Background Air Monitoring of Persistent Organic Pollutants in East Asian Countries

Supplementary Report - 2008

POPs Monitoring Project in East Asian Countries, 2008

Table of contents

1. MONITORING DATA IN EAST ASIAN COUNTRIES	1
1.1 POPS CONCENTRATIONS IN AMBIENT AIR SAMPLES IN LAO PDR	
Ownership of Data and a Person in Charge	
2) Air Monitoring Data in 2008	
1.2 POPS CONCENTRATIONS IN AMBIENT AIR SAMPLES IN MALAYSIA	5
1) Ownership of Data and a Person in Charge	5
2) Air Monitoring Data in 2008	5
1.3 POPs Concentrations in Ambient Air Samples in Mongolia	9
1) Ownership of Data and a Person in Charge	9
2) Air Monitoring Data in 2006	9

1. Monitoring Data in East Asian Countries

1.1 POPs Concentrations in Ambient Air Samples in Lao PDR

1) Ownership of Data and a Person in Charge

Lao PDR

Ms. Setouvanh Phanthavongsa, Technical Officer, Environment Quality Monitoring Center, Environmental Research Institute (ERI), Water Resources and Environment Administration (WREA), Lao PDR

2) Air Monitoring Data in 2008

a) Sampling Location (see Figure 1)

This sampling site is located about 60 km north-north-west of Vientiane.

- Na Lng Koun Village, Lao PDR.
- Latitude: N18°29.575', Logitude: E102°26.943'
- Above Sea Level: 174m

The sampling location in Mongolia has the proper conditions to background air monitoring site as follows;

- 1) The sampling site is situated on 60 km to the north-north west of capital city Vientiane.
- 2) The sampling point was located in the meteorological observatory in Na Long Koun Village.

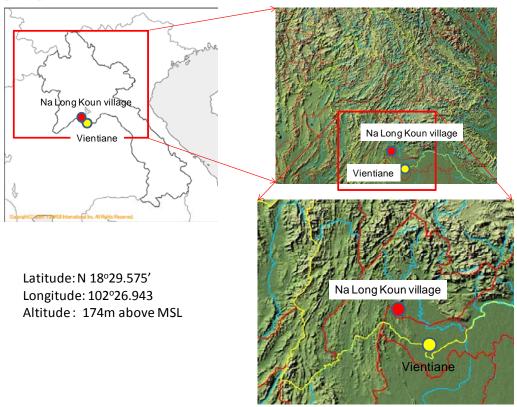


Figure 1 Map of Sampling Location in Lao PDR in 2008

b) Sampling Records and Meteorological Information

Air sampling records were summarized in **Table 1** and meteorological information were shows in **Table 2**.

Table 1 Sampling Record in Na Long Koun Village, Lao PDR

		4 - 5 September 2006		20	ptember 06		6 - 7 September 2006	
Sample No	*1	A	В	A^{*2}	В	A	В	
Sampling time	Start	11:11	11:13	11:35	11:35	11:50	11:50	
Sampling time	End	11:11	11:13	11:35	11:35	11:50	11:50	
Temperature	Start	10.3	12.8	16.1	20.3	7.8	6.5	
(°C)	End	16.1	20.3	3.8	5.0	3.3	4.6	
Atmospheric	Start	854.6	853.8	844.4	842.4	850.1	850.1	
Pressure (hPa)	End	844.4	842.4	844.4	842.4	852.7	851.3	
Weather	Start	fine	fine	fine	fine	cloudy	cloudy	
weather	End	fine	fine	cloudy	cloudy	fine	fine	
Flow rate (L/1	min)	698.8	701.5	701	700	700.8	699.2	
Sampling volum	ne (m ³)	1008.6	1007.9	1007.9	1008.5	1007.9	1007.9	

^{*1:} HV sampler A was HV-1000F and B was HV-700FT.

Table 2 Meteorological Information Observed in Na Long Koun Village

	4 Sep, 2006	5 Sep, 2006	6 Sep, 2006	7 Sep, 2006
Wind direction	west north	west north	north	west
Wind velocity (m/s)	3	4	5	3
Max. temp. (°C)	17.4	16.8	6	2.8
Min. temp. (°C)	-6.9	-3.6	-1.5	-8.2
Dry-bulb temp (°C)	8.3	6.9	2.1	-2.8
Wet-bulb temp (°C)	5.4	5.8	3.8	4.7

c) Results of HRGC/MS Analysis

Concentrations of POPs in ambient air collected by duplicate sampling are shown in **Table 3.** These concentrations were determined according to Monitoring Surveillance Manual for POPs and Their Related Compounds (2006).

d) Discussion

- During the background air monitoring of POPs in Na Long Koun Village, Lao PDR, HCB (360pg/m³), p,p'-DDT (8.0pg/m³), p,p'-DDE (7.3pg/m³), o,p'-DDT (3.0pg/m³), o,p'-DDE (0.86pg/m³), chlordanes (10pg/m³ for *trans* and 7.7pg/m³ for *cis*-), nonachlors (6.3pg/m³ for *trans* and 0.70pg/m³ for *cis*-), heptachlor (3.4pg/m³) and *cis*-heptachlorepoxide (0.47pg/m³) were detected.
- Concentration of HCB in each period was similar to those in Vietnam (2006) and Thailand (2006).
- The sampling point was located at the boundary of Lao PDR and Cambodia and according to the results from back trajectory analysis, the block of air was come through the surface of Vietnam.
- The concentration of HCB was suggested to be influenced by transportation over the boundary.

^{*2:} HV Sampler A was stopped for 1 minute at 11:51.

∞ _i
2002
7
ar
ä
ą
Ŧ
Š
n 6
5
PDR
PL
a 0
ï
e,
Ĭ.
0
Pr
و
<u>ā</u>
nt
Vie
•
ğ
123
· F
Ξ
K ₀
_a
on
1
Z
ī
Ξ
A
nt
ë
E
⋖
Ē.
Ps
0
f P
S
ő
Ξ
tra
cen
Ē
ည
•
able 3
5

Table 5 Concentrations of POPs in Ambient Air in Iva Long Noun Vinage, Vienuane Frovince, Lao Fun on 0-6 Feburary 2006	ol rors in.	Amolent Al		g Noun villa	ge, vientiai	le rrovince,	Laurd	111 0-0 renul	ary 2000.		c	
Chaminala		Sample 1	Sample A (pg/m²)			Sample B (pg/m ²	3 (pg/m²)			Average (pg/m ²)	(pg/m²)	
Cilcillicals	1st day	2nd day	3rd day	Average	1st day	2nd day	3rd day	Average	1st day	2nd day	3rd day	Average
HCB	460	380	310	383	420	310	290	340	440	345	300	362
Aldrin	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71
Dieldrin	(1.4)	<0.62	<0.62	1.4	(1.5)	<0.62	<0.62	1.5	1.5	<0.62	<0.62	1.5
Endrin	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59
p,p'-DDT	9.4	L'L	9.9	6.7	8.7	8.1	7.2	8.0	9.1	7.9	6.9	8.0
p,p'-DDE	9.3	6.9	9.9	9.7	8.8	6.1	6.2	7.0	9.1	6.5	6.4	7.3
p,p'-DDD	(0.57)	<0.44	<0.44	0.57	(0.54)	<0.44	(0.47)	0.51	0.555	<0.44	0.47	0.51
o,p'-DDT	3.8	2.9	2.6	3.1	3.6	2.6	2.7	3.0	3.7	2.8	2.7	3.0
o,p'-DDE	1.0	98.0	69.0	0.85	1.0	0.82	0.77	98.0	1	0.84	0.73	98.0
o,p'-DDD	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62
trans-Chlordane	6.6	8.2	12	10	11	8.0	11	10	10	8.1	12	10
cis-Chlordane	7.5	6.5	8.5	7.5	6.7	6.3	9.1	7.8	7.7	6.4	8.8	7.6
trans-Nonachlor	6.3	5.1	6.9	6.1	2.9	5.4	7.3	6.5	6.5	5.3	7.1	6.3
cis-Nonachlor	0.68	0.63	0.75	69.0	0.87	0.55	0.7	0.71	0.78	0.59	0.73	0.70
Oxychlordane	<0.89	68.0>	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	<0.89	68.0>
Heptachlor	3.4	2.7	4.2	3.4	3.4	3.2	3.6	3.4	3.4	3.0	3.9	3.4
trans-Heptachlorepoxide	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	< 0.16	<0.16	<0.16	< 0.16
cis-Heptachlorepoxide	0.47	0.45	0.45	0.46	0.57	0.37	0.51	0.48	0.52	0.41	0.48	0.47
Mirex	(0.17)	(0.19)	(0.15)	0.17	(0.18)	(0.16)	(0.17)	0.17	0.18	0.18	0.16	0.17
Toxaphene (Parlar-26)	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
Toxaphene (Parlar-50)	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Toxaphene (Parlar-62)	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
itolic lotton . motor o iloti	in consociation	*00000 04000000	**** OOIX 12001	100 to 100	+000000							

italic letter:: reference value because surrogate recovery was out of 40 to 120 percent. n.a.: not available because surrogate recovery was out of 25 to 150 percent. Values in parenthesis show that it was within IDL to IQL.

e) Results of Trajectory Analysis

To speculate the source of POPs in the collected air, trajectory analysis of the collected air was performed using the HYSPLIT programs. With reference to vertical coordinate in the 3D-wind model, the sigma coordinate was used for trajectory calculation in both forward and backward mode. The results of analysis showed in **Figure 2**.

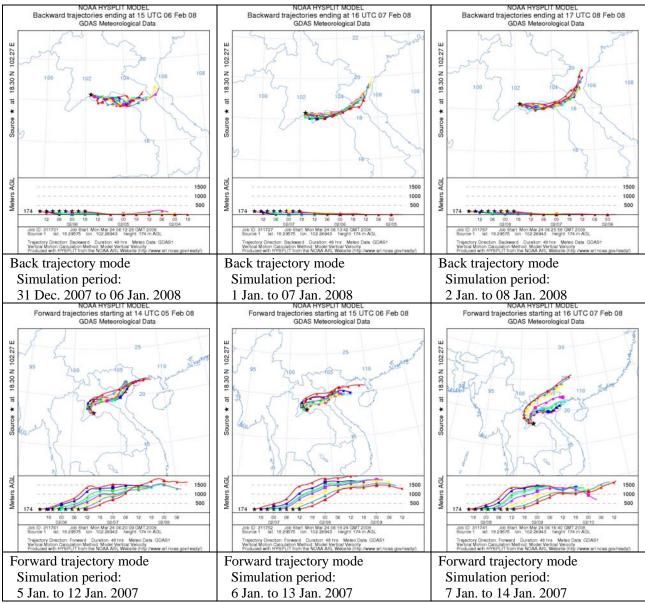


Figure 2 Trajectory Analysis of Ambient Air Collected in Na Long Koun Village, Lao PDR on 5-7 February 2008.

These results of back and forward trajectory analyses indicated the possibilities of the long-rage transportation of POPs. When the height data was high, the transport speed of POPs in the air was relatively fast and long-range or trans-border transportation of POPs were possibly assumed at back trajectory mode and affected to far distant leeward. The less reliability of more than 3 day before or after of the trajectory data should be noticed.

1.2 POPs Concentrations in Ambient Air Samples in Malaysia

1) Ownership of Data and a Person in Charge

Mr. Mohd Fauzan Yunus: Principal Assistant Director, Department of Agriculture, Ministry of Agriculture and Agro-based Industry, Malaysia.

Ms. Rohani Jusoh: Environmental Control Officer, Department of Environment, Ministry of Natural Resources and Environment.

2) Air Monitoring Data in 2008

a) Sampling Location (see Figure 3) (PLEASE CHECK THIS PART)

The sampling location for air monitoring was selected in Muda Dam, that is a Dam facility area about 340 km north of Kuala Lumpur (see Figure 3).

Muda Dam is an dam-side area. In the Muda Dam human activities such as agriculture or habitation were not observed. This sampling location is available some meteorological data and full day electricity supply.

For sampling collection, it was set up in the area of meteorological observatory.

This sampling point is far away from residential area about 90 km, and there are no any open burning closed this site.

- Muda Dam, Kedah Province, Malaysia.
- Latitude: N06°06.148', Longitude: E100°50.454'
- Above Sea Level: 110m

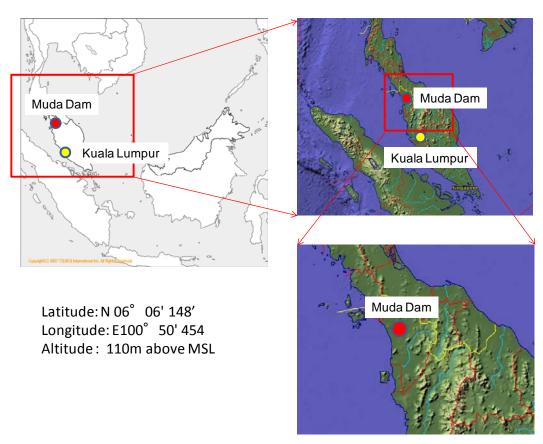


Figure 3 Map of Sampling Location in Malaysia in 2008

b) Sampling Records and Meteorological Information

Air sampling records are summarized in Table 4 and meteorological information shows in Table 5.

Table 4 Sampling Record in Muda Dam, Malaysia

		14 – 15 January 2008	15 – 16 January 2008	16 – 17 January 2008
Sampling time	Start	10:12	10:53	11:50
Sampling time	End	10:12	10:53	11:50
Temperature	Start	27.9	34.1	36.2
(°C)	End	34.6	34.0	32.8
Atmospheric	Start	1000.2	998.3	998.3
Pressure (hPa)	End	998.3	998.6	998.3
Weather	Start	fine	fine	fine
weather	End	fine	fine	fine
Flow rate (L/	min)	700	700	700
Sampling volun	ne (m ³)	1009.2	1008.0	1007.9

^{*1:} HV sampler was HV-700F.

Table 5 Meteorological Information Observed in Malaysia										
Sta	tion name			Star		Kota Bharu				
Sta	tion name	Lat.: 6°12	'N, Long.: 1	.00°24'E, Al	titu: 3.9m	Lat.: 6°10'N, Long.: 1021°17'E, Altitu: 4.6m				
date	hour	Mean sur	face wind	Temp.	Relative Humidity	Mean sur	face wind	Temp.	Relative Humidity	
uaic	(ST)	Direction	Speed	24 hou	r Mean	Direction	Speed	24 hou	r Mean	
		(°)	(m/s)	(°C)	(%)	(°)	(m/s)	(°C)	(%)	
13-Jan-08	6	10	1.2			0	0.0			
	12	350	1.8	27.6	74.2	50	2.9	25.9	82.5	
	18	240	2.3	27.6	74.3	50	1.5	23.9	82.3	
	24	30	1.6			0	0.0			
14-Jan-08	6	340	1.2			0	0.0			
	12	10	2.3	27.0	75.4	120	37	26.2	81.7	
	18	300	2.2	27.0	73.4	90	2.5	20.2	01.7	
	24	360	0.4			110	0.9			
15-Jan-08	6	360	0.9			0	0.0			
	12	50	2.	27.5	73.2	40	2.4	27.0	78.7	
	18	330	1.4	21.3	73.2	50	1.5	27.0	76.7	
	24	360	0.7			230	0.9			
16-Jan-08	6	330	1.3			250	1.3			
	12	50	3.0	27.7	71.3	330	3.1	26.5	76.8	
	18	360	1.9	27.7	71.5	330	2.4	20.3	70.0	
	24	10	0.3			250	2.2			
17-Jan-08	6	40	0.3			210	2.2			
	12	350	3.7	26.8	78.8	10	2.5	25.5	81.0	
	18	310	0.5	20.0	70.0	40	2.9	25.5	01.0	
	24	0	0.0			60	4.6			
18-Jan-08	6	40	1.4			90	3.2			
	12	40	3.3	27.2	73.5	70	5.9	27.1	77.5	
	18	30	2.8	27.2	, 5.5	80	4.9	27.1	, , .5	
	24	20	1.9			80	4.5			

c) Results of HRGC/MS Analysis

Concentrations of POPs in ambient air collected by duplicate sampling are shown in Table 6. These concentrations were determined according to Monitoring Surveillance Manual for POPs and Their Related Compounds (2006).

d) Discussion

- Since one of the high volume air sampler was broken by misconnection to the power supply, only one series of sampling was conducted by using another sampler.
- PLEAS FILL IN THIS PART OF DISCUSSION

Table 6 Concentrations of POPs in Ambient Air in Muda Dam, Malaysia on 14-18 January 2008.

Chemicals		Sample I	B (pg/m ³)	
Chemicals	1st day	2nd day	3rd day	Average
НСВ	510	320	270	367
Aldrin	17	19	24	20
Dieldrin	200	200	190	197
Endrin	1.8	(1.1)	(0.94)	1.3
p,p'-DDT	17	14	11	14
p,p'-DDE	14	7.9	7.0	10
p,p'-DDD	1.4	(0.75)	(0.65)	(0.93)
o,p'-DDT	6.2	3.3	2.8	4.1
o,p'-DDE	1.9	0.6	0.63	1.0
o,p'-DDD	< 0.62	< 0.62	< 0.62	< 0.62
trans-Chlordane	10	4.0	5.4	6.5
cis-Chlordane	7.1	3.4	4.2	4.9
trans-Nonachlor	5.2	2.8	3.2	3.7
cis-Nonachlor	1.1	0.47	<0.13	0.79
Oxychlordane	< 0.89	< 0.89	< 0.89	< 0.89
Heptachlor	5.4	2.1	1.6	3.0
trans-Heptachlorepoxide	< 0.16	< 0.16	<0.16	<0.16
cis-Heptachlorepoxide	1.3	0.51	0.60	0.80
Mirex	2.2	0.80	0.88	1.3
Toxaphene (Parlar-26)	<1.4	<1.4	<1.4	<1.4
Toxaphene (Parlar-50)	<1.5	<1.5	<1.5	<1.5
Toxaphene (Parlar-62)	<3.3	<3.3	<3.3	<3.3

italic letter.: reference value because surrogate recovery was out of 40 to 120 percent.

n.a.: not available because surrogate recovery was out of 25 to 150 percent.

Values in parenthesis show that it was within IDL to IQL.

e) Results of Trajectory Analysis

To speculate the source of POPs in the collected air, trajectory analysis of the collected air was performed using the HYSPLIT programs. With reference to vertical coordinate in the 3D-wind model, the sigma coordinate was used for trajectory calculation in both forward and backward mode. The results of analysis showed in **Figure 3**.

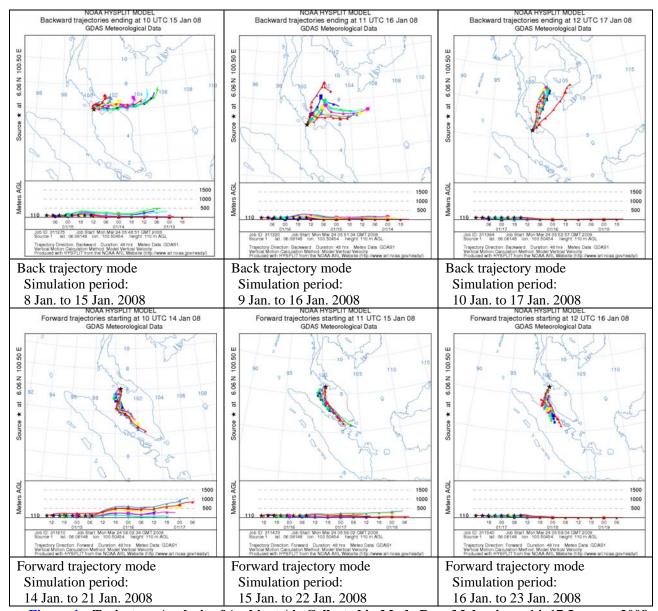


Figure 4 Trajectory Analysis of Ambient Air Collected in Muda Dam Malaysia on 14–17 January 2008.

These results of back and forward trajectory analyses indicated the possibilities of the long-rage transportation of POPs. When the height data was high, the transport speed of POPs in the air was relatively fast and long-range or trans-border transportation of POPs were possibly assumed at back trajectory mode and affected to far distant leeward. The less reliability of more than 3 day before or after of the trajectory data should be noticed.

1.3 POPs Concentrations in Ambient Air Samples in Mongolia

1) Ownership of Data and a Person in Charge

Mongolia

Dr. Enkhsaruul Byambajav, Department of Organic Chemistry, Faculty of Chemistry, National University of Mongolia

2) Air Monitoring Data in 2007

a) Sampling Location (see Figure 5)

This sampling site is located about 80 km north-east of Ulaanbaatar.

- Terelj, Mongolia.
- Latitude: N47°59', Logitude: E107°27'
- Above Sea Level: 1560m

The sampling location in Mongolia has the proper conditions to background air monitoring site as follows;

- 1) The sampling site is situated on 80 km to the north east of capital city Ulaanbaatar.
- 2) Terelj sampling site is the largest tourist camp and national park which has beautiful nature, mountain area and grassland.
- 3) There is no significant toxic emission sources and traffics in Terelj.
- 4) There are a few of livestock and households in Terelj.

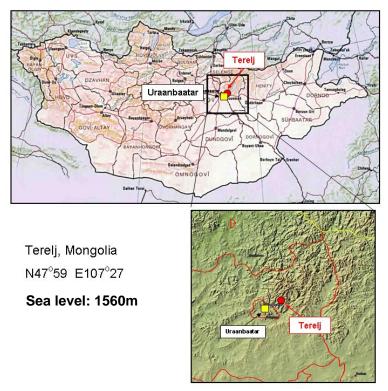


Figure 5 Map of Sampling Location in Mongolia in 2007

POPSEA/WS6/INF/01-14

b) Sampling Records and Meteorological Information

Air sampling records were summarized in Table 7.

 Table 7
 Sampling Record in Terelj, Mongolia

_		18 – 19 December 2007	19 – 20 December 2007	20 – 21 December 2007
Sampling time	Start	12:41	13:04	13:27
Sampling time	End	12:41	13:04	13:27
Temperature	Start	-10.3	-7.5	-11.0
(°C)	End	8	-10	-7.9
Atmospheric	Start	843.7	841.8	848.9
Pressure (hPa)	End	841.8	848.2	843.7
Weather	Start	fine	fine	fine
weather	End	fine	fine	cloudy
Flow rate (L/	min)	702.1	702.3	702.1
Sampling volun	ne (m ³)	1007.9	1007.9	1007.9

^{*1:} HV sampler was HV-1000F.

c) Results of HRGC/MS Analysis

Concentrations of POPs in ambient air collected by duplicate sampling are shown in **Table 8.** These concentrations were determined according to Monitoring Surveillance Manual for POPs and Their Related Compounds (2006).

d) Discussion

- During the East Asia background air monitoring analysis in Mongolia, most of POPs pesticides were not detected except HCB which was detected in relatively high concentration (43-53 pg/m³). Usage of HCB pesticide was the highest in Mongolia during 1970-2003. Another source of HCB may be from coal-fired power plant and domestic stoves, since mazut is usually used as a starter material of combustion of coal, but the waste oil is also sometimes used.
- The POPs concentrations detected were below MQL excluding HCB.
- Since the pressure sensor attached to the one of the high volume air sampler was out of order, it
 was impossible to conduct duplicate sampling and only one series of monitoring data could be
 obtained.

Table 8 Concentrations of POPs in Ambient Air in Terelj, Mongolia on 18-21 December 2007.

Classical Concentrations		•	$\frac{A (pg/m^3)}{A (pg/m^3)}$	
Chemicals	1st day	2nd day	3rd day	Average
НСВ	53	43	49	48
Aldrin	< 0.71	< 0.71	< 0.71	<0.71
Dieldrin	< 0.62	< 0.62	< 0.62	< 0.62
Endrin	< 0.59	< 0.59	< 0.59	< 0.59
p,p'-DDT	< 0.99	< 0.99	< 0.99	< 0.99
p,p'-DDE	(0.77)	< 0.72	< 0.72	0.77
p,p'-DDD	< 0.44	< 0.44	<0.44	<0.44
o,p'-DDT	< 0.75	< 0.75	< 0.75	< 0.75
o,p'-DDE	(0.13)	< 0.08	< 0.08	0.13
o,p'-DDD	< 0.62	< 0.62	< 0.62	< 0.62
trans-Chlordane	< 0.29	(0.46)	< 0.29	(0.46)
cis-Chlordane	< 0.22	< 0.22	< 0.22	< 0.22
trans-Nonachlor	< 0.14	(0.15)	< 0.14	(0.15)
cis-Nonachlor	< 0.13	< 0.13	<0.13	<0.13
Oxychlordane	< 0.89	< 0.89	< 0.89	< 0.89
Heptachlor	< 0.21	< 0.21	< 0.21	<0.21
trans-Heptachlorepoxide	< 0.16	< 0.16	< 0.16	< 0.16
cis-Heptachlorepoxide	(0.20)	(0.13)	(0.16)	0.16
Mirex	< 0.13	<0.13	<0.13	< 0.13
Toxaphene (Parlar-26)	<1.4	<1.4	<1.4	<1.4
Toxaphene (Parlar-50)	<1.5	<1.5	<1.5	<1.5
Toxaphene (Parlar-62)	<3.3	<3.3	<3.3	<3.3

italic letter.: reference value because surrogate recovery was out of 40 to 120 percent.

n.a.: not available because surrogate recovery was out of 25 to 150 percent.

Values in parenthesis show that it was within IDL to IQL.

e) Results of Trajectory Analysis

To speculate the source of POPs in the collected air, trajectory analysis of the collected air was performed using the HYSPLIT programs. With reference to vertical coordinate in the 3D-wind model, the sigma coordinate was used for trajectory calculation in both forward and backward mode. The results of analysis showed in **Figure 5**.

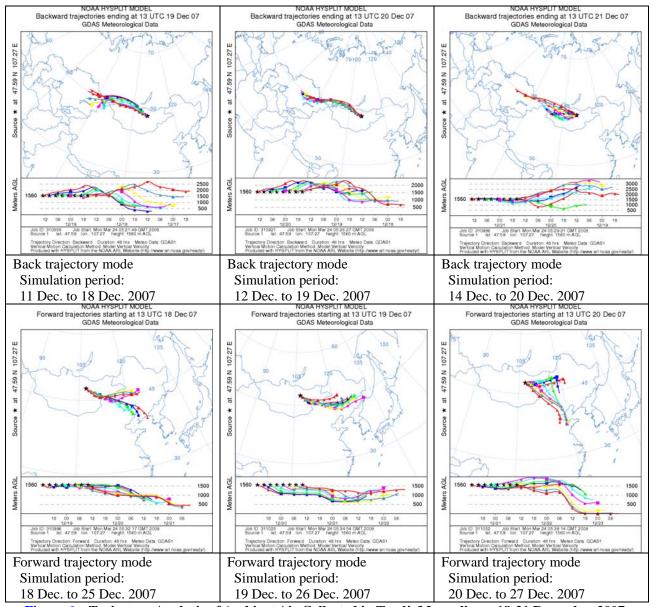


Figure 6 Trajectory Analysis of Ambient Air Collected in Terelj, Mongolia on 18-21 December 2007.

These results of back and forward trajectory analyses indicated the possibilities of the long-rage transportation of POPs. When the height data was high, the transport speed of POPs in the air was relatively fast and long-range or trans-border transportation of POPs were possibly assumed at back trajectory mode and affected to far distant leeward. The less reliability of more than 3 day before or after of the trajectory data should be noticed.