

◆ 環境省

What is the Carbon Neutral Technology Research and Development Program?

To reduce greenhouse gas emissions by 46% by fiscal 2030 and realize a decarbonized society by 2050, it is necessary to develop and demonstrate technologies that will be rolled out in society, including the renewal of existing infrastructure. It is important to support leading initiatives in cities that have adopted a zero-carbon city declaration, and to build vibrant communities that coexist with nature and are decarbonized, sustainable, and resilient -- by taking advantage of local characteristics. This program supports the research, development and demonstration (RD&D) of cross-sectoral local co-creation technologies that are rooted at the local level and contribute to the realization of a decarbonized society, working across multiple disciplines and stakeholders.

Models for a decarbonized society that take

We will implement the following initiatives to promote technological development and demonstration in collaboration with local governments, build a model of a decarbonized society that makes use of the characteristics of each region, support

the simultaneous achievement of regional revitalization and a decarbonized society and attract decarbonization dominoes.

Local Co-Creation and Cross-Sectoral Themes("Climate Change + Buildings," "Climate Change + Rural Communities," "Climate Change + Local Transportation")

Under this program, themes are determined based on national policies and linked to the needs of local communities and initiatives of government ministries and agencies, and various stakeholders participate as partners in innovation to implement local co-creation and cross-sectoral initiatives. In order to respond to the needs of regions aiming to decarbonize, this program supports the rapid implementation of innovative technologies in society through interagency collaboration to address issues unique to specific regions and in common across regions while taking advantage of regional characteristics, and to foster awareness public awareness about decarbonization at the local level.

Bottom-Up Stream – Area-Specific RD&D Category

Projects are implemented targeting RD&D to build a circular and ecological economy and to realize a decarbonized society, by leading to stronger future climate actions, where CO2 emission reductions are relatively significant in each sector, but where development-related risks or other constraints would limit progress if only voluntary private sector efforts were relied upon.

Ministry of the Contract

Scope of Ministry of the Environment contracts/subsidies

Environment

Awards Stream - Innovation Discovery and Acceleration of Large-scale Rollout Category

Startup Stream - Business Promotion Support for Start-up Companies This stream supports R&D projects that contribute to the reduction of

energy-derived CO2 emissions, conducted by small and medium-sized

%Shizuoka Environment Resources Association(SERA):http://www.siz-kankyou.jp/hojo.htm

Technology developer (Representative)

Technology developer (Representative) Technology developer (Project Partners)

Association of International Research Initiatives for Environmental Studies (AIRIES

Program Officer

Project monitoring, guidance, advice

enterprises, mainly startups, that have creative and innovative technologies.

Through implementation of feasibility studies, research, development and demonstration, this stream aims to bring to reality the ideas of organizations that have been awarded under the Minister of the Environment's Award for Climate Action (Innovation Discovery and Acceleration of Large-scale Rollout Category).

*Minister of the Environment's Award for Climate Action: https://www.env.go.jp/earth/ondanka/min_action_award/

Project Structure

About the program

A dedicated program officer with experience in technology development and commercialization will be assigned to each project. From the perspective of project management, the program officer monitors progress and how evaluation results are reflected, and as required, provides guidance and advice on project planning, etc. In implementing the project, it is necessary to cooperate by sharing information about the project with the program officer.

% For the Startup Stream, the Shizuoka Environment Resources Association is handling applications and administering subsidies. Details: http://www.siz-kankvou.jp/hojo.htm

Application / Project Implementation Schedule

The Carbon Neutral Technology Research and Development Program welcomes inquiries from any party considering an application. Our personnel will advise on the key points for implementing any proposed technology development/demonstration project, namely, novelty, CO2 reductions, and prospects for commercialization.

Budget and Project Period

The budget per project in a single fiscal year (April to March) is approximately 30 - 500 million yen based on the total project cost (subsidies are for a maximum of 50% of total project cost, or 15 - 250 million yen per project). In principle, the implementation period for each project is a maximum of three years.

Example of Local Co-Creation and Cross-Sectoral Category

Net zero energy greenhouse (ZEG) for

decarbonization of horticulture

1 Outline and Purpose

Reducing winter heating costs CO₂ emissions are important issues in greenhouse horticulture in Japan. In this demonstration project, we propose the concept of a zero-energy greenhouse (ZEG), aiming to make greenhouse horticulture carbon neutral. Core technologies include: (1) a high-efficiency heat pump for greenhouse horticulture that utilizes unused heat in rural areas; (2) a laminated high-performance inner curtain that promotes heating and cooling effects and photosynthesis in plants; (3) a high-precision environmental measurement and control system that controls the plant growth environment inside the greenhouse; and (4) a ZEG system that integrates these components. The purpose is to demonstrate the decarbonization of greenhouse horticulture by constructing a ZEG greenhouse

2 RD&D Details

Key Components

A1 - Development and demonstration of heat pump for greenhouse horticulture	B
Develop and demonstrate a new heat pump for greenhouse horticulture by using a groundwater heat source to overcome disadvantages of both air source heat pump defrosting and ground source heat pump brine circulation.	Dev higi
A2 - Research and development of wavelength selective laminated film materials	B
Develop and demonstrate technology that reduces heating and cooling loads and improves crop productivity using new curtain materials that have heat retention properties during heating and heat shielding properties by reflecting near-infrared light.	Cor
A3 - Development and demonstration of environmental control system applied to ZEG	buc
Develop and build control logic that maximizes the effectiveness of heat pumps for greenhouse horticulture and new curtain materials, as well as high-precision environmental measurement and control equipment that minimizes unevenness and waste in the indoor environment.	B: Des
A4 > Development of sensor network design and information communication platform	C
Develop a sensor network method to homogenize and optimize the ZEG environment. We will propose draft communication	Eva
standards related to measurement, control, and information communication through IEEE and other organizations.	D
	De

3 System Design

4 RD&D Objectives

• Expected Users and Benefits

The intended users are domestic and international greenhouse horticulture producers and production companies. The

curtain material is made of a film that selectively reflects only near-infrared rays, which only raise the temperature of the greenhouse and does not contribute to plant growth, and allows maximum visible light, which is effective for photosynthesis, to enter. In addition, one curtain material can be used for multiple purposes, such as a heat shielding film that brightens crops when used in the summer, and a heat insulation film that helps save energy when used in the winter.

5 Project Structure

Developing a new ZEG system that contributes to decarboniza veloping a system that includes (1) heat pumps for greenhouse horticulture, (2) new curtain materials, (3) h-precision environmental control equipment, and developing/building basic technologies for mainstreaming of ZEG. 2 nduct environmental measurements in accordance with ZEB and ZEH as applied in the building environment isider the definition of ZEG requirements and evaluation methods, develop greenhouse year-round therma dget simulation models, and evaluate the effectiveness of ZEG in carbon neutral agriculture. 3 Construction and evaluation of ZEG sign and construct a greenhouse with ZEG specifications and establish a ZEG performance evaluation method.

1~3 Demonstration in tomato, cucumber, and orchid cultivation aluate yield/quality improvement and CO2 emissions by ZEG in demonstration greenhouses with different crops. Formulation of commercialization plan

velop business plans and create financial simulations of agricultural management models.

Heat pump for greenhouse horticulture using groundwater heat source

• Target Specs and Performance

The system combines the use of greenhouse horticulture heat pumps with a coefficient of performance (COP) exceeding 4.0, laminated high-performance lining curtains that can be used for heat shielding and heat retention, and high-precision environmental measurement and control systems that optimize performance according to season and crop type. This is anticipated to reduce CO₂ emissions from existing combustion-type heaters by 25% by 2030 and increase crop vield or quality by 20% during the hot summer period through efficient use of air conditioning.

6 Implementation Schedule

	2022	2023	2024
Technical element 1.	Heat pump prototype pro	duction/ improvement an	d performance evaluation
Heat Pump	COP 4.0	COP 4.5	COP 5.0
Technical element 2.	Curtain prototype /	mprovement	
Wavelength Selective Laminated Film		Product specifications/pr	oduction equipment design
Technical element 3.	Development and demonst	ration of environmental con	trol system adapted to ZEG
Environmental Measurement and Control			
Systematized ZE G, A4, B1-3	Systematization of	ZEG that contributes	to decarbonization
		Evaluation of	practicality of ZEG
Demonstrations ZEG, B1~3	Demonstration of cultiv	ating tomatoes, cucum	bers, and moth orchids.
Formulation of commercialization plan	Business plan and finan	cial simulation of agricult	ural management model

Example of Bottom-Up Stream – Area-Specific RD&D Category

Construction and evaluation of a concept ship with optimization of a high-efficiency propulsion system and power-saving system

1 Outline and Purpose

There are currently more than 5,000 non-international coastal transportation vessels in operation in Japan, but Japan's domestic construction capacity is only around 100 vessels annually. Even if alternative fuels and EV technology are developed, it will take a considerable amount of time before all vessels are replaced. Therefore, it is necessary to introduce CO₂ emission reduction technologies as soon as possible. It is important for the technology to be applicable without changing hull shape, to be safe and reliable, and to be able to be installed on existing ships. This proposal brings together various proven technologies that can reduce CO2 emissions when the ship is in operation, during cargo handling, and berthing/unberthing. Some of the technologies can also be adopted on existing ships

2 RD&D Details

Key Components

A1 > Technology for CO₂ reduction during operation

We focused on technologies that do not require major design changes such as improving the hull shape. In this project, an optimally designed propeller and energy-saving attachment are installed. They are based on hull performance estimation using CFD.

A2 - Technology for CO₂ reduction during berthing/unberthing

Conventional side thrusters cannot move a vessel directly sideways and require time for ballast adjustment after cargo handling. The new thrusters installed on a ship can move the vessel sideways, and eliminate time otherwise required for ballast adjustment. The aim is to reduce the CO2 emissions by shortening the time for the berthing/unberthing.

A3 Technology for CO₂ reduction during cargo handling and berthing/unberthing

Aiming to build an energy-saving system using electrified and digital equipment, this proposal focused on cargo handling and berthing/unberthing, and a low-output battery system installed on the ship

B&C System integration and demonstration of development elements

We built a new coastal transport vessel (499GT cargo ship) equipped with the developed A1, A2, and A3 products, collected and evaluated operational data, and demonstrated that it was possible to reduce CO₂ emissions by 12% for the entire coastal transport vessel.

3 System Design

 Ship 	operation	сус	le		

Cargo handling and berthing Unberthing berth

· Composition of CO₂ reduction element technology during ship operation

CO2 reduction component technologies and system configuration

Optimized propeller and wake distribution image from the propelle

Container type batter

4 RD&D Objectives

• Expected Users and Benefits

It is possible to reduce CO₂ emissions at domestic shipyards and without changing the existing ship type.

5 Project Structure

Project lead	Pro
NAIKEN R&D	— Ya
Development of CO2 reduction technology uring vessel operation	Hu l 70 y
Development of CO2 reduction technology when unberthing and unberthing	Co
evelopment of CO2 reduction technology uring cargo handling and berthing	N
emonstration of CO2 reduction effect	De
years of development work results	sys
rack record of developing remote erthing/unberthing equipment	Pro

	Project partners
_	Yamanaka Shipbuilding Co., Ltd.
	Hull construction, equipment installation, trial runs
	70 years of shipbuilding
	Cooperation
	National Institute of Maritime, Port and Aviation Technology
	Development of automatic berthing
	systems, etc.
	Provision of sites for field testing
_	Imabari City, Ehime Prefecture
	Organizing of maritime industry exhibitions,
	support for promotion of maritime industry

ΟΤ

)	Target Specs and Performance
	The target is to reduce CO2 emissions by 9% during operation, 4% when unberthing and unberthing,
,	over 50% during cargo handling and berthing, and 12% during overall coastal vessel operation.

6 Implementation Schedule

	2022	2023
A1. CO ₂ reduction technology during operation	Design and manufacture of optimized propellers	Evaluation in actual operation
Optimal propeller design	$ \longrightarrow$	$ \longrightarrow$
A2. Technology for CO2 reduction during berthing/unberthing	Manufacture and installation of new thrusters	Evaluation in actual operation
Development of a new type of thruster	$ \longrightarrow$	$ \longrightarrow$
A3. CO2 reduction technology during cargo handling and berthing	Battery design and installation	Evaluation on actual ship
Development of container type battery		$\rightarrow \longrightarrow$
B, C. System integration and verification	Land support system manufacturing	Evaluation by onshore support system
Demonstration using a 499GT cargo ship	\longrightarrow	\longrightarrow
D. Rollout activities/ commercialization plan	Brush up business model	Research for rollout (intellectual property strategy, etc.)
Consideration of high added value and intellectual property strategies	$ \longrightarrow$	$ \longrightarrow$

Example of Bottom-Up Stream – Area-Specific RD&D Category

Technology for absorbing surplus renewable energy electricity in aquifer thermal energy storage systems

1 Outline and Purpose

* The main objective of this project is to develop the world's first fast-cycle heat storage and release functionality, with multi-level thermal storage, in order to add new energy storage functions to the Aquifer Thermal Energy Storage (ATES) system, which possesses a large energy storage capacity. The goal is to develop a surplus renewable electric energy absorption system to be more cost-effective and space-efficient than electric batteries and hydrogen. It is hoped that this new ATES technology can help to address the issue of surplus renewable energy that is slowing the adoption of renewable energy as a major energy source in the government's CO2 reduction strategies, as well as to enhance the energy demand management capabilities of densely developed urban cities and factories that have onsite photovoltaic power generation. • ATES verification will be conducted with the cooperation and collaboration of Osaka City and the Japan Association for the 2025 World Exposition.

2 RD&D Details

Key Components

A1 Develo oment of S ırplus Renewable Energy Absorpti

Envisioning applications for urban/regional models and onsite power generation/consumption models for factories, in this we phase will investigate the required capacity to absorb surplus renewable energy, then determine the adjustment functions required for the design of the system, and compare this system's performance with other surplus energy absorption systems. (Expected practical application level by 2024)

Establishment of Optimal Operation Methods for the System Develope A2

Development of a system that controls optimal thermal storage, taking into account multi-temperature thermal storage in the aquifer in response to fluctuations in surplus renewable energy, as well as direct cooling functionality in summer without the use of chillers for heat dissipation. Additionally, efforts will be made to reduce heat storage losses and maintain the annual heat balance. (Expected practical application level by 2025)

3 System Design

4 RD&D Objectives

• Expected Users and Benefits

• Businesses aiming for Zero Energy Building (ZEB) construction or urban redevelopment → Reduce cost of procuring electricity from renewable energy sources to reduce CO₂ emissions and minimize cost of energy storage facilities. • Businesses planning significant solar power generation installations in factories and facilities \rightarrow Efficient utilization of surplus electricity generated during holidays, and cost reduction in energy storage facilities.

5 Project Structure

roject lead	Project partners	(Development of surplus renewable energy power absorption and negawatt function, system
Isaka Public University	Mitsubishi Heavy Industries	Integration, demonstration, commercialization) Incorporate the developed system into ATES as a standard feature Responsible from project formation to post implementation
)versight, development	mermai oystems, Eta.	maintenance, etc.
surplus renewable	Project partners	(System integration, demonstration, commercialization)
nergy power	- Takenaka Corporation	 As a general construction company, can recommend this technology for development projects
osorption and	Drojoot nortnoro	(Davalanment of augulus renewable anarry neuror
egawatt functions,	Project partners	Development of surplus renewable energy power absorption and negawatt function, demonstration
stablishment of	Kansai Electric Power Company	commercialization)
otimal operation		 Propose and promote this technology as an
ethod of system	Project partners	energy and virtual power plant (VPP) business
eveloped, system	Yasui Architects & Engineers, Inc.	(Demonstration, commercialization)
tegration,		As an architectural firm, responsible for heat source
emonstration)	Project partnersz	• Responsible for ATES system design.
las track record for	The University of Tokyo	(Development of surplus renewable energy power
leveloping aquifer thermal		absorption and negawatt function)
torage system	Cooperation	 Track record of evaluating power systems and global warming countermeasures
las system simulation	Japan Association for the	(Field utilization/publicity cooperation)
echnology	2025 World Exposition	•ATES system utilization • Publicity cooperation
	Project partners	(Overall cooperation, information dissemination)
l	Yasui Architects & Engineers, Inc.	 Consideration of further relaxation of groundwater extraction regulations (city budget)

Osaka Metropolitan University

2023 - 2025

Target Specs and Performance

 Realizes about 1/10 the cost (165 kW x 300 h ≒ 50,000 kWh, 7 million yen) compared to a storage battery system with similar capacity (165 kW x 6 h ≒ 1,000 kWh, 60 million yen) (ATES main unit costs about 160 million yen). • The energy storage efficiency is around 70%, which is slightly lower than the 75-95% of storage batteries, but it is superior to hydrogen generation systems. The CO2 emission reduction effect is 17 tons/year, which is lower than the 47 tons/year of storage batteries, but it does not consume scarce resources and does not generate waste. In both cases, we hope to reduce CO₂ emissions by absorbing surplus energy and expanding the introduction of renewable energy.

6 Implementation Schedule

Details / Year	2023	2024	2025
A1. [Absorption of surplus renewable energy power and development of negawatt function]			
①Finalization of specifications for surplus renewable energy power absorption function through multiple temperature thermal storage	\longrightarrow		
②Specifications for Negawatt function determined by heat radiation of absorbed cold heat storage mass	\longrightarrow		
③Evaluation of introduction scenarios based on urban/regional models and onsite power generation/consumption models for factories	\longrightarrow	\longrightarrow	\longrightarrow
A2.[Establishing the optimal operating method for system developed]			
①Optimization of operation method by building a heat source + ATES coupled model ②Development of optimal operation technology to reduce short-and medium-term	$ \longrightarrow$		\rightarrow
③Study of methods to improve the time response characteristics of chillers			\longrightarrow
System integration			
①Design of ATES operation mode switching mechanism and control system ②Construction of piping/operation mode switching equipment			
C.[Demonstration]			
①Verification of effectiveness of surplus power absorption / negawatt mode		_	\rightarrow
②Verification of effectiveness of measures to improve responsiveness of surplus power absorption	\rightarrow	\rightarrow	\rightarrow
③Calculation of economic efficiency and CO2 emission reduction amount ④Removal of test equipment			, →
D.[Commercialization]			
①Formulation of commercialization plan ②Technology development project publicity		\rightarrow	\rightarrow

Example of Bottom-Up Stream – Area-Specific RD&D Category

Energy storage technology using zinc to achieve carbon neutrality

1 Outline and Purpose

Innovative electricity storage technologies that can store electricity from highly variable renewable energy sources at significantly lower cost than existing technologies are anticipated to help make renewable energy electricity a major power source in the pursuit of carbon neutrality by 2050. This project aims to develop a zinc air flow battery technology utilizing zinc as an energy storage medium. Zinc exists in abundance as a resource and can be safely and stably stored. In principle, the zinc air battery has a high energy density. In addition, output (W) and capacity (Wh) can be designed independently to be suitable for absorbing long-term power fluctuations while reducing equipment costs. This technology has the potential to be less expensive than pumped storage power generation. The purpose of this project is to develop component technologies of the energy storage systems, create system prototypes that contribute to technology rollout, and verify the economic efficiency and practicality of the technologies.

2 RD&D Details

Key Components

A1 - [Development of charging unit

We will develop a device to regenerate zinc slurry using an electrochemical reaction and confirm the stability of the reaction in practical use conditions, in order to verify the equipment cost. (Expected to reach practical level in 2024)

A2 - [Development of discharging unit

We will develop a power generation unit with multiple battery cells arranged to efficiently utilize zinc slurry as an energy source for power generation and confirm reaction stability in practical usage conditions in order to verify equipment costs. (Expected to reach practical level in 2024)

A3 - [Environmental control

Since the air battery is open to the atmosphere, the power generation unit is affected by carbon dioxide in the atmosphere. When verifying the lifetime, we will take measures such as implementing a carbon dioxide absorbent system and maintenance of the electrodes and electrolyte, and will evaluate the energy and economic efficiency. (Expected to reach practical level in 2024)

3 System Design

4 RD&D Objectives

• Expected Users and Benefits

We aim to provide power solutions that allow safe and inexpensive storage of large amounts of power. The main target of our solution is power generation companies with renewable energy sources such as medium- to large-scale solar power plants, which aim to avoid the risk of economic and environmental losses due to output curtailment.

5 Project Structure

Project lead	Cooperation	Γ	
Sharp Corporation	Nippon Shokubai Co., Ltd.	\mathbf{h}	
(A-D, development demonstration of zinc air flow battery, formulation	(A1. Development of charging unit) Achievements in research and development of		
of commercialization plan) Has	separators for zinc batteries and zinc negative electrode materials		
in zinc air battery technology	Cooperation		
Responsible for	 Sharp Energy Solutions Corporation 		
project completion	(D. Business strategy)		
	Achievements in sales of household storage battery	ŀ	
	systems, megasolar and grid storage battery EPC business.		
		╞	
	(C. Demonstration field)		
	Renewable energy power generation company	╞	
	such as solar and wind power Solar farm		
	Higashimatsuyama from 2022	L	

Target Specs and Performance

Smallest unit (output = 1 kW, capacity = 12 kWh) will be developed for designing the commercialization product for power generation companies (target specifications: output = 210 kW, capacity = 2,520 kWh). Target system energy efficiency = 70%. Equipment cost = less than pumped storage power generation (23,000 yen/kWh)

6 Implementation Schedule

	2022	2023	2024
Development of			
component teennology A1	Control factor identification	Prototype evaluation of zinc regeneration unit	
Development of component technology A2		>	
	Control factor identification	Prototype evaluation of power generation unit	
Development of component technology A3		>	
	Basic data acquisition	CO ₂ concentration control verification	
B. System integration			>
		Prototype design	Evaluation/ demonstration
C. Demonstration			>
		Prototype design	Evaluation/ demonstration
D. Formulation of			>
		Formulation of intellectual property strategy	Formulation of commercialization plan

Power traceability system using SaaS type P2P trading platform functions

1 Outline and Purpose

* After the end of Japan's feed-in tariff (FIT) system, the introduction of renewable energy by independent power producers (IPPs) may stagnate as the government system no longer guarantees an all-quantity buyback. Consumers will lose the incentive to use renewable electricity, which can threaten the country's ability to achieve its net zero goals. • This project therefore aims to establish a system in which customers can directly support renewable electricity producers and to lead to business opportunities. • The project is to develop (1) a P2P electricity matching system that certifies customers' purchase of renewable electricity from a specific plant at a fixed price.

and (2) a function that allows various users, including individual customers, to participate in the transaction (shared PPA, power purchase agreement). The system will be migrated to a Software as a Service cloud computing (SaaS) platform and made available to other electricity companies. • In the technological development, UPDATER's existing electricity traceability system 'Enection 2.0' will be upgraded to this system so that the company will reduce production costs and improve efficiency.

2 RD&D Details

Key Components

A1 - Smart Contract Blockchain System	В	
Certifies transactions by matching the amount of electricity generated specified power plant zone per 30 minutes to the amount of demand fro customer.	by the A1 m each it w	
A2 > PPA processing system	C	
Enables customers to directly purchase electricity from the plant they have designated. Incorporates three functions: corporate PPA, shared PPA, and crowdfunded PPA.		
A3 - Tools to improve utility value	D	
Include applications for individual consumers and services for power produ Will be migrated to SaaS and made available to multiple businesses.	icers. A s mai for	

3 System Design

4 RD&D Objectives

- Expected Users and Benefits
- Renewable electricity producers (IPPs): Investment recovery risk and financing risk in the construction of plants will be mitigated.
- Corporate customers (large-sized, connected to high voltage): Opportunities to select and own renewable electricity with the guarantee of additionality will be provided.
- Target Specs and Performance
 - P2P electricity transactions will be commercialized, and 0.1 to 1million users anticipated.

Example of Awards Stream - Innovation Discovery and Acceleration of Large-scale Rollout Category

System integration

will be integrated into A2 as a function of this system and evaluated to see if orks together as planne

Demonstration

rerification will be conducted to determine whether the system and services reduce CO2 emissions.

Survey to materialize the business plan

survey is conducted to commercialize the technology. A business plan is erialized and updated based on the survey. Feedback will also be provided technological development.

• Individual customers: Opportunities to select and own renewable electricity as needed will be added.

• Electricity retailers (PPS): Opportunities to provide customers with high-value added services and renewable electricity will be available

6 Implementation Schedule

	2021	2022	2023
1. Develop component technology			>
	Basic development based on Solana	Full-scale development based on Polkadot	Functional modification
2. Develop component technology			>
	Development of basic function	Development of PPA job processing function	Development of function for power plant zone subdivision
3. Develop component technology			>
	Application development	Functional modification	Migration to SaaS
3. System integration	\longrightarrow		>
,	Cooperative operation test		Cooperative operation test
C. Demonstration			>
		Performance verification	Performance verification
D. Survey			>
	User needs survey	Survey for individual users	Formulation of commercialization plan

Ongoing Projects in 2023

Local Co-Creation and Cross-Sectoral Themes						
"Climate	Change + Buildings"					
	TAISEI CORPORATION	2022 - 2024	Renovation of existing buildings using Net Zero Energy Building model for realization of a circular and ecological economy 【	>		
	MACNICA, Inc.	2023 - 2025	Utilization of perovskite solar cells in harsh environments such as harbors	aner X-		
"Climate Change + Agriculture"						
1	National Agricultural and Food Research Organization	2023 - 2025	Field trial of carbon neutral irrigation supply systems adapting pumped storage hydropower and surplus water pressure in pipeline			
Ø	Toyohashi University of Technology	2022 - 2024	Semi-closed/all electric tunnel greenhouse with "speaking plant approach" environmental control system			
	National Agricultural and Food Research Organization	2022 - 2024	Net zero energy greenhouse (ZEG) for the decarbonization of horticulture	» •		
Priority Themes Category						
*	MARINE ENERGY Co., Ltd.	2020 - 2023	Regional circular-economy business scheme with intelligent wave power generation system	and A		
Ø	AIR WATER INC.	2021 - 2023	Liquefied biomethane regional supply chain model using unused biogas	áran Se		
¥	TOYOTA ENERGY SOLUTIONS INC.	2021 - 2024	Zero-emission agriculture with cogeneration, using ammonia-fueled micro gas turbine			
Bottom-Up Stream - Area-Specific RD&D Category						
	Mitsubishi Corporation	2021 - 2024	Low-carbon approach to heavy truck logistics using a distributed network of small-scale LNG filling stations	>		
	NAIKEN R&D	2022 - 2023	Construction and evaluation of a concept ship with optimization of a high-efficiency propulsion system and power-saving system	>		
	Nagoya University	2023 - 2025	Wideband gap semiconductors based high performance on-board charger systems for xEV	\$ \$		
	Osaka Metropolitan University	2023 - 2025	Technology for absorbing surplus renewable energy electricity in aquifer thermal energy storage systems 👖			
	Ricoh Company, Ltd.	2021 - 2023	Circular-type energy storage system for edge data centers	0		
	Sharp Corporation	2022 - 2024	Energy storage technology using zinc to achieve carbon neutrality	ș.		
	Mitsui O.S.K. Lines, Ltd.	2022 - 2024	Ocean thermal energy conversion utilizing deep seawater on Kume-Jima for a circular and ecological economy 👖	600 (100		
	Riamwind Co., Ltd.	2022 - 2024	200 kW mid-size wind lens turbine and multi-rotor system	ana Air		
	KOATSU GAS KOGYO CO., LTD.	2023 - 2025	Development of atmospheric pressure nitrogen acetylene gas carburizing method by direct control of acetylene gas	>		
	AISIN CORPORATION	2023 - 2025	Pure hydrogen SOFC system technology development and demonstration to promote regional hydrogen utilization [ð.		
	Hitachi Zosen Corporation	2020 - 2023	Next-generation waste treatment system for high-efficiency energy utilization	á.		
6	Suzuki Shokai Co., Ltd.	2022 - 2024	Next-generation low-concentration aluminum dross effective utilization technology for carbon neutrality	ár Ó		
	Sumitomo Mitsui Construction Co., Ltd.	2022 - 2024	Energy recovery technology using only manure from egg-laying chickens	>		
	Sumitomo Corporation	2023 - 2025	Functional materials optimizing the material flow of rice husks for energy use	»		
¥	Pacific Power Co., Ltd.	2022 - 2024	Optimization of renewable power generation based on real-time CO2 emission intensity of electricity	and Second		
	Elephantech Inc.	2023 - 2025	Mass production technology for low-carbon PCB manufacturing using inkjet printing	••••		
	Saibu Gas Co., Ltd.	2023 - 2025	Methanation local production for local consumption model for cost reduction using various local raw materials	ante Activitation de la constante de		
Awards Stream - Innovation Discovery and Acceleration of Large-scale Rollout Category						
÷	UPDATER, Inc.	2021 - 2023	Power traceability system using SaaS type P2P trading platform functions	ģ.		

Climate Change Projects Office, Climate Change Policy Division, Global Environment Bureau, Ministry of the Environment, Government of Japan Email:chikyu-jigyo@env.go.jp

Research, Development and Demonstration Program for Local Co-Creation and Cross-Sectoral Carbon Neutral Technologies https://www.env.go.jp/earth/ondanka/ cpttv funds/

The information in this pamphlet is valid as of October 2023.