to January 2015.

The outline of the results of these surveys is as shown in Table 5.2-2. Detected values of Sr-89 and Sr-90 were all below the detection limit (1 Bq/L).

The detection limit for Sr-90 was set at 0.0002 Bq/L for the FY2011 survey (for calendar year 2012) and Sr-90 was detected in all of the eight samples at levels between 0.0004 and 0.0029 Bq/L. The detection limit for Sr-89 was set at 0.001 Bq/L for the FY2011 survey (for calendar year 2012) and detected values for all of the eight samples were below the detection limit.

Table 5.2-2 Detection of Sr-89 and Sr-90 in groundwater samples (all collected in Fukushima Prefecture)

|                |                       | Sr-                      | 90                          |                                           | Sr-89                 |                          |                             |                                           |  |  |  |
|----------------|-----------------------|--------------------------|-----------------------------|-------------------------------------------|-----------------------|--------------------------|-----------------------------|-------------------------------------------|--|--|--|
| Financial year | Number of samples [A] | Number of detections [B] | Detection rate<br>(B/A) (%) | Range of<br>measured values<br>[Bq/L](*1) | Number of samples [A] | Number of detections [B] | Detection rate<br>(B/A) (%) | Range of measured<br>values<br>[Bq/L](*1) |  |  |  |
| FY2011         | 8                     | 0                        | 0.0                         | -                                         | 8                     | 0                        | 0.0                         | -                                         |  |  |  |
| FY2012         | 60                    | 0                        | 0.0                         | -                                         | 60                    | 0                        | 0.0                         | -                                         |  |  |  |
| FY2013         | 77                    | 0                        | 0.0                         | -                                         | 77                    | 0                        | 0.0                         | -                                         |  |  |  |
| FY2014         | 48                    | 0                        | 0.0                         | -                                         | 48                    | 0                        | 0.0                         | -                                         |  |  |  |
| Total          | 193                   | 0                        | 0.0                         | -                                         | 193                   | 0                        | 0.0                         | -                                         |  |  |  |

<sup>\*1:</sup> Results were compiled by setting the detection limit at 1 Bq/L.

In reality, the detection limit was set at 0.0002 Bq/L and at 0.001 Bq/L for Sr-90 and Sr-89, respectively, for the FY2011 survey, and was set at 1 Bq/L for both Sr-90 and Sr-89 for surveys in FY2012 onward (see the main text).

# 5.3 Other γ-ray emitting radionuclides

Apart from the aforementioned radionuclides (Cs-134, Cs-137, I-131, Sr-89, and Sr-90), measurement results for water samples and sediment samples using a germanium semiconductor detector were analyzed from 2011 to 2013 to obtain activity concentrations of accident-derived radionuclides (Ag-110m, Te-129m, Nb-95, Sb-125, and Ce-144, etc.) and major naturally occurring radionuclides such as K-40.

The outline of the analysis results are as shown in Table 5.3-1. Artificial radionuclides were not detectable in water samples, but Ag-110m and Sb-125 were detected in sediment samples at detection rates as low as below 1%. In 2013, neither of these two types of radionuclides were detectable.

Six types of naturally occurring radionuclides (K-40, Pb-212, Pb214, Tl-208, Ac-228, and Bi-214) were detected as shown in Table 5.3-1. However, K-40 is a naturally occurring radionuclide first incorporated at the time of the formation of the earth, and the other five are all uranium or thorium series naturally occurring radionuclides existing widely within the earth's crust.

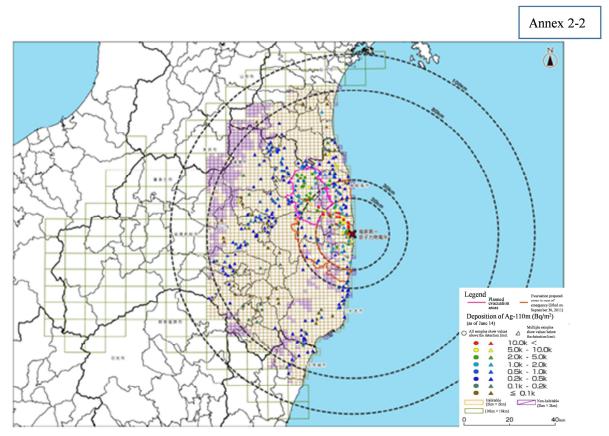
On the other hand, Ag-110m and Sb-125 are artificial radionuclides that are generated at nuclear power stations, etc. Therefore, their emitting sources are examined below.

Table 5.3-1 Detection of other radionuclides

# <Water>

| Fiscal | Number     | Major dete | ected artificial radionuclide      | Major detected naturally occurring radionuclide |                |  |  |  |
|--------|------------|------------|------------------------------------|-------------------------------------------------|----------------|--|--|--|
| year   | of samples | Туре       | Detection rate and detected values | Туре                                            | Detection rate |  |  |  |
| FY2011 | 1,755      | _          | -                                  | K-40                                            | 10%            |  |  |  |
| FY2012 | 3,518      | _          | ı                                  | K-40                                            | 6%             |  |  |  |
| FY2013 | 3,860      | _          | -                                  | K-40                                            | 13%            |  |  |  |
| FY2014 | 3,856      | _          | -                                  | K-40                                            | 10%            |  |  |  |

# <Sediments> (detection limits: 7 - 180 Bq/kg for Ag-110m and 130 - 330 Bq/kg for Sb-125)

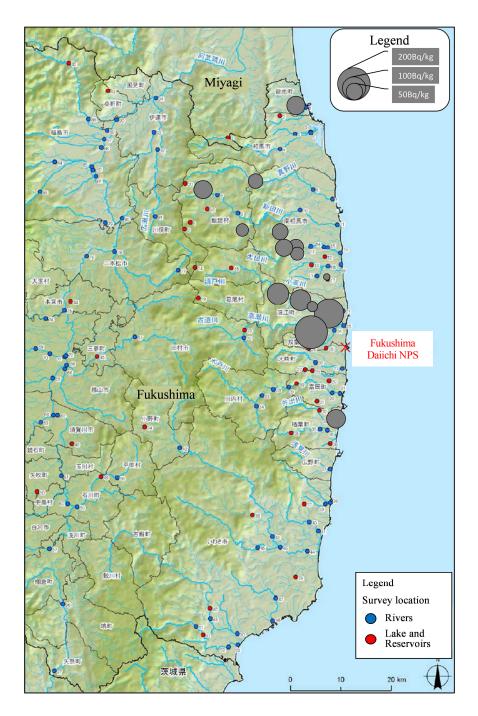

| Fiscal | Number of | Major det | ected artificial radionuclide         |                                                        | naturally occurring                    |
|--------|-----------|-----------|---------------------------------------|--------------------------------------------------------|----------------------------------------|
| year   | samples   | Туре      | Detection rate and detected values    | Туре                                                   | Detection rate                         |
| FY2011 | 1,559     | Ag-110m   | 4 samples (0.26%)<br>46 - 170 Bq/kg   | K-40<br>Pb-212<br>Pb-214<br>Tl-208                     | 79%<br>41%<br>16%<br>14%               |
| EV2012 | 2 995     | Ag-110m   | 26 samples (0.90%)<br>7.9 - 350 Bq/kg | Ac-228<br>Bi-214<br>K-40                               | 41%<br>43%<br>97%                      |
| FY2012 | 2,885     | Sb-125    | 3 samples (0.10%)<br>140 - 420 Bq/kg  | Pb-212<br>Pb-214<br>Tl-208                             | 75%<br>44%<br>39%                      |
| FY2013 | 3,062     | -         | _                                     | Ac-228<br>Bi-214<br>K-40<br>Pb-212<br>Pb-214<br>Tl-208 | 25%<br>25%<br>91%<br>49%<br>23%<br>23% |
| FY2014 | 3,035     | -         | _                                     | Ac-228<br>Bi-214<br>K-40<br>Pb-212<br>Pb-214<br>Tl-208 | 24%<br>24%<br>91%<br>48%<br>24%<br>24% |

The two types of detected artificial radionuclides (Ag-110m and Sb-125) were not included in the publicized reference materials concerning the amount of radioactive materials discharged due to the Fukushima NPS Accident, but the Distribution Maps of Radiation Doses, etc. prepared in October 2011 include a detailed map showing activity concentrations in soil which contains data for Ag-110m (see Figure 5.3-1). Sb-125 was also detected in Niigata after the accident.

The monitoring results revealed that Ag-110m was frequently detected in FY2012 at locations northwest of the Fukushima Daiichi NPS, which coincides with the distribution of Ag-110m as observed in the map showing activity concentrations in soil (Figure 5.3-1). Ag-110m was detected at high concentration levels at two locations (Joroku and Sori-daiichi (both are agricultural reservoirs)) within 10 km northwest of the power station. Sb-125 was detected only at Joroku (agricultural reservoir).

Ag-110m is produced as a result of activation of Ag-109 in a reactor, while Sb-125 is a radioisotope produced as a result of nuclear fission.

Therefore, in light of the distribution of the detected artificial radionuclides and their production processes, they are considered to have been derived from the Fukushima NPS Accident.




(\*) Reference: Website of the Ministry of Education, Culture, Sports, Science and Technology<sup>14</sup> Figure 5.3-1 Map showing concentrations of Ag-110m in soil

Errors in the Released Data on the Amount of Radioactive Materials (October 20, 2011; Nuclear and Industrial Safety Agency) http://www.meti.go.jp/press/2011/10/20111020001/20111020001.pdf

Artificial Radionuclides Detected in Niigata Prefecture After the Accident at the Fukushima Daiichi NPS, by Ono, et al.; Annual Report of the Niigata Prefectural Institute of Environmental Radiation Monitoring, vol. 9, 19-29.

Preparation of Distribution Maps of Radiation Doses, etc. (Te-129m and Ag-110m) by MEXT: http://radioactivity.nsr.go.jp/ja/contents/6000/5050/24/5600 111031 rev130701.pdf



- (\*) Average of detected values; Ag-110m was not detectable at any other time, or at any unmarked locations.
- (\*) Sb-125 was detected only at Joroku (agricultural reservoir) (approx. 10 km northwest of the Fukushima Daiichi NPS) at levels of 140 to 420 Bq/kg during the period from July to November 2012.

Figure 5.3-2 Detection of Ag-110m in sediment samples from public water areas (average of data from September 2011 to March 2013)

# Part 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2014)

# 1. Outline of the Monitoring

# 1.1 Covered monitoring

As other radioactive material monitoring activity conducted nationwide, the results of the Monitoring of Environmental Radioactivity Levels, which has been conducted by the Nuclear Regulation Authority for the purpose of clarifying the existence or nonexistence of the influence of nuclear facilities, etc. nationwide, are compiled here.

Monitoring locations are as shown in Table 1.1-1 and Figure 1.1-1. See the relevant website for more details. (http://www.env.go.jp/air/rmcm/result/nsr.html)

# 1.2 Compilation methods

Measurement data are available on the website<sup>15</sup> of the Japan Chemical Analysis Center.

Data for this report were collected from this website under the following search criteria.

- i. Period: April 2014 to March 2015 (Accessed February 8, 2016)
- ii. Coverage: Nationwide
- iii. Targets: All radionuclides

iv. Targeted samples: Inland water (river water, lake water, freshwater), seawater, sediments (river sediments, lake sediments, sea sediments)

-

http://search.kankyo-hoshano.go.jp/servlet/search.top [Accessed February 8, 2016]

Table 1.1-1 Locations for the Monitoring of Environmental Radioactivity Levels (30 in total)

| No. | Prefecture  | Property                       | Sampling locations                                                 | Water | Sediments |
|-----|-------------|--------------------------------|--------------------------------------------------------------------|-------|-----------|
| 1   |             | Lake                           | Oyafuru, Ishikari City (Lake Barato)                               | 0     | _         |
| 2   | Hokkaido    | Coastal area                   | Yoichi Town, Yoichi County (Yoichi Bay)                            | 0     | 0         |
| 3   | Aomori      | Coastal area                   | Fukaura Town, Nishitsugaru County (off Kasose)                     | 0     | 0         |
| 4   | Aomon       | Coastal area                   | Hiranai Town, Higashitsugaru County (Mutsu Bay)                    | 0     | 0         |
| 5   | Iwate       | Hirono Town Kunohe County (off |                                                                    |       |           |
| 6   | Akita       | River                          | Asahikawa, Akita City                                              | 0     | _         |
| 7   | Fukushima   | Coastal area                   | Soma City (off Haragama Beach)                                     | 0     | 0         |
| 8   | Tukusiiiiia | River                          | Zainiwasaka, Fukushima City                                        | 0     | _         |
| 9   |             | Lake                           | Kasumigaura                                                        | 0     | _         |
| 10  | Ibaraki     | Coastal area                   | Tokai Village, Naka County (off the NPS)                           | 0     | 0         |
| 11  | Chiba       | Coastal area                   | Tokyo Bay (off Sodegaura City)                                     | 0     | 0         |
| 12  | Kanagawa    | Coastal area                   | Yokosuka City (Odawa Bay)                                          | 0     | 0         |
| 13  | Niigata     | Lake                           | Shichikuyama, Chuo Ward, Niigata<br>City                           | 0     | _         |
| 14  |             | Coastal area                   | off Niigata Port                                                   | 0     | 0         |
| 15  | Fukui       | Lake                           | Inogaike Pond, Tsuruga City                                        | 0     | _         |
| 16  | Nagano      | Lake                           | Lake Suwa                                                          | 0     | _         |
| 17  | Aichi       | Coastal area                   | Tokoname City (off Kosugaya)                                       | 0     | 0         |
| 18  | Mie         | River                          | Seki Town, Kameyama City (Suzuka River)                            | 0     | _         |
| 19  | Kyoto       | Freshwater                     | Tenno, Ogura Town, Uji City                                        | 0     | _         |
| 20  | Osaka       | Coastal area                   | Osaka City (Entrance to Osaka Port)                                | 0     | 0         |
| 21  |             | River                          | Katamo (Katamo River System)                                       | 0     | 0         |
| 22  |             | River                          | Kawakami (Kawakami River System)                                   | 0     | 0         |
| 23  | Tottori     | River                          | Hotani (Iwakura River System)                                      | 0     | 0         |
| 24  |             | River                          | Bessho (Katamo River System)                                       | 0     | _         |
| 25  |             | River                          | Kannokura (Oshika River System)                                    | 0     | 0         |
| 26  | Hiroshima   | River                          | Kawate Town, Shobara City (Saijo River)                            | 0     | _         |
| 27  | Yamaguchi   | Coastal area                   | Ajisu, Yamaguchi City (Yamaguchi Bay)                              | 0     | 0         |
| 28  | Fukuoka     | Coastal area                   | Higashiminato Town, Moji Ward,<br>Kitakyushu City (off Chichisaki) | 0     | 0         |
| 29  | Kagoshima   | Coastal area                   | Minamisatsuma City (off the mouth of Manose River)                 | 0     | 0         |
| 30  | Okinawa     | Coastal area                   | Katsuren White Beach, Uruma City                                   | 0     | 0         |

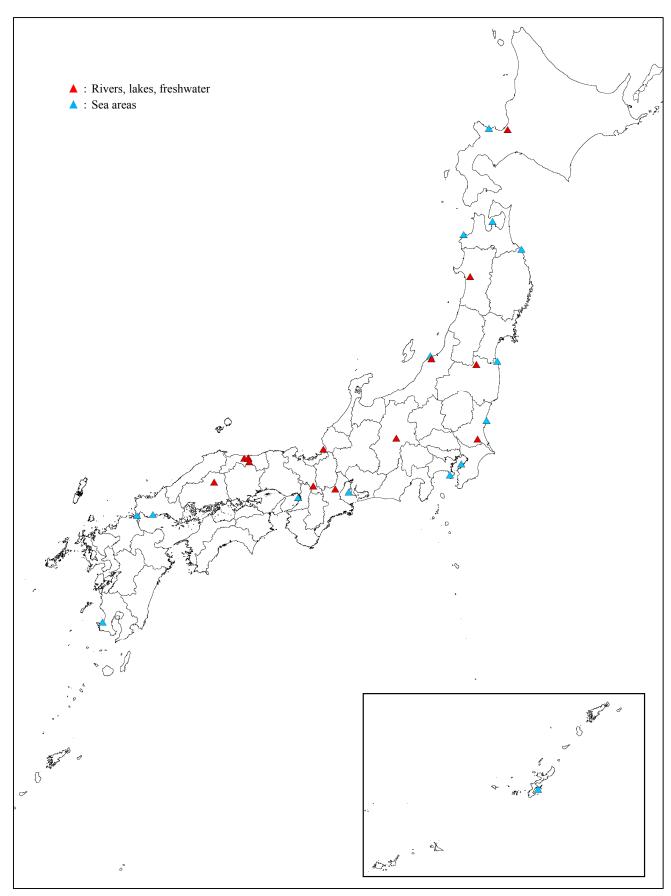



Figure 1.1-1 Locations for the Monitoring of Environmental Radioactivity Levels

#### 2. Results

#### 2.1 Water

# (1) Inland water<sup>16</sup>

The Monitoring of Environmental Radioactivity Levels surveyed nine types of radionuclides in inland water samples in FY2014. As a result, eight types of radionuclides as shown in Table 2.1-1 were detected.

A comparison with the results of the Monitoring of Environmental Radioactivity Levels for the last twenty years (excluding data for March 11, 2011 to March 10, 2012) revealed that detected values for all these radionuclides were within the past measurement trends (see Figure 2.1-1).

Table 2.1-1 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [inland water]

| Nuclides            |        | Number of samples [A] | Number of detections [B] | Detection rate<br>(B/A) (%) | Range of | meas<br>[Bq/I | ured values | _      |   | measurement  [] [Bq/L] |
|---------------------|--------|-----------------------|--------------------------|-----------------------------|----------|---------------|-------------|--------|---|------------------------|
|                     | Be-7   | 7                     | 5                        | 71.4                        | ND       | -             | 0.017       | ND     | - | 0.021                  |
| Naturally occurring | K-40   | 10                    | 10                       | 100.0                       | 0.013    | -             | 0.18        | 0.0067 | - | 0.30                   |
| radionuclides       | U-234  | 10                    | 10                       | 100.0                       | 0.0015   | -             | 0.0056      | ND     | - | 0.015                  |
|                     | U-238  | 10                    | 10                       | 100.0                       | 0.00071  | -             | 0.0036      | ND     | - | 0.013                  |
|                     | Cs-134 | 9                     | 2                        | 22.2                        | ND       | -             | 0.015       | ND     | - | 0.041                  |
| Artificial          | Cs-137 | 9                     | 4                        | 44.4                        | ND       | -             | 0.041       | ND     | - | 0.084                  |
| radionuclides       | I-131  | 7                     | 1                        | 14.3                        | ND       | -             | 0.0078      | ND     | - | 0.016                  |
|                     | Sr-90  | 10                    | 8                        | 80.0                        | ND       | -             | 0.0028      | ND     | - | 0.0050                 |

ND = Not detectable

(\*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1994 to FY2013 (excluding data for March 11, 2011 to March 10, 2012)

- \* : Detected value
  - : Average (arithmetic average; calculated by assuming ND to be zero)
  - : Range of past measurement records

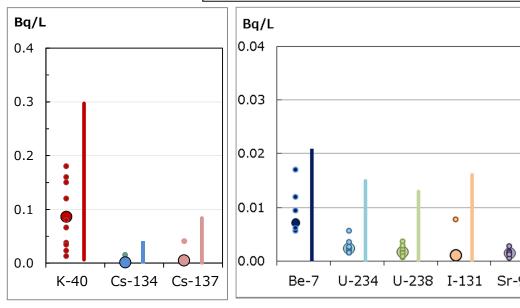



Figure 2.1-1 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [inland water]

<sup>&</sup>lt;sup>16</sup> This report only covers data for river water, lake water, and freshwater in the Monitoring of Environmental Radioactivity Levels.

# (2) Seawater

The Monitoring of Environmental Radioactivity Levels surveyed six types of radionuclides in seawater samples in FY2014. As a result, two types of radionuclides as shown in Table 2.1-2 were detected.

A comparison with the results of the Monitoring of Environmental Radioactivity Levels for the last twenty years (excluding data for March 11, 2011 to March 10, 2012) revealed that detected values for both of these radionuclides were within the past measurement trends (see Figure 2.1-2).

| Nuclides                               |       | Number of samples [A] | Number of detections [B] | Detection rate (B/A) (%) | Range of meas |        | The range of past measurement records $[Bq/L] \ \ (*1)$ |   |        |
|----------------------------------------|-------|-----------------------|--------------------------|--------------------------|---------------|--------|---------------------------------------------------------|---|--------|
| Naturally occurring radionuclides K-40 |       | 16                    | 16                       | 100.0                    | 0.86 -        | 13     | 0.078                                                   | - | 14     |
| Artificial radionuclides               | Sr-90 | 15                    | 15                       | 100.0                    | 0.00055 -     | 0.0014 | ND                                                      | - | 0.0084 |

Table 2.1-2 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [seawater]

ND = Not detectable

(\*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1994 to FY2013 (excluding data for March 11, 2011 to March 10, 2012)

\* • : Detected value
•: Average (arithmetic average; calculated by assuming ND to be zero)
: Range of past measurement records

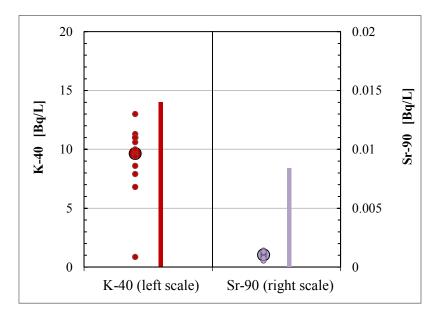



Figure 2.1-2 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [seawater]

#### 2.2 Sediments

# (1) Inland water sediments (river sediments and lake sediments)

The Monitoring of Environmental Radioactivity Levels surveyed three types of radionuclides in inland water sediment samples (river and lake sediments) in FY2014. As a result, three types of radionuclides as shown in Table 2.2-1 were detected.

A comparison with the results of the Monitoring of Environmental Radioactivity Levels for the last twenty years (excluding data for March 11, 2011 to March 10, 2012) revealed that detected values for all these radionuclides were within the past measurement trends (see Figure 2.2-1).

Table 2.2-1 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [Inland water sediments (river and lake sediments)]

| Nuclides      |       | Number of samples [A] | Number of detections [B] | Detection rate<br>(B/A) (%) | Range of measured values [Bq/kg(dry)] |   |     |      |   |     | The range of past measure<br>records<br>[Bq/kg(dry)](*1) |  |
|---------------|-------|-----------------------|--------------------------|-----------------------------|---------------------------------------|---|-----|------|---|-----|----------------------------------------------------------|--|
| Naturally     | U-234 | 5                     | 5                        | 100.0                       | 13                                    | - | 35  | 6.5  | - | 76  |                                                          |  |
| occurring     | U-235 | 5                     | 5                        | 100.0                       | 0.42                                  | - | 1.4 | 0.20 | - | 3.4 |                                                          |  |
| radionuclides | U-238 | 5                     | 5                        | 100.0                       | 14                                    | - | 41  | 0.50 | - | 94  |                                                          |  |

(\*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1994 to FY2013 (excluding data for March 11, 2011 to March 10, 2012)

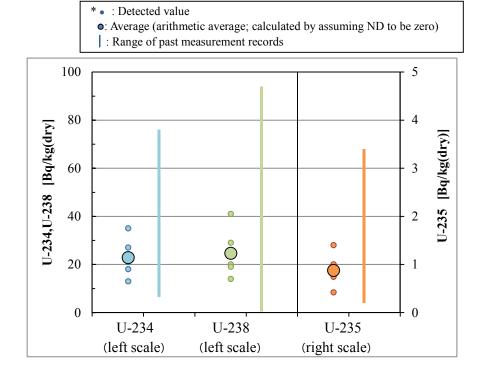



Figure 2.2-1 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [Inland water sediments (river and lake sediments)]

#### (2) Sea sediments

The Monitoring of Environmental Radioactivity Levels surveyed eight types of radionuclides in sea sediments in FY2014. As a result, five types of radionuclides as shown in Table 2.2-2 were detected.

A comparison with the results of the Monitoring of Environmental Radioactivity Levels for the last twenty years (excluding data for March 11, 2011 to March 10, 2012) revealed that detected values for all these radionuclides were within the past measurement trends (see Figure 2.2-2).

Table 2.2-2 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [Sea sediments]

| Nuclid              | Nuclides |    | Number of detections [B] | Detection rate (B/A) (%) | _  | Range of measured values [Bq/kg(dry)] |     | The range of measurement [Bq/kg (dry |   | records |  |
|---------------------|----------|----|--------------------------|--------------------------|----|---------------------------------------|-----|--------------------------------------|---|---------|--|
| Naturally occurring | Ac-228   | 1  | 1                        | 100.0                    | 42 | -                                     | 42  | 20                                   | - | 53      |  |
| radionuclides       | Bi-214   | 1  | 1                        | 100.0                    | 26 | -                                     | 26  | 4.8                                  | - | 31      |  |
|                     | K-40     | 15 | 15                       | 100.0                    | 97 | -                                     | 700 | 33                                   | - | 720     |  |
| Artificial          | Cs-134   | 15 | 3                        | 20.0                     | ND | -                                     | 4.4 | ND                                   | - | 35      |  |
| radionuclides       | Cs-137   | 15 | 9                        | 60.0                     | ND | -                                     | 13  | ND                                   | - | 76      |  |

ND = Not detectable

(\*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1994 to FY2013 (excluding data for March 11, 2011 to March 10, 2012)

- \* : Detected value
- •: Average (arithmetic average; calculated by assuming ND to be zero)
- : Range of past measurement records

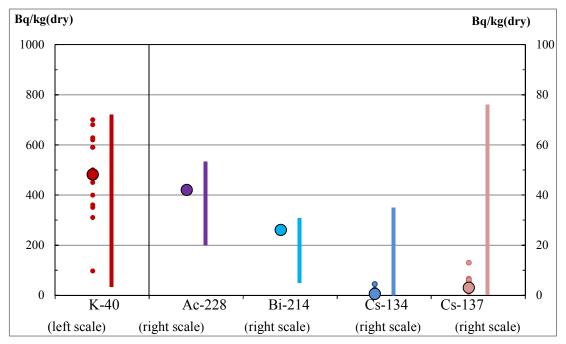



Figure 2.2-2 Detection of radionuclides in the Monitoring of Environmental Radioactivity Levels [Sea sediments]