小水力発電システムの導入

その他

対策概要

■低落差、小流量の水の位置エネルギーを回収して発電する設備を導入して、燃料消費量及びCO2排出量の 削減を図る。

導入可能性のある業種・工程

■全ての業種

原理・仕組み

■ 水の位置エネルギーを発電機と結合した水車等で回収して発電する。水力発電設備は、原理・構造が簡単であるため、火力発電等に比べ、高い効率が得られる特徴がある。

各種発電方式の効率比較[1]

水力発電の分類[2]

-変換効率(%)	100 80 60 40 20		1	1	1	1	1					
エネルギ	0	水力発電	LNG複合発電	火力蒸気発電	ガスタービン・・	原子力発電	風力発電	太陽光発電	地熱発電	海洋温度差発電	バイオマス発電	

区分	発電出力(kW)
大水力	100,000以上
中水力	10,000~100,000
小水力	1,000~10,000
ミニ水力	100~1,000
マイクロ水力	100以下

対策イメージ

チューブラー形カプラン水車

	安房谷水力発電所[3][4]	空知川上流小水力発電所[3][5]				
最大出力	657kW	177kW				
有効落差	76.84m	7.71m				
最大水量	1.11m³/s	3.3m³/s				
発電開始	2020年12月	2019年4月				

出所) [1]関西電力株式会社「水力発電の概要」

https://www.kepco.co.jp/energy_supply/energy/newenergy/water/shikumi/index.html (閲覧日:2023年8月4日) より作成 [2]環境省「小水力発電情報サイト」

https://www.env.go.jp/earth/ondanka/shg/page01.html (閲覧日:2023年8月4日) より作成

効率・導入コストの水準

出所)[3]日本小水力発電株式会社「納入実績」

http://www.smallhydro.co.jp/nounyu.html (閲覧日:2024年3月11日)

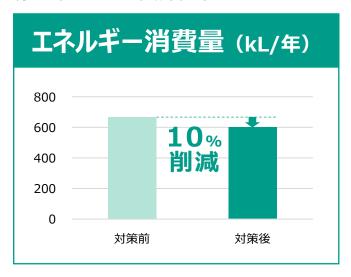
[4]シン・エナジー株式会社「ニュースリリース」

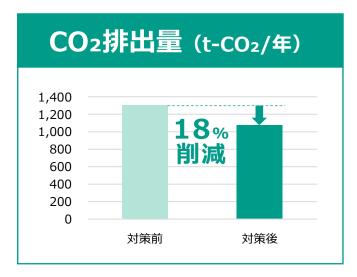
https://symenergy.co.jp/news/20201215-5547.html (閲覧日:2023年8月4日)

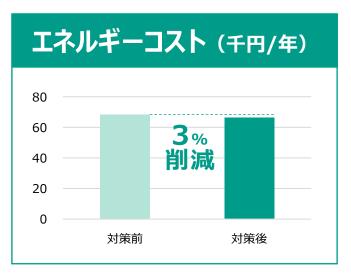
[5]農林水産省「農業農村整備事業等による小水力発電の整備事例」

https://www.maff.go.jp/j/nousin/mizu/shousuiryoku/attach/pdf/rikatuyousokushinn_teikosuto-4.pdf (閲覧日:2024年3月11日)

- 効率水準(最高水準):水車効率80%(小水力発電用プロペラ水車、出力200kW未満の場合)
- 導入コスト水準(平均的な水準):-
- ▶ その他の条件(設備容量・能力等)の場合の効率水準・導入コスト水準については、指針のファクトリストもご参照ください。
- ▶ また、具体的な該当製品等については LD Tech 認証製品一覧 もご参照ください。




導入効果


■ 年間電力消費量が3,000千kWhの事業所で、最大出力100kWの小水力発電システムを導入したケースにおける試算例は以下のとおり。

導入効果の試算例

• 対策の前後で電力消費量は変化しないが、対策の前後で、エネルギー消費量への換算係数、CO2排出係数、電気の単価が異なるため、各指標とも削減される試算結果。

計算条件

・ 発電した電気を全量自家消費し、エネルギー消費量及びCO2排出量を削減することを想定した。

項目		Before	After	単位	数値の出所、計算式
購入電気の単価		22.76	22.76	円/kWh	<u>【参考①】</u>
水力発電の発電コスト		19.0	19.0	円/kWh	資料 ^[6] を基に想定
購入電気の一次エネルギー換算係数	3	8.64	8.64	GJ/千kWh	<u>【参考①】</u>
水力発電電気エネルギー換算	4	3.60	3.60	GJ/千kWh	<u>【参考①】</u>
購入電気のCO2排出係数	5	0.434	0.434	t-CO2/千kWh	<u>【参考①】</u>
水力発電電気のCO ₂ 排出係数	6	0	0	t-CO2/千kWh	<u>【参考①】</u>
水力発電出力	7	0	100	kW	想定值
設備利用率	8	60	60	%	資料 ^[6] を基に想定
年間稼働時間	9	0	8,760	h	想定值
水力発電システムの発電量	10	0	526	千kWh	⑦×⑨×(®÷100)÷1,000
年間電気購入量	11)	3,000	2,474	千kWh	Before:想定值 After:⑪b-⑩
年間エネルギー消費量		25,920	23,271	GJ/年	①×3+00×4
エネルギーの原油換算係数		0.0258	0.0258	kL/GJ	<u>【参考①】</u>

計算式の添え字bはBefore、aはAfterを示す。

出所) [6]経済産業省「「令和5年度以降の調達価格等に関する意見」2023年2月8日、調達価格等算定委員会 J<u>https://www.meti.go.jp/shingikai/santeii/pdf/20230208 1.pdf</u> (閲覧日: 2023年8月4日)

計算結果

• 計算結果には、小水力発電システムが消費する電気を含まない。

項目	記号	Before	After	単位	計算式
エネルギー消費量	14)	669	600	kL/年	②×③
CO2排出量	15	1,302	1,074	t-CO2/年	(11)×(5)+(10)×(6)
エネルギーコスト	16	68.3	66.3	百万円/年	((1)×1)+(1)×2)÷1,000

備考

• 河川や用水路に設置する場合は、河川法や電気事業法に係る手続きや、水利用者等の関係者との調整が必要となる。