A-5.2.1 Interactive effects of increased UV-B and global warming on crop growth

Contact person Oura Noriko

Global Agro-environmental research team
National Institute of Agro-environmental Sciences
Ministry of Agriculture, forestry and fisheries
3-1-1 Kannondai, Ibaraki 305-8604, Japan
Tel:+81-298-38-8356 fax:+81-298-38-8199

E-mail: nori@niaes.affrc.go.ip

Total Budget for FY1996-FY1998 11,642,000 Yen (FY1998 4,050,000 Yen)

Abstract A greenhouse experiment was carried out to investigate the effects of UV-B on wheat (*Triticum aestivum* L.) growth and yield and its interactive effects with other environmental factors, according to the fractional (1/2) factorial design of 6 factors (UV-B, CO_2 , temperature, soil fertility, wheat cultivar and block) with the orthogonal array table (L_{32}) .

Results were, 1) Seed yield was not affected by increased UV-B irradiation (induced by 20-30% ozone depression) alone nor interactively. 2) CO₂ concentration and cultivar differences may modify effects of UV-B on tiller numbers. 3) Increased UV-B irradiation promoted the increase of tiller numbers in the early growth period, but final tiller number fell off under ambient CO₂ concentration compare with high CO₂ concentration. 4) Sensitiveness differed among wheat cultivars; Kitakamikomugi was not affected by UV-B, while UV-B increased tiller numbers or inhibited plant height for Norin 61.

Key Words UV-B, Global warming, CO₂, Interactive effects, Wheat

1.Introduction

Depletion of the stratospheric ozone layer has resulted in an increase in the UV flux, especially UV-B radiation (280-320nm) reaching surface of the earth. Many UV-B supplemental studies suggest that enhanced UV-B cause detrimental effect on plant. But majority of these information has been obtained in growth chamber or greenhouse experiment with "square wave" pattern UV-B irradiation throughout the daily treatment period. Such a constant lamp output may cause unrealistic balance of UV-B and UV-A or PAR. These experiments are under suspicion of overestimating the effects of UV-B

because of relative lower UV-A or PAR which has been found to have photo-repair function against UV-B induced injuries in the plant tissue²⁾.

Modulated UV-B supplemental systems have been developed to escape such a suspicion. In this study we arranged UV-B irradiation system with modulated lamp output ³⁾ for grass-room experiment. Using this system we investigated the effects of UV-B on wheat growth and yield and its interactive effects with other environmental factors such as CO₂, temperature and so on.

2. Research method

A greenhouse experiment was carried out to investigate the effects of UV-B on wheat growth and yield included interactive effects with other environmental factors concerned to global warming, according to the fractional (1/2) factorial design of 6 factors (UV-B, CO₂, temperature, soil fertility, wheat cultivar and block)(Table 1) with the orthogonal array table(L_{32}).

UV-B were supplemented by fluorescent sunlamps (UVB313 Q-panel) covered with a 0.13mm thick cellulose diacetate (CDA) film for a supplemental UV-B treatment or with double 0.13mm thick CDA films for a control treatment. Lamp output was adjusted to 1.6 times of ambient UV-B_{BE} ¹⁾ for supplement treatment.

2. Result and Discussion

Changes of UV-B_{BE} through growing seasons were shown in Fig.2. Seasonal change caused by solar zenith angle and daily changes caused by clouds were significant.

Seed yield was not affected by enhanced UV-B irradiation (induced by 20-30% ozone depression) alone nor interactively (Table2). In growing processes we found that CO₂ concentration and cultivar differences may modify effects of UV-B on tiller numbers. Enhanced UV-B increased tiller numbers in 350ppm, but in 700ppm UV-B didn't modify tiller numbers in both UV-B levels tiller numbers were high during early growth period. And final tiller numbers UV-B increased final tiller numbers in 700ppm, otherwise UV-B decreased them in 350ppm (Fig.3).

We also found that the sensitiveness differed among wheat cultivars; Kitakamikomugi was not affected by UV-B, while UV-B increased tiller numbers in early growth period (Fig.4) or inhibited plant height for Norin61.

In replicate experiment carried in 1998-1999, we got similar tendency in tiller numbers, but that was not significant interaction. The interactive effects between UV-B and another factor (for example CO₂) may be exist, but they are changeable affected by the other environmental factors.

3.Reference

- 1) Caldwell, M.M., Camp, L.B., Warner C.W., and Flint, S.D. (1986) Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In Stratospheric ozone reduction, Solar ultraviolet radiation and plant life. Edited by Worrest, R.C. and Caldwell, M.M., pp.87-111. Springer-Verlag, Berlin.
- 2) Fiscus, E.L. and Booker, F.L. (1995) Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Research 43: 81-92.
- 3) Nouchi, I. and Kobayashi, K. (1995) Effects of enhanced ultraviolet-B radiation with a modulated lamp control system on growth of 17 rice cultivars in the field. J. Agric.Meteorol. 51(1): 11-20.
- 4) Okuno, C. (1994) Nougoujikkenkeikakuhou-shoshi, 3, Tyokkouhyou niyoru tainshikeikaku, Nikkagikenn-shuppansha, 23-165, 204-205.

Fig. 1. UV-B irradiation system in the Grass room (Ecotron, Tsukuba Ibaraki, Japan) Table 1. Facters in experiments

1	Ex	p. l	Exp. 2,3		
factors	level 1	level 2	level 1	level 2	
Block	Rl	R2	R1	R2	
CO ₂	700ppm	350ppm	700ppm	350ppm	
Temperature	average+2degrees	average	ambient+2degrees	ambient	
UV-B	ambient UV-B _{BE} ×1.6	ambient UV-B _{BE} ×0.8	ambient UV-B _{BE} ×1.6	ambient UV-B _{BE} ×0.8	
Fertility	N:12kg/10a	N:6kg/10a	N:18kg/10a	N:6kg/10a	
Irrigation	l l/pot/week	0.5l/pot/week	_	_	
Cultivar	Norin61	Kitakamikomugi	Norin61	Kitakamikomugi	

Fig.2.Changes of UV-B $_{\! \rm BE}$ through the growing seasons.

Table 2. Main effects and interactive effects in experiment-2 in 1997-1998

	Model D	F=26 , Err	or DF=5	**<1% *	<5% -	<10%	
	Head number	Plant height (cm)	Leaf and stem dry weight	1	Root dry weight (g)		Seed number
Block (B)		(Ciri)	Worght				
$CO_2(C)$		**	**	**	**	**	**
Temperature(T)			**	**	**	**	*
UV (U)							
Ferility (F)	**	**	**	**	**	**	**
Cultivar (Cu)		**	**	**		**	
$\mathbf{C} \times \mathbf{T}$,			*	•	**
C×U	•				*		
C×F			**	**	*	**	**
C×Cu			**	*			*
T×U		*					
$T \times F$				*	**	•	*
T×Cu		•			•		
U×F							•
U×Cu							
F×Cu		**	*				

Fig.4.Changes in tiller numbers $(UV-B \times CO_2 \text{ interaction})$

Fig.5. Changes in tiller numbers (UV-B × Cultivar interaction)