B-2.4.2 Emission of Trace Gases Contributing Greenhouse Effect from Grassland Contact Person Katsumi Yamamoto Section Director Department of Environment, National Grassland Research Institute, Ministry of Agriculture, Forestry & Fisheries. 768 Senbonmatsu, Nishinasuno, Tochigi, 329-27 Japan Phone +81-287-36-0111(Ext.304), FAX +81-287-36-6629 Total Budget for 1990-1994 15,199,000 Yen (FY1994; 3,372,000 Yen) Abstract We measured the fluxes of for methane (CH₄) and nitrous oxide (N₂O) in grassland in relation to fertilization and influences of animal excreta. Grassland showed the function as a sink for atmospheric CH₄, and N₂O emission through the year. The fluxes of CH₄ uptake and N₂O emission were calculated for forest-floor, unfertilized and fertilized grasslands as 449.5, 106.8 and 100.0 CH₄-C mg/m²/yr, 45.9, 47.4 and 190.1 N₂O-N mg/m²/yr, respectively. Surface application of cattle slurry or fresh feces to grassland resulted remarkable emission of CH₄ and N₂O. The emission of CH₄ decreased remarkably by injecting. Cattle slurry into the soil (about 15cm of depth) with nitrification inhibitor (thiourea, at rate of 0.5% slurry-N) restrained release of CH₄ and N₂O remarkably. However, the N₂O emission was still larger than the case of cattle slurry applied to the surface soil without the nitrification inhibitor. Then, we estimated of the size of source or sink for CH₄ and N₂O of grassland in the world and Japan. The uptakes of atmosphere CH₄ by grassland were estimated as 3,586 and 0.8 CH₄-C Gg/yr in the World and Japan, respectively. The amounts of N₂O emission from grassland were estimated as 1,979 and 1.2 N₂O-N Gg/yr in the world and Japan, respectively. Additional emissions of N₂O and CH₄ from livestock manure that reduced to grassland were estimated as 189 N₂O-N Gg/yr and 1,626 CH₄-C Gg/yr in the World, 14 N₂O-N Mg/yr and 116 CH₄-C Mg/yr in Japan, respectively. Key Words Grassland, Nitrous oxide, Methane, Greenhouse gas, Animal excreta #### 1. Introduction Methane (CH₄) and nitrous oxide (N₂O) are long-lived radiatively active trace gases that account for $\sim 20\%$ of the total anticipated greenhouse effect. It has been suggested that agricultural productions contribute to the increases of atmospheric concentration of CH₄ and N₂O. Grassland is important agricultural land. But diversity in management of fertilization or cultivation and uneven impacts of animal excreta in pasture, which prevailing in grassland, complicate the quantitative evaluation for emission of CH₄ and N₂O from grassland. ### 2. Research Objective We estimate the size of source or sink for CH₄ and N₂O in grassland basing on the measurements of the fluxes of both gases in relation to fertilization, impacts of animal excreta, effects of vegetation in grassland and other environmental conditions affecting the fluxes. Then, We estimate the amount of CH₄ and N₂O from grassland and pasture in the world and Japan. #### 3. Research Method (1) Measurement method of gas flux Grassland for gas sampling sites placed at National Grassland Research Institute, in Nishinasuno, Tochigi, Japan. The grassland soil is brown lowland soil containing volcanic ash in the surface layer. We established triplet microplots for each experimental sites by enclosing with open-ended steel frames ($0.3m \times 0.3m$). Flux measurement method was closed chamber method. Chamber height was 0.2m (Figure 1). Each gas sampling was commenced about from 8:00A.M. to 10:00A.M.. After chamber setting, gas samples were taken from the inside chamber into tedlar bag at 0, 15, 30 minutes. CH₄ and N₂O concentration measured by FID-GC, ECD-GC, respectively. Figure 1. Outline of gas sampling - (2) Estimations of CH₄ and N₂O emissions from grassland in Japan and the World Estimations of CH₄ and N₂O emissions from grassland in Japan and World were calculated from following factors: - our experimental rates - the assessment by the Model describing the growth of grazing cattle (Tsuiki et al. 1990) - the statistics price from FAO yearbook and the statistics by Division of Animal Industry, MAFF, Japan #### 4. Result and Discussion ## (1) The improvement of GC circulation for N₂O measurement Low level of N₂O efflux from unfertilized grassland required some improvement of accuracy in the analysis of atmospheric N₂O. We attained rapid and accurate analysis by removing oxygen and water in air sample with pre-cutting and back-flushing system combined to ECD-GC (Figure 2). N₂O measurement method with this improvement can analyzed stability and analysis time of 5 minutes for 1 sample. Figure 2. Outline of GC-circulation and chromatogram detector: ECD(1nA, 348°C) column: Porapak Q(70°C, 3.5m) carrier gas: Ar/CH₄5%, 25ml/min. sample: 5ml ### (2) Measurement of CH₄ and N₂O fluxes of grassland CH₄ and N₂O flux measurements in established grasslands (fertilized and unfertilized sites dominated by orchardgrass) and neighboring forest -floor (dominated by Red-Pine) were carried out once in every week (measurements after fertilization were carried out every day until N₂O flux start to decrease) for one year from 1,May,1991 to 5, May, 1992. Every fertilization after cutting (5 times annually) were done with N-P₂O₅-K₂O =5-5-5 g/m². Both grasslands and forest-floor have the function as sink for atmospheric CH₄, through the year. On the other hand, both grasslands and forest-floor showed N₂O emission through the year (Figure 3). Figure 3. CH₄ and N₂O flux of grassland and forest-floor To forest-floor + cunfertilized grassland : forest-floor +: unfertilized grassland ♦: fertilized grassland unit: CH_4 -C or N_2 O-N ug/m²/hr measurement span: $91/05/01 \sim 92/05/01$ † : fertilizer application $(N-P_2O_5-K_2O=5-5-5 \text{ g/m}^2)$ Annual gas-fluxes were estimated by our measurement (Table 1). Table 1. Annual CH₄ and N₂O flux from grassland and forest-floor | | CH₄ uptake | N ₂ O emission | |------------------------|------------|---------------------------| | forest-floor | 449.5 | 45.9 | | unfertilized grassland | 106.8 | 47.4 | | fertilized grassland | 100.0 | 190.1 | unit : CH_4 -C or N_2 O-N ug/m²/hr measurement span : $1991/05/01 \sim 1992/05/05$ Fertilized grassland showed higher rate of N_2O efflux than in unfertilized one, especially much N_2O (0.2~1.0% of applied N) was evolved after the fertilizer application. Then, annual averaged CH_4 uptake rate was 11 CH_4 -C ug/m²/hr, independently with fertilization or vegetation. Annual averaged N_2O efflux from unfertilized grassland and forest-floor was 5 N_2O -N ug/m²/hr, independently with vegetation (Figure 4). Figure 4. Gas fluxes of vegetation difference sites NV: no vegetation WC: dominated white clobber site OG: dominated orchardgrass OG*: dominated orchardgrass(fertilized) FF: forest-floor Each sites unfertilized, except OG* These factors are significant between different mark. measurement span: $91/05/01 \sim 10/01$ On pasture, CH₄ uptake and N₂O emission were showed. On the other hand, water drinking point of pasture showed CH₄ and N₂O emission (Table 2). Table 2. CH₄ and N₂O flux on pasture | | CH₄ uptake | | N ₂ O emission | | | |----------|--------------|----------------------|---------------------------|----------------------|--| | | grazing area | water drinking point | grazing area | water drinking point | | | average | 12.2 | -4.0 | 25.7 | 37.0 | | | largest | 5.3 | -1.5 | 29.4 | 14.1 | | | smallest | 18.3 | -8.3 | 43.5 | 53.2 | | unit: CH₄-C or N₂O-N ug/m²/yr measurement span: 92/09/21~09/25 (water drinking point: 09/22~09/25) Figure 5. Gas fluxes after animal excreta application application amount (g/0.09m²) fresh cattle feces: 500g cattle slurry: 300g •: fresh cattle feces O: cattle slurry ☐: unfertilized grassland ### (3) Measurement of CH₄ and N₂O fluxes from animal excreta Surface-applied fresh feces and cattle slurry evolved much CH₄ and N₂O (Figure 5). This suggests that animal excreta acts important role as a source of CH₄ and N₂O in grassland. Cattle slurry application increased CH_4 and N_2O release remarkably. As compared with cattle slurry injection to soil (15cm of depth), cattle slurry surface application showed 3-4 times of CH₄ efflux, 1/2-1/3 times of N₂O efflux. However, CH₄ and N₂O emission rate from applied C and N were not related with fertilized cattle slurry quantity (Figure 6, Table 3). We thought about that this restraint of CH₄ efflux originated from covered by soil, more CH₄ uptake by increase of touch area between soil and cattle slurry. And then, we thought about that this increase of N₂O efflux originated from increased N in the soil by restraint of emitted NH₃ with covered by soil. Figure 6. Gas fluxes after cattle slurry application 0.9 surface \square : no application +: 2t/10a \lozenge : 6t/10a \triangle : 12t/10a Table 3. The amount of CH₄ and N₂O emission and the rate against total C and N after cattle slurry application | position | amount
(t/10a) | N amount added (g-N/m²) | N ₂ O e-
volved
(mg-N/m ²) | N ₂ O/T-N
ratio (%) | C amount added (g-C/m²) | CH,
evolved
(mg-C/m²) | CH₄/T-C
ratio (%) | |-----------|-------------------|-------------------------|---|-----------------------------------|-------------------------|-----------------------------|----------------------| | surface | 2 | 11 | 39 | 0.35 | 96 | 103 | 0.11 | | | 6 | 33 | 85 | 0.26 | 289 | 177 | 0.06 | | | 12 | 66 | 155 | 0.23 | 578 | 291 | 0.05 | | injection | 2 | 11 | 67 | 0.61 | 96 | 30 | 0.03 | | | 6 | 33 | 222 | 0.67 | 289 | 44 | 0.02 | | | 12 | 66 | 425 | 0.64 | 578 | 93 | 0.02 | cattle slurry composition (T-C:4.82%, T-N:0.55%, NH₄-N:0.30%) measurement span: 93/06/11~07/14 The application method of cattle slurry added nitrification inhibitor (thiourea, volume: 0.5% of total-N) injection (about 15cm of depth) restrained release of CH_4 and N_2O remarkably. One of the reasons for restraint of N_2O release was thought that the nitrification of NH_4 -N in the cattle slurry was restrained by the nitrification inhibitor. However, in the case of cattle slurry application into the soil with the nitrification inhibitor, N_2O emission occurred more than the case of cattle slurry surface application without the nitrification inhibitor (Figure 7, Table 4). surface injection Surface injection Surface injection Surface injection Application Surface injection Application Application Surface injection Application Application Application Surface injection Figure 7. Soil NH₄-N and NO₃-N content (0-15cm), after cattle slurry application □: no application +: without nitrification inhibitor ♦: with nitrification inhibitor Table 4. The amount of CH₄ and N₂O emission and the ratio against total C and N after cattle slurry added nitrification inhibitor application | position | | N ₂ O evolved (mg-N/m ²) | N ₂ O/T-N
ratio (%) | CH ₄ evolved (mg-C/m ²) | CH ₄ /T-C ratio
(%) | |-----------|----------|---|-----------------------------------|--|-----------------------------------| | surface | no-added | 36 | 0.12 | 480 | 0.21 | | | added | 21 | 0.07 | 456 | 0.20 | | injection | no-added | 171 | 0.56 | 162 | 0.07 | | | added | 62 | 0.20 | 143 | 0.06 | cattle slurry composition (T-C:3.78%, T-N:0.51%, NH4-N:0.28%) applied amount : 6t/10a measurement span : $94/06/06 \sim 07/10$ (4) Estimations of CH₄ and N₂O emissions from grassland in japan and world. We settled the estimation of CH₄ and N₂O flux range from grassland by our measurement results (Table 5). And then, we decided the size of CH₄ and N₂O source related grassland from FAO yearbook (1992) and the statistics by Division of Animal Industry, MAFF, Japan (Table 6). Table 5. Emission unit of CH₄ and N₂O related grassland, forest-floor and animal excreta | | median (range) | unit | |---------------------------|------------------------|--| | N_2O | | | | grassland | 47.4 (22.1~72.7) | N ₂ O-N mg/m ² /yr | | nitrogen fertilizer | 0.6 (0.2~1.0) | N ₂ O-N % /N applied amount | | feces of grazing cattle | 0.06 (0.01~0.11) | N ₂ O-N %/T-N | | urine of grazing cattle | 0.37 (0.11~0.62) | N ₂ O-N %/T-N | | cattle slurry | 0.18 (0.09~0.26) | N ₂ O-N %/T-N | | excreta of grazing cattle | 0.32 (0.09~0.55) | N ₂ O-N g/cattle/day | | forest-floor | 45.9 (22.7~69.1) | N ₂ O-N mg/m ² /yr | | CH ₄ | | • | | grassland | -106.8 (-56.6~-157.0) | CH ₄ -C mg/m ² /yr | | feces of grazing cattle | 0.20 (0.09~0.30) | CH₄-C %/T-C | | cattle slurry | 0.14 (0.06~0.21) | CH₄-C %T-C | | excreta of cattle slurry | 2.75 (0.85~4.65) | CH ₄ -C g/cattle/day | | forest-floor | -449.5 (-330.2~-568.8) | CH_4 -C mg/m ² /yr | Table 6. The size of CH₄ and N₂O source related grassland in the World and Japan | Japan | | |--|---| | area of grassland (except pasture) | $344 \times 10^{3} \text{ ha}$ | | area of pasture | $375 \times 10^3 \text{ ha} = 305 \times 10^3 \text{ ha} + 70 \times 10^3 \text{ ha (natural)}$ | | number of grazing cattle | 220×10^3 (cow: 126×10^3 , meat: 94×10^3) | | World | | | total area of grassland | $3,357,520 \times 10^3$ ha | | grassland area of developed countries | $1,188,229 \times 10^3$ ha | | grassland area of developing countries | $2,169,291 \times 10^3$ ha | | livestock number related grassland | | | cattle | $1,284,488 \times 10^3$ | | buffalo | $147,520 \times 10^3$ | | sheep | $1,138,363 \times 10^3$ | | goat | $574,181 \times 10^3$ | | camel | $17,019 \times 10^3$ | Then, we estimated the amount of CH₄ and N₂O emission of grassland in the World and Japan (Table 7). Before estimating, we presumed the following: - Grassland (except pasture) and pasture in Japan is fertilized N amount 250 kg-N/ha/yr, 54 kg-N/ha/yr, respectively. Natural pasture is not fertilized. - Grassland of developed countries is fertilized N amount 54kg-N/ha/yr. Grassland of developing countries is not fertilized. - Emission unit of cattle, buffalo and camel corresponds with one of grazing cattle. - Emission units of sheep and goat correspond with 1/10 times one of grazing cattle, because sheep and goat body weight correspond with 1/10 times grazing cattle one. - Grazing span is 191 day (from the end of April to October) in Japan, 365 day in the world. The number of grazing cattle in Japan is one of use in Public pasture. Table 7. Estimation of CH₄ and N₂O emission in the World and Japan | | | | Emission unit | Size | Emission | |--------------------------------------|--------------|------------------|---|---|------------| | Japan | | | | | | | grassland
(except pasture) | | N ₂ O | $47.4 \times 10^4 \text{ N}_2\text{O-N} \text{ mg/ha/yr}$ | 344×10^3 ha | 0.2 Gg/yr | | | | CH ₄ | -106.8×10 ⁴ CH ₄ -C mg/ha/yr | II | -0.4 Gg/уг | | | N fertilizer | N ₂ O | $0.6/100 \times 250 \text{ N}_2\text{O-N kg/ha/yr}$ | H | 0.5 Gg/ут | | pasture | | N ₂ O | $47.4 \times 10^4 \mathrm{N_2O}$ -N mg/ha/yr | 375×10^3 ha | 0.2 Gg/yr | | | | CH, | -106.8×10 ⁴ CH ₄ -C mg/ha/yr | II | -0.4 Gg/yr | | | N fertilizer | N ₂ O | 0.6/100×54 N ₂ O-N kg/ha/yr | 305×10^7 ha | 0.1 Gg/yr | | grazing cattle | excreta | N ₂ O | 0.32 N ₂ O-N g/cattle/day | 220×10^3 cattle $\times 191$ day | 0.01 Gg/yr | | | | CH, | 2.75 CH ₄ -C g/cattle/day | n . | 0.1 Gg/yr | | World | | | | | | | grassland
(developed
country) | | N₂O | 47.4 × 10 ⁴ N ₂ O-N mg/ha/yr | 119×10 ⁷ ha | 563 Gg/ут | | | | CH ₄ | -106.8×10 ⁴ CH ₄ -C mg/ha/yr | <i>II</i> | -1269 Gg/ | | | N fertilizer | N ₂ O | 0.6/100×54 N ₂ O-N kg/ha/yr | n | 388 Gg/уг | | grassland
(developing
country) | | N₂O | $47.4 \times 10^4 \mathrm{N_2O-N}$ mg/ha/yr | 217×10^7 ha | 1028 Gg/y | | | | CH ₄ | -106.8×10 ⁴ CH ₄ -C mg/ha/yr | II . | -2317Gg/y | | cattle+buffalo | excreta | N ₂ O | 0.32 N ₂ O-N g/cattle/day | 143×10^7 cattle $\times 365$ day | 167 Gg/yr | | | | CH ₄ | 2.75 CH ₄ -C g/cattle/day | II . | 1437 Gg/y | | sheep | excreta | N ₂ O | 0.32/10 N ₂ O-N g/shecp/day | 114×10^7 sheep \times 365day | 13 Gg/ут | | | | CH ₄ | 2.75/10 CH ₄ -C g/sheep/day | " | 114 Gg/yr | | goat | excreta | N ₂ O | 0.32/10 N ₂ O-N g/goat/day | $57 \times 10^7 \text{ goat} \times 365 \text{day}$ | 7 Gg/yr | | | | CH ₄ | 2.75/10 CH ₄ -C g/goat/day | n | 58 Gg/yr | | camel | excreta | N ₂ O | 0.32 N ₂ O-N g/camel/day | 2×10^7 camel \times 365day | 2 Gg/yr | | | | CH, | 2.75 CH ₄ -C g/camel/day | n | 17 Gg/ут | The amount of CH₄ uptake of grassland is annually estimated 3,586, 0.8 CH₄-C Gg/yr in the world and Japan, respectively. On the other hand, the amount of N_2O emission of grassland is annually estimated 1,979, 1.2 N2O-N Gg/yr in the world and Japan, respectively. The amount of N_2O and CH_4 emission from animal excreta in grassland is annually estimated 189 N_2O -N and 1,626 CH_4 -C Gg/yr in the world, 14 N_2O -N and 116 CH_4 -C Mg/yr in Japan, respectively. However, this estimation is only calculated by use of emission units in Japan. It is necessary that more accuracy emission units are much studied.