$\alpha$  (Alpha)-particles  $\beta$  (Beta)-particles

(electrons)

## Where does Radiation Come from?



Neutron rays

\*X-rays are generated outside a nucleus.

γ (Gamma)-rays

Helium-3

Two protons

One neutron

Tritium

One proton

Two neutrons

## **Types of Radiation**



While radiation includes ionizing radiation and nonionizing radiation, radiation usually means ionizing radiation.

Source: Partially revised "Ionizing Radiation" in the Encyclopedia for Public Acceptance of Atomic Energy Accessible on the Internet, ATOMICA

## **Types of Ionizing Radiation**

**Ionizing radiation** 

**Radiation that causes ionization** 

mm

monne



α-particles (helium nuclei ejected from a nucleus)

**β-particles** (electrons ejected from a nucleus)

Neutron beams (produced in nuclear reactors, accelerators, etc.)

Proton beams (produced in accelerators, etc.)

**Electromagnetic waves** 

X-rays (generated outside a nucleus)

γ-rays (emitted from a nucleus)

## X-rays for Medical Use and Generators

#### **Braking X-rays**



#### Structural drawing of an X-ray generator



#### **Characteristic X-rays**

#### **Electrons**





## **Types of Electromagnetic Waves**



- Light has particle properties in addition to wave properties.
- Electromagnetic waves are called "photons" when they are considered as particles.

The values indicated above show photons' energy (eV) and those indicated below show their wavelengths (m) as wave motions.





## **Ionization of Radiation - Property of Ionizing Radiation**







## **Types of Radiation and Biological Effects**

#### α-particles

- Two protons plus two neutrons
- Helium (He) nuclei
- Charged particles (2+)







#### **β-particles**

- Electrons (or positrons)
- Charged particles (- or +)



## y-rays and X-rays

- Electromagnetic waves (photons)



## **MMMMM**

Low ionization density/high penetrating power

#### **Neutron beams**

- Neutrons
- Uncharged particles





When the ionization number is the same, the higher the ionization density is, the larger the biological effects are.

## **Penetrating Power of Radiation**

#### Radiation can be blocked by various substances.



#### **Penetrating Power of Radiation within the Body**

## Distance traveling in the air

#### **Several centimeters**



#### **Several meters**

(depending on the amount of energy)

## Several tens of meters

(depending on the amount of energy)

#### α-particles

Particles (Helium nucleus) (One-trillionth of a centimeter)



## **β-particles**

Particles (electrons)





# Upon collision with the body

Several tens of micro meters



**Several millimeters** 



တ ထာထာ

Several centimeters -

(depending on the amount of energy)



# Penetrating Power and Range of Effects on the Human Body

