参考資料V:中核的温暖化対策技術の CO。削減ポテンシャル・導入効果の試算

(1) 太陽熱利用システム

① CO₂削減ポテンシャルの試算

・ 全国の戸建住宅及び集合住宅のうち、日照条件等を考慮して半数の住戸で導入可能な ものとして試算を行った(付表 V-1)。

付表 V-1 各地域の住戸数と太陽熱集熱面積の一覧

		住	戸数[万戸	i]*1		集熱面積[万㎡]*²					
地域	戸建		集合住宅			戸建	:	集合住宅	集合住宅		
区分	住宅	低層	中高層	小計	合計	住宅		合計			
北海道	122	60	43	102	224	183	60	43	103	286	
東北	234	58	28	87	321	351	59	28	87	438	
関東	783	402	446	848	1,630	1,174	402	445	847	2,021	
北陸	138	28	14	41	179	207	28	14	42	249	
東海	318	94	97	192	510	478	94	98	192	670	
近畿	391	138	257	394	785	587	138	256	394	981	
中国	187	49	43	92	280	281	49	43	92	373	
四国	109	23	20	42	152	164	22	20	42	206	
九州	308	85	102	187	495	463	84	102	186	649	
沖縄	21	14	11	24	46	32	14	11	25	57	
全国	2,612	950	1,060	2,010	4,622	3,920	950	1,060	2,010	5,930	

^{*1} 平成 15 年住宅·土地統計調查

- ・ 戸建住宅については屋根上に 3 ㎡の集熱器を傾斜角 30°で設置するものとし、集合住宅のうち、3 階建て以下の低層集合住宅については屋上に各戸 2 ㎡分の集熱器を傾斜角 30°で設置、4 階建て以上の中高層集合住宅についてはベランダに各戸 2 ㎡の設置を想定して傾斜角 90°とした。
- ・ 住戸の 1/3 は真南(方位角 0°)で設置、残りは南東又は南西(方位角 45°)で集熱器を設置するものとした。
- ・ 地域の気候特性を反映させるため、NEDO 日射量データを参考として全国の都道府県 を 11 区分して日射量を算出し、各都道府県の住戸に導入するものとした (付表 V-2)。
- ・ 効率については、システム全体での太陽熱利用効率を50%とした。
- ・ CO₂ 削減効果については、太陽熱利用量分の給湯エネルギー消費量が削減されるものとして算出した。
- ・ 地域によって種類別エネルギー消費構成が異なることから、全国 9 地域区分別の世帯 当たり給湯用エネルギー消費量データを用いて、単位給湯エネルギー消費量当たりの CO_2 排出係数を求めて推計に用いた(付図 V-1)。

^{*2} 日照条件を考慮して半数の住宅へ導入可能なものとし、戸建住宅 3 ㎡/戸、集合住宅 2 ㎡/戸設置するものとして算出

付表 V-2 地域区分及び各地域の傾斜角・方位角別日射量

代表		日射量(kV	Wh/㎡/日)				
	傾斜角 30°		傾斜角 90°		都道府県名		
都市	方位角0°	方位角45°	方位角0°	方位角45°			
札幌	3.93	3.75	2.85	2.72	北海道		
秋田	3.54	3.42	2.25	2.24	青森、秋田、山形		
仙台	3.84	3.65	2.64	2.48	岩手、宮城、福島		
金沢	3.67	3.55	2.28	2.28	新潟、富山、石川、福井、長野、岐阜、滋賀、京都、鳥取		
東京	3.74	3.56	2.51	2.37	茨城、栃木、群馬、埼玉、千葉、東京、神奈川、山梨		
名古屋	4.11	3.91	2.71	2.59	静岡、愛知、三重、大阪、兵庫、奈良、和歌山、徳島		
福山	4.16	3.99	2.62	2.56	岡山、広島、香川、愛媛		
萩	3.73	3.60	2.25	2.24	島根、山口、福岡、佐賀、長崎		
熊本	4.05	3.88	2.51	2.46	大分、熊本、鹿児島		
宮崎	4.26	4.07	2.71	2.61	高知、宮崎		
那覇	4.09	4.00	2.19	2.34	沖縄		

出所: NEDO 標準日射量データ

エネルギー種別の給湯エネルギー消費量比率 60% 80% 0% 20% 40% 100% 北海道 東北 関東 北陸 東海 近畿 中国 四国 九州 □電気 口 都市ガス ■LPG 図灯油

出所:家庭用エネルギー統計年報 2005 年版 (㈱住環境計画研究所)

付図 V-1 各地域における家庭のエネルギー種別給湯エネルギー消費量構成比

付表 V-3 太陽熱利用システム導入の CO₂ 削減ポテンシャルの試算内訳

		太陽熱	利用量[T	J/年]* ¹		CO2 削減量[万t-CO ₂ /年]* ²					
	戸建	声建 集合住宅			戸建	戸建		Δ ≡ ⊥			
	住宅	低層	中高層	小計	合計	住宅	低層	中高層	小計	合計	
北海道	4,581	1,502	780	2,282	6,863	29.8	9.8	5.1	14.9	44.7	
東北	8,317	1,409	458	1,867	10,184	52.8	8.9	2.9	11.8	64.6	
関東	27,916	9,560	7,061	16,621	44,537	158.6	54.3	40.1	94.4	253.0	
北陸	4,884	659	210	869	5,753	30.6	4.1	1.3	5.4	36.0	
東海	12,292	2,432	1,677	4,109	16,401	75.0	14.8	10.2	25.0	100.0	
近畿	14,998	3,541	4,349	7,890	22,888	85.6	20.2	24.8	45.0	130.6	
中国	7,169	1,254	711	1,965	9,134	47.5	8.3	4.7	13.0	60.5	
四国	4,366	587	342	929	5,295	29.1	3.9	2.3	6.2	35.3	
九州	11,595	2,092	1,553	3,645	15,240	73.7	13.3	9.9	23.2	96.9	
沖縄	848	370	166	536	1,384	5.4	2.4	1.0	3.4	8.8	
全国	96,966	23,406	17,307	40,713	137,679	588	140	102	242	830	

^{*1} NEDO 日射量データベースを用いて、各地域の代表都市における集熱量を算出し、利用率 50%として算出 *2 住戸当たり用途別・エネルギー種別エネルギー消費量(家庭用エネルギー統計年報 2005 年版、付図参照)をもと に、電力(全電源)・都市ガス・LPG・灯油の加重平均給湯用エネルギー CO_2 排出係数を算出し、太陽熱利用量分の 給湯用エネルギー消費量が削減されるものとして試算

② 第一約束期間における導入効果の試算

- ・ 新築住宅 (戸建住宅 35 万戸、集合住宅 70 万戸) については、2008 年度及び 2009 年 度は毎年 5%、2010 年度以降は毎年 10%に導入されるものとした。
- ・ 既築住宅については毎年戸建住宅の 2%に導入されるものとして、第一約束期間の導入 効果を試算した。

付表 V-4 太陽熱利用システム導入の第一約束期間の導入効果の試算内訳

項	B	戸建	集合住宅			合計	備考		
- 切		住宅	低層	中高層	小計		N⊞ 2⊃		
住戸数	既築	2,612	950	1,060	2,010	4,622	平成15年住宅・土地統計調査、長屋及び1~3階建 共同住宅を低層集合住宅と設定		
[万戸]	新築	50	35	35	70	120	住宅着工統計(2001~2005年度)平均値より想定		
集熱面積[m		3	2	2	-	-	戸建及び低層集合は屋上、中高層集合は壁面へ設置		
導入量	2008年度	164	4	4	8		新築は戸建住宅及び集合住宅へ2008・2009年度は		
[万㎡]	2009年度	328	8	8	16		5%へ導入、2010年度以降は10%導入されるもの		
	2010年度	560	22	22	44		と設定		
	2011年度	747	36	36	72	819	既築住宅は戸建住宅へ毎年2%ずつ導入される		
	2012年度	934	50	50	100	1,034	ものと設定		
太陽熱	2008年度	4,057	99	65	164	4,221	戸建及び低層集合は傾斜角30℃に設置、		
利用量	2009年度	8,113	197	131	328	8,441	中高層住宅は傾斜角90℃(垂直)設置を想定		
[TJ/年]	2010年度	13,852	542	359	901	14,753	全体の1/3を南向き、残りを南東又は南西向き		
	2011年度	18,478	887	588	1,475	19,953	(方位角45℃)と想定		
	2012年度	23,104	1,232	816	2,048	25,152			
CO ₂	2008年度	22.8	0.5	0.4	0.9	24	給湯用に消費される都市ガス/LPG/灯油を削減		
削減量	2009年度	45.6	1.1	0.7	1.8	47	するものとし、地域別の消費比率(家庭用エネルギー		
[万t-CO ₂ /年]	2010年度	77.9	3.0	2.0	5.0	83	統計年報2005年版より算出)に基づきCO2削減量		
	2011年度	103.9	4.9	3.3	8.2	112	を算出		
	2012年度	129.9	6.8	4.5	11.3	141			

(2) バイオガス製造・利用システム

- ① CO₂削減ポテンシャル
- ・ 下水消化ガスについては未利用分 8,000 万 m^{3**}をコージェネレーション利用するもの とした。
 - ※ 2003年度実績値、国土交通省調べ
- ・ 生ごみについては、発生量 1,189 万 t^* のうち、再生利用分 146 万 t^* を除いた 1,043 万 t をメタン発酵処理して得られるバイオガスを利用してコージェネレーションを行う ものとした。
 - ※ 第1回生ごみ等の 3R・処理に関する検討会資料 (2005年9月)
- ・ 食品廃棄物については肥料化利用分 219 万 t*の処理方法をメタン発酵処理に変更する ものとし、発生したバイオガス (メタン) をコージェネレーション利用するものとし た。
 - ※ 平成17年食品循環資源の再生利用等実態調査結果の概要に基づく環境省計算値
- ・ 家畜ふん尿については堆肥化・液肥化利用分 8,000 万 t*の処理方法を全てメタン発酵処理にするものとし、発生したバイオガス(メタン)をコージェネレーション利用するものとして CO_2 削減ポテンシャルを算出した。
 - ※ 畜産環境を巡る情勢(農林水産省、2006年3月)

付表 V-5 バイオガス製造・利用システム(メタン)の CO₂ 削減ポテンシャルの試算内訳

バイオマ	7ス区分	下水汚泥	生ごみ	食品廃棄物	家畜ふん尿	合計	
資源量*1	[万t/年]	1	1,043	219	8,000	_	
含水率*2	[%]	1	90	90	83	_	
ガス原単位*3	[Nm³/dry-t]	1	550	550	300	_	
ガス発生量	[万Nm³/年]	8,000	57,365	12,045	408,000	485,410	
発熱量*4	[TJ/百万m ³]	21.4	21.4	21.4	21.4	_	
一次エネ	[TJ/年]	1,709	12,253	2,573	87,149	103,684	
発電量*5	[GWh/年]	142	1,021	214	7,262	8,639	
熱利用量*6			4,901	1,029	34,860	41,474	
CO ₂ 削減量*7	電力代替	5 ~ 10	37 ~ 70	8 ~ 15	261 ~ 501	311 ~ 596	
[万t-CO ₂ /年]	石油代替	5	38	8	268	319	
	合計	10 ~ 15	75 ~ 108	16 ~ 23	529 ~ 769	630 ~ 915	

- *1 生ごみ:焼却処分量(環境省調べ)、食品廃棄物:堆肥利用分(環境省計算値)、家畜ふん尿:堆肥・液肥利用分(農水省調べ)
- *2 バイオマス中に含まれる水分の重量比(バイオマス総合利活用マスタープラン(千葉県、2004年))
- *3 固形乾物量当たりのバイオガス発生量(バイオガスシステムの現状と課題((社)日本有機資源協会、2003年11月))
- *4 バイオガスのメタン濃度 60%、メタンガス発熱量 35.6MJ/Nm³(8,500kcal/Nm³)として算出
- *5 コージェネレーションの発電効率を30%と想定
- *6 コージェネレーションの熱回収効率を40%と想定
- *7 電力代替:全電源平均 CO₂排出係数 0.36kgCO₂/kWh、火力発電 CO₂排出係数 0.69 kg-CO₂/kWh として算出 重油代替:A 重油 CO₂排出係数 0.0693kgCO₂/MJ、代替ボイラ効率 0.9 として算出

② 第一約束期間における導入効果の試算

・ 下水消化ガスについては未利用分 8,000 万 m^3 を 5 年間で全量をコージェネレーション 利用するものとした。

- ・ 生ごみについては、清掃工場の更新にあわせて半数にメタン発酵処理施設が導入されるものとして、焼却処理分の1割が利用されるものとした。
- ・ 食品廃棄物については 5 年間で<u>肥料化利用分の 2 割</u>がメタン発酵処理されるものとした。
- ・ 家畜ふん尿については 5 年間で<u>堆肥化・液肥化利用分の 1 割</u>がメタン発酵処理される ものとした。

付表 V-6 バイオガス製造・利用システムの第一約束期間の導入効果の試算内訳

項		下水汚泥	生ごみ	食品廃棄物	家畜ふん尿	合計
資源量*1	2008年度	_	21	9	160	_
[万t/年]	2009年度	_	42	18	320	_
	2010年度	_	63	27	480	_
	2011年度	_	84	36	640	_
	2012年度	_	105	45	800	_
ガス発生量*2	2008年度	1,600	1,155	495	8,160	11,410
[万Nm³/年]	2009年度	3,200	2,310	990	16,320	22,820
	2010年度	4,800	3,465	1,485	24,480	34,230
	2011年度	6,400	4,620	1,980	32,640	45,640
	2012年度	8,000	5,775	2,475	40,800	57,050
一次エネルキ゛ー*3	2008年度	342	247	106	1,743	2,438
[TJ/年]	2009年度	684	493	211	3,486	4,874
	2010年度	1,025	740	317	5,229	7,311
	2011年度	1,367	987	423	6,972	9,749
	2012年度	1,709	1,234	529	8,715	12,187
発電量*4	2008年度	29	21	9	145	204
[GWh/年]	2009年度	57	41	18	291	407
	2010年度	85	62	26	436	609
	2011年度	114	82	35	581	812
	2012年度	142	103	44	726	1,015
熱利用量*5	2008年度	137	99	42	697	975
[TJ/年]	2009年度	274	197	84	1,394	1,949
	2010年度	410	296	127	2,092	2,925
	2011年度	547	395	169	2,789	3,900
	2012年度	684	494	212	3,486	4,876
CO₂削減量*6	2008年度	2 ~ 3	2 ~ 2	0 ~ 1	10 ~ 15	14 ~ 21
[万t-CO ₂ /年]	2009年度	4 ~ 6	3 ~ 5	2 ~ 2	21 ~ 31	30 ~ 44
	2010年度	6 ~ 9	4 ~ 6	2 ~ 3	32 ~ 46	44 ~ 64
	2011年度	8 ~ 12	6 ~ 9	2 ~ 3	42 ~ 61	58 ~ 85
	2012年度	10 ~ 15	8 ~ 11	4 ~ 5	53 ~ 77	75 ~ 108

^{*1} 生ごみ:焼却処分量(環境省調べ)の1割分、食品廃棄物:堆肥利用分(環境省計算値)の2割分、 家畜ふん尿:堆肥・液肥利用分(農水省調べ)の1割分

^{*2} 含水率及び固形乾物量当たりのバイオガス発生量は付表 V-5 の条件に準じて想定

^{*3} バイオガスのメタン濃度 60%、メタンガス発熱量 35.6MJ/Nm³(8,500kcal/Nm³)として算出、

^{*4} コージェネレーションの発電効率を30%と想定

^{*5} コージェネレーションの熱回収効率を40%と想定

^{*6} 電力代替:全電源平均 CO_2 排出係数 0.36kg- CO_2 /kWh、火力発電 CO_2 排出係数 0.69 kg- CO_2 /kWh として算出 重油代替: A 重油 CO_2 排出係数 0.0693kg- CO_2 /MJ、代替ボイラ効率 0.9 として算出