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Abstract

Zooplankton, fry and pelagic eggs were collected from the Japan Sea, the Pacific Ocean, and
some polluted bays including Tokyo, Osaka and Fukuoka Bays. Thirty-seven elements were
analyzed in the samples by neutron activation and ICP-AES analyses. Although the
zooplankton sometimes contained somewhat high concentrations of Al, Si, Sc, Ti and Fe
resulted probably from the inorganic impurities incorporated in the digestive organs,
approximate concentrations of elements in the planktonic tissue were estimated by the selective
HNOs-digestion of the samples. Concentrations of several major elements (e.g. P) was
approximately constant regardless of variation in body weight of zooplankton (0.002-16.0 mg),
while those of heavy metals slightly increased with decreasing the weight. When the MKT-plot
(plot of 1 x CF;yw vs. CFgy; tr: mean oceanic residence time of elements, CF;y,: concentration
factors of elements from seawater to the samples) was applied to the plankton, slopes of the
plots were clearly higher in the samples from the bays (av.=0.22) than those from the open-sea
(av.=0.13), indicating the increased heavy metal contamination in the bay plankton. Slopes of
the MKT-plots for fry samples were generally higher (0.12-0.30) than those for zooplankton.
In addition, the slopes were much higher in the case of pelagic eggs (0.39). This may indicate
the accumulation of heavy metals in fishes (zooplankton-eaters) through the marine food-chain.
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1. Introduction

In the marine ecosystem, pollutants (e.g. heavy metals) resulting from human activities are
incorporated into primary producers initially, and then transfered into carriers at higher trophic
levels through the marine food-chain. Zooplankton is a very important intermediate carrier in
the food-chain and plays a significant role in the circulation of pollutants in the marine
ecosystem. In addition, the concentrations of pollutants in zooplankton might reflect the levels
of pollution in specific sea areas because of their suspension characteristics. The aim of this
study was to elucidate the role of zooplankton as a pollutant-carrier in the marine ecosystem and
monitor the polluted levels of specific sea areas based on its elemental composition obtained by
neutron activation analysis and ICP-atomic emission spectrophotometry.

2. Materials and Methods

Sample collection and pre-treatment: Zooplanktonic samples were collected with a ORI
plankton net (mesh size: 0.328 mm) hauled horizontally in the upper water layer (0 - 150 m) of
the Japan Sea, the Pacific Ocean, and some polluted bays (i.e. Tokyo, Osaka, and Fukuoka
Bays). The sampling was carried out in summer between 1986 and 1994. Additional sampling
was also carried out in Tokyo Bay on Dec., Jan. and Feb. in 1991-1992. Just after sampling,
the zooplankton was transfered to a XX13 net (0.095 mm), freed from macrocontaminants, and
then washed with 0.5M HCOONH, containing 0.01M NaNs for sterilization. The samples thus
obtained were brought back to the laboratory at -4 C and washed again with 0.5M HCOONH4
thoroughly by centrifugation or sieving, and finally lyophilized (multi-species zooplankton).

Separation of planktonic species: Some samples collected in 1989-1994 were divided into
individual species using a dissecting microscope. The species obtained were Calanus sp.,
Euphausia sp., Undinula sp., Euchaeta marina, Oncaea venusta, Temora discaudata,
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Labidocera sp., lasia zonaria, Thalia democratica, Abylopsis sp., Sagitta enflata, Sagitta crassa,
Vellela lata, Creseis acicula, Themisto sp., Siphonophorae sp., Decapoda sp., Portunus
trituberculatus, Lucifer reynaudii, Pseudodiaptomus marinus, Acartia omorii, Centropages
abdominalis, Idotea metallica, Gammaridea, and larvae of Alima, Erichthus, Zoea and
Megalopa. Fry and pelagic eggs trapped casually in the net were also collected. The fry
included Mugil cephalus, Cololabis saira, Stephanolepis cirrhifer, Pictiblennius yatabei,
Cantherhines pardalis, Syngnathus schlegeli, Goniistius zonatus, Microcanthus strigatus,
Apogon lineatus, Trachinocephalus myops, Gonorynchus abbreviatus, Etrumeus teres,
Diaphus watasei, Hyporhamphus sajori and Sebastes sp. Although seven samples were
obtained, pelagic eggs could not be identified except for those of Engraulis japonicus. These
samples were also washed in a similar manner as that for multi-species zooplankton, and finally
lyophilized.

Acid-digestion for ICP-AES analysis: Acid-digestion of the dried samples was performed by
using a stainless steel high-pressure bomb equipped with teflon double vesselsD. Several-20
mg of the samples were taken in an inner vessel (7 ml Tuf-Tainer vial) and acid {HNO; (1 ml)
or HNO3 + HF (1 ml + 0.5 ml)} was added in an outer vessel. The digestion was performed at
140 C for 6 h. After dissolving the digested residue with 3 ml of water, the supernatant was
subjected to ICP-AES analysis. Some operation including weighing and dissolution was carried
out in a clean-room (class: 1000) or a clean-box (Yamato CYH-2) to avoid contamination.

Elemental analysis: Thirty-seven elements in total were determined by neutron activation2»3)
and ICP-AES% analyses. The elements analyzed include B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sb, Cs, Ba, La, Ce, Sm, Tb,
Lu, Ta, Pb, Th and U.

3. Results and Discussion

The samples, especially multi-species zooplankton, sometimes contained sosmewhat high -
concentrations of Al, Si, Sc, Ti and Fe, resulted probably from the inorganic impurities. Since
the impurities were not removed by thorough washing, they must have been incorporated in the
digestive organs of the plankton. Two varieties of acids, i.e. HNO3 and HNO; + HF, were
successfully used to digest planktonic tissue alone and that plus inorganic impurities,
respectively. Therefore, even though the multi-species samples have been contaminated with
considerable amount of inorganic impurities, the samples digested only with HNO3; were
available for evaluating the approximate concentrations of elements in the planktonic tissue. In
addition, the difference in concentration between the samples digested with two acids serves to
characterize the impurities. Based on this empirical technique, some impurities were found to
have similar elemental compositions to those of sludge, which has been a dominant waste
dumped in the sea near Japan.

Table 1 shows a selected part of the
data obtained in this study, i.e. elemental
composition analyzed by ICP-AES 104
coupled with HNOs-digestion in 24 o °®

different species of zooplankton, fry and &

pelagic eggs. Since information on __ & — = -

elemental composition of marine 2% 12 Sgre e mym @

organisms, especially of phyto- and g ® e

zooplanktons, has been extremely & A

limited, these data may be original. ri . AN, 2, N
From the analysis of the specific £ 10 Lo ——ead

plankton whose population was known, § gA N R

the elemental content per individual as
well as that per weight was also

calculated. As a result, concentrations of 1072~ i 1 g
several major essential elements (e.g. P) . 103 102 401 100 10! 102
were approximately constant regardless

L . ! ioh
of variation in body weight of the Body weight (mg)
'zooplankton (0'002-16-'0 mg), while Fig. 1 Relationship between elemental concentrations
those of heavy metals slightly increased and body weight of the zooplankton

with decreasing the weight (Fig. 1).
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Fig. 2 shows the relationship between the mean oceanic residence time of elements (tR)
calculated from the mean dissolved riverine input and average concentration factors (CFgy,) of
elements for 6 multi-species samples collected from the open sea in 1990, in which CF;y, was
defined as C,)/Csw (Cp and Cgy: elemental concentrations in zooplankton and seawater,
respectively)?). Although the plots showed a scatter within about two orders of magnitude, log-
log linearity with a slope of ca. -1 was observed. Although the mechanism is not clear, this
suggests a significant role of zooplankton in scavenging of elements from the ocean, as has
been pointed out by several authors). 6), In Fig. 3a, the products of tg and CFj,, were plotted
against CFg,, (MKT-plot)%), and were nearly constant over 7 orders of variation of CF,,. Since
1R X CF;y is given by 36,000 x CF;,, (concentration factors of elements for zooplankton with
respect to mean dissolved reiver-water concentration), CF;y is also nearly constant within a
factor of ca. 10. This constancy may be available for evaluating the contamination of samples
with heavy metals. In Fig. 3b, s similar log-log relationship was shown for multi-species
samples collected from Tokyo Bay. In contrast to the open-sea samples (Fig. 3a), plots for the
bay sample showed a positive slope of 0.135 and indicated possible contamination with heavy
metals. Since the elemental concentrations analyzed by neutron activation were used for the
plots in these figures, the heavy metals incorporated in the planktonic tissue cannot be
distinguished from those in the digestive organs. However, when more selective analysis by
HNO;s-digestion/ICP-AES was used, both individual species and multi-species samples also
showed higher positive slopes in the bays (av.= (.22, n=11) than the open-sea (av.= 0.13,
n=11). This suggested the contamination of planktonic tissue with heavy metals.
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When the MKT-plot was applied to
several fry samples, slopes of the plots 10°

(0.12-0.30) were generally higher than ]

those for zooplankton (Fig. 4). In &

addition, the slopes were much higherin 10

the case of pelagic eggs (av.= 0.39) (Fig. =

5). This may indicate the accumulationof ~ © B _--@ -~ Engraulis japonicus

heavy metals in fishes (zooplankton- —F— Unknown
eaters) through the marine food-chain.

From the above results, the MKT-plot
appeared to be an useful approach to.
evaluate the contamination of zooplankton CFsw
with heavy metals and to study their
transfer mechanism through the marine
food-chain.

Fig. 5 The MKT-plot for pelagic eggs
E. japonicus: 1og(tR x CFgy)=6.61+0.39710gCF;
Unknown: log(tr x CFsyw)=6.57+0.385110gCFsw
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