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Abstract: In order to evaluate the role of terrestrial ecosystems in the global environment,
we developed methods for measuring vegetation types, structural parameters, biomass,
spectral reflectance characteristics and temporal changes using satellite images. First for the
measurement of forest structural parameters, we developed a method for measuring forest tree
heights using an airborne laser scanner. Secondly as an advanced processing method of
satellite imagery, we studied a method for estimating ratios of sub-pixel categories in a pixel.
Thirdly as a way to obtain ground-truth spectral data, we developed an imaging spectrometer
capable of measuring spectral reflectance at each point in an image.
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1. Introduction

To cope with global environmental problems, such as global warming, deforestation,
desertification, a number of international research programs, e.g. IGBP, have been initiated
under the cooperation of international research communities. One of the important research
themes is the investigation of the function of terrestrial ecosystems in the global environment.

It is realized that satellite remote sensing techniques are effective tools for observing
current states and changes of ground surface conditions in large areas. By using satellite
imagery, we can regularly collect data concerning ground surface conditions and can really see
currently occurring changes. Moreover if we use satellite data as input or verification data for
a global biogeochemical process model, we can predict future changes of the environment
with higher accuracy.

In this sub-project we have developed methods for measuring vegetation types, structural
parameters, biomass, spectral reflectance characteristics and temporal changes using optical

satellite sensors. The followings are the research items we have conducted during three years
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Fig. 3. Canopy height distribution
Measured by the laser scanner.
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Fig. 4. Comparison between laser
scanner data and canopy tower data.

(1) Development of a method for measuring forest tree heights using an airborne laser scanner
(2) Examination of a method for estimating sub-pixel category contents

(3) Development of an imaging spectrometer for ground measurements

The following sections explain outlines of these items.

2. Measurements of forest canopy height using an airborne laser scanner

Forest canopy height is one of the fundamental structural parameters for estimating forest
biomass and evaluating forest carbon balance. We used an airborne laser scanner for

measuring tree canopy heights at the Tomakomai experimental forest of Hokkaido university.
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2.1 Airborne laser scanner

The airborne laser scanner measures three-dimensional terrain or canopy profiles using a
system composed of a laser range finder, a GPS receiver and an INS (Inertial Navigation
System). Figure 1 is a schematic illustration of a laser scanner.

2.2 Measurements of forest canopy heights

Tomakomai experimental forest is located on a flat plateau of volcanic ash, 25 % of which
is covered by afforested coniferous forest, and the rest of which is dominated by broad leaf
trees such as Quercus crispula and Phellodendron amurense. A 25m-high canopy tower has
been constructed in the experimental forest for measuring tree canopy heights within the
radius of 40m from the tower (Figure 2). The tree height data obtained by this canopy tower
are used for the verification of the laser scanner measurements.

Laser scanner experiments were conducted in November 1998 and July 1999. In the first
experiment terrain profiles were mainly measured; in the second experiment canopy profiles
were mainly measured. Canopy heights were obtained by subtracting the terrain profiles from
the canopy profiles. Figure 3 shows the canopy height distribution in the experimental forest.
These laser scanner data were compared with the ground measurement data obtained by the
canopy tower. Figure 4 shows an example of comparison between the laser scanner data along
a transect and canopy tower data; the line shows the laser scanner data and the diamond
symbols show the canopy tower data. We compared both data along 19 transects (10 from
north to south and 9 from east to west), including 89 canopy tower data points. The
differences between both data were less than 1m for 67 points (75 %) out of 89. We hence can
say that the airborne laser scanner can measure tree canopy heights with accuracy practically
usable.

3. Estimation of sub-pixel category contents

Conventional classification techniques such as the maximum likelihood method or the
minimum distance method generally perform well for classifying large homogeneous
categories in remotely sensed multispectral imagery. But they are not very successful in
classifying sub-pixel categories or identifying proportions of categories in a pixel. There have
been several sub-pixel classification methods that can estimate the proportions of sub-pixel
categories. But they assume that spectral reflectance characteristics of all the categories
existing in an image are known. We have studied a sub-pixel classification method? that can
detect the proportion of a target category in each pixel of an image without the knowledge of
spectral characteristics of background categories.
3.1 Method

This method is based on the following two assumptions:
(1) An observed spectral vector of a pixel in an image can be expressed as a linear

combination of the spectral vector of a target category and those of background categories.
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Fig. 6. Spectral profiles of each category

Fig. 5. Observed area (black oullined area)
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Fig. 7. Estimated fraction vs. true fraction.

(2) The spectral vector of aggregated background components can be expressed by the linear
combination of spectral vectors of other pixels in the same image. |

Let us express an observed spectral vector of a pixel as V. First a proportion k; of background

categories in a éurrently chosen pixel is assumed. Secondly a candidate of a background

spectral vector V) is selected from an arbitrary pixel in an image and the product of k5 and V
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is subtracted from V, to yield a resultant spectral vector R. We then calculate similarity fs
between the target spectral vector ¥; and R. Repeating this process for different values k‘s
and different V,’s, we finally obtain the pair of k, and ¥, which maximizes the value of fs. We
take this best value of k;, as an estimated proportion of the target category.

3.2 Results and discussion |

We artificially composed four test images using spectral information extracted from a
CASI (Compact Airborne Spectral Imager) image obtained over the Kushiro Mire. There we
find alders, sedges, reeds and mosses as representative plénts. Figure 5 shows the observation
area. We can find five main categories in this image. (Four types of plants above and water
surface.) Figure 6 shows spectral profiles of each category. We selected alders as the target
category. Using the spectral profiles we artificially composed four test images; (a) one
background category, sedges, (b) two background categories, sedges and reeds, (c) three
background categories, sedges, reeds and mosses, and (d) four background categories, sedges,
reeds, mosses and water.

The method was applied to these four images to estimate the proportion of alders. Figure 7
shows the results for each image. We see that the estimation accuracy of the method decreases
as the number of background categories increases. The accuracy is fairly good when the
number of background categories is less than three; but it degrades in other cases. This is
ascribed to the breakdown of the assumption (2) caused by the increased diversity of
background components. Detailed examination on this assumption is necessary to improve the
accuracy of the method. ’

4. Development of an imaging spectrometer for ground measurements

An imaging spectrometer?

is a device that can acquire multispectral images of an
observation object at a number of wavelength. An ordinary spectrometer used for acquiring
ground-truth data for remote sensing can only obtain spectral information averaged over its
field of view; but an imaging spectrometer can measure both spatial and spectral profiles at
the same time. We have developed an imaging spectrometer by combining an AOTF
(Acousto-Optic Tunable Filter) device and a CCD camera.
4.1 Imaging spectrometer

Figure 8 shows the block diagram of the imaging spectrometer. An AOTF device
decomposes incident light from an observation target into spectral components, and a CCD
camera receives the spectrally decomposed images. The resultant multispectral images are
then stored in a personal computer. An AOTF is an element that works as a band-pass filter
utilizing the interference between light and ultrasonic waves propagating in a solid element.
As the passing wavelength of light is determined by the frequency of an ultrasonic wave, we
can choose the extracted light wavelength by changing the ultrasonic frequency. The entire

function of the imaging spectrometer is controlled by the computer and the data acquisition is
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Table | Specifications of the imaging spectrometer

Yavelength range 400~1, 000 nm
Spectral resolution 5.2nm @ 830nm
Measurement distance 0. 98~ m

CCD pixel size 1,317 x 1,035

(a) 680 nm (b) 700 nm (c) 720 nm

Fig. 10. Measured multispectral images.
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Fig. 11. Spectral profiles (a) at the sampling points shown in figure (b).
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automatically conducted. Figure 9 shows the external view of the camera head and Table 1
shows the specifications of this imaging spectrometer.
4.2 Experimental results

Figure 10 shows spectral images of grass obtained at (a) 680nm, (b) 700nm, and (c)
720nm. Figure 11 (a) shows spectral reflectance curves at several points in the image (b).
Points 1 to 3 are located on the vegetation surface; a specularly shining point, an oblique
incident point and a shadowed point respectively. Points 4 to 6 are located on the soil surface;
shining point, an average colored point and a shadowed point respectively. By‘ using this
imaging spectrometer, we can obtain detailed information on the spectral reflectance

properties of each component in an observation area.
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