選択透過フィルム・ブラインド・熱線反射ガラス等による日射遮蔽

運用改善・ 部分更新

対策概要

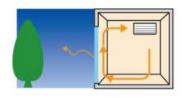
■選択透過フィルム、ブラインド、熱線反射ガラス等により日射を遮蔽する。

導入可能性のある業種・工程

■全業種

原理・仕組み

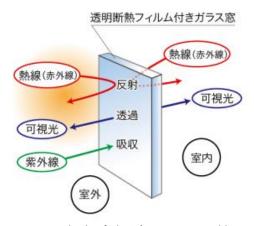
■ 選択透過フィルム、ブラインド、熱線反射ガラス等により日射を遮蔽することで、日射による冷房負荷を低減することができる。


日射遮蔽による効果等[1]

- 建物の構造のうち、最も熱の出入りの大きい場所は窓であり、直射日光や照り返し等により室温が上昇する。
- 選択透過フィルム、ブラインド、熱線反射ガラス等により日射を遮蔽することで、熱が室内に入りこむのを防ぐことで冷房負荷を低減する。
- 選択透過フィルムや、熱線反射ガラス等を使用すると、冬季に室内に入る日射熱が少なくなり、暖房負荷が増えるデメリットがある。

日射遮蔽による効果等[1]

ウインドウフィルムの遮断機能により、 窓から室内に入り込む日射熱を減らせます。



ウインドウフィルムの断熱機能により、 室内の熱を屋外に逃げにくくできます。

出所) [1]環境省「CO2削減ポテンシャル診断実践ガイドライン2019」 https://shift.env.go.jp/files/navi/measure/113271.pdf (閲覧日:2023年10月22日) より作成

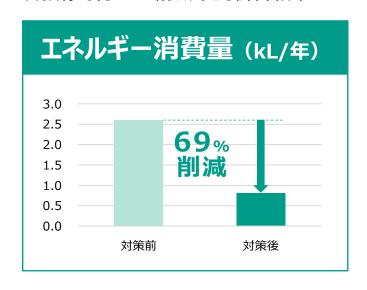
効率・導入コストの水準

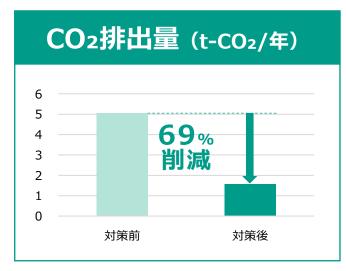
- 効率水準:-
- 導入コスト水準:-

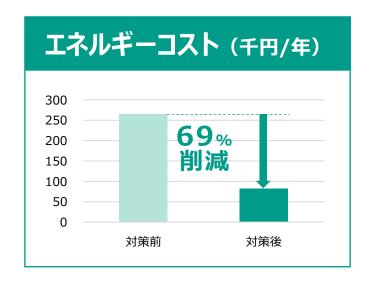
遮熱(遮光)フィルムの効果

選択透過フィルム・ブラインド・熱線反射ガラス等による日射遮蔽

運用改善・ 部分更新




導入効果


■ 東京都内の建物で、南向きの窓ガラス(面積200m²)に遮熱フィルムを貼り付け、かつ、ブラインドを併用することで、日射による冷房負荷を抑制したケースにおける試算例は以下のとおり。

導入効果の試算例

• 各指標で約69%削減できる計算結果。

選択透過フィルム・ブラインド・熱線反射ガラス等による日射遮蔽

運用改善· 部分更新

計算条件

東京都内の建物で、南向きの窓ガラス(面積200m²)に遮熱フィルムを貼り付け、かつ、ブラインドを併用することで、日射による冷房負荷を 抑制したケースを想定した。

項目	記号	Before	After	単位	数値の出所、計算式
電気の単価	1	22.76	22.76	円/kWh	<u>【参考①】</u>
電気のCO2排出係数	2	0.434	0.434	t-CO2/千kWh	<u>【参考①】</u>
電気の一次エネルギー換算係数	3	8.64	8.64	GJ/千kWh	<u>【参考①】</u>
窓からの入射熱量(冷房期間)	4	40,802	12,663	kWh/年	資料 ^[1] を基に想定(4月から10月について、入射熱量、空調日 の積算値を合計)
空調のCOP	(5)	3.5	3.5	_	想定值
電力消費量	6	11,658	3,618	kWh/年	4÷5
エネルギー消費量	7	100.7	31.3	GJ/年	⑥×③÷1,000
エネルギーの原油換算係数	8	0.0258	0.0258	kL/GJ	<u>【参考①】</u>

計算結果

窓から侵入する熱による冷房負荷について試算したもので、空調負荷全体について計算したものではない。

項目	記号	Before	After	単位	計算式
エネルギー消費量	9	2.60	0.81	kL/年	⑦×8
CO2排出量	10	5.06	1.57	t-CO2/年	⑥×②÷1,000
エネルギーコスト	11)	265	82	千円/年	⑥×①÷1,000

備考

日射を遮蔽すると、冷房負荷は抑制されるが、暖房負荷は増加する。年間の空調負荷が最も小さくなるよう検討する。