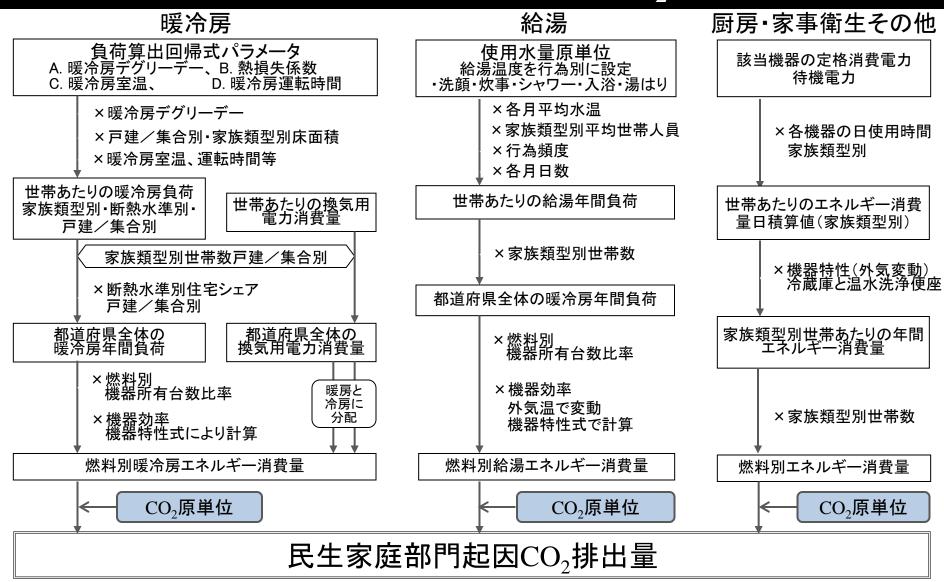

推計にかかる基本条件

- 推計対象年 1990年~2050年
 - ⇒ 将来予測を実施することで長期的な削減目標を掲げることが可能
- 推計項目

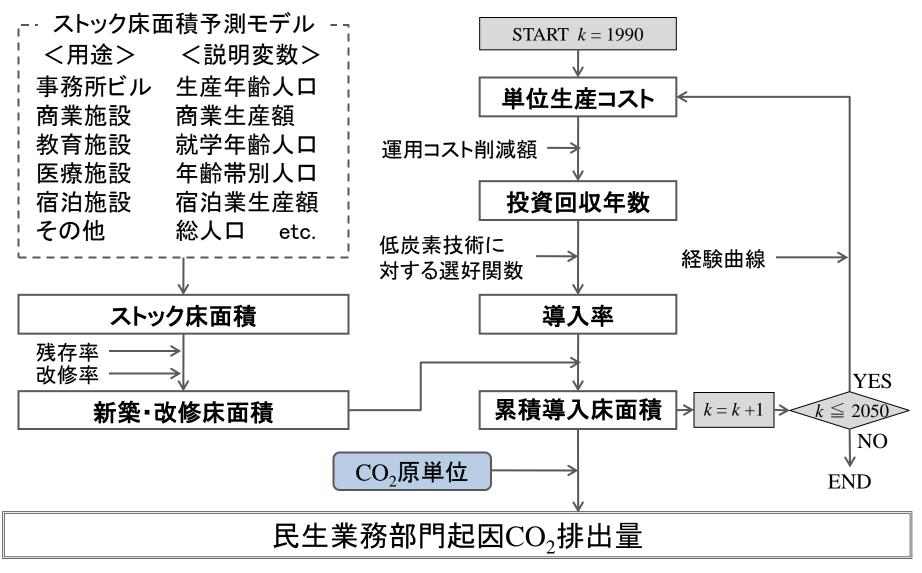
	産業部門
	民生家庭部門
エネルギー起源CO ₂	民生業務部門
	運輸部門
	エネルギー転換部門
非エネルギー起源CO ₂ 、CH ₄ 、N ₂ O	
代替フロン等3ガス	
森林吸収量	

基本的な推計方法 CO₂排出量=活動量 × 排出係数 CO₂排出量の推計方法 —産業部門


産業部門の活動に起因するCO。の推計方法

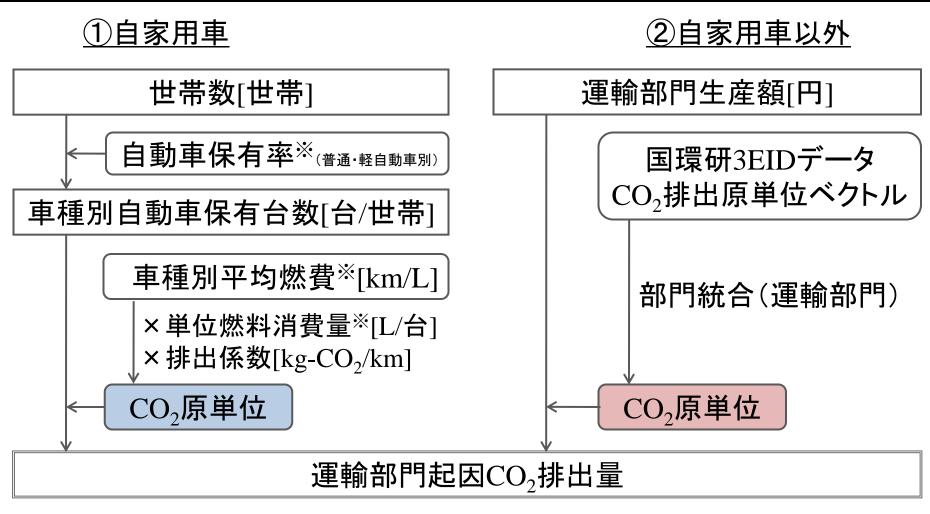
年率1%ずつ改善すると想定 対策ケース: ----

CO₂排出量の推計方法 —民生家庭部門


民生家庭部門の活動に起因するCO2の推計方法

対策ケース: 電力の原単位が2050年までに0.12[kg-CO₂/kWh]になると想定

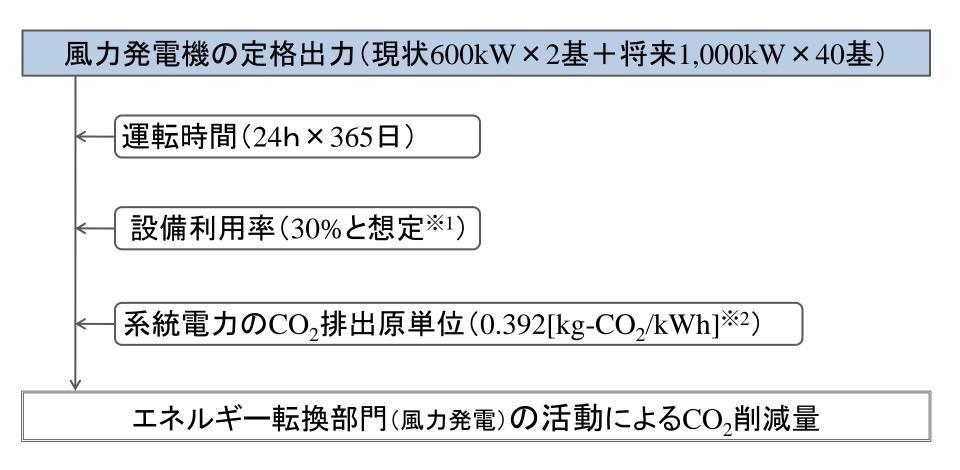
CO₂排出量の推計方法 —民生業務部門


民生業務部門の活動に起因するCO2の推計方法

電力の原単位が2050年までに0.12[kg-CO₂/kWh]になると想定 対策ケース: 「

CO₂排出量の推計方法 —運輸部門

運輸部門の活動に起因するCO2の推計方法


対策ケース: が2030年に2/3倍、2050年に1/3倍(2000年基準)

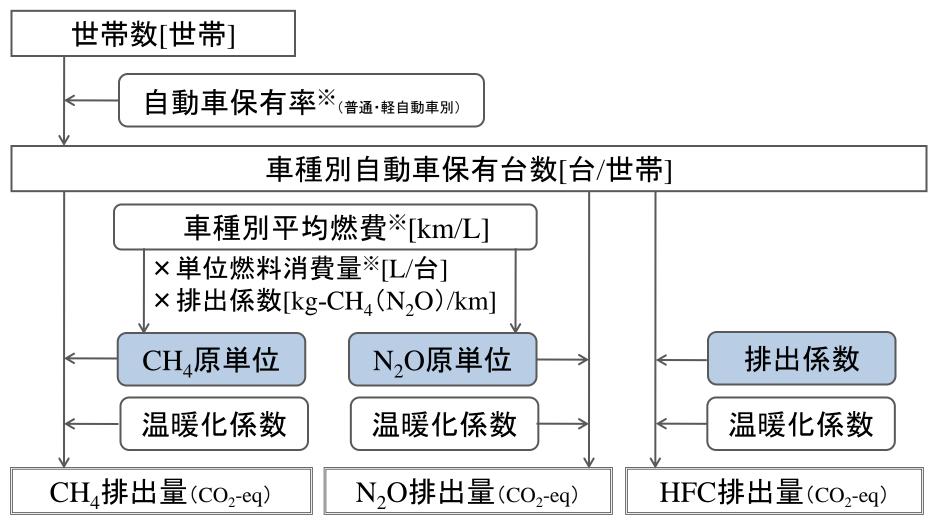
────年率1%ずつ改善すると仮定

※ 梼原町地域新エネルギービジョン, 1999

CO₂排出量の推計方法 —エネルギー転換部門(風力発電)

エネルギー転換部門(風力発電)の活動に起因するCO。削減量の推計方法

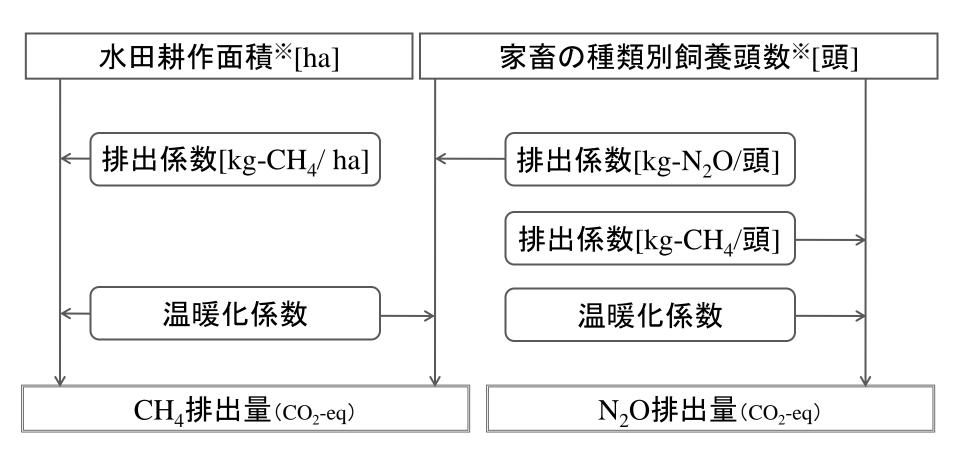
無対策ケース: 2050年まで現状の2基のみ運用 対策ケース: 2050年までに新たに1,000kWを40基新設


※1 梼原町既存風力発電機による発電実績の平均値 ※2 四国電力の実績値 非エネルギー起源CO₂、 その他の温室効果ガスの推計方法

推計項目

■ 推計項目

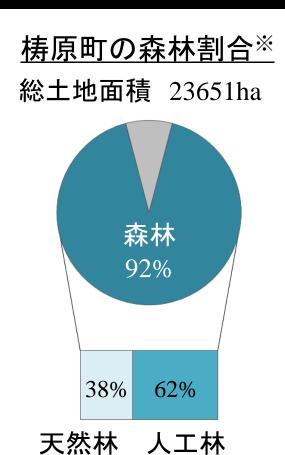
CH ₄	1. 自動車の走行 2. 家畜の飼養 (消化管内発酵) 3. 家畜の飼養 (ふん尿処理) 4. 水田の耕作
N ₂ O	1. 自動車の走行 2. 家畜の飼養 (ふん尿処理)
HFC	1. 自動車用エアコンディショナーの使用

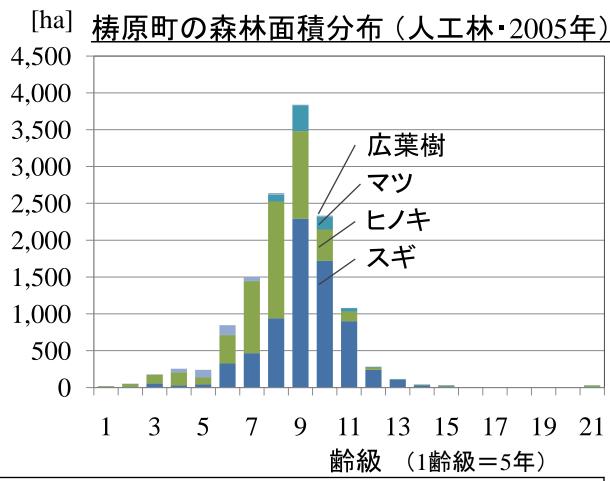

自動車に起因するCH4、N2O、HFCの推計方法

が2030年に2/3倍、2050年に1/3倍(2000年基準) 対策ケース:

※梼原町地域新エネルギービジョン, 1999

家畜の飼養に伴うCH4、N2Oの推計方法



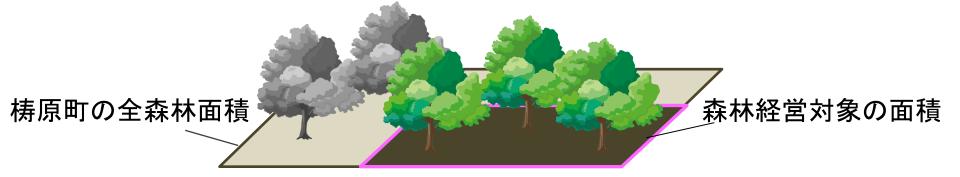

飼育頭数、耕作面積は2005年値が2050年まで継続すると仮定

※高知県統計書

森林吸収量の推計方法

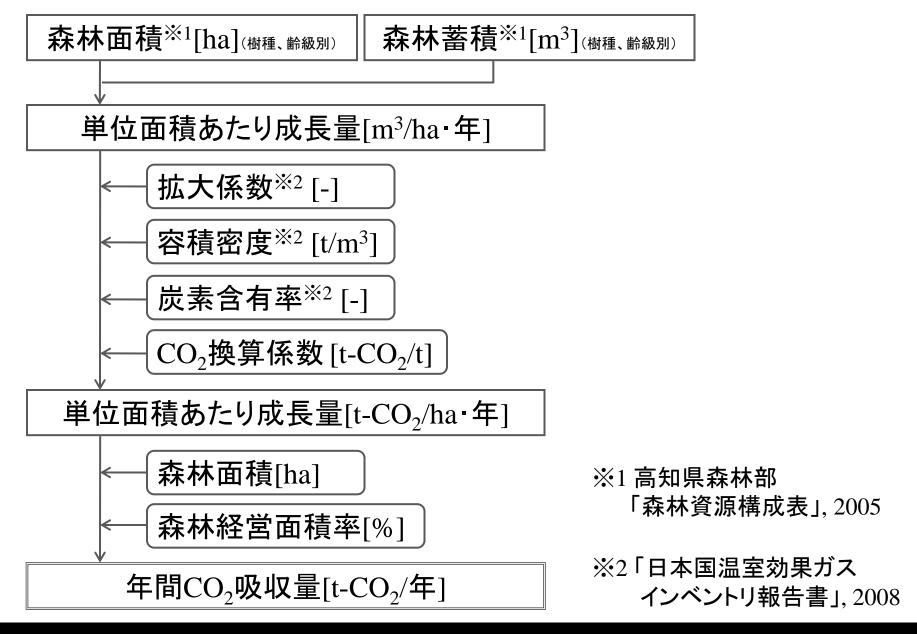
梼原町の森林状況

樹種	スギ53%、ヒノキ39%、マツ5%、広葉樹3%
齢級	8~10齢級が65%


[※]高知県森林部,2005

森林によるCO。吸収量推計の前提条件

1. 森林経営が実施された面積によるCO。吸収量を算定

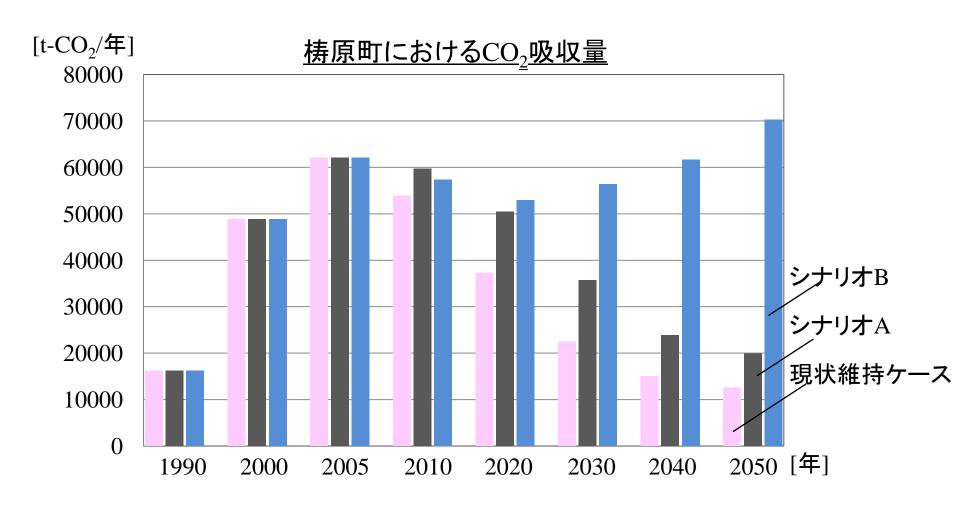

森林経営

1990年以降にその森林を適切な状態に保つために 人為的な活動(林齢に応じた整備や管理)を行うこと (林野庁)

- 2. 人工林によるCO。吸収量を対象とする
- 3. 主伐された樹木は排出分とカウントしない
- 4. 枯死、落葉、土壌によるCO。吸収量及び排出量は考慮しない

推計フロー

シナリオの設定


シナリオ名	内容
現状維持ケース	2005年時点での森林経営対象面積に整備を継続 2006年以降の整備面積は940 ^{※1} [ha/年]
対策ケースA	現状維持ケース+追加整備 ^{※2} (間伐180 ^{※3} [ha/年])
対策ケースB	現状維持ケース+追加整備 ^{※2} (主伐180 ^{※3} [ha/年]) 主伐を行った土地には翌年植林

※1: 1990~2005年の年間施業面積の平均値

※2: 森林経営対象面積が 2030年に12000ha(人工林の90%)となるように整備

※3: 各年の伐採面積を、スギ・ヒノキ・マツは10齢級以上、 広葉樹は9齢級以上の樹木の面積で按分

CO。吸収量の推計結果

⇒ 主伐と植林を繰り返すことで現状維持の約5.7倍の吸収量を確保

温室効果ガス排出抑制策の効果推計 (風力発電、森林吸収によるCO₂削減分については再掲)

対策オプション1/3

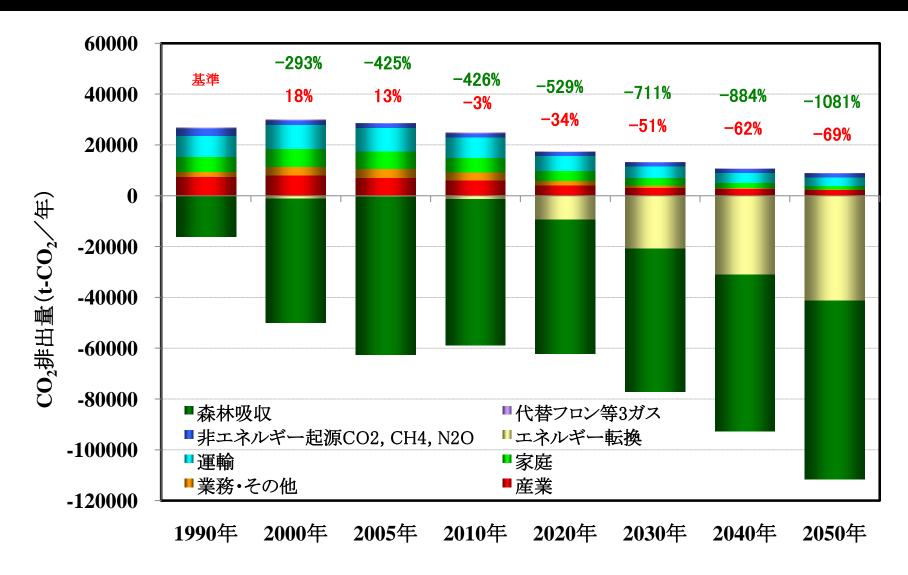
	CO ₂ 削減オプション	CO ₂ 削減量の算定条件	削減量 (t-CO ₂ /年)
1	持続可能な森林経営	対策ケースBを想定	70,200
2	家庭用ペレット炊き ストーブの導入	$(2050$ 年までに全世帯の 20% に導入:灯油からペレットへ転換) CO_2 削減原単位= $\underline{480}$ $\ell \times 2.49$ kg- CO_2 / $\ell = 1.20$ t- CO_2 /世帯 町内総 CO_2 削減量= 1.20 t- CO_2 /世帯 $\times 1408$ 世帯(台) $\times 0.2$ = 338 t- CO_2	338
3	ハウス園芸用 ペレット炊き 温風機の導入	(ハウス園芸用温風暖房機器の普及:灯油からペレットへ転換) ミョウガ農家 (ハウス温風暖房機器) CO_2 削減量= $8,704$ ℓ /年× 10 台× 2.49 kg- CO_2 / ℓ = 217 t- CO_2 シイタケ農家 (乾燥用ボイラー) CO_2 削減量= 850 ℓ /年× 20 台× 2.49 kg- CO_2 / ℓ = 42 t- CO_2	259
4	町内施設の ペレット炊き 冷暖房機器の導入	$(2050$ 年までに町内事業所に 20 台導入: 灯油からペレットへ転換) CO_2 削減原単位= $\underline{1,3427}$ $\ell \times 2.49$ kg- CO_2 / $\ell = 33$ t- CO_2 /台 町内総 CO_2 削減量= 33 t- CO_2 /台× 20 台= 660 t- CO_2	660
5	事業用ペレット炊き 給湯設備の導入	$(2050$ 年までに町内事業所に 10 台導入: 灯油からペレットへ転換) CO_2 削減原単位= $\underline{43,545}$ $\ell \times 2.49$ kg- CO_2 / $\ell = 108$ t- CO_2 /台町内総 CO_2 削減量= 108 t- CO_2 /台× 10 台= $1,080$ t- CO_2	1,080
6	家庭用ペレット炊き 給湯設備導入への 助成	(2050年までに全世帯の30%に導入: 灯油からペレットへ転換) CO_2 削減原単位= $\underline{660}$ $\ell \times 2.49 kg \cdot CO_2 / \ell = 1.64 t \cdot CO_2 / 台$ 町内総 CO_2 削減量= $1.64 t \cdot CO_2 / 台 \times 1408$ 世帯(台) $\times 0.3 = 693 t \cdot CO_2$	693

※削減量はいずれも2050年時点の値

対策オプション2/3

	CO ₂ 削減オプション	CO ₂ 削減量の算定条件	削減量 (t-CO ₂ /年)
7	小水力発電施設の 導入・活用	$(53 \mathrm{kW}$ 、設備利用率 89.2% の小水力発電を導入:系統電力を代替) CO_2 削減量= $\underline{53}$ $\mathrm{kW} \times 24 \mathrm{h} \times 365$ 日 $\times 0.892 \times 0.392 \mathrm{kg}$ - CO_2 / kWh = $162 \mathrm{t}$ - CO_2	162
8	町有施設への太陽光 発電施設の新規導入	$(30 { m kW}$ 、設備利用率 10% の太陽光発電を導入:系統電力を代替) ${ m CO_2}$ 削減量= $\underline{30}$ ${ m kW} \times 24 { m h} \times 365$ 日 $\times 0.1 \times 0.392 { m kg}$ - ${ m CO_2}$ / ${ m kWh}$ = $10 { m t}$ - ${ m CO_2}$	10
9	家庭用太陽光発電 施設導入への助成	$(2050$ 年までに 4 kW、設備利用率 10 %の太陽光発電を 500 世帯に導入:系統電力を代替) CO_2 削減原単位= $\underline{4}$ kW× 24 h× 365 日× 0.1 × 0.392 kg- CO_2 /kWh= 1.4 t- CO_2 /世帯 町内総 CO_2 削減量= 1.4 t- CO_2 /世帯× 500 戸= 700 t- CO_2	700
10	公共施設における 太陽光発電施設の 継続運用	$(363 \mathrm{kW}$ 、設備利用率 10% の太陽光発電を継続運用:系統電力を代替) CO_2 削減量= $\underline{363} \mathrm{kW} \times 24 \mathrm{h} \times 365$ 日 $\times 0.1 \times 0.392 \mathrm{kg}$ - CO_2 / kWh = $125 \mathrm{t}$ - CO_2	125
11	BDF製造装置の導入	(2050年までに5000 ℓ の廃食油の回収システムを確立:軽油を代替) BDF製造量= $\underline{5000}$ $\ell \times 0.9$ (変換効率: 廃食油 \rightarrow BDF)= $4,500$ ℓ 町内総 CO_2 削減量= 4500 $\ell \times 2.62$ kg- CO_2/ℓ = 12 t- CO_2	12
12	公用車の電気自動車への転換	$(2050$ 年までに 20 台の公用車を電気自動車へ転換:軽油を代替) CO_2 削減原単位= $\underline{608}$ ℓ /台× 2.62 kg- CO_2 / ℓ = 1.59 t- CO_2 /台 町内総 CO_2 削減量= 1.59 t- CO_2 /台× 20 台= 32 t- CO_2	32

※削減量はいずれも2050年時点の値


対策オプション3/3

	CO ₂ 削減オプション	CO ₂ 削減量の算定条件	削減量 (t-CO ₂ /年)
13	家庭用エコ給湯器導入への助成	(2050年までにエコ給湯器が 200 世帯に導入: 灯油を代替) 灯油燃焼式給湯器の CO_2 排出量= $\underline{669}$ $\ell \times 2.49$ kg- CO_2 / $\ell = 1.67$ t- CO_2 エコ給湯器の CO_2 排出量= $\underline{1550}$ kWh/年× 0.392 kg- CO_2 /kWh = 0.61 t- CO_2 町内総 CO_2 削減量= $(1.67-0.61) \times 200$ 世帯= 212 t- CO_2	212
14	家庭用太陽光温水器 導入への助成	$(2050$ 年までに太陽熱温水器を 300 世帯に導入: 灯油を代替) CO_2 削減原単位= $\underline{360}$ $\ell \times 2.49$ kg- CO_2 / $\ell = 0.90$ t- CO_2 /世帯 町内総 CO_2 削減量= 0.90 t- CO_2 /世帯 $\times 300$ 世帯= 270 t- CO_2	270
15	家庭用複層ガラス 導入への助成	(2050年までに複層ガラスを 500 世帯に導入:系統電力を代替) 複層ガラス導入による電力消費量の低減量= 560 kWh (実績値) CO_2 削減原単位= $\underline{560}$ kWh \times 0.392kg- CO_2 /kWh = 0.22 t- CO_2 /世帯 町内総 CO_2 削減量= 0.22 t- CO_2 /世帯 \times 500戸= 110 t- CO_2	110
16	環境教育・低炭素型 ライフスタイルの 実践	(環境教育の結果、 2050 年までに全世帯が省エネライフスタイルを実施) CO_2 削減原単位= $0.85~t$ - CO_2 /世帯 (住宅マクロモデル推計値) 町内総 CO_2 削減量= $0.85~t$ - CO_2 /世帯 $\times 1804$ 世帯 = $1,197t$ - CO_2	1,197
17	風力発電施設の拡充	(2050年までに1000kWの風力発電機を40基追加設置:系統電力を代替) 既存2基: 600 kW×2基×24h×365日×0.3×0.392kg·CO $_2$ /kWh=1,236 t·CO $_2$ 新設40基: $1,000$ kW×40基×24h×365日×0.3×0.392kg·CO $_2$ /kWh=41,210 t·CO $_2$ 町内総CO $_2$ 削減量=1,236 +41,210 =42,446t·CO $_2$	42,446

※削減量はいずれも2050年時点の値

温室効果ガス排出量の推計結果

温室効果ガス排出量の推計結果(対策ケース)

温室効果ガス排出量の推計結果より中期目標・長期目標を設定

参考資料一覧

■ 参考資料

川久保俊、伊香賀俊治、新谷圭右「都市域を対象としたCO₂削減ポテンシャルの推 計」,第4回日本LCA学会研究発表会講演要旨集,2009.3

大津 由紀子、伊香賀 俊治、堀池 瞬「持続可能な森林施業に伴うCO。収支の2050 年までの予測」,第4回日本LCA学会研究発表会講演要旨集,2009.3

環境省「地球温暖化対策地域推進計画策定ガイドライン」, 2008.3

環境省「温室効果ガス総排出量算定方法ガイドライン」, 2008.3

高知県「高知県統計書」、2008

梼原町「地域新エネルギービジョン」, 1999

高知県森林部「森林資源構成表」, 2005

国立環境研究所「日本国温室効果ガスインベントリ報告書」、2008

高知県企画振興部統計課「平成15年度市町村経済統計書」, 2006.4

南齋規介、森口祐一、東野達「産業連関表による環境負荷原単位 データブック(3EID)ーLCAのインベントリデータとしてー」、2002.3

etc.