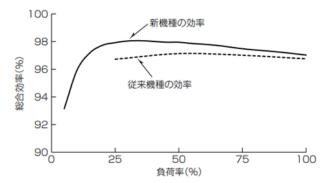
高効率無停電電源装置の導入

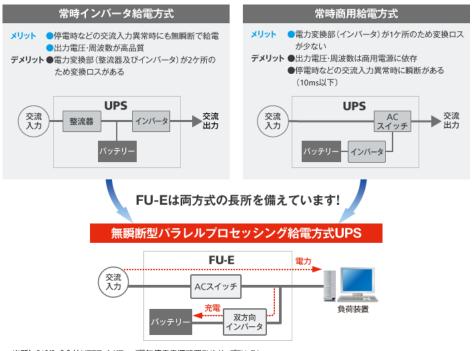
対策 概要

■高効率無停電電源装置を導入して、変換効率等を向上させて電気のロスを減少させる。


導入可能性のある業種・工程

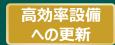
■全業種

原理・仕組み


■ 無停電電源装置(UPS)は停電時等に電源を供給する装置で、データサーバー等、常時電気が必要な設備はUPSを介して電気を供給することが多い。高効率なUPSを採用することでUPSにおけるエネルギー損失が削減され、エネルギー消費量及びCO2排出量の削減につながる。
高効率UPSの例

- 従来のUPSは、商用の交流電気を整流器で直流に変換した後、インバータで交流に再度変換して供給する(右図^[1])。
- 高効率なUPSでは、平常時は商用電源から直接電気を供給し、停電等の異常時はバッテリーに切り替えることで、整流器やインバーターによる損失を削減している。運転効率97%程度のものある(右図[1])。
- 特に負荷率が低い場合の効率が向上しているものもある(下図[2])。

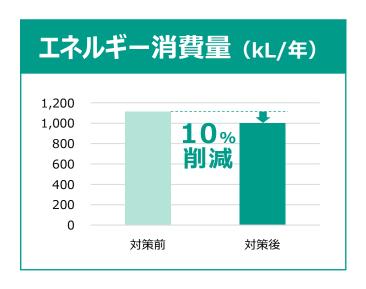
効率・導入コストの水準


- 効率水準:-
- 導入コスト水準:-

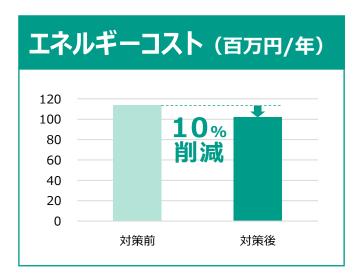
出所) [1]株式会社NTTファシリティーズ「無停電電源装置FUシリーズFU-E」 https://www.ntt-f.co.jp/service/ups/product/fu_e/(閲覧日:2023年10月4日)

[2]三菱電機株式会社「三菱電機技報 (Vol.91, No.9, 2017) 高効率·大容量の無停電電源装置」 https://www.giho.mitsubishielectric.co.jp/giho/pdf/2017/1709108.pdf (閲覧日: 2023年10月4日)

高効率無停電電源装置の導入



導入効果


■ 年間で5,000千kWhの電気を消費するデータセンターにおいて、UPSを高効率型に更新したケースにおける試算例は以下のとおり。

導入効果の試算例

• 各指標で10%削減できる試算結果。

高効率無停電電源装置の導入

計算条件

• 年間で5,000千kWhの電気を消費するデータセンターにおいて、UPSを高効率型に更新したケースを想定した。

項目	記号	Before	After	単位	数値の出所、計算式
電気の単価	1	22.76	22.76	円/kWh	<u>【参考①】</u>
電気のCO2排出係数	2	0.434	0.434	t-CO2/千kWh	<u>【参考①】</u>
電気の一次エネルギー換算係数	3	8.64	8.64	GJ/千kWh	<u>【参考①】</u>
UPSの総合効率	4	87	97	%	資料 ^[1] を基に想定
電力消費量	(5)	5,000	4,485	千kWh/年	Before:想定值 After:⑤b×④a÷④b
エネルギー消費量	6	43,200	38,746	GJ/年	\$×3
エネルギーの原油換算係数	7	0.0258	0.0258	kL/GJ	<u>【参考①】</u>

計算式の添え字bはBefore、aはAfterを示す。

計算結果

項目	記号	Before	After	単位	計算式
エネルギー消費量	8	1,115	1,000	kL/年	⑥×⑦
CO ₂ 排出量	9	2,170	1,946	t-CO2/年	(5)×(2)
エネルギーコスト	10	113.8	102.1	百万円/年	⑤×①÷1,000

備考