The Exposure to **Dioxins and other** chemical compounds in the Japanese People

Environmental Risk Assessment Office **Environmental Health Department** Ministry of the Environment, Japan

Introduction

The Office of Environmental Risk Assessment of the Environmental Health Department of the Ministry of the Environment, Japan, carried out a project entitled "Survey of the Exposure to Dioxins and other chemical compounds in Humans," to obtain the state of accumulation and the amount of intake of dioxins and other chemical compounds, starting from FY 2011. The OERA compiled the results of the survey conducted in FY 2011, as its first year of the project.

Summary of Survey of the Exposure of Dioxins and other chemical compounds in Humans

Objective of the survey

- To obtain the state of accumulation of dioxins and other chemical compounds in the Japanese people.
- Conduct a follow-up survey and obtain chronological change in the levels of chemical compounds in people who had participated in surveys carried out in the past.
- To conduct a monitoring survey on POPs (Persistent Organic Pollutants) in biological samples, as required by each parties to Stockholm Convention on Persisting Organic Pollutants.

Scope and methods of the survey

- Three regions were selected from survey regions of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010) for this survey.
- Within each survey area, residents aged 40 59, who had lived in the area for a long period, were recruited and designated as survey subjects.
- Dioxin and other chemical compounds were measured in blood and urine of survey subjects.
- Survey on lifestyles of the subjects was conducted by questionnaire.
- Food samples were collected over a period of three days from some survey subjects. Levels of chemical compounds in food were measured and the amount of intake was calculated.

Results of dioxins survey

- The average concentration of dioxins in the blood in 86 people was 17 pg-TEQ/g-fat, with a range of 0.83 56 pg-TEQ/g-fat. This result is similar to those reported in other surveys.
- Among 8 people who had participated in past studies (in FY 2002 or FY 2003), dioxin levels in blood of 7 people had decreased.
- The average dioxin intake from food by 15 people was 0.65 pg-TEQ/kg body weight/day with a range of 0.035 2.4 pg-TEQ/kg body weight/day. No survey subjects exceeded the tolerable daily intake (TDI) of 4 pg-TEQ/kg body weight/ day.

Results of fluorine compounds survey

- The average concentration of PFOS and PFOA in the blood of 86 people was 5.8 ng/mL and 2.2 ng/mL, respectively. In addition, the range of PFOS and PFOA concentration was 1.6 17 ng/mL and 0.66 9.6 ng/mL, respectively. This result is similar to those reported in other surveys.
- The average PFOS and PFOA intake from food by 15 people was 0.57 ng/kg body weight/day and 0.69 ng/kg body weight/day, respectively. In addition, the range of PFOS and PFOA intake from food was N.D. 1.7 ng/kg body weight/day and N.D. 2.9 ng/kg body weight/day, respectively.

Results of heavy metals survey

- The average concentration of total mercury in blood of 86 people was 11 ng/mL with a range of 2.4 29 ng/mL. This result is similar to those reported in other surveys.
- The average concentration in cadmium in urine of 15 people was 1.2 μ g/g cr with a range of 0.25 3.9 μ g/gcr. In addition, measurement of arsenic speciation in urine was conducted.
- Among 15 people, the average intake of total mercury from food was 0.069 μ g/kg body weight/day with a range of N.D. 0.16 μ g/kg body weight/day. The average intake of methyl mercury from food was 0.064 μ g/kg body weight/day with a range of N.D. 0.14 μ g/kg body weight/day. The average intake of lead from food was 0.24 μ g/kg body weight/day with a range of 0.059 0.39 μ g/kg body weight/day. The average intake of cadmium from food was 0.091 μ g/kg body weight/day with a range of 0.024 0.17 μ g/kg body weight/day. No survey subjects exceeded TDI of methyl mercury and cadmium.

Pesticide metabolites, plasticizers, and others

• Pesticide metabolites (organic phosphorous compound metabolites, pyrethroid pesticide metabolites, and triclosan) in urine of 15 people were measured. In addition, measurements were conducted on plasticizers (phthalate monoesters, and bisphenol A).

POPs

• The concentration of POPs and candidates specified by Stockholm Convention in blood of 86 people was measured. In addition, amount of intake from food was calculated for 15 people.

Table of Contents

	Introduction			
1	Overview of the Survey of the Exposure to Dioxins and other chemical compounds in Humans … 1			
2	Methods of Survey			
	2-1	Targe	et regions and subjects	
	2-2	Meth	ods 3	
3	Results and Discussion			
	3-1	Dioxi	ns survey ····· 5	
		3-1-1	Blood study 5	
		3-1-2	Food study 6	
	3-2	Fluor	ine compounds survey ····· 7	
		3-2-1	Blood study 7	
		3-2-2	Food study 8	
	3-3	Heav	y metals survey	
		3-3-1	Blood study	
		3-3-2	Urine study	
		3-3-3	Food study	
	3-4	Pestic	cide metabolites, plasticizers, and others11	
		3-4-1	Urine study ······ 11	
	3-5	POPs	survey ······ 12	
		3-5-1	Blood study 12	
		3-5-2	Food study 14	
< (Comr	nittee I	Nembers > ······ 16	
< 5	Supp	lement	ary Information > · · · · · · · · · · · · · · · · · ·	

1. Overview of the Survey of the Exposure to Dioxins and other chemical compounds in Humans

The Environmental Risk Assessment Office of the Environmental Health Department of the Ministry of the Environment, Japan, carried out a survey entitled "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" from FY 2002 to FY 2011. In this survey, blood dioxin concentrations were measured in 2,264 people living in general environment in Japan. In addition, dioxin concentration in food was measured for 625 people, and the amount of intake from food was calculated (see Supplementary Information).

The "Survey of the Exposure to Dioxins and other chemical compounds in Humans" was newlylaunched in FY 2011. In this survey, the survey regions were selected from that of the surveys carried out in the past. The blood and urine was sampled from the participating residents, and the accumulation of dioxins and other chemical compounds and so forth was studied.

Furthermore, a food study (duplicate portions study) was conducted for some of the survey subjects. The chemical compound level in food was measured, and the amount of intake of chemical compounds ingested into the body from food (intake) was estimated.

In FY 2011, chemical compound concentration in blood of 86 people from 3 survey regions was measured. In addition, the chemical compound intake from food was estimated for 15 people.

0	Survey of the Exposure to Dioxins and other chemical compounds in Humans	
	Organization responsible for the survey: Environmental Risk Assessment Office, Environmental Health Department, Ministry of the Environment, Japan Survey period: From FY 2011	
	Survey regions: Three regions (two fishery regions and one agricultural region)	
	Survey specimen: - Blood study (to ascertain the accumulation of chemical compounds in food)	
	- Urine study (to ascertain the excretion of rapidly-metabolizing compounds)	
	- Food study (to ascertain the amount of intake of chemical compounds) Number of subjects: 86 people (15 people also participated	
	in Food study	

2-1 Target regions and subjects

In "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" conducted from FY 2002 to FY 2010, the entire country was divided into five regions, and one prefecture was selected for each region for each fiscal year. In each prefecture, three areas classifiable as urban, agricultural, or fishery area were selected on a city, town or village unit.

In FY 2011 survey, three regions were selected from the survey regions of the past studies.

Study subjects were recruited in survey regions according to the criteria shown below, through local administrative authorities.

Furthermore, study subjects who meet the criteria below and who had participated in the past studies were recruited as well.

Study subject criteria

- Age: 40 59
- · Residential period in the survey region: 10 years or more
- Infrequent leaves from the study regions for work or other reasons
- Having no problem in blood sampling owing to anemia or other reasons

2-2 Methods

Blood study (all subjects)

Blood samples from survey subjects were taken by a nurse in the presence of a physician. As a general rule, fasting blood samples were taken from the subjects.

Analysis item

- Dioxins (7 congeners of PDDDs, 10 congeners of PCDFs, 12 congeners of Co-PCBs)
- Organofluorine Compounds (PFOS, PFOA)
- Heavy metal (total Hg)
- POPs (PCBs, DDTs, clordens etc.)
- General health checkup items (blood count, hepatic function, renal function,glucose metabolism etc.)
- Healthy influence index items (Thyroidal function, allergic function, fatty acids etc.)

 Urine study (sampled from all subjects; measurement conducted for some of the subjects)

Urine was sampled in urine receptacle, early in the morning of the same day of blood sampling.

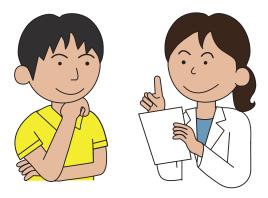
Analysis item

- Pesticides and others (organic phosphorous compound metabolites, pyrethroid pesticide metabolites, carbamate pesticide metabolites, triclosan)
- Plasticizers and others (phthalate monoesters, and bisphenol A)
- Heavy metals (cadmium, lead)
- General health examination items (urine specific gravity, urinary sugar, uric protein, and others)
- ※ General health examination items were examined for all subjects, and other items were analyzed for 15 people participating in the food study.

• Food study (some of the subjects)

The food study was conducted as a "duplicate portions study." over the three days of the survey period : duplicates of the subject's meals for the three days were stored in containers and collected later. Upon collection, a nutritionist checked the types and weight of the food commodities.

The three days' portion of collected food was then homogenized, and the dioxins were extracted from the homogenate.


Analysis item

- Dioxins (7 congeners of PDDDs, 10 congeners of PCDFs, 12 congeners of Co-PCBs)
- Organofluorine Compounds (PFOS, PFOA)
- Heavy metal (total Hg, metyl Hg, Cd, Pb)
- POPs (PCBs, DDTs, clordens etc.)

Lifestyle survey (questionnaire)

The lifestyle of survey subjects were investigated through individual interviews by a health nurse or a nutritionist, based on the questionnaire sent to the subjects prior to the interview.

Analysis item

• Personal medical history, residential history, occupational history, smoking habit, dietary history, lifestyle, birth history, and others

3. Results and Discussion

3-1 Dioxins survey

3-1-1 Blood study

Result summary

The blood dioxin concentrations found in this study are shown in Table 1. The average concentration in the 86 survey subjects was 17 pg-TEQ/g-fat. The range of concentrations was $0.83 \sim 56$ pg-TEQ/g-fat.

	(unit: pg-TEQ/g-fat)
	(n=86)
PCDDs+PCDFs +Co-PCBs	
Average	17
Standard deviation	10
Median	14
Range	0.83 ~ 56

□ Table 1 Statistics of blood dioxin concentration

Comparison with past survey results

Table 2 summarizes the results of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010)".

While it is difficult to compare in a simplified manner since the average ages of the target subjects and determination methods for dioxins differ by survey, the blood

dioxin concentrations obtained in this survey are considered to fall generally within the range of these past surveys.

 \Box table 2 Comparison with past survey results

		(unit: pg-TEQ/g-fat)
Survey name	Survey on the Accumulation of Dioxins and other chemical compounds	This survey
Survey year	FY 2002 to FY 2010	FY2011
Subjects	People living in the general environment	People living in the general environment
The number of subject	2,264	86
Age		
Average (years)	44.5	50.1
Range	15 ~ 76	40~62
PCDDs+PCDFs +Co-PCBs		
Average	19	17
Standard deviation	14	10
Median	16	14
Range	0.10 ~ 130	0.83 ~ 56

(upit: pg_TEO/g_fat)

Comparison for the same subjects

Among the subjects of this survey, 8 people had participated in the past surveys (FY 2002 and FY 2003).

The comparison of blood dioxin results of the past studies and this survey for these 8 people are shown in the table. The dioxin concentrations in blood have decreased.

		(unit: pg-TEQ/g-fat)
Survey year	Past survey (n=8)	This study (n=8)
Survey year	FY 2002, 2003	FY 2011
PCDDs+PCDFs +Co-PCBs		
Average	40	24
Standard deviation	33	16
Median	25	21
Range	0.96 ~ 95	3.1 ~ 56

 $\hfill\square$ Table 3 Comparison of blood dioxin concentration in the same subjects

3-1-2 Food study

Result summary

Table 4 summarizes the dioxin intake from food in the 15 people who participated in the food study. The average intake was 0.65 pg-TEQ/kg/day with a range of 0.035 – 2.4 pg-TEQ/kg/day. Tolerable daily intake (TDI) has been used as a guideline for regulating the dioxin intake. (The TDI is a value indicating the maximum intake of a given chemical substance per kg of body weight per day, below which humans may not show adverse health effects even when the chemical is ingested at this amount over a long period of time). In Japan, the TDI for dioxins is 4 pg-TEQ/kg/day as stipulated by the Law Concerning Special Measures against Dioxins, no subjects exceeded the TDI (4pg-TEQ/kg/day) value in this survey.

	(unit: pg-TEQ/kg/day)
	(n=15)
PCDDs+PCDFs +Co-PCBs	
Average	0.65
Standard deviation	0.71
Median	0.39
Range	0.035 ~ 2.4

• Comparison with past survey results

Table 5 summarizes the results of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010)".

The dioxin intake from food obtained in this survey are considered to fall generally within the range of the past surveys.

	i with past survey results	
		(unit: pg-TEQ/kg/day)
Survey	Survey on the Accumulation of Dioxins and other chemical compounds	This survey
Survey year	FY 2002 to FY 2010	FY2011
Subjects	People living in the general environment	People living in the general environment
The number of subject	625	15
PCDDs+PCDFs +Co-PCBs		
Average	0.82	0.65
Standard deviation	0.86	0.71
Median	0.56	0.39
Range	0.031 ~ 6.2	0.035 ~ 2.4

 \Box Table 5 Comparison with past survey results

3-2 Fluorine compounds survey

3-2-1 Blood study

Result summary

The result of fluorine compound concentrations in blood is shown in the table. The average of 86 survey subjects for PFOS was 5.8 ng/mL and 2.2 ng/mL for PFOA. The concentration range for PFOS was 1.5 – 17 ng/mL and 0.66 – 9.6 ng/mL for PFOA.

concentratio	n
	(unit: ng/mL)
	(n=86)
PFOS	
Average	5.8
Standard deviation	3.1
Median	4.8
Range	1.5 ~ 17
PFOA	
Average	2.2
Standard deviation	1.4
Median	1.8
Range	0.66 ~ 9.6

Table 6 Statistics of blood fluorine compound

• Comparison with past survey results

The comparison with the results of "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" conducted from FY 2008 to FY 2010 for 609 subjects is shown in the table. Although it is difficult to make simple comparisons compare because the average age and number of the subjects differ by survey, the results obtained in this survey generally fall within the range of these past surveys.

		(unit: ng/mL)
Survey	Survey on the Accumulation of Dioxins and other chemical compounds	Current survey
Survey year	FY 2002 to FY 2010	FY2011
Subjects	People living in the general environment	People living in the general environment
The number of subject	609	86
PFOS		
Average	7.8	5.8
Standard deviation	9.2	3.1
Median	5.8	4.8
Range	0.73 ~ 150	1.5 ~ 17
PFOA		
Average	3.0	2.2
Standard deviation	2.9	1.4
Median	2.1	1.8
Range	0.37 ~ 25	0.66 ~ 9.6

□ Table 7 Comparison with past survey results

3-2-2 Food study

The intake of fluorine compounds from food for the 15 subjects is shown in the table. The average was 0.57 ng/kg body weight/day with a range of N.D. – 1.7 ng/kg body weight/day for PFOS. Tolerable daily intake (TDI) is not established for fluorine compounds in Japan.

nonnoou	
	(unit: ng/kg/day)
	(n=15)
PFOS	
Average	0.57
Standard deviation	0.51
Median	0.53
Range	N.D. ~ 1.7
PFOA	
Average	0.69
Standard deviation	0.70
Median	0.62
Range	N.D. ~ 2.9

□ Table 8 Statistics of fluorine compounds intal	кe
from food	

3-3 Heavy metals survey

3-3-1 Blood study

Result summary

Total mercury concentration was studied for heavy metal in blood. The results are shown in the table. The average of 86 subjects was 11 ng/mL with a range of 2.4 – 29 ng/mL.

concentration					
(unit: ng/r					
	(n=86)				
Total mercury					
Average	11				
Standard deviation	5.8				
Median	9.1				
Range	2.4 ~ 29				

Table 9 Statistics of blood total mercury concentration

3-3-2 Urine study

Result summary

Cadmium and arsenic speciation (As (V), As (III), monomethylarsonic acid, dimethylarsinic acid, arsenobetaine) in urine were measured. The results are shown in the table.

□ Tabla 10	Statistics of urine	hony motal	concontration
	Statistics of unite	neavy metai	CONCENTIATION

(unit: µg					
	Chemical compounds	Statistics	(n=15)		
		Average	1.2		
Cadmiu		Standard deviation	0.96		
Caumiu		Median	0.97		
		Range	0.25 ~ 3.9		
		Average	0.62		
	Δ ς (\/)	Standard deviation	0.76		
	As (V)	Median	0.30		
		Range	N.D. ~ 2.5		
		Average	1.7		
	As (III)	Standard deviation	1.5		
	A3 (III)	Median	1.5		
		Range	N.D. ~ 6.2		
[MMA (monomethylarsonic acid)	Average	2.3		
Arsenic		Standard deviation	1.2		
Alsenic	MMA (monomethylarsonic acid)	Median	2.0		
		Range	0.89 ~ 5.1		
		Average	59		
	DMA (dimothylarsinic acid)	Standard deviation	44		
	DMA (dimethylarsinic acid)	Median	42		
		Range	12~170		
		Average	100		
	AB (arsenobetaine)	Standard deviation	91		
	AD (alsenobetaille)	Median	73		
		Range	15 ~ 300		

3-3-3 Food study

Result summary

Total mercury methyl mercury, lead, and cadmium in food was measured. The results are shown in the table. The average for total mercury was 0.069 μ g/kg body weight/day with a range of N.D. - 0.16 μ g/kg body weight/day. The average for methyl mercury was 0.064 μ g/kg body weight/day with a range of N.D. - 0.14 μ g/kg body weight/day. The average for lead was 0.24 μ g/kg body weight/day with a range of 0.059 - 0.39 μ g/kg body weight/day. The average for cadmium was 0.091 μ g/kg body weight/day with a range of 0.059 - 0.39 μ g/kg body weight/day. The average for cadmium was 0.091 μ g/kg body weight/day with a range of 0.024 - 0.17 μ g/kg body weight/day.

Among the heavy metals studied in this survey, Tolerable Daily Intake (TDI) is established for methyl mercury (0.29 μ g/kg body weight/day) and cadmium (7 μ g/kg body weight/week) in Japan. In this survey, no subject exceeded the TDI.

from food	
	(unit: µg/kg/day)
	(n=15)
Total mercury	
Average	0.069
Standard deviation	0.044
Median	0.063
Range	N.D. ~ 0.16
Methyl mercury	
Average	0.064
Standard deviation	0.037
Median	0.063
Range	N.D. ~ 0.14
Lead	
Average	0.24
Standard deviation	0.10
Median	0.24
Range	0.059 ~ 0.39
Cadmium	
Average	0.091
Standard deviation	0.040
Median	0.094
Range	0.024 ~ 0.17

□ Table 11 Statistics of heavy metal intake from food

3-4 Pesticide metabolites, plasticizers, and others

3-4-1 Urine study

Pesticide metabolites, plasticizers, and others in urine was studied. The results are shown in the table.

Classification	Chemical c	ompound	Statistics	(n=15)			
			Median	5.6			
		DMP	Range	1.8~14			
			Median	5.8			
	Organophosphorous	DEP	Range	N.D. ~ 32			
	compound metabolites		Median	12			
	metabolites	DMTP	Range	N.D. ~ 62			
			Median	N.D.			
Destisiales		DETP	Range	N.D. ~ 2.7			
Pesticides			Median	0.22			
	Pyrethroid pesticide	РВА	Range	N.D. ~ 3.4			
	metabolites	DCCA	DCCA	DCCA	metabolites	Median	N.D.
			Range	N.D. ~ 13			
	Carbamate pesticide	Ethylopothiouroo	Median	N.D.			
	metabolites	Ethylenethiourea	Range	N.D. ~ 0.23			
	Triclosan		Median	1.3			
	meiosan			0.27 ~ 79			
		MBP	Median	20			
		IVIDE	Range	11~670			
		MEHP	Median	4.2			
			Range	0.98 ~ 8.1			
	Phthalate	МЕННР	Median	15			
Plasticizers	monoesters		Range	5.7~44			
Plasticizers		МЕОНР	Median	9.6			
		MEORP	Range	4.6 ~ 18			
		MBzP	Median	0.59			
			Range	0.25 ~ 10			
	Picphonol A		Median	0.76			
	Bisphenol A	enol A		0.23 ~ 1.4			

 $\hfill\square$ Table 12 Statistics of pesticide metabolites, plasticizers, and others in urine

3-5 POPs survey

3-5-1 Blood study

The result of POPs concentrations in blood is shown in the table.

□ Table 13-1 Statistics of blood POPs concentration

□ Table 13-1 Statistics of blood POPs concentration (unit: pg/g						
Classification	Chemical compound	Statistics	(n=86)			
	MacDa	Median	N.D.			
	MoCBs	Range	N.D. ~ 430			
	DiCDa	Median	100			
	DiCBs	Range	N.D. ~ 800			
	TrCD	Median	920			
	TrCBs	Range	210~3700			
	T CD	Median	6400			
	TeCBs	Range	650 ~ 33000			
		Median	18000			
	PeCBs	Range	1900 ~ 140000			
262	11.00	Median	87000			
PCB	HxCBs	Range	12000 ~ 670000			
		Median	62000			
	HpCBs	Range	10000 ~ 520000			
		Median	13000			
	OcCBs	Range	2600 ~ 110000			
		Median	1300			
	NoCBs	Range	370 ~ 6600			
		Median	630			
	DeCB	Range	220 ~ 2500			
		Median	190000			
	Total PCB	Range	31000 ~ 1400000			
		Median	N.D.			
	o,p'-DDD	Range	N.D. ~ 500			
		Median	730			
	p,p'-DDD					
		Range Median	N.D. ~ 5000 200			
	o,p'-DDE					
DDT		Range	N.D. ~ 1100			
	p,p'-DDE	Median	120000			
		Range	17000 ~ 1000000			
	o,p'-DDT	Median	600			
		Range	N.D. ~ 4500			
	p,p'-DDT	Median	6100			
	1.4	Range	1100~29000			
	cis-Chlordane	Median	100			
		Range	N.D. ~ 800			
	trans- Chlordane	Median	N.D.			
		Range	N.D. ~ 400			
Chlordane	Oxychlordane	Median	10000			
emoruane		Range	1600 ~ 43000			
	<i>cis</i> - Nonachlor	Median	3700			
		Range	600 ~ 29000			
	trans- Nonachlor	Median	23000			
		Range	3000 ~ 110000			
	Aldrin	Median	All N.D.			
		Range				
Drins	Dieldrin	Median	3200			
		Range	1300 ~ 40000			
	Endrin	Median	All N.D.			
	ENUIIII	Range	All N.D.			
Hovachlorehonzon (1)	D)	Median	14000			
Hexachlorobenzen (HC	.D)	Range	3400 ~ 39000			

Classification	Chemical compound				
	Heptachlor	Median Range	All N.D.		
Heptachlors	cis- Heptachlorepoxide	Median	1800 600 ~ 6500		
	trans-Heptachlorepoxide	Range Median	All N.D.		
	Parlar-26	Range Median	790		
Toxaphene	Parlar-50	Range Median	N.D. ~ 3500 1100		
Toxuphene		Range Median	N.D. ~ 4300 N.D.		
	Parlar-62	Range Median	N.D. ~ 3400 1800		
Mirex		Range	400 ~ 6600		
	TeBDEs	Median Range	520 180 ~ 1100		
	PeBDEs	Median Range	210 N.D. ~ 870		
	HxBDEs	Median Range	800 N.D. ~ 2600		
	HpBDEs	Median Range	All N.D.		
PBDE	OcBDEs	Median Range	300 N.D. ~ 3400		
	NoBDEs	Median Range	N.D. N.D. ~ 2000		
	DeBDEs	Median Range	700 N.D. ~ 5100		
	Total PBDEs	Median	2600		
Pentachlorobenzene		Range Median	500 ~ 8600 300		
	<i>а</i> -HCH	Range Median	40 ~ 1500 120		
	β-ΗCΗ	Range Median	N.D. ~ 1200 27000		
НСН	γ-HCH	Range Median	2800 ~ 240000 N.D.		
	δ-ΗCH	Range Median	N.D. ~ 1000 All N.D.		
	0-пСп	Range Median	N.D.		
Chlordecone		Range	N.D. ~ 1.0		
Hexabromobiphenyl		Median Range	N.D. N.D. ~ 700		
	a-HBCD	Median Range	N.D. N.D. ~ 10		
	β-HBCD	Median Range	All N.D.		
HBCD	γ-HBCD	Median	N.D.		
	δ-HBCD	Range Median	N.D. ~ 3.4 All N.D.		
	ε-HBCD	Range Median	All N.D.		
		Range Median	1300		
Endosulfan	α - Endosulfan	Range Median	N.D. ~ 3700 N.D.		
	β - Endosulfan	Range	N.D. ~ 1200		

□ Table 13-2 Statistics of blood POPs concentration

13

3-5-2 Food study

The intake of POPs from food is shown in the table.

 \Box Table 14-1 Statistics of POPs intake from food

(unit: pg/					
Che	Chemical compound Statistics (n=15)				
	MoCBs	Median	7.4		
	Micebs	Range	3.0 ~ 89		
	DiCBs	Median	200		
		Range	100 ~ 620		
	TrCBs	Median	400		
	ПСВЗ	Range	$180 \sim 1400$		
	TeCBs	Median	750		
	Tecbs	Range	230~4100		
	PeCBs	Median	930		
	Fecds	Range	130 ~ 8200		
РСВ		Median	980		
PCD	HxCBs	Range	$100 \sim 14000$		
		Median	420		
	HpCBs	Range	37 ~ 7500		
	0.00	Median	71		
	OcCBs	Range	4.1 ~ 1100		
		Median	11		
	NoCBs	Range	1.1 ~ 91		
		Median	6.0		
	DeCB	Range	0.74 ~ 50		
		Median	5100		
	Total PCB	Range	820 ~ 35000		
		Median	39		
	o,p'-DDD	Range	4.1 ~ 550		
		Median	380		
	p,p'-DDD	Range	19 ~ 4900		
		Median	27		
	o,p'-DDE	Range	4.8 ~ 210		
DDT		Median	1600		
	p,p'-DDE	Range	240 ~ 8200		
		Median	66		
	o,p'-DDT	Range	8.5 ~ 1400		
		Median	300		
	p,p'-DDT	Range	28 ~ 7600		
		Median	490		
	<i>cis</i> -Chlordane	Range	63 ~ 1400		
		Median	170		
	trans- Chlordane	Range	41 ~ 800		
		Median	95		
Chlordane	Oxychlordane	Range	22 ~ 340		
		Median	130		
	cis- Nonachlor	Range	10 ~ 950		
		Median	440		
	trans- Nonachlor	Range	59 ~ 2100		
		Median	N.D.		
	Aldrin		N.D. ~ 5.2		
		Range Median	510		
Drins	Dieldrin				
		Range Median	71 ~ 1800 69		
	Endrin				
		Range	N.D. \sim 200		

Chemica	compound	Statistics	(unit: pg/kg/day) (n=86)
		Median	630
Hexachlorobenzene (HC	В)	Range	160~2100
	Heptachlor	Median	13
		Range	4.5 ~ 47
Heptachlor	cis- Heptachlorepoxide	Median	110 63 ~ 430
	· · ·	Range Median	
	trans-Heptachlorepoxide	Range	All N.D.
	Parlar-26	Median	52
		Range	N.D. ~ 340
Toxaphene	Parlar-50	Median Range	98 1.5 ~ 550
		Median	73
	Parlar-62	Range	N.D. ~ 430
Mirex	-	Median	14
WIIICX		Range	2.2 ~ 190
	TeBDEs	Median	290
		Range Median	<u>160 ~ 1500</u> 150
	PeBDEs	Range	63 ~ 710
	HxBDEs	Median	36
		Range	8.9~510
	HpBDEs	Median	N.D.
PBDE		Range Median	N.D. ~ 40 25
	OcBDEs	Range	N.D. ~ 110
	NoBDEs	Median	36
	NOBDES	Range	N.D. ~ 120
	DeBDEs	Median	230
		Range Median	72 ~ 980 780
	Total PBDEs	Range	530 ~ 3000
Pentachlorobenzene		Median	63
rentachiorobenzene		Range	31 ~ 220
	a-HCH	Median	160
		Range Median	<u>64 ~ 1000</u> 250
	β-ΗCΗ	Range	48~2000
НСН	у-НСН	Median	47
	γ-παπ	Range	23~430
	δ-ΗCΗ	Median	14 3.7 ~ 29
		Range Median	
Chlordecone		Range	All N.D.
Hexabromobiphenyl		Median	N.D.
		Range	N.D. ~ 6.3
	a-HBCD	Median Range	N.D. N.D. ~ 9.0
	0.11000	Median	
	β-HBCD	Range	All N.D.
HBCD	γ-HBCD	Median	All N.D.
		Range	
	δ-HBCD	Median Range	All N.D.
		Median	
	ε-HBCD	Range	All N.D.
		Median	570
	a - Endosulfan		
Endosulfan	α - Endosulfan	Range Median	<u>390 ~ 1300</u> 280

□ Table 14-2 Statistics of POPs intake from food

15

Committee Members for the Survey of the Exposure to Diosxins and other chemical compounds in Human

Arisawa, Kokichi	Professor, Social and Environmental Medicine Division, Institute of Health Biosciences, University of Tokushima Graduate School
Kiwao, Kadokami	Professor, University of Kitakyushu Graduate School
Kayama, Fujio	Professor, Division of Environmental Medicine, Center for Community Medicine, Jichi Medical University
Sato, Hiroshi ¹⁾	Director, National Institute for Environmental Studies
Yasuyuki, Shibata	Senior Principal Researcher, Environmental Measurement Research Center, National Institute for Environmental Studies
Masayuki, Shima	Professor, Department of Public Health, Hyogo College of Medicine
Suzuki, Takaichiro	President, Kansai Medical Technical College
Suzuki, Noriyuki	Leader, Exposure Assessment Research Section, Research Center for Environmental Risk, National Institute for Environmental Studies
Tohyama, Chiharu	Professor, Health and Environmental Sciences Division, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo
Nagai, Masaki	Professor, Department of Public Health, Saitama Medical University
Tetsuhito, Fukushima	Professor, Department of Hygiene & Preventive Medicine, Fukushima Medical University
Miyata, Hideaki	Visiting Professor, Faculty of Pharmaceutical Sciences, Setsunan University
Jun, Yoshinaga	Associate Professor, Graduate School of Frontier Sciences, University of Tokyo

1) Chair

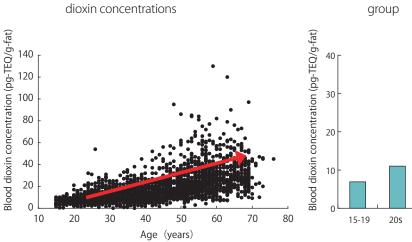
Supplementary Information

17

Overview of the Survey on Accumulation of Dioxins in Humans (FY2002 ~ FY2010)

(1) Nationwide survey

Blood dioxin concentrations


	(unit: pg-TEQ/g-fat)							nit: pg-TEQ/g-fat)			
Survey year	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010		Nine-year average
Subjects (N)	259	272	264	288	291	282	257	178	175		Total:2,264
Age (years)											
Average	44.4	41.7	45.2	44.3	43.0	44.2	47.6	46.3	44.4		44.5
Range	16~72	15~69	15~70	15~70	15~72	15~69	17~70	18~76	16~70		15~76
PCDDs+PCDFs Co-PCBs											
Average	22	19	19	22	17	20	21	17	14		19
Standard deviation	14	12	13	15	12	15	15	12	13		14
Median	19	17	16	17	14	16	17	14	11		16
Range	0.96~95	2.7~97	0.64~85	1.5~75	0.82~67	1.6~120	0.43~130	1.1~59	0.10~82		0.10~130

□ Table 15 Blood dioxin concentrations by fiscal year

(According to WHO 2006 TEFs)

Relationship to age

□ Figure 1 Relationship between age and blood

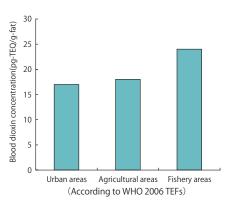
□ Figure 2 Blood dioxin concentrations by age group

30s

50s

40s

Age (years)

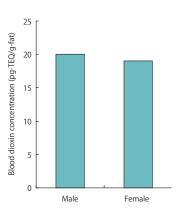

19

60s +

• Differences in blood dixin concentrations by area

	Urban areas	Agricultural areas	Fishery areas
Subjects (N)	938	675	651
Average age (years)	43.5	45.4	44.8
Blood dioxin concentration (pg-TEQ/g-fat)			
Average	17	18	24
Standard deviation	11	12	17
Median	15	15	19
Range	0.11~77	0.10~97	0.43~130

 $\hfill\square$ Table 16 Blood dioxin concentrations by types of survey area


(According to WHO 2006 TEFs)

• Difference in blood dioxin concentrations by gender

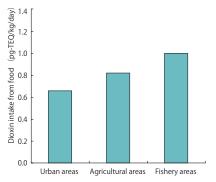
□ Table 17 Blood dioxin concentrations by gender

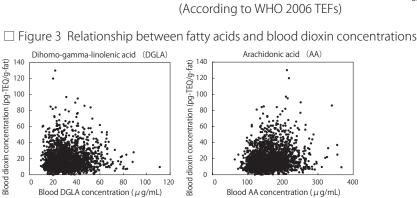
	Male	Female
Subjects (N)	1,063	1,201
Average age (years)	43.5	45.3
Blood dioxin concentration (pg-TEQ/g-fat)		
Average	20	19
Standard deviation	15	13
Median	16	16
Range	0.64~130	0.10~95

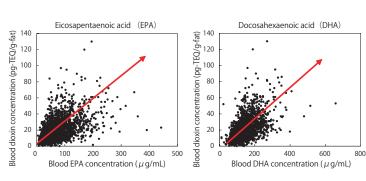
(According to WHO 2006 TEFs)

Dioxin intake from food

□ Table 18 Dioxin intake from food by fiscal year

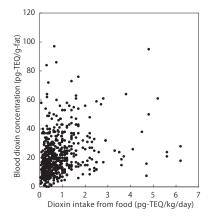

Study year	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	Nine-year average
Subjects (N)	75	75	75	75	75	75	75	50	50	Total: 625
Dioxin intake from food (pg-TEQ/kg/day)										
Average	1.1	1.1	0.89	0.89	0.57	0.75	0.68	0.79	0.44	0.82
Standard deviation	1.1	0.92	0.66	0.89	0.44	0.90	0.75	1.2	0.42	0.86
Median	0.75	0.91	0.68	0.59	0.41	0.46	0.39	0.43	0.34	0.56
Range	0.058~5.6	0.14~5.6	0.16~3.7	0.13~5.2	0.099~2.2	0.060~6.2	0.054~4.8	0.055~6.2	0.031~2.0	0.031~6.2

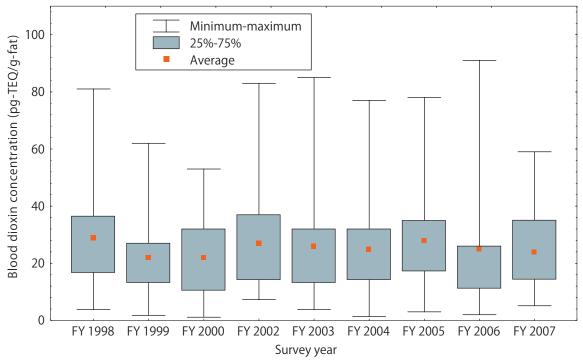

(According to WHO 2006 TEFs)


Differences in dioxin intake from food by area

□ Table 19 Dioxin intake from food by area

	Urban areas	Agricultural areas	Fishery areas
Subjects (N)	229	201	195
Dioxin intake from food (pg-TEQ/kg/day)			
Average	0.66	0.82	1.0
Standard deviation	0.65	0.86	1.0
Median	0.46	0.53	0.71
Range	0.031~6.2	0.080~5.6	0.054~6.2





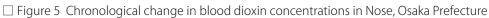

Relationship to blood dioxin concentrations

Figure 4 Relationship between dioxin intake from food and blood dioxin concentrations

(2) Follow-up survey

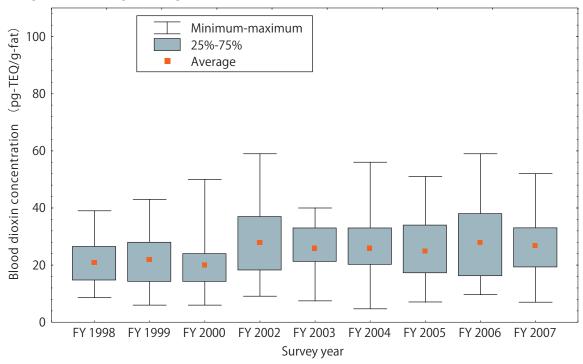
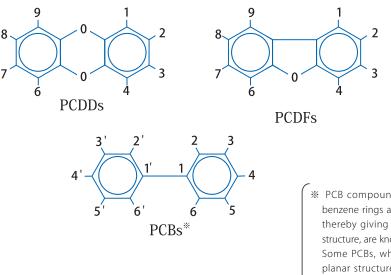


Figure 6 Chronological change in blood dioxin concentrations in Saitama Prefecture

Chemical compounds which measured it in this survey

1. Dioxins


Structure of dioxins

Polychlorodibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are collectively called dioxins. Co-planar polychlorinated biphenyls (co-planar PCBs or dioxin-like PCBs) possess toxicity similar to those of dioxins and are called dioxin-like compounds.

"Dioxins" are defined to include PCDDs, PCDFs and co-planar PCBs in Japan's Law Concerning Special Measures against Dioxins, promulgated on July 16, 1999.

Accordingly, throughout this report, the term "dioxins" will be used to refer to PCDDs, PCDFs, and co-planar PCBs.

The chemical structure of a dioxin molecule is generally composed of two rings of six carbon atoms (benzene rings, shown as in the figure below) bound by oxygen atom(s) (shown as O in the figure below) with chlorine or hydrogen atoms attached (the numbered positions: 1-9 and 2'-6' in the figure below). There are 75 types of PCDDs, 135 types of PCDFs and 12 types of coplanar PCBs, depending on the numbers and locations of the attached chlorine atoms (among these dioxins, 29 types have toxicities similar to 2,3,7,8-TCDD toxicity).

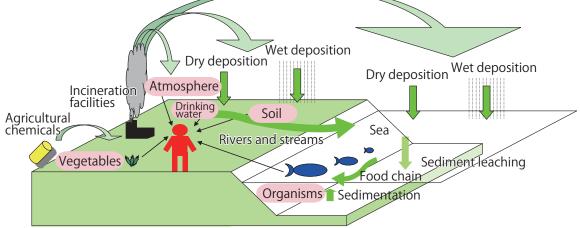
PCB compounds in which the two benzene rings are on the same plane, thereby giving the compound a flat structure, are known as co-planar PCBs. Some PCBs, which do not have the planar structure but possess dioxinlike toxicity, are classified for practical reasons as co-planar PCBs in current documents of the Government of Japan.

Properties of dioxins

Dioxins in general are colorless solids of very low water solubility and low vapor pressure. On the other hand, dioxins characteristically exhibit a high degree of solubility in fats and oils. They are generally stable, not reacting easily with other compounds, acids, and alkalis, but are considered to gradually decompose in the presence of solar ultraviolet light.

Toxicity of dioxins

Carcinogenicity and chronic toxicity have long been used to assess the health risks posed by the toxicities of dioxins. Dioxins have been reported to show carcinogenicity in rats, producing hepatocellular carcinoma, follicular adenoma of the thyroid, lymphoma, and other tumors. As for the carcinogenic mechanism of dioxins, they are considered to act as a promoter-that is, dioxins do not act directly on genes; rather, they promote the carcinogenic activity of other carcinogens. At present, the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) has classified 2,3,7,8-TCDD as a human carcinogen. In terms of hepatotoxicity, it is recognized to cause elevated liver enzymes and hyperlipidemia. When the WHO reevaluated the risk assessment of dioxins and related compounds in 1998, and whenever risk assessments in and outside Japan have been conducted thereafter, reproductive organ toxicity, central nervous system toxicity and immune system toxicity were identified as adverse effects observed after birth following dioxin exposure during the fetal stage, and these toxicities have been used as endpoints of dioxins. Shortened anogenital distance in males, congenital abnormalities in the vagina, diminished learning ability, diminished resistance to viral infection and other outcomes in laboratory animals are used as endpoints. At present, the effects of dioxins are widely recognized to develop as a result of endocrine disruption through the arylhydrocarbon receptor (AhR) within cells. However, further studies are required, since there is very little understanding of why these diverse toxicities appear.


Generation and behavior of dioxins in the environment

Dioxins are not produced intentionally, except for research purposes, *i.e.*, production of a standard material for dioxin analysis. Dioxins are by-products generated during the processes that occur when heat is applied to substances containing carbon, oxygen, hydrogen and chlorine.

The major source of dioxins at present is waste incineration, particularly the incineration of plastic waste and other products made from fossil fuels. Dioxins are formed in combustion processes and emitted into the air without being fully captured by waste-gas treatment equipment. Other sources exist, such as emissions from electric steel-making furnaces, cigarette smoke, and automobile exhaust. Some reports indicate that dioxins may have accumulated in bottom sediment in aquatic environments owing to the past use of PCBs and some types of agricultural chemicals, which contain dioxins as impurities.

The behavior of dioxins in the environment is not fully known. For example, dioxins in the air may stick to particulate matter, fall to the ground, and pollute soil and water. It is considered that over long period of time, these dioxins, together with those released into the environment via various other pathways, ultimately accumulate in aquatic sediments and enter the food chain when ingested by plankton and fish, thereby accumulating in various organisms in the biota.

While dioxins are mostly anthropogenically made, small amounts are generated in the nature. For instance, dioxins are said to be produced through forest fires and volcanic activity.

2. Fluorine compounds

PFOS (perfluorooctanesulfonic acid) and PFOA (perfluorooctanoic acid) are organofluorine compounds, whose fluoride is bound to carbon. The carbon and fluoride are strongly bound to each other, and the compounds are highly resistant to heat and chemicals.

These compound have been used widely as "surfactants" readily soluble to oil and water in waterrepellent sprays, foam fire extinguishers, and coatings of nonstick frying pans until very recently. However, studies have been reported that they are difficult to decompose in environment and within living organisms, and that they have substantial bioaccumulation properties.

PFOS is listed as POPs in Stockholm Convention

In this survey, PFOS and PFOA measurements were conducted for blood and food.

Chemical compound	Usage	Measurement case in Japan (average)	Standard; Tolerable intake
	Used in water- repellent sprays and foam fire extinguishers as surfactants.	< Blood > PFOS: 6.3 ng/mL PFOA: 2.1 ng/mL (N-609 Ministry of the Environment, Japan 2008-2010)	
PFOS PFOA		< Food > PFOS: 0.98 ng/kg/day (ND and/or below = 0) 12.1 ng/kg/day (ND and/or below = 1/2 ND) (Maitani et al, 2007 market-basket system) PFOA: 0.06 ng/kg/day (ND and/or below = 0) 11.5 ng/kg/day (ND and/or below = 1/2 ND) (Maitani et al, 2007 market-basket system)	≫ Tolerable intake is not established.

□ Table 20 Fluorine compounds

3. Heavy metals

Heavy metals are widely distributed on Earth and are used for various purposes. However, some heavy metals are potentially toxic within organisms.

In the past, Japan have experienced pollution-related health damage due to heavy metals, such as Minamata Disease caused by methyl mercury and Itai-Itai Disease caused by cadmium.

In this survey, blood total mercury, urine cadmium and arsenic, and total mercury, methyl mercury, lead, and cadmium in food was measured.

Tolerable Daily Intake (TDI) is established for methyl mercury, cadmium, and inorganic arsenic by each national and international organization.

 \Box Table 21 Heavy metals studied in this survey

Chemical compound	Usage	Case study in Japan (average)	Standard; Tolerable intake
Total mercury Methyl mercury	Metal mercury is used in fluorescent lights, amalgam, batteries, catalysts, and others. Merhyl mercury is produced by methylation of metal mercury. Methyl mercury is highly toxic.	< Total mercury / blood > 5.4 ng/mL (600 mothers, Shimada et al., 2008) 5.18 ng/mL (115 mothers, Sakamoto et al., 2007) 18.2 ng/mL (56 females, Yamauchi et al., 1994) < Total mercury / food > 0.225 μ g/kg body weight/day (Tokyo, 2005 10 samples by duplicated portion method) 0.238 μ g/kg body weight/day (Tokyo, 2010 market-basket system) < Methyl mercury / food > 0.198 μ g/kg/day (Tokyo, 2005 10 samples by duplicated portion method) 0.152 μ g/kg/day (Tokyo, 2010 market-basket method)	< Methyl mercury > 0.29 μ g/kg body weight/day 2.0 μ g/kg body weight/week
Cadmium	Used in watch batteries, plating materials, and others. Cadmium is produced with zinc and is recovered in the process of zinc refinery.	<pre>< Urine > 3.46 μ g/g cr (1243 females, Kayama et al., 2000 – 2001) 1.26 μ g/g cr (10753 females, lkeda et al., 2000 – 2001) < Food > 0.320 μ g/kg body weight/day (Tokyo, 2005 10 samples by duplicated portion method) 0.317 μ g/kg body weight/day (Tokyo, 2010 market-basket method)</pre>	7μg/kg/week (Japan)
Arsenic	In the past, arsenic compounds were used in rat poisons. Organic arsenic is found in seafood (seaweeds, shrimps, crabs) but are basically non-toxic. Inorganic arsenic is highly toxic.	<pre>< Arsenic speciation / urine > MMA: 2.01 μg/g cr DMA: 40 μg/g cr (248 residents near metropolitan area Chiba et al., 2001) As (III) 4.0 μg/g cr As (V) 0.2 μg/g cr MMA: 3.2 μg/g cr DMA: 38.5 μg/g cr (142 males Nakajima et al., 2001)</pre>	<tolerable intake="" of<br="">inorganic arsenic) > 15 µg/kg body weight/week (JECFA) ※ Tolerable intake of organic compounds is not established</tolerable>
Lead	Used widely in electrodes, weight, glass products, solder, and others.	< Food > 0.154 µg/kg body weight/day (Tokyo, 2010 market-basket system) 4.5 µg/kg body weight/week (Ministry of Health, Labour and Welfare, Japan, 2007 market-basket system)	※ Tolerable intake is not established.

Note: The result of urine cadmium concentration are geometric mean.

4. Pesticides, plasticizers, and others

For those pesticides having harmful effects and are easily decomposed in bodies of organisms, it is general to measure their metabolites in biological samples. Because these metabolites are excreted through urine, metabolites of organophosphorous pesticides, pyrethroid pesticides, and carbamate pesticides in urine was measured in this survey.

In addition, triclosan, used as disinfectant in medicated soaps and shampoos, was measured.

Chemical compound	Usage	Case study in Japan (average)
Organophosphorous compound metabolites	Used in pesticides, disinfectant, wood preservatives, and others (metabolites were measured)	<pre>< Urine > DMP : 1.5 μ g/L (73 subjects, Toyama) : 3.1 μ g/L (60 subjects, Tokyo) DMTP : 3.2 μ g/L (73 subjects, Toyama) : 5.8 μ g/L (60 subjects, Tokyo) DEP : 0.8 μ g/L (73 subjects, Toyama) : 1.2 μ g/L (60 subjects, Tokyo) DETP : <0.5 μ g/L (73 subjects, Toyama) : <0.5 μ g/L (60 subjects, Tokyo) (Toyama Institute of Health)</pre>
Pyrethroid pesticide metabolites	Used in pesticides, insecticides, and others (metabolites were measured)	< Urine > PBA : 0.40 μ g/g cr (42 males Toshima et al., 2010) PBA : 0.73 μ g/g cr (448 subjects Ueyama et al, 2009)
Carbamate pesticide metabolites	Used in pesticides, insecticides, and others (metabolites were measured)	_
Triclosan	Used as disinfectant	-

□ Table 22 Pesticide metabolites studied in this survey

Phthalate ester and bisphenol A are used in the process of plastic manufacturing. These compounds are suspected to be endocrine disruptors (showing hormonal effects within bodies or obstructing hormone action).

Either compounds excrete from bodies in a short period of time. Therefore, concentration in urine was studied in this survey.

□ Table 23 Plasticizers studied in this survey

Chemical compound	Usage	Case study in Japan (average)				
Phthalate monoesters	Used as plasticizer in plastic, adhesive agents, and others	<pre>< Urine > MBP : 52.2 μ g/g cr (48.1 ng/mL) MEHP : 5.84 μ g/g cr (4.44 ng/mL) MEHHP : 10.1 μ g/g cr (8.61 ng/mL) MEOHP : 11.0 μ g/g cr (9.2 ng/mL) MBzP : 4.70 μ g/g cr (3.46 ng/mL) 149 pregnant women Suzuki et al., 2010</pre>				
Bisphenol A	Used as monomer or ingredients in plastic manufacturing	< Urine > 24.1 μ g/L (University students 1992) 21.5 μ g/L (University students 1999) (Kawamoto et al., 1999)				

5. POPs and POPs candidates

Pops is the abbreviation of Persistent Organic Pollutants and has following properties:

- O remain intact for exceptionally long period of time;
- O accumulate in bodies of organisms and are highly bioaccumulative;
- O have long range transport and are widely distributed on Earth; and
- \bigcirc Have toxic effects within bodies of organisms, etc.

The Stockholm Convention on Persistent Organic Pollutants is a global treaty. Initially, twelve POPs have been recognized, and nine new POPs were amended.

These compounds include those produced and used intentionally as pesticides and others. On the other hand, there are compounds like dioxins, which could be produced in the process of combustion or manufacturing of other chemicals.

In the Convention, each party is to prohibit the production, use, and import and export of POPs, and to take every appropriate measure possible in eliminating and reducing the unintentionally produced compounds. Furthermore, each party is encouraged and/or to undertake measures for POPs under Stockholm Convention. Thus, considering this, monitoring surveys of the environment and biological samples are conducted by MOE of Japan.

In this survey, all POPs, listed in Stockholm Convention, in blood and food was measured. In addition, endosulfan and HBCD were measured. The amendment to add endosulfan to the Convention was adopted. HBCD is proposed for listing under the Convention. \Box Table 24 POPs studied in this survey

Chemical compound	Usage
Dioxins	Produced unintentionally due to combustion, as well during the manufacture of chlorinated substances
PCBs	Used as heat exchange fluids, in electric transformers, and as additives in carbonless copy papers and such
DDT	Used as hygiene pesticides and insecticides
Chlordane	Used to control termites and as pesticides
Aldrin	Used as pesticides
Dieldrin	Used as pesticides, insecticides, and termite control
Endrin	Used as pesticides
Hexachlorobenzen (HCB)	Used as material for herbicide manufacturing
Heptachlor	Used as pesticide and termite control
Toxaphene	Used as pesticides overseas
Mirex	Used as pesticides overseas
PBDE	Used as fire-retardant
Pentachlorobenzene	Used as chemical intermediate of agricultural fungicides
НСН	Used as pesticides
Chlordecone	Used as insecticides overseas
Hexabromobiphenyl	Used as fire-retardant

□ Table 25 POPs candidates studied in this survey

Chemical compound	Usage
HBCD	Used as fire-retardant
Endosulfan	Used as pesticides and insecticides

6. Dioxin intake

In Japan, the tolerable daily intake (TDI) of dioxins was set at 4 pg-TEQ/kg/day in June 1999, based on the latest available scientific information. Safety of the total amount of dioxins ingested by humans is evaluated by comparing with this value.

On the average, the total daily intake of dioxins by the Japanese people is estimated to be approximately 0.83 pg-TEQ/kg/day.

A similar figure has been reported in Western countries.

Conceivable routes of intake include food and the ambient air and soil, but the intake from food is estimated to account for the largest portion. A survey by the Ministry of Health, Labour

and Welfare, Japan (FY 2010 Survey on the Daily Intake of Dioxins from Food) estimated the daily intake at approximately 0.82 pg-TEQ/kg/day. A survey by the Ministry of the Environment (FY 2010 Environmental Survey of Dioxins) estimated the intake from the ambient air at approximately 0.0092 pg-TEQ/kg/day and the intake from soil at approximately 0.0042pg-TEQ/kg/day. These levels are below the TDI and thereby considered to be below the level which can cause adverse effects on human health.

Once dioxins are absorbed into the body, they remain mostly in the adipose tissue. The rate of decomposition and excretion of dioxins is very slow. It is reported to take approximately seven years for dioxin concentrations to be reduced by one half (half life) in humans.

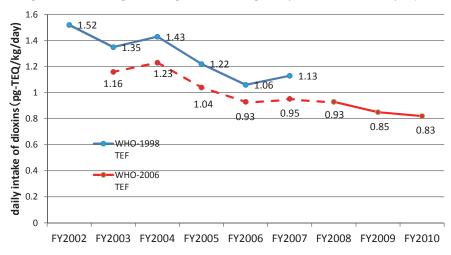
□ Figure 5 Specification of the average daily intake of dioxins by the Japanese people(FY 2010)

Converted to amount per keep			Tolerable daily intake (TDI) 4 pg- TEQ/kg/day		
Ambient air	0.0092 pg-TEQ/kg/day	0.013 pg-	Ambient air	1	
Soil	0.0042 pg-TEQ/kg/day	TEQ/kg/day	Soil		
Seafood	0.78 pg-TEQ/kg/day				
Meat and eggs	0.040 pg-TEQ/kg/day			Estimated intake	
Milk and dairy products	0.013 pg-TEQ/kg/day	0.82 pg-	Food		
Highly pigmented vegetable	s 0.00040 pg-TEQ/kg/day	TEQ/kg/day	roou		
Grains and potatoes	0.0010 pg-TEQ/kg/day				
Others	0.0038 pg-TEQ/kg/day			↓ ,	<u>, </u>

(According to WHO 2006 TEFs)

Table 26 and Figure 6 show Chronological change of estimated total daily intake of dioxins by the Japanese people using the results of "Survey on the Daily Intake of Dioxins from Food (Ministry of Health, Labour and Welfare, Japan)" and "Environmental Survey of Dioxins (the Ministry of the Environment, Japan)".

Enforcement of the "Act on Special Measures against Dioxins (Jan,2000)" has decreased emission of dioxins to environment greatly.


Dioxin concentration of food and environment (ambient air and soil) have also decreased. As a result, trend of total daily intake of dioxins by the Japanese people has decreased.

Further decreases in intake are expected as a result of measures to reduce dioxins emissions.

<u> </u>		io grear eri	age e.		.ge aany n			apanese r		EQ/kg/day
		FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010
Ambient air		0.028	0.019	0.018	0.015	0.015	0.012	0.011	0.0090	0.0092
S	oil	0.0068	0.0052	0.0044	0.0041	0.0038	0.0058	0.0060	0.0042	0.0042
	Seafood	1.29	1.15	1.25	1.09	0.94	1.03	0.86	0.78	0.76
	Meat and eggs	0.15	0.14	0.10	0.069	0.070	0.042	0.040	0.040	0.042
Food	Milk and dairy products Highly pigmented	0.035	0.032	0.047	0.033	0.021	0.023	0.0076	0.013	0.0028
roou	Highly pigmented vegetables	0.0030	0.0018	0.0028	0.0028	0.0012	0.00064	0.00080	0.00040	0.00060
	Grains and potatoes	0.0010	0.0014	0.0026	0.0022	0.0054	0.0014	0.00080	0.0010	0.00040
	Others	0.010	0.0070	0.010	0.0064	0.0062	0.0056	0.0032	0.0038	0.0052
Т	otal approx.	1.52	1.35	1.43	1.22	1.06	1.13	0.93	0.85	0.83

□ Table 26 Chronological change in of the average daily intake of dioxins by Japanese people

(According to WHO 1998 TEFs from FY2002 to FY2007, WHO 2006 TEFs from FY2008 to FY2010)

[□] Figure 6 Chronological change in the average daily intake of dioxins by Japanese people

Please address opinions and inquiries to:

Environmental Risk Assessment Office Environmental Health Department Ministry of the Environment, Japan

1-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8975 JAPAN Tel (main) : +81-3-3581-3351 (extension 6343) Tel (direct): +81-3-5521-8262 Fax: +81-3-3581-3578 http://www.env.go.jp/en