B-16.7.1 Studies on Development of Reduction Techniques for Methane and Nitrous Oxide Emissions from Agricultural Fields in Asia

Contact Person Haruo Tsuruta

Head

Laboratory of Environmental Impact Assessment,
Department of Environmental Planning,
National Institute of Agro-Environmental Sciences,
Ministry of Agriculture, Forestry, and Fisheries
3-1-1 Kan-nondai, Tsukuba, Ibaraki 305-8604 Japan
Tel: +81-298-38-8276, Fax: +81-298-38-8199

E-mail tsuruta@niaes.affrc.go.jp

Total Budget for FY1999 15,551,000 Yen

Abstract

- (1) The methane flux from rice paddy fields was measured at 8 sties in China during 1993-1997. The methane emission rate was in a range of 1.6-148gCH₄m⁻²y⁻¹, and was different from site to site, and year to year. The large methane emission rate was measured from undrained rice paddy fields in non rice growing season, and possibly contributes to the total emission rate in China.
- (2) An intensive five-year (1995-1999) filed program on the N_2O flux measurement in an onion field in Hokkaido, Japan showed that the emission ratio of N_2O -N to the total amount of nitrogen fertilised into the soils was 1-3 %, much higher than in the other region of Japan. And the flux of N_2O was much higher in the latter half of vegetation, indicating that N_2O could be produced by denitrification process, because a part of nitrogen fertiliser was remained in the deeper soils as NO_3 in high concentration.
- (3) The first field measurement of N_2O flux from soils in a forest in Hachi-oji located near Tokyo showed an annual N_2O emission rate was of $0.42 \sim 0.62$ kg N ha⁻¹, much higher than in the other temperate region such as Europe and North America. The concentration of NO_3 in stream water was positively correlated with N_2O flux in forest soils, and could be a good indicator to predict the rate of N_2O flux from forest soils on a watershed scale. It strongly suggests that the phenomenon of 'nitrogen-saturation' is of a crucial importance for N_2O emission from forest ecosystems.

Key Words

Rice Paddy fields, China, Methane emission, Hokkaido, Onion fields,
Nitrous oxide emission, Forest soils, Stream water, Nitrate ion.

1. Introduction

Asia has a huge area of agro-ecosystems, especially rice paddy fields because of Asian Monsoon climate. As the emission data of greenhouse gases from field measurements is

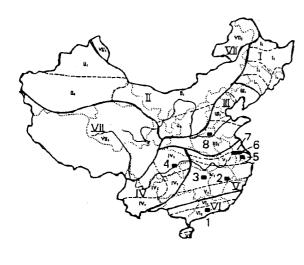
very few, there is still a large uncertainty with the estimate of greenhouse gases from terrestrial ecosystems by IPCC. We have conducted the CH₄ and N₂O flux measurements from terrestrial ecosystems not only in Japan but also in Asian region, under the collaborative studies with many researchers and institutions in Asia, since 1990. The intensive field measurements have been carried out in rice paddy fields for CH₄ and N₂O emissions, upland fields with nitrogen fertilisation for N₂O and NO emissions, and forest soils for N₂O emission and CH₄ uptake. In this report, the major results from three intensive field studies in China and Japan will be briefly introduced.

2. Research objectives

- (1) A study of CH₄ emission from rice paddy fields in China has started since 1992, in collaboration with Prof. Cai Zucong, Institute of Soil Science, Chinese Academy of Sciences, China. The purpose of this study is to have a better understanding of the CH₄ emission rate in spatial and year-to-year variation. Since China has about 25 % of the total rice paddy fields in the world, the emission rate in China could greatly contribute to the accurate estimate of CH₄ emission rate in the world.
- (2) A field study of N_2O flux from upland and cultivated soils in Hokkaido, northern part of Japan, has been carried out since 1995 by Prof. Hatano, Department of Agriculture, Hokkaido University, Japan. An intensive three-year (1992-1994) field experiment on CH_4 and N_2O emission from rice paddy fields and upland soils all over Japan indicated that the emission rate of N_2O from upland and cultivated soils in Hokkaido was much higher than in the other region of Japan. The purpose of this study is to determine the annual emission rate of N_2O from upland soils in Hokkaido, and to make clear the major factors controlling the N_2O emission and the mechanism of N_2O production in soils.
- (3) A filed study of N_2O emission from forest soils in Japan has been performed since 1998 by Dr. Yoh, Department of Agriculture, Tokyo University of Science and Technology. His group already revealed a condition of "nitrogen saturation", by measuring nitrate ion in soils and stream water in a watershed of forest environment in Hachi-oji located near the Tokyo Metropolitan area, due to the dry and wet depositions of nitrogen from the atmosphere to the forest ecosystems. The purpose of this study is to measure the annual emission rate of N_2O from forest soils in Japan, because no field measurements have been made in Japan and Asia. And the other purpose is to evaluate the effects of nitrogen saturation on N_2O emission from forest ecosystems in Japan.

3. Design of field experiment

(1) The flux of CH₄ from eight sites in major rice paddy fields in China (Fig. 1 and Table 1) was measured every week in the rice growing seasons during 1993-1997, by closed chamber method. In Chongqing where water in rice paddy fields could not be drained during no rice growing season (i.e., in winter season), the CH₄ flux was also measured because CH₄ was emitted although no rice was planted, different from other sites where water was well drained in fallow season.


- (2) The flux measurement of N₂O has been measured at an onion field in Mikasa City, Hokkaido, Japan from April to October since 1995 by closed chamber method. Onion was transplanted in April after a fertilisation rate of 300 kgN m² in average, and harvested in early September, every year. The absorption rate of nitrogen by onion plant was 129 kgNm² in average, and nitrate ion was still remained in the soils after harvest.
- (3) A systematic measurement of N_2O flux was made from May 1998 to December 1999, in a watershed covered with a deciduous forest in Hachi-oji located in a suburb of Tokyo Metropolitan area. Three sampling sites at ridge part, steep slope part and valley part were selected along the landscape. This watershed has been identified as a 'nitrogen-saturated' condition (nitrate concentration of 100 μ M in stream water was very high,), an overnutrition of ecosystem with nitrogen due to atmospheric deposition. The N_2O flux was also measured in two 'nitrate-type' forests (high NO_3 but low DOC in stream water) and two 'DOC-type' forests (low NO_3 but high DOC) in the Lake Biwa watersheds in July, September and October 1999.

4. Results and Discussion

- (1) The CH₄ emission rate from rice paddy fields at 8 sties in China during 1993-1997 was in a range of 1.6-148gCH₄m⁻²y⁻¹, and was different from site to site, and year to year, as shown in Table 2¹⁾. The maximum CH₄ emission rate of 148 gCH₄m⁻²y⁻¹ was found in Yingtan where rice straw was incorporated just before late rice cultivation started, and water in the rice paddy fields could not be drained at the bottom in a hilly area. The high CH₄ emission rate of 36.2 gCH₄m⁻² was measured from un-drained rice paddy fields in a fallow season in Chongqing. The CH₄ emission rate in growing and non-growing seasons in un-drained area of China possibly contributes to the total CH₄ emission rate in China.
- (2) An intensive five-year (1995-1999) field program on the N_2O flux measurement in an onion field in Hokkaido, Japan showed that the emission ratio of N_2O -N to the total amount of nitrogen fertilized into the soils was in a range of 1-3 %, much higher than in the other region of Japan. The flux of N_2O was much higher in the latter half of growing season than in the former period, as shown in Fig.2. It strongly suggests that N_2O could be produced by denitrification process, because a part of nitrogen fertiliser was still remained in the deeper soils as NO_3 ⁻-N in high concentration in August and September^{2).}
- (3) The first field measurement of N₂O flux from soils in a forest located near Tokyo Metropolitan area showed that an annual N₂O emission rate was of 0.42~0.62 kg N ha⁻¹, much higher than in the other temperate region such as Europe and North America³⁾. The seasonal variation of N₂O flux was positively correlated with soil temperature, probably due to humid condition under Monsoon climate. The N₂O flux was also strongly correlated with NO₃ concentration in stream water of the watersheds around Lake Biwa. It indicates that the concentration of NO₃ in stream water could be a good indicator to predict the emission rate of N₂O from forest soils on a watershed scale. The phenomenon of 'nitrogen-saturation' is of a crucial importance for N₂O emission from forest ecosystems.

References

- 1) Cai, Z.C., H. Tsuruta, K. Minami: Methane emission from rice paddy fields in China: I. Measurements and influencing factors, Journal of Geophysical Research (in press)
- 2) Hatano, R. and T. Sawamoto (1997): Emission on N2O from a Clayey aquic soil cultivated with Onion plants, in Plant nutrition---for sustainable food production and environment, Kluwer Academic Publishers, 555-556.
- 3) Yoh, M. and Y. Takeshige (1999): N₂O emission and nitrogen saturation in Japanese forest. International Workshop on the Atmospheric N₂O budget: An analysis of the state of our understanding of sources and sinks of atmospheric N₂O.

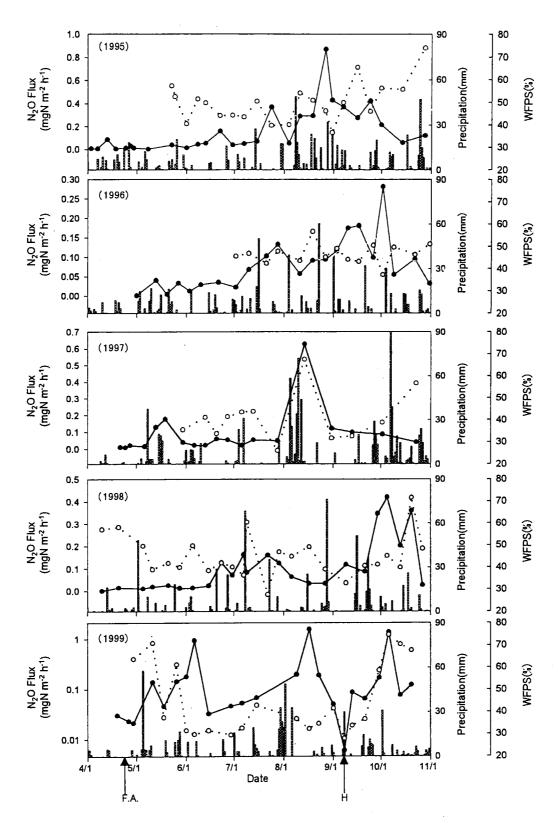

Table 1		Rice cultivation in China						
region	No. cropping		harvested area					
	(Mha/year199							
	I	sir	1.647					
	II	sir	0.372					
	III	siı	0.755					
	IV	single/	4.690					
	V	single/	16.608					
	VI	do	6.822					
	VII	non						
		To	tal	30,894				

Fig. 1 Rice cultivation regions and the sites of field measurement

(1. Guangzhou; 2.Yingtan; 3.Changsha; 4.Chongqing; 5.Suzhou; 6.Jurong; 7.Nanjing; 8. Fengqiu).

Table 2 Annual CH₄ emission rate in rice paddy fields at 8 sites in China during 1993-1997

Site(region)	Crop rotation	Organic matter Annual CH ₄ emission rate(gCH ₄					m ⁻² y ⁻¹)	
		application	1993	1994	1995	1996	1997	Ave.
1. Guangzhou rice-rice-vegetable no				7.5	24.1			15.8
2. Yingtan	rice-rice-fallow	rice straw	148	78.3				113
3. Changsha	rice-rice-fallow	weed			48.6	58.8	83.8	63.7
4. Chongqing	g rice-fallow	human excreta(exept19	995)	36.3	87.1	43.5	55.6
5. Suzhou	wheat-rice	no	9.8					9.8
6. Jurong	wheat-rice	rice straw			1.9	6.6		4.3
7. Nanjing	rice-fallow	no		7.7				7.7
8. Fengqiu	wheat-rice	pig manure	1.9	1.6				1.8

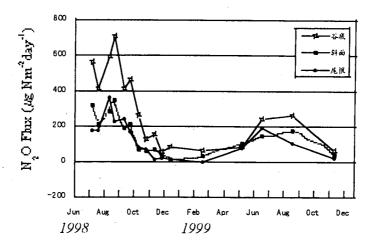


Fig. 3 Seasonal variation of N₂O flux from soils in a deciduous forest, Hachioji, Tokyo

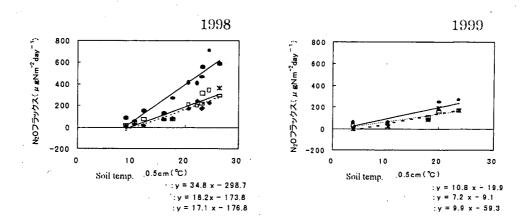


Fig. 4 Relationship between N₂O flux and soil temperate.

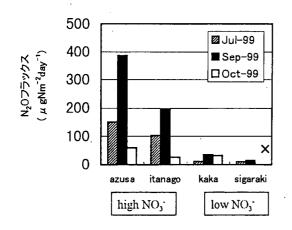


Fig. 5 N₂O flux from sites with high NO₃ and low NO₃ in stream water of the Lake Biwa water sheds.

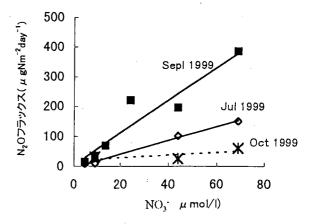


Fig. 6 Relationship between NO₃ concentration in stream water and N₂O flux in water sheds of Lake Biwa