Radionuclides Taken into Consideration

Q. Why are the standard limits set only for radioactive cesium?

O The standard limits were set in consideration of all radionuclides whose half-life is one year or longer out of the radionuclides that are supposed to have been released due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi NPS based on the assessment by the Nuclear and Industrial Safety Agency.

Regulated radionuclides	(Physical) half-life
Cesium 134	2.1 years
Cesium 137	30 years

Strontium 9	90	29 years
Plutonium		14 years -
Ruthenium	106	374 days

^{*} The standard limits are not set for radioactive iodine, which has a half-life as short as 8 days and is no longer detected, nor for uranium that exists within the premises of TEPCO's Fukushima Daiichi NPS at the same level as naturally occurring uranium

- O However, as measurements of radionuclides other than radioactive cesium take time, the standard limits are not set for each of them but are calculated and set so that the total dose from other radionuclides does not exceed 1 mSv if only the standard limits for radioactive cesium are met.
 - * The maximum doses from radionuclides other than radioactive cesium that people may receive from foods can be calculated by age bracket based on such data as radioactivity concentrations in soil and easiness of transition of radioactive materials from soil to agricultural products. For example, for people aged 19 years or over, doses from radionuclides other than radioactive cesium account for approx, 12% of the total.
- A. While also taking into consideration effects of other radionuclides in calculation, cesium that accounts for the largest percentage and is most easily measured is used as the indicator.

Prepared based on the Ministry of Health, Labour and Welfare's website, "Measures for Radioactive Materials in Foods" 停入厚生労働省

This figure shows the grounds why the standard limits are set only for radioactive cesium out of diverse radioactive materials.

All radionuclides whose half-life is one year or longer are taken into consideration, out of the radionuclides that are supposed to have been released due to the accident at TEPCO's Fukushima Daiichi NPS. Radionuclides shown in the table above, such as strontium 90, plutonium, and ruthenium 106, are taken into account in calculation, in addition to radioactive cesium. However, as the standard limits are intended for long-term regulations of radioactive materials in foods, radionuclides with a short half-life are not covered. For example, the standard limits are not set for radioactive iodine. Even if measurements are conducted for these other radionuclides by setting specific standard limits for each of them, it takes time to obtain measurement results. On the other hand, it is easy to measure radioactive cesium. Therefore, the standard limits are calculated and set so that the total dose from other radionuclides does not exceed 1 mSv if only the standard limits for radioactive cesium are met.

Specifically, effects of the radionuclides shown in the table above, such as radioactive cesium, strontium 90 and plutonium, were ascertained through surveys of soil, etc. For example, assuming the entirety of the effects caused by the consumption of foods containing radioactive materials released from TEPCO's Fukushima Daiichi NPS as 100, the effects of radioactive cesium account for around 88 in the case of people aged 19 years or over. On the other hand, the effects of the other radionuclides were found to account for around 12. In this manner, the standard limits were established also taking into consideration the effects of radionuclides other than radioactive cesium.

Included in this reference material on March 31, 2013 Updated on January 18, 2016