The Environmental Monitoring Report on the Persistent Organic Pollutants (POPs) in Japan Cl Cl

()n

 $(C\ell)$ m.



Environmental Health Department Ministry of the Environment Government of Japan June 2002

# The Environmental Monitoring Report on the Persistent Organic Pollutants (POPs) in Japan

Environmental Health Department Ministry of the Environment Government of Japan

June 2002

The information contained in this report was taken from reports of Ministry of the Environment and relevant published scientific literature. While the information provided is believed to be accurate, Ministry of the Environment disclaims any responsibility for possible inaccuracies or omissions and consequences which may flow from them. Ministry of the Environment is not liable for any injury, loss, damage or prejudice of any kind that may be caused by any persons who have acted based on their understanding of the information contained in this publication.

#### Cover photo credit : NASDA (NATIONAL SPACE DEVELOPMENT AGENCY OF JAPAN)

Material in this publication may be freely quoted or reprinted, but acknowledgement is requested together with a reference to the document number. A copy of the publication containing the quotation or reprint should be sent to Ministry of the Environment of Japan.

Limited copies of this report are available from:

Environmental Health and Safety Division Environmental Health Department Ministry of the Environment Government of Japan 1-2-2, Kasumigaseki, Chiyoda-ku, Tokyo 100-8975 Japan Tel: +81-3-5521-8260 Fax: +81-3-3580-3596 E-mail: ehs@env.go.jp http://www.env.go.jp/en/

#### PREFACE

Persistent organic pollutants (POPs), such as PCBs and DDT, are transferred across borders and are accumulated in the bodies of living organisms. As a result, POPs are causing pollution on a global scale. For example, they have been detected in the bodies of polar bears and seals.

In order to prevent global environmental pollution caused by such substances, the Stockholm Convention on Persistent Organic Pollutants was adopted in Stockholm in May 2001. The Convention has an objective of reducing or eliminating 12 types of POPs, such as PCBs, DDT and dioxins, through cooperation with countries around the world. Japanese Government seeks early access to the Convention and thereby the early entry into force.

After the Convention is put into effect, it gets more important to make sure of its appropriate implementation. For that purpose, it will be necessary to monitor the levels of the POPs remaining in the environment on a national, regional and global basis. Thus, it will become more crucial to conduct environmental surveys relating to POPs in every country and to share the survey results.

Triggered by the environmental pollution problems caused by PCBs, Ministry of the Environment of Japan has systematically been carrying out a survey to determine the actual state of environmental pollution caused by chemicals, including POPs, over a 30-year period. This survey has clarified the year-to-year changes in the concentration of several types of POPs in the environment in Japan. The survey also identified the concentration levels of 794 chemicals in the environment. By including these, this survey has led to many achievements. Therefore, in the hope of contributing to international progress in measures to counter POPs, we have developed this report and release it to the international community.

This report comprises three chapters. Chapter 1 shows monitoring data on POPs, which are extracted from the results of the survey to determine the actual state of environmental pollution caused by chemicals. Chapter 2 and Chapter 3, respectively, are summaries of the survey results relating to chemicals other than POPs and an outline of the survey to determine the actual state of environmental pollution caused by chemicals. In addition, in the CD-ROM version, technical guidelines relating to the monitoring of environmental chemicals and so forth have been enclosed as appendix. It would please us greatly if this report were to be utilized as a reference material for measures relating to POPs.

In F.Y. 2002, Ministry of the Environment of Japan initiated higher-level environmental monitoring of all the POPs covered by the Convention in order to contribute to its future effectiveness evaluation. We also plan to release information about new POPs monitoring activities as soon as we obtain the results of the survey.



Dr. Soichiro IWAO

岩尾 總一即

Director General Environmental Health Department Ministry of the Environment Government of Japan

### **CONTENTS**

PREFACE CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ACRONYMS

| CHAPTER1              | TER1 ENVIRONMENTAL SURVEY AND MONITORING OF 12 PERSISTENT                |                                                            |    |  |
|-----------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----|--|
|                       | ORGAN                                                                    | NIC POLLUTANTS (POPs) IN JAPAN                             | 10 |  |
| 1.1 Survey            | 1.1 Surveyed the 12 POPs                                                 |                                                            |    |  |
| 1.2 Summ              | 1.2 Summary of Survey and Monitoring Results on the 12 POPs              |                                                            |    |  |
| 1.3 Individ           | lual POP                                                                 | S                                                          |    |  |
|                       | 1.3.1                                                                    | Aldrin                                                     | 15 |  |
|                       | 1.3.2                                                                    | Chlordane                                                  | 17 |  |
|                       | 1.3.3                                                                    | DDT                                                        | 21 |  |
|                       | 1.3.4                                                                    | Dieldrin                                                   | 24 |  |
|                       | 1.3.5                                                                    | Endrin                                                     | 27 |  |
|                       | 1.3.6                                                                    | Heptachlor                                                 | 29 |  |
|                       | 1.3.7                                                                    | Hexachlorobenzene (HCB)                                    | 31 |  |
|                       | 1.3.8                                                                    | Mirex                                                      | 34 |  |
|                       | 1.3.9                                                                    | Toxaphene                                                  | 35 |  |
|                       | 1.3.10                                                                   | Polychlorinated biphenyls (PCBs)                           | 36 |  |
|                       | 1.3.11                                                                   | PCDDs / PCDFs                                              | 39 |  |
| CHAPTER2              | MONIT                                                                    | ORING RESULTS ON CHEMICALS OTHER THAN THE 12 POPs          | 50 |  |
| CHAPTER3              | THE SYSTEM OF INVESTIGATION OF CHEMICAL SUBSTANCES IN THE ENVIRONMENT 86 |                                                            |    |  |
| 3.1 Comp              | rehensive                                                                | Survey of Chemical Substances on Environmental Safety      | 86 |  |
| 3.2 Investi           | gation an                                                                | d Survey of Designated Chemical Substances                 | 87 |  |
| 3.3 The Fo            | ollow-up (                                                               | Survey on the Pollution by Unintentionally Formed Chemical |    |  |
| Substa                | inces                                                                    |                                                            | 87 |  |
| CHAPTER4              | FUTUR                                                                    | E PLAN TO PROMOTE POPs MONITORING                          | 92 |  |
| APPENDIX              |                                                                          |                                                            |    |  |
| A: Contents of CD-ROM |                                                                          |                                                            |    |  |
| B: Glossary           |                                                                          |                                                            | 95 |  |
| C: About Japan        |                                                                          |                                                            | 96 |  |

# LIST OF TABLES

| Table 1.1-1    | POPs surveyed and/or monitored in the "Investigation of Chemical Substances in |  |  |
|----------------|--------------------------------------------------------------------------------|--|--|
|                | the Environment"                                                               |  |  |
| Table 1.2-1    | Summary of survey and monitoring results on the 12 POPs                        |  |  |
| Table 1.3.1-1  | Detected frequency and detection range of aldrin                               |  |  |
| Table 1.3.2-1  | History of use of chlordane for termite control                                |  |  |
| Table 1.3.6-1  | Detected frequency and detection range of heptachlor                           |  |  |
| Table 1.3.10-1 | Production, import, export and consumption of PCBs in Japan                    |  |  |
| Table 1.3.10-2 | Storage situation of PCB wastes in Japan                                       |  |  |
| Table 1.3.11-1 | Air emission standard for dioxins                                              |  |  |
| Table 1.3.11-2 | Effluent standard for dioxins                                                  |  |  |
| Table 1.3.11-3 | Inventory of dioxins emission                                                  |  |  |
| Table 1.3.11-4 | Summary of the results of other surveys on dioxins                             |  |  |
| Table 1.3.11-5 | Toxic equivalency factors (TEFs) for PCDDs , PCDFs and coplanar-PCBs           |  |  |
| Table 2-1      | Surveyed chemicals other than the 12 POPs                                      |  |  |
| Table 2-2      | Summary of survey and monitoring results on chemicals other than the 12 POPs   |  |  |
| Table 2-3      | Detected frequency and detection range of PBDDs / PBDFs                        |  |  |
| Table 3-1      | Summary of the System of Investigation of Chemical Substances in the           |  |  |
|                | Environment                                                                    |  |  |
| Table 3.1-1    | Results of detection in environmental surveys (F.Y. 1974~2000)                 |  |  |

# **LIST OF FIGURES**

| Fig. 1.3.1-1  | Import of aldrin (technical grade of active ingredient)                                          |
|---------------|--------------------------------------------------------------------------------------------------|
| Fig. 1.3.2-1  | Import of chlordane (technical grade of active ingredient) for use of agricultural               |
|               | pesticides                                                                                       |
| Fig. 1.3.2-2  | Import of chlordane (technical grade of active ingredient) for use of termite control agent      |
| Fig. 1.3.2-3  | Detected frequency and detection range of trans-chlordane                                        |
| Fig. 1.3.2-4  | Detected frequency and detection range of <i>cis</i> -chlordane                                  |
| Fig. 1.3.3-1  | Domestic shipping of DDT (technical grade of active ingredient)                                  |
| Fig. 1.3.3-2  | Production of insecticides containing DDT                                                        |
| Fig. 1.3.3-3  | Detected frequency and detection range of <i>p</i> , <i>p</i> '-DDT                              |
| Fig. 1.3.4-1  | Import of dieldrin (technical grade of active ingredient)                                        |
| Fig. 1.3.4-2  | Production of dieldrin for use of sanitary pest control                                          |
| Fig. 1.3.4-3  | Detected frequency and detection range of dieldrin                                               |
| Fig. 1.3.5-1  | Import of endrin (technical grade of active ingredient)                                          |
| Fig. 1.3.5-2  | Detected frequency and detection range of endrin                                                 |
| Fig. 1.3.6-1  | Import of heptachlor (technical grade of active ingredient)                                      |
| Fig. 1.3.7-1  | Detected frequency and detection range of HCB                                                    |
| Fig. 1.3.10-1 | Detected frequency and detection range of total PCBs                                             |
| Fig. 1.3.11-1 | Detected frequency and detection range of dioxins                                                |
| Fig. 2-1      | Detected frequency and detection range of oxychlordane                                           |
| Fig. 2-2      | Detected frequency and detection range of <i>o</i> , <i>p</i> '-dichlorodiphenyldichloroethane   |
| Fig. 2-3      | Detected frequency and detection range of <i>p</i> , <i>p</i> '-dichlorodiphenyldichloroethane   |
| Fig. 2-4      | Detected frequency and detection range of <i>o</i> , <i>p</i> '-dichlorodiphenyltrichloroethane  |
| Fig. 2-5      | Detected frequency and detection range of <i>o</i> , <i>p</i> '-dichlorodiphenyldichloroethylene |
| Fig. 2-6      | Detected frequency and detection range of <i>p</i> , <i>p</i> '-dichlorodiphenyldichloroethylene |
| Fig. 2-7      | Detected frequency and detection range of o-dichlorobenzene                                      |
| Fig. 2-8      | Detected frequency and detection range of <i>m</i> -dichlorobenzene                              |
| Fig. 2-9      | Detected frequency and detection range of <i>p</i> -dichlorobenzene                              |
| Fig. 2-10     | Detected frequency and detection range of 1,2,3-trichlorobenzene                                 |
| Fig. 2-11     | Detected frequency and detection range of 1,2,4-trichlorobenzene                                 |
| Fig. 2-12     | Detected frequency and detection range of 1,3,5-trichlorobenzene                                 |
| Fig. 2-13     | Detected frequency and detection range of 1,2,3,4-tetrachlorobenzene                             |
| Fig. 2-14     | Detected frequency and detection range of 1,2,3,5-tetrachlorobenzene                             |
| Fig. 2-15     | Detected frequency and detection range of 1,2,4,5-tetrachlorobenzene                             |
| Fig. 2-16     | Detected frequency and detection range of Pentachlorobenzene                                     |
| Fig. 2-17     | Detected frequency and detection range of $\alpha$ -hexachlorocyclohexane                        |
| Fig. 2-18     | Detected frequency and detection range of $\beta$ -hexachlorocyclohexane                         |
|               |                                                                                                  |

| Fig. 2-19 | Detected frequency and detection range of $\gamma$ -hexachlorocyclohexane  |
|-----------|----------------------------------------------------------------------------|
| Fig. 2-20 | Detected frequency and detection range of $\delta$ -hexachlorocyclohexane  |
| Fig. 2-21 | Detected frequency and detection range of polychloronaphthalene            |
| Fig. 2-22 | Detected frequency and detection range of dioxane                          |
| Fig. 2-23 | Detected frequency and detection range of trans-nonachlor                  |
| Fig. 2-24 | Detected frequency and detection range of cis-nonachlor                    |
| Fig. 2-25 | Detected frequency and detection range of 2,6-di-tert-butyl-4-methylphenol |
| Fig. 2-26 | Detected frequency and detection range of di-2-ethylhexylphthalate         |
| Fig. 2-27 | Detected frequency and detection range of di-n-butyl phthalate             |
| Fig. 2-28 | Detected frequency and detection range of benzo[a]pyrene                   |
| Fig. 2-29 | Detected frequency and detection range of o-terphenyl                      |
| Fig. 2-30 | Detected frequency and detection range of <i>m</i> -terphenyl              |
| Fig. 2-31 | Detected frequency and detection range of <i>p</i> -terphenyl              |
| Fig. 2-32 | Detected frequency and detection range of tributyl tin compounds           |
| Fig. 2-33 | Detected frequency and detection range of triphenyl tin compounds          |
| Fig. 3-1  | Samling sites of the General Inspection Survey of Chemical Substances on   |
|           | Environmental Safety (Water)                                               |
| Fig. 3-2  | Locations of the General Inspection Survey of Chemical Substances on       |
|           | Environmental Safety (Air)                                                 |
| Fig. 3-3  | Sampling sites of the Monitoring for Water and Bottom Sediment             |
| Fig. 3-4  | Sampling sites of the Wildlife Monitoring                                  |
|           |                                                                            |

# LIST OF ACRONYMS

| BHC(HCH) | Benzenehexachloride (Hexachloro cyclohexane) |
|----------|----------------------------------------------|
| DDD      | Dichlorodiphenyldichloroethane               |
| DDE      | Dichlorodiphenyldichloroethylene             |
| DDT      | Dichlorodiphenyltrichloroethane              |
| HCB      | Hexachlorobenzene                            |
| PBDDs    | Polybrominated dibenzo-p-dioxins             |
| PBDFs    | Polybrominated dibenzofurans                 |
| PCBs     | Polychlorinated biphenyls                    |
| PCDDs    | Polychlorinated dibenzo-p-dioxins            |
| PCDFs    | Polychlorinated dibenzofurans                |
| PCNB     | Pentachloronitrobenzene                      |
| PCP      | Pentachlorophenol                            |
| ТСТР     | Tetrachlorothiophene                         |
| TeCDD    | Tetrachlorodibenzo-p-dioxin                  |
| TPN      | Tetrachloroisophthalonitrile                 |
|          |                                              |

| F.Y. | Fiscal Year (From April to March)    |
|------|--------------------------------------|
| MOE  | Ministry of the Environment          |
| ND   | Not Detected                         |
| POPs | Persistent Organic Pollutants        |
| TDI  | Tolerance Daily Intake               |
| TEF  | Toxicity Equivalent Factor           |
| TEQ  | Toxicity Equivalency Quantity        |
| UNEP | United Nations Environment Programme |
| WHO  | World Health Organization            |