
Nuclear
DisasterInternational Nuclear and Radiological EventScale

Severity of Accidents and Incidents

Nuclear
DisasterEffects of Reactor Accidents

Products in Nuclear Reactors

Nuclear

Disaster

Light-water nuclear reactor and generation of nuclear fission products **Thermal energy** Decelerated - 🔿 neutron Neutron Nuclear fission Uranium-235 **Decelerated Thermal energy** neutron $\mathbf{\cap}$ Decelerated neutron Uranium-235 Plutonium-239 Uranium-238 Decelerated **Nuclear fission** neutron products Xenon-133, Iodine-131 etc. Xenon-133 Cesium-133 Cesium-137 Cesium-134 Strontium-90, etc. **β**-particles γ-rays

Nuclear
DisasterRadioactive Materials Derived from NuclearAccidents

	H-3 Tritium	Sr-90 Strontium-90	I-131 Iodine-131	Cs-134 Cesium-134	Cs-137 Cesium-137	Pu-239 Plutonium-239
Types of radiation	β	β	β, γ	β, γ	β, γ	α, γ
Biological half-life	10_{*1}^{+1} days	50 years ^{*3}	80 days ^{*2}	70-100 days ^{*4}	70-100 days ^{*3}	Liver: 20 years ^{*5}
Physical half-life	12.3 years	29 years	8 days	2.1 years	30 years	24,000 years
Effective half-life (calculated from biological half- life and physical half-life)	10 days	18 years	7 days	64-88 days	70-99 days	20 years
Organs and tissues where radioactive materials accumulate	Whole body	Bones	Thyroid	Whole body	Whole body	Liver and bones

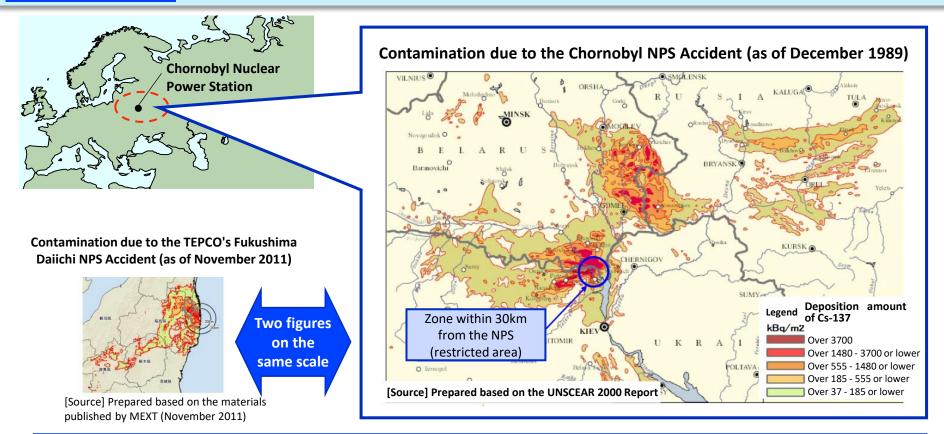
Effective half-life: Related to p.27 of Vol. 1, "Internal Exposure and Radioactive Materials"

Effective half-lives are calculated based on values for organs and tissues where radioactive materials accumulate as indicated in the table of biological half-lives.

*1: Tritium water; *2: ICRP Publication 78; *3: JAEA Technical Manual (November 2011); *4: Assumed to be the same as Cesium-137; *5: ICRP Publication 48

Nuclear
DisasterComparison of Estimated Amounts of Released Radionuclides
between the Chornobyl NPS Accident and the TEPCO's Fukushima
Daiichi NPS Accidents

	Half-life ^a	Boiling point ^b °C	Melting point ^c °C	Release into the environment: PBq st		TEPCO's Fukushima
Nuclides				Chornobyl NPS ^d	TEPCO's Fukushima Daiichi NPS ^e	Daiichi NPS/ Chornobyl NPS
Xenon (Xe)-133	5 days	-108	-112	6,500	11,000	1.69
lodine (I)-131	8 days	184	114	~1,760	160	0.09
Cesium (Cs)-134	2 years	678	28	~47	18	0.38
Cesium (Cs)-137	30 years	678	28	~85	15	0.18
Strontium (Sr)-90	29 years	1,380	769	\sim 10	0.14	0.01
Plutonium (Pu)-238	88 years	3,235	640	1.5×10 ⁻²	1.9×10 ⁻⁵	0.0012
Plutonium (Pu)-239	24,100 years	3,235	640	1.3×10 ⁻²	3.2×10 ⁻⁶	0.00024
Plutonium (Pu)-240	6,540 years	3,235	640	1.8×10 ⁻²	3.2×10^{-6}	0.00018


Ratio of radionuclides accumulated in the reactor core at the time of the accidents that were released into the environment

Nuclides	Chornobyl NPS ^f	TEPCO's Fukushima Daiichi NPS g
Xenon (Xe)-133	Nearly 100%	Approx. 60%
Iodine (I)-131	Approx. 50%	Approx. 2-8%
Cesium (Cs)-137	Approx. 30%	Approx. 1-3%

*PBq equals 10¹⁵Bq.

Sources: a: ICRP Publication 72 (1996); b and c: Rikagaku Jiten 5th edition (1998); d: UNSCEAR 2008 Report, Scientific Annexes C, D and E; e: Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety (June 2011); f: UNSCEAR 2000 Report, ANNEX J; g: UNSCEAR 2013 Report, ANNEX A

NuclearComparison between the Chornobyl NPS Accident and
the TEPCO's Fukushima Daiichi NPS Accident

Contamination concentration	Area of the contam	inated region (km ²)	Size of the TEPCO's Fukushima Daiichi NPS	
(kBq/m ²)	Chornobyl NPS Accident	TEPCO's Fukushima Daiichi NPS Accident	Accident compared with that of the Chornobyl NPS Accident	
> 1,480	3,100	200	6 %	
555 – 1,480	7,200	400	6 %	
185 – 555	18,900	1,400	7 %	
37 –185	116,900	6,900	6 %	
Total area	146,100	8,900	6 %	

Source: Prepared based on the report by the Team in Charge of Assisting the Lives of Disaster Victims, "Standard of the Annual Dose Limit of 20mSv" (March 2013)