Various Measuring Instruments

Ge Semiconductor Detector

Used to measure radioactivity in foods or soil; Effective in measuring low levels of radioactivity concentrations

Integrating Personal Dosimeter

Worn on the trunk of the body for 1-3 months to measure cumulative exposure doses during that period

Nal (TI) Food Monitor

Suitable for efficient radioactivity measurement of foods, etc.

Whole-body Counter

Assess accumulation of γ-ray nuclides in the body using numerous scintillation counters or the like

Electronic Personal Dosimeter

Equipped with a device to display dose rates or cumulative doses during a certain period of time and thus convenient for measuring and managing exposure doses of temporary visitors to radiation handling facilities

Principles of Radiation Measurement

Measurements are carried out utilizing the interaction between radiation and substances.

Ionization (with gas atoms)

- Detectors are filled with gases such as inert gases or air.
- When radiation passes through gas, molecules are ionized, creating positive ions and electrons.
- Positive ions and electrons are drawn toward the electrodes and are converted into electric signals for measurement.

GM counter survey meters, ionization chambers, etc.

- When radiation passes through a scintillator, molecules are excited, but they return to their original state (ground state).
- Light emitted in the process is amplified and converted into a current for measurement.

NaI (TI) scintillation survey meter, etc.

Ionization chamber

survey meter (ionization)

NaI (TI) scintillation survey

meter (excitation)

Personal dosimeter

(light-stimulated luminescence

dosimeter, luminescent glass

dosimeter, electronic dosimeter,

etc.) (excitation)

Instruments for Measuring External Exposure

Туре		Purpose
GM counter survey meter (ionization)	Contamination detection	Has a thin entrance window and can detect β-particles efficiently; Suitable for detecting surface

γ-ray

ambient

dose rate

Personal

Cumulative

dose

dose

are also available.

contamination

Methods of Measuring Doses

Example: Nal (TI) scintillation survey meter (TCS-171)

- (i) Background measurement
- (ii) Field measurement
 - Range (the reading is indicated near the center of the scale)
 - Adjustment of time constant (the value is to be read when a period of time

three times the time constant elapses)

(iii) Dose calculation

• Reading \times Calibration constant = Dose (μ Sv/h)

How to interpret the readings

0.3, 3, 30 μ Sv/h in the upper row 1, 10 μ Sv/h in the lower row

- The photo shows a range of 0.3 μSv/h.
- Read the value in the upper row
- The needle pointing at 0.92

The reading at 0.092 μSv/h

For example, when the calibration constant is 0.95

Dose = $0.092 \times 0.95 = 0.087 \,\mu\text{Sv/h}$

Characteristics of External Exposure Doses

1) Distance: Dose rates are inversely proportional to the distance squared.

$$I = \frac{k}{r} = \frac{l}{r} \cdot \frac{l}{r} \cdot$$

2) Time: Doses are proportional to the time of exposure provided the dose rates are the same.

(Total) dose (microsieverts) =

Dose rate (microsieverts/h) × Time

External Exposure (Measurement)

Survey meter measurement: Ambient dose rate (microsieverts/h) multiplied by the time spent in the relevant location roughly shows an external exposure dose.

Measurement of Environmental Radiation and Radioactivity

- Ambient dose rate shows measured amount of γ -rays in the air. Indicated in microsieverts per hour (μ Sv/h)
- Fallout density is the amount of radioactive materials that have deposited (or descended) per unit area in a certain period of time. e.g., becquerels per squared meter (Bq/m2)

Shielding and Reduction Coefficient

Location	Reduction coefficient*
Wooden house (one or two stories)	0.4
Block or brick house (one or two stories)	0.2
The first and second floors of a building (three or four stories) with each floor 450-900m ² wide	0.05
Upper floors of a building with each floor 900m ² or wider	0.01

^{*} The ratio of doses in a building when assuming that a dose outdoors at a sufficient distance from the building is 1

Dose Measurement and Calculation

Additional Exposure Doses after an Accident (Example of Calculation)

It is important to subtract values in normal times.

When the time staying outdoors/indoors is 8 hours/16 hours

Derived from an accident

0.19
$$\times$$
 8 hours (outdoors)
+
0.19 \times 0.4 \times 16 hours (indoors)
(μ Sv/day)

 \times 365 days = 1,000 μ Sv/year

= <u>1.0 mSv/year</u>

Calculation of Internal Exposure Doses

Committed Effective Doses

Exposure dose estimating how much radiation a person will be exposed to in lifetime from a single intake of radioactive materials

Conversion Factors to Effective Doses

Committed effective dose coefficients (µSv/Bq) (ingestion)

	Strontium-90	lodine-131	Cesium-134	Cesium-137	Plutonium-239	Tritium*
Three months old	0.23	0.18	0.026	0.021	4.2	0.000064
One year old	0.073	0.18	0.016	0.012	0.42	0.000048
Five years old	0.047	0.10	0.013	0.0096	0.33	0.000031
Ten years old	0.06	0.052	0.014	0.01	0.27	0.000023
Fifteen years old	0.08	0.034	0.019	0.013	0.24	0.000018
Adult	0.028	0.022	0.019	0.013	0.25	0.000018

μSv/Bq: microsieverts/becquerel

*Tissue free water tritium

Exposure Doses from Foods (Example of Calculation)

(e.g.) An adult consumed 0.5 kg of foods containing 100 Bq/kg of Cesium-137
$$100 \times 0.5 \times 0.013 = 0.65 \,\mu\text{Sv}$$
 (Bq/kg) (kg) (μ Sv/Bq)
$$= 0.00065 \,\text{mSv}$$

Committed effective dose coefficients (µSv/Bq)

	lodine-131	Cesium-137
Three months old	0.18	0.021
One year old	0.18	0.012
Five years old	0.10	0.0096
Adult	0.022	0.013

Bq: becquerels; μSv: microsieverts; mSv: millisieverts

Methods of Measuring Radioactivity for Estimation of Intake

Direct counting Thyroid monitor Whole-body counter Measure radiation from radioactive materials in the body

Dose Measurement and Calculation

Comparison of Methods of Assessing Internal Radioactivity

Direct counting	Bioassay	
Directly measure the human body	Indirect measurement	
Need to spare time to receive direct measurements	Submit samples (urine, feces, etc.)	
Mainly target materials that emit γ-rays	Able to measure all radioactive materials	
Short measuring time using the apparatus	Chemical analysis takes time.	
Accurate dose assessment	Large margin of error in results of dose assessment	
Radiation detector Shielding	Urine, etc.	

Instruments for Measuring Internal Exposure

Stand-up whole-body counter

Scanning bed whole-body counter

Chair whole-body counter

Thyroid monitor

Dose Measurement and Calculation

Data on Internal Exposure Measured by Direct Counting

Whole-body counter

Measure radiation emitted from within the body ⇒ Measure internal radioactivity for each radioactive material

The amount of potassium in the body is around 2 g per 1 kg of body weight, and approx.

0.01% of that amount is radioactive potassium (Potassium-40)

keV: kilo electron volts

Internal Radioactivity and Dose Assessment

The younger a person is, the faster the metabolism.

Estimation of initial exposure

- will be effective for no longer than around a year even for adults.
- will be effective for up to around half a year for children.

The younger a person is, the smaller the amount of radioactive materials remaining in the body.

In estimating additional exposure through ingestion,

- finite values are unlikely to be obtained for children.
- it is more reasonable to examine adults in order to detect trace intake.

Source: Modified from a material released for the Japan Society of Radiation Safety Management Symposium in Miyazaki (June 29, 2012)