International Nuclear and Radiological Event Scale

Nuclear Safety" (June 2011)

Effects of Reactor Accidents

Products in Nuclear Reactors

Radioactive Materials Derived from Nuclear Accidents

	H-3 Tritium	Sr-90 Strontium-90	I-131 lodine-131	Cs-134 Cesium-134	Cs-137 Cesium-137	Pu-239 Plutonium-239
Types of radiation	β	β	β, γ	β, γ	β, γ	α, γ
Biological half-life	10 days *1 *2	50 years*3	80 days*2	70-100 days ^{*4}	70-100 days ^{*3}	Liver: 20 years ^{*5}
Physical half-life	12.3 years	29 years	8 days	2.1 years	30 years	24,000 years
Effective half-life (calculated from biological half-life and physical half-life)	10 days	18 years	7 days	64-88 days	70-99 days	20 years
Organs and tissues where radioactive materials accumulate	Whole body	Bones	Thyroid	Whole body	Whole body	Liver and bones

Effective half-life: Related to p.27 of Vol. 1, "Internal Exposure and Radioactive Materials" Effective half-lives are calculated based on values for organs and tissues where radioactive materials accumulate as indicated in the table of biological half-lives.

^{*1:} Tritium water; *2: ICRP Publication 78; *3: JAEA Technical Manual (November 2011); *4: Assumed to be the same as Cesium-137; *5: ICRP Publication 48

Comparison of Estimated Amounts of Released Radionuclides between the Chornobyl NPS Accident and the TEPCO's Fukushima Daiichi NPS Accidents

	Half-life ^a	Boiling point ^b °C	Melting point ^c °C	Release into the environment: PBq*		TEPCO's Fukushima
Nuclides				Chornobyl NPS ^d	TEPCO's Fukushima Daiichi NPS ^e	Daiichi NPS/ Chornobyl NPS
Xenon (Xe)-133	5 days	-108	-112	6,500	11,000	1.69
lodine (I)-131	8 days	184	114	~1,760	160	0.09
Cesium (Cs)-134	2 years	678	28	~47	18	0.38
Cesium (Cs)-137	30 years	678	28	~85	15	0.18
Strontium (Sr)-90	29 years	1,380	769	~10	0.14	0.01
Plutonium (Pu)-238	88 years	3,235	640	1.5×10^{-2}	1.9×10 ⁻⁵	0.0012
Plutonium (Pu)-239	24,100 years	3,235	640	1.3×10 ⁻²	3.2×10 ⁻⁶	0.00024
Plutonium (Pu)-240	6,540 years	3,235	640	1.8×10 ⁻²	3.2×10 ⁻⁶	0.00018

Ratio of radionuclides accumulated in the reactor core at the time of the accidents that were released into the environment

Nuclides	Chornobyl NPS ^f	TEPCO's Fukushima Daiichi NPS g
Xenon (Xe)-133	Nearly 100%	Approx. 60%
Iodine (I)-131	Approx. 50%	Approx. 2-8%
Cesium (Cs)-137	Approx. 30%	Approx. 1-3%

^{*}PBq equals 10¹⁵Bq.

Comparison between the Chornobyl NPS Accident and the TEPCO's Fukushima Daiichi NPS Accident

Contamination due to the TEPCO's Fukushima Daiichi NPS Accident (as of November 2011)

[Source] Prepared based on the materials published by MEXT (November 2011)

Contamination due to the Chornobyl NPS Accident (as of December 1989) VILNIUS ORSHA GREEN RU SALUGA RALUGA RALUGA

Contamination concentration	Area of the contam	inated region (km²)	Size of the TEPCO's Fukushima Daiichi NPS Accident compared with that of the Chornobyl NPS Accident	
(kBq/m²)	Chornobyl NPS Accident	TEPCO's Fukushima Daiichi NPS Accident		
> 1,480	3,100	200	6 %	
555 – 1,480	7,200	400	6 %	
185 – 555	18,900	1,400	7 %	
37 –185	116,900	6,900	6 %	
Total area	146,100	8,900	6 %	

Source: Prepared based on the report by the Team in Charge of Assisting the Lives of Disaster Victims, "Standard of the Annual Dose Limit of 20mSv" (March 2013)