参考資料3-1

Sustainable development under ambitious medium term target of reducing greenhouse gases

March 22, 2010

Ryuji Matsuhashi, Tsuyoshi Yoshioka, Kae Takase, Yuki Imanishi and Yoshikuni Yoshida The University of Tokyo

Numerical targets of greenhouse gas reductions in 2020

55 countries or regions submitted the numerical targets to the FCCC secretarial office based on Copenhagen Accord.

	Reference	Target	Numerical	Regarding	Regarding	
	year		target	1995	2005	
Japan	1990	GHG emissions	-25%	-25%	-30%	
EU	1990	GHG emissions	-20%~-30%	-20%~-30%	-13%~-24%	
U.S.	2005	GHG emissions	-17%	-3%	-17%	
China	2005	GHG/GDP	-40%~-45%	Ι	4∼8%∕year	
India	2005	GHG/GDP	-20%~-25%	_	3∼8%∕year	

We also note that proposed frameworks such as SCM, sectoral crediting mechanism, NAMA, nationally appropriate mitigation action, REDD, reduced emissions from deforestation and forest degradation, and MRV, measurable, reportable and verifiable, as well as above numerical targets.

Evaluation of economic impact of Japan's numerical targets (1)

	10% reduction	15% reduction	20% reduction	25% reduction
	domestically	domestically	domestically	domestically
Loss of real GDP(%)				
CGE of Nikkei Center	-0.8	-1.3	-2.1	-3.1
CGE of NIES	-0.9	-1.4	-2.9	-3.2
CGE of Keio University	-1.3	-2.2	-3.6	-5.6
Increase in electricity price(%)				
CGE of Nikkei Center	20.4	44.2	77	117
CGE of NIES	12.8	19.6	43.6	113.6
CGE of Keio University	37.1	56.2	76.9	97.3
Increase in light and fuel expenses(%)				
CGE of Nikkei Center	12.9	27	46.1	69
CGE of NIES	5.5	9.1	22.3	93.2
CGE of Keio University	26.7	40.6	55.9	71.7
Marginal cost (Yen∕t−CO₂)				
CGE of Nikkei Center	10620	21940	39078	63180
CGE of NIES	8678	10252	23869	52438
CGE of Keio University	30303	46764	66093	87667

They evaluate 25% reduction from 1990 level in the above all case studies, in which domestic reduction varies in each case. Nikkei Center: Japan Center for Economic Research, NIES: National Institute for Environmental Studies

Evaluation of economic impact of Japan's numerical targets (2)

Consumption and production sectors of our CGE models

				I									
			1	2	• • •	18	1		-200		Agriculture, forestry	20	Conorol machinery
	1	Food					2	2	200-250	1	and fishery	20	General machinery
	2	Dwelling					3	;	250-300	2	Limestone	21	Electric machinery
	3	Electricity					4	ł	300-350	3	Coal	22	Automobile
Decrease by	4	Gas					5	;	350-400	4	Oil	23	Transport machinery
	5	Light & Fuel					6	j j	400-450	5	Natural gas	24	Precision machinery
	6	Water & Sewage					7	'	450-500	6	Other minerals	25	Other manufacturing
Increased cost	7	Durable goods					8	;	500-550	7	Food	26	Construction
	8	Heating & Cooling					9)	550-600	8	Textile	27	Electricity
	9	General furnatures					1(0	600-650	9	Wood products	28	Gas
	10	Other furnatures					1	1	650-700	10	Pulp & paper	29	Heat
	11	Cloths and shoes					12	2	700-750	11	Printing	30	Water & Sewage
	12	Medical & Health					13	3	750-800	12	Chemistry	31	Waste disposal
<u>`</u>	13	Transport					14	4	800-900	13	Petroleum products	32	Commerce
Increased cost	14	Automobiles					1	5	900-1000	14	Coal products	33	Finance & Innsurance
Decrease by	15	Gasoline					10	6	1000-1250	15	Ceramic products	34	Real estate
Energy saving	16	Communication					1	7	1250-1500	16	Cement	35	Transport
V	17	Education					18	8	1500-	17	Iron & steel	36	Broadcasting
	18	Entertainment									Non-ferrous metals	37	Service
	19	Other consumtions					Brac	ckets by income		19	Metal products	38	Governmental service
				I								39	service

Structure of our CGE model

Consumers are divided into 18 brackets based on annual income. ⇒ Evaluation of economic impact by introducing technologies. ⇒ Evaluation of economic impact in each income bracket.

Mitigation options adopted in our CGE models Year 2020

Newly constructed nuclear power plants \rightarrow 8 plants Average operation rate of nuclear plants \rightarrow 90% Deployment of photovoltaics \rightarrow 28 million kW Deployment of highly insulated houses \rightarrow 80% of new houses Deployment of eco-cars \rightarrow 80% of new cars

Furthermore, we assumed to adopt efficiency improvement in home electric appliances, automobiles, industry and promote fuel switching and modal shift in industrial sectors. We also assume to impose carbon tax.

By these options, we domestically realize 15% reduction from 1990 level. With emission reduction credits, we assume to realize 25% reduction from 1990 level.

Modeling deployment of PV (1)

Figure 1: Proliferation Rate – Potential Energy Generation

Figure 2: Proliferation Rate – Equipment Unit Price

The lower the equipment unit price for the region, the higher the proliferation rate

The greater the potential energy production for the region, the higher the proliferation rate

Equipment unit price/potential energy generation used as explanatory variables

(Note) Potential energy generation is calculated by multiplying the amount of sunlight x each region's generation efficiency, with consideration for its climate characteristics

Modeling deployment of PV (2)

Definition of deployment rate

Rate of annual
deploymentAnnual houses with PVStock of houses

Modeling deployment of PV (3)

Modeling deployment of PV (3)

We modeled the deployment of PV using Logit model.

 W_i : Potential generation (kWh/kW), I_i : Initial investment (10000yen/kW), S_i : Selling price of electricity surplus (yen/kWh)

Exploration of a deployment strategy

We evaluated relationships between annual deployment rate and purchasing price of electricity surplus.

It is difficult to increase PV capacity by 20 times until 2020 only by the present governmental policies.

Examination of PV Proliferation Strategy

14

Exploration of a deployment strategy

Relationships between present Japan's F.I.T. and deployment rate

It is difficult to realize the governmental target, 28 million kW in 2020 even with the present F.I.T.. 15

Simulation results using our CGE model (1)

Welfare values are decreased in all income brackets by realizing 25% reduction of greenhouse gases, unless efficiency improvement and lowering price in home electric appliances, automobile and photovoltaics.

Simulation results using our CGE model (2)

Simulation results using our CGE model (3)

Examples of costs in photovoltaics and batteries

YEAR	2010	2020	2030
Photovolataics (yen/W)	200	100	50
Efficiency (%)	17	20	35
Setting up (yen/W)	200	100	50
Cost (yen/kWh)	40	20	10
Li-ion batteries (yen/Wh)	10	5	2(Novel)
Lifetime 5years 20h (yen/kWh)	40	20	4 (10years)
5h (yen/kWh)	10	5	1
Total (5h, yen/kWh)	50	25	11

Impact of technology innovation on deploying photovoltaics

Targets of PV deployment in 2020 is realizable, with technology innovation and Japanese F.I.T..²¹

Simulation results using our CGE model (4)

Why do the welfare values increase?

Most of energy saving and renewable technologies contribute to reduction of lifecycle costs.

		Payback years	CO ₂ reduction (10 ⁶ ton)
renewable energy	photovoltaics	15	75
	insulation of window	10	64
anargy caving	airconditioning	5	27
energy saving	high efficiency water heating	10	25
	Hybrid vehicles	5	50

Reference: Hiroshi Komiyama's presentation in the meeting of evolution strategy in Japanese cabinet office, 2009.12

Why do the welfare values increase? The case of introducing PV

Is the scenario with increased welfare value actually realizable?

There are many renewable and energy saving technologies with lower lifecycle costs.

Introduction of these technologies leads to reduction of CO2 with higher welfare.

However, even renewable and energy saving technologies with lower lifecycle costs are not necessarily deployed.

Modern theory on behavioral economics implies that human being is far from 'economic man' with extreme rationality. Ordinary citizens are subject to limited rationality, who are tempted to postpone their work or obligations. Ordinary citizens have higher discount rate than 'economic man', so that they do not necessarily buy products with lower lifecycle costs.

Is the scenario with increased welfare value actually realizable?

We estimate discount functions in time for consumers, so that we could explore the possibility of accelerated deployment under limited rationality.

Simulation results using our CGE model (5)

Transition to Low-carbon society

and its economic impact

- 1. Efficiency improvement and renewable technologies have remarkable effect on increasing social welfare values.
- 2. So as to realize the welfare increase, we should promote accelerated deployment of these technologies as well as R&D on them.
- 3. If we succeed in accelerated deployment of energy saving and renewable technologies, we could realize low-carbon society with higher welfare.

Center for Low Carbon Society Strategy (LCS)

Established in December 2009 in Japan Science and Technology Agency (JST)

Strategic Scheme for Green Innovation by MEXT

