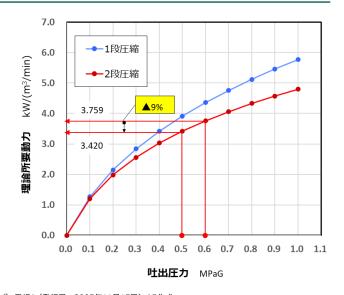
流体機械の使用端圧力及び吐出量の見直し・負荷に応じた 運転台数及び回転数の適正化による電動機の負荷の低減

運用改善· 部分更新

対策概要

■コンプレッサーの吐出圧力を必要以上に余裕をもって設定している場合は、吐出圧をできるだけ下げる。また、 負荷に応じて、運転台数の適正化やインバーターによる回転数制御機能を持つ機器の回転数の適正化を行う。

導入可能性のある業種・工程


■全業種

原理・仕組み

■ コンプレッサーは吐出圧力が高いほど多くのエネルギーを消費する。圧縮空気の要求量に応じて、運転台数やインバーターによる回転数制御機能を持つ機器の回転数の適正化を行うことで、エネルギー消費量及びCO2排出量を削減する。

吐出圧力と所要動力[1]

- 右図に示すように、コンプレッサーの所要動力は吐出 圧力が高いほど大きくなる。
- コンプレッサーの吐出圧力は需要側の要求圧力に合わせて調整すると良い。
- 例えば、コンプレッサーの吐き出し圧力を0.6MPaから0.5MPaに下げると約9%の節電になる(右図の縦軸は理論値なので実機とは異なる)。

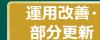

出所)[1]一般財団法人省エネルギーセンター「2006省エネルギー手帳」(発行日:2005年11月15日)より作成

効率・導入コストの水準

- 効率水準:-
- 導入コスト水準:-

対策イメージ[2]

- 吐出圧力、需要側の要求圧力、配管の圧力損失の要因を確認する。
- 圧力損失の要因の改善、要求圧力の引き下げ(需要設備の更新、高圧要求設備の系統分離等)を検討・実施する。
- 需要側の要求圧力に応じてコンプレッサーの吐出圧力を調整する。

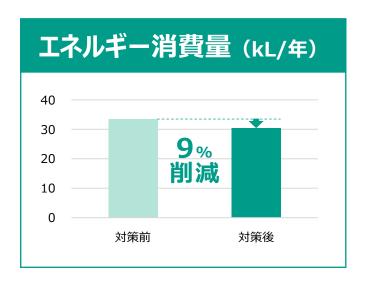


出所) [2]東京都「地球温暖化対策報告書作成ハンドブック地球温暖化対策メニュー編」

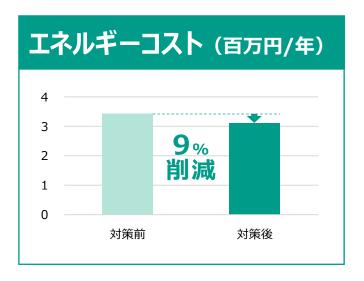
https://www8.kankyo.metro.tokyo.lg.jp/ondanka/report/handbook/Handbook_Menu2016.3ver.pdf

(閲覧日: 2023年9月29日) より作成

流体機械の使用端圧力及び吐出量の見直し・負荷に応じた 運転台数及び回転数の適正化による電動機の負荷の低減



導入効果


■ 圧縮空気消費量20m³/分で年間2,000時間運転するコンプレッサーの吐出圧力を0.6MPaから0.5MPaに引き下げたケースにおける試算例は以下のとおり。

導入効果の試算例

• 各指標で9%削減できる試算結果。

流体機械の使用端圧力及び吐出量の見直し・負荷に応じた 運転台数及び回転数の適正化による電動機の負荷の低減

運用改善· 部分更新

計算条件

・圧縮空気消費量20m³/分で年間2,000時間運転するコンプレッサーの吐出圧力を0.6MPaから0.5MPaに引き下げたケースを想定した。

項目	記号	Before	After	単位	数値の出所、計算式
電気の単価	1	22.76	22.76	円/kWh	<u>【参考①】</u>
電気のCO2排出係数	2	0.434	0.434	t-CO2/千kWh	【参考①】
電気の一次エネルギー換算係数	3	8.64	8.64	GJ/千kWh	<u>【参考①】</u>
コンプレッサー吐出圧力(ゲージ圧)	4	0.6	0.5	МРа	想定值
圧縮空気消費量	(5)	20	20	m³/min	想定值
コンプレッサーの所要動力	6	3.759	3.420	kW/(m³/min)	p1のグラフから④の圧力で読み取った理論所要動力とした
年間稼働時間	7	2,000	2,000	h/年	想定值
電力消費量	8	150.4	136.8	千kWh/年	\$x6x7÷1,000
エネルギー消費量	9	1,299	1,182	GJ/年	8×3
エネルギーの原油換算係数	10	0.0258	0.0258	kL/GJ	【参考①】

計算結果

項目	記号	Before	After	単位	計算式
エネルギー消費量	11)	33.5	30.5	kL/年	9×10
CO2排出量	12	65.3	59.4	t-CO2/年	8×2
エネルギーコスト	13	3.42	3.11	百万円/年	®×①÷1,000

備考

• –