

International Nuclear and Radiological Event Scale

on Nuclear Safety" (June 2011)

Effects of Reactor Accidents

Products in Nuclear Reactors

Nuclear Disaster

Types of

radiation

Biological

half-life

Physical

half-life

H-3

Tritium

β

10 days

12.3

vears

Sr-90

Strontium-90

β

29 years

50 years*3 80 days*2

Radioactive Materials Derived from **Nuclear Accidents**

I-131

Iodine-131

β, γ

8 days

Cs-134

Cesium-134

β, γ

70-100

davs*4

2.1 years 30 years

Cs-137

Cesium-137

β, γ

70-100

davs*3

Pu-239

Plutonium-239

α, γ

Liver: 20

years*5

24,000

vears

	,					,
Effective half-life (calculated from biological half-life and physical half-life)	10 days	18 years	7 days	64-88 days	70-99 days	20 years
Organs and tissues where radioactive materials accumulate	Whole body	Bones	Thyroid	Whole body	Whole body	Liver and bones
Effective half-life: Related to p.27 of Vol. 1, "Internal Exposure and Radioactive Materials" Effective half-lives are calculated based on values for organs and tissues where radioactive materials accumulate as indicated in the table of biological half-lives.						

^{*1:} Tritium water; *2: ICRP Publication 78; *3: JAEA Technical Manual (November 2011); *4: Assumed to be the same as Cesium-137; *5: ICRP Publication 48

Nuclear Disaster

Comparison of Estimated Amounts of Released Radionuclides between the Chernobyl NPS Accident and the TEPCO's Fukushima Daiichi NPS Accidents

	Half-life ^a	Boiling point ^b °C	Melting point° °C	Release into the environment: PBq*		TEPCO's Fukushima
Nuclides				Chernobyl NPS ^d	TEPCO's Fukushima Daiichi NPS ^e	Daiichi NPS/ Chernobyl NPS
Xenon (Xe)-133	5 days	-108	-112	6,500	11,000	1.69
lodine (I)-131	8 days	184	114	~1,760	160	0.09
Cesium (Cs)-134	2 years	678	28	~47	18	0.38
Cesium (Cs)-137	30 years	678	28	~85	15	0.18
Strontium (Sr)-90	29 years	1,380	769	\sim 10	0.14	0.01
Plutonium (Pu)-238	88 years	3,235	640	1.5×10^{-2}	1.9×10 ⁻⁵	0.0012
Plutonium (Pu)-239	24,100 years	3,235	640	1.3×10 ⁻²	3.2×10^{-6}	0.00024
Plutonium (Pu)-240	6,540 years	3,235	640	1.8×10^{-2}	3.2×10 ⁻⁶	0.00018

Ratio of radionuclides accumulated in the reactor core at the time of the accidents that were released into the environment

Nuclides	Chernobyl NPS ^f	TEPCO's Fukushima Daiichi NPS g
Xenon (Xe)-133	Nearly 100%	Approx. 60%
lodine (I)-131	Approx. 50%	Approx. 2-8%
Cesium (Cs)-137	Approx. 30%	Approx. 1-3%

^{*}PBg equals 1015Bg.

Sources: a: ICRP Publication 72 (1996); b and c: Rikagaku Jiten 5th edition (1998); d: UNSCEAR 2008 Report, Scientific Annexes C, D and E; e: Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety (June 2011); f: UNSCEAR 2000 Report, ANNEX J; g: UNSCEAR 2013 Report ANNEX J; g:

Nuclear Disaster

Comparison between the Chernobyl NPS Accident and the TEPCO's Fukushima Daiichi NPS Accident

the same scale

[Source] Prepared based on the materials published by MEXT (November 2011)

Contamination concentration	Area of the contam	inated region (km²)	Size of the TEPCO's Fukushima Daiichi NPS	
(kBq/m²)	Chernobyl NPS Accident TEPCO's Fukushima Da NPS Accident		chi Accident compared with that of the Chernobyl NPS Accident	
> 1,480	3,100	200	6 %	
555 – 1,480	7,200	400	6 %	
185 – 555	18,900	1,400	7 %	
37 –185	116,900	6,900	6 %	
Total area	146,100	8,900	6 %	

(restricted area)

[Source] Prepared based on the UNSCEAR 2000 Report

Source: Prepared based on the report by the Team in Charge of Assisting the Lives of Disaster Victims, "Standard of the Annual Dose Limit of 20mSv" (March 2013)