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Abstract  This study aimed to model soil microbial decomposition activity, and quantify the
carbon flow through soil microbial biomass. For this purpose, changes in the microbial
biomass and correlations between temperature and metabolic quotient (MQ: respiration rate per
unit of microbial biomass) were measured from April 1997 to March 1999 in two cool temperate
deciduous forests.  Using in situ soil temperature, CO2 flux though the microbial biomass and
CO2 flux from the forest floor (microbial respiration + root respiration) based on past studies
were estimated. The change of microbial biomass affects CO2 flux through the microbial
biomass, but the influence is much lower than that of temperature dynamics. The percentage of
microbial CO2 flux of total annual forest floor CO2 flux was equivalent to past studies.
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1. Introduction

Soil microorganisms play an essential role in the decomposition of organic material in forest
ecosystems. Their function in carbon cycling and their capacity to serve as a relatively labile
source of carbon in soils are well recognized”. Therefore, estimates of the pool size of
microbial C and its decomposition (respiratory) activities are important for the analysis of carbon
cycling mechanisms, but few studies have focused on microbial activity in forest ecosystem
carbon cycling. In this study, we hypothesized that CO2 released by microbial activity depends
on microbial biomass and its temperature-dependent metabolic activity. We intended to clarify
the contribution of microbial activity and biomass to CO2 flux from the forest floor.

2. Materials and methods

2.1 Sites and soils

We selected sampling sites (20 m ¢ 25 m) at Takayama Experimental Station of Gifu university,
Institute of Basin Ecosystem, in Takayama, Gifu (Takayama) and National Grassland Research
Institute, in Nishinasuno, Tochigi (Fujinita). Vegetation was dominated by birches (Betura
tauschii) and oaks (Quercus mongolica) in Takayama and chestnuts (Castanea crenata) and oaks
(Quercus serrata) in Fujinita. ~ Soil texture was HC (Takayama) and LiC (Fujinita).  Altitude,
mean annual temperature and annual precipitation were 1400 m, 7.2°C and 2439 mm,
respectively, in Takayama and 310 m, [1.0C and 997 mm (Kuroisho AMeDAS 1996),
respectively, in Fujinita.

2.2 Sampling
At each sampling site, to obtain the vertical distribution of microbial biomass, a soil profile was

dug to a 80 cm depth and samples were collected from the Ao, 0-5 cm, 5-10 cm, 10-20 c¢m, 20-40
cm, 40-60 cm and 60-80 cm soil layers.

Next, to obtain the seasonal change of microbial biomass and its respiration rate,
samples of the Ao, 0-5, 5-15, 15-35 cm (from Nov.1997) soil layers were taken 9 times from
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April 1997 to March 1999 at 12 points (6 points during snowing season or winter) at each
sampling site.

Samples of the Ao layer were cut by kitchen knife and passed through a 8 mm sieve.
Soil samples were passed through a 8mm sieve and fine roots were removed. Then samples
were stored at 5C until analysis.

2.3 Microbial biomass and respiration rate

Microbial biomass in the stored samples were measured using the chloroform fumigation-
extraction method according to Vance et al.> for soil samples, and with some modifications for
Ao layer”.

The respiratation rate of the samples was measured with a continuous air flow system
using an infrared gas analyzer under dark conditions. Water content was adjusted to 55% of
WHC for soil samples and 100% of WHC for the Ao layer. Respiration rate of each sample
was measured at 25°C, 15C and 5°C temperatures in order. Before measurement at each
temperature, preincubation was carried out for 2 weeks.  Subsamples were also incubated in
the same way, and microbial biomass was measured when respiration rate was measured.
Microbial resplratlon rate at each temperature was expressed as MQ (metabolic quotient: pg
CO2-C mg"' biomass C h'). Through these measurements, hysteresis was not observed (data
not shown).

Microbial biomass and respiration rate were measured triplicate and duplicate,
respectively.

2.4 Soil temperature
To estimate COz2 flux though microbial biomass, in situ soil temperature was measured at depths
of 0, 5, 10, 40 cm from the soil surface.

2.5 Estimation of CO2 flux though microbial biomass and CO2 flux from forest floor
CO: flux though microbial biomass was estimated for each day as follows:
R = MB«aEXP(bT) [1]
R: respired CO2 (mg CO2-C m “h")
MB: microbial biomass (g m)
T: temperature
a, b: constant
We assumed that the microbial biomass was constant between half interval separately
the sampling days. The formula [aEXP(bT)] is a regression curve of MQ temperature
dependence. R was estimated in each layer (Ao, 0-5 cm, 5-15 c¢cm, 15-35 cm), then the total
CO2-respired by microbial biomass was estimated.
CO2 flux from forest floor (microbial respiration + root respiration) was estimated for
each day as follows:
Takayama SR(g CO2 m’ da 'y = 0.0012T%+0.1748T+0.2544  [2] (lehlmuraS)g
Fujinita SR(g CO2m™ h'! ) = 33.285°EXP(0.12916T) [3] (Matsumoto®)
SR: CO2 flux from the forest floor
T: soil surface temperature
Formulas [2] and [3] were obtained from same study sites of ours.
Using these 3 formulas, annual CO2 flux in 1998 was estimated and compared.

3; Results and Discussion

3.1 Vertical distribution and seasonal changes of microbial biomass

Microbial biomass existed mainly in the upper soil layer at both samphng sites (Fig. 1).
Total microbial biomass per area basis up to a 80 cm depth was 312 and 152gC m" in Takayama
and Fujinita, respectively. ~ The microbial biomass in the Ao layer and soil up to a 35 cm depth
corresponded to approximately 80% of total microbial biomass up to a 80 cm depth.

Seasonal changes in the microbial biomass are shown in Fig. 2. There was a significant
seasonal change in microbial biomass in each layer at each site. In Takayama, microbial
biomass in soil became larger in winter, then decreased to autam. In Fujinita, there was no
consistent tendency: rather, the biomass seemed relatively constant in the 0-5 and 5-15 cm layers.
In the Ao layers at both sites, no consistent tendency was observed.




Ross” reported seasonal changes in the : o1 hi 2
microbial biomass under pastures, though the cause of Mwmblz}%;)ﬁg;la?;; (gC Ilzlllljigriltla)
fluctuations were not explained. ~ Seto and Yanagitani® 0 48 120 4 8§

reported positive correlations between water-soluble Aol ' ' '
organic carbon content and respiration rates in soil and 0 1Yer b I
carbohydrates in water-soluble organic carbon are 0 ! 1
easily utilized by microbes”. These components may ] ]
affect the size of the microbial biomass. In this study, E 20

there was no positive correlation between microbial )

biomass content and 0.5M K2SOus extractable carbon. <

This result supports the result of Walters and oy 40

Jorgensen'”. West and Sparling'" suggested that soil A

water content affects the size of the microbial biomass. 60

In Takayama, the Ao layer and soil did not freeze when ]—(*_ Cm?)

covered by snow in the winter and the Ao layer and soil 30 8

were very wet. This wet condition might make the
microbial biomass larger.

The microbial biomass content of the Ao layer
correlated with carbohydrate content”, though the quantity of the Ao layer also affects microbial
biomass on per-area basis. Therefore, a consistent tendency was not observed.

Fig.1 Vertical distribution of
microbial biomass
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Fig. 2 Dynamics of microbial biomass during sampling priond

3.2 MQ temperature dependence

The regression curve of MQ on temperature did not differ significantly among sampling times.
Therefore, a single regression curve adapted to MQ temperature dependence was expressed for
each sample, except for one Ao layer sample collected in April 1997 in Fujinita (Fig. 3).

3.3 Estimation of CO2 flux through microbial biomass and COz2 flux from forest floor

3.3.1 Takayama

COn flux through microbial biomass was estimated with Formula [1] using microbial biomass
and soil temperature measured in 1998 in each soil layer. Total COz flux through microbial
biomass in 1998 was estimated to be 3.73t ha'. The contribution of the Ao layer was 28%
while the remaining 72% was respired from the soil. COz flux from the forest floor was
estimated using Formula [2] and the annual CO2 flux was estimated to be 7.45t ha'!. Therefore,
the contribution of the microbial respiration on CO2 flux from the forest floor was 48%. This

— 293 —




percentage varied from 32% to 69% according the month (Fig. 4). This is due to the seasonal
change in microbial biomass.
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Fig. 3 Correlation between MQ and temperature

To clarify the contribution of changes in microbial biomass and temperature on COz2
flux through microbial biomass, multiple regression analysis was carried out (Table 1). The
results show that the dynamics of soil temperature affect more than the changes in microbial

biomass.

3.3.2 Fujinita
Total CO2 flux through microbial biomass in 1998 was estimated to be 4.52t ha'. The

contribution of the Ao layer was 28% while the remaining 72% was respired from the soil. COz
flux from the forest floor was estimated using Formula [3] and the annual CO2 flux was
estimated to be 5.86t ha'. Therefore, the contribution of microbial respiration on COz flux from
the forest floor is 72%. This percentage ranged from 53% to 129% according the month (Fig. 5).
In April to July, a larger microbial biomass in the 15-35 cm layer increased the COz flux through
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Fig. 4 COz2 flux and soil temperarature Fig. 5 CO2 flux and soil temperarature
in 1998 in Takayama in 1998 in Fujinita
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microbial biomass, though such microbial biomass changes did not have as great an effect as
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temperature dynamics (Table 1).

Table 1. Contribution of microbial biomass and soil temperature
to CO2 flux

Ao Layer 0-5cm  5-15cm 15-35cm

Takayama Temperature 88.93% 95.19% 97.86% 717.27%

Biomass 7.58% 37.54% 38.09% 27.07%
Fujinita  Temperature 68.60% 96.46% 93.96% 47.72%
Biomass 0.71% 0.01% 14.63% 4.73%

3.4 General discussion

Although the microbial biomass in Fujinita was approximatery half that in Takayama on a per-
area basis, CO2 flux through microbial biomass in Fujinita was larger than that in Takayama.
This was due to the higher soil temperature and short snowfall period.

Through field research in 3 different types of manure forests, Nakane'” shows that half
of the CO» flux from the forest floor came from root respiration while the other half came from
the degradation of litter and soil organic matter.  On the other hand, Tate et al. ' show that root
respiration accounted for 23% while the other part came from the degradation of organic matter
through an in vitro experiment. Kelting et al. '*’ point out that COz respired from the forest
floor by root, rhizosphere and root-free soil accounted for 32%, 20% and 48%, respectively,
through in situ research. On an annual CO2 flux basis, our results, on the contribution of the
COz flux by microbial activity measured in vitro experiments from the CO2 flux from the forest
floor, agreed with those of the Past studies.

Nakane'”, Tate ef al.'* and Ross and Tate"’ have stated that COz flux from the Ao layer
is as much as fromsoil. In our study, CO2 from the Ao layer occupied 28% of the total CO2
flux at both sites.  This rate is smaller than past studies.

In our study, respiration was measured under ambient CO2 concentration conditions.
The authers believe that CO2 concentration of the air in in situ soil is higher than that of ambient
air. Koizumi er al.">’ and Santruckoba and Simek'® point out that higher COz concentrations
suppress microbial respiration, and the degree of suppression differes among soils. Therefore,
there is a possibility that our estimation of CO2 flux through microbial biomass may be and
overestimate. Incorporation of this factor would be needed for more accurate estimation of the
CO2 flux through the microbial biomass.
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