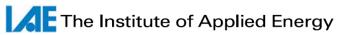
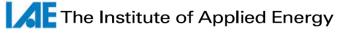


ZEB/ZEH Roadmap - Technology and Institution -

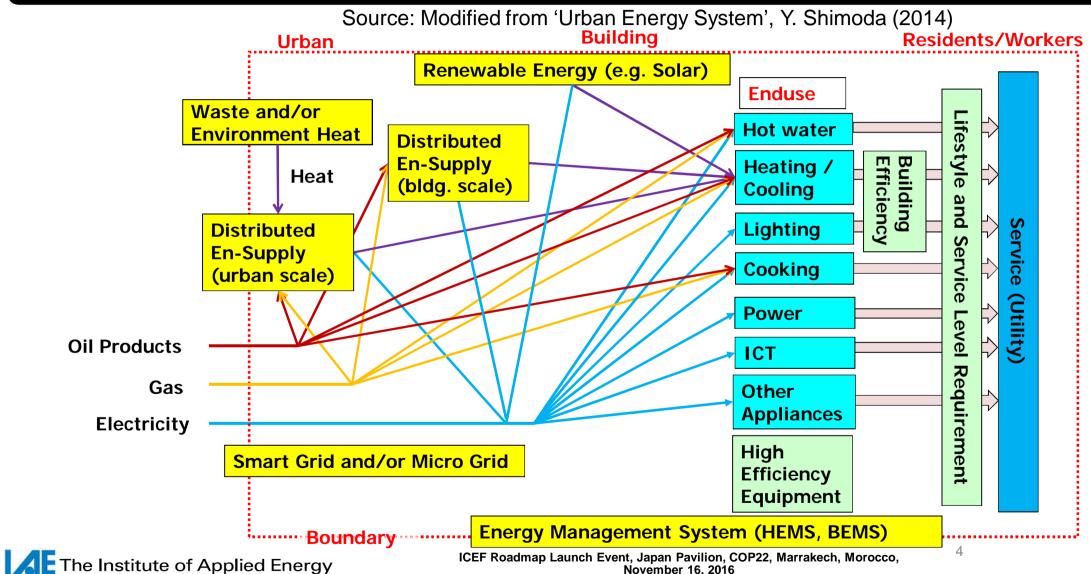

ICEF Roadmap Launch Event
Japan Pavilion, COP22, Marrakech, Morocco,
November 16, 2016

Atsushi Kurosawa The Institute of Applied Energy (IAE), JAPAN

I would like to express thanks to IAE colleagues for compiling efforts and experts from various organizations for their useful information and comments.

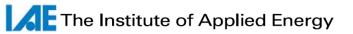

Outline

- 1. Energy System in Building Sector
- 2. Toward ZEB/ZEH
 - Technology and Institution
- 3. Summaries

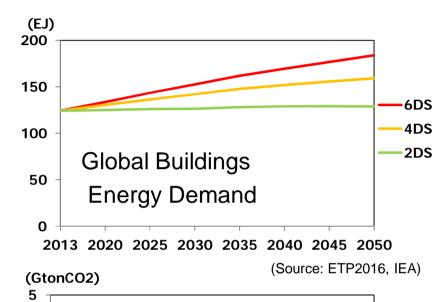


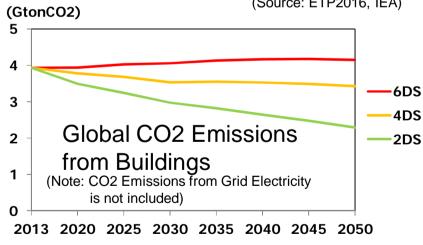
Outline

- 1. Energy System in Building Sector
- 2. Toward ZEB/ZEH
 - Technology and Institution
- 3. Summaries



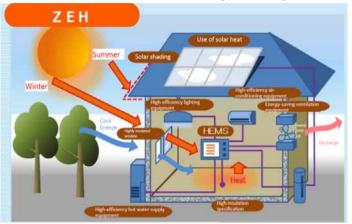
Energy System in Building Sector


Outline


- 1. Energy System in Building Sector
- 2. Toward ZEB/ZEH
 - Technology and Institution
- 3. Summaries

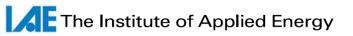
Buildings - Energy Demand and CO2 emissions

- ☐ Global bldg. energy demand
 - 31% of total demand in 2013, 40% in 2050 (6DS)
 - Most of future growth expected in developing regions
- Bldg. energy demand drivers
 - Numbers of household
 - Floor space
 - Appliances
 - type, size and numbers
- Deep cut of CO2 emissions
 - Efficiency (end-use, envelope)
 - Low CO2 energy carriers
- The ZEB/ZEH roadmap as a guide for international cooperation and stakeholder involvement to assist deep cut

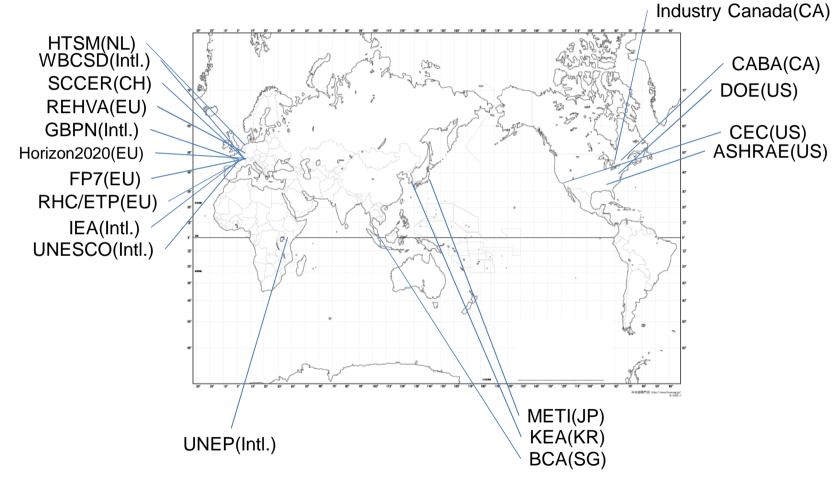


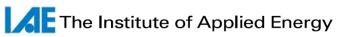
(Source: ETP2016, IEA)

ZEB/ZEH – Definition and Goal


- Definition
 - Annual net energy consumption is nearly zero.
- □ Goal
 - Net zero energy consumption in buildings around mid-century to prepare long-term zero emission target
- □ Achieved by energy conservation and renewable energy integration
 - Energy conservation FIRST -energy efficient appliances and structure, energy management
 - Renewable energy integration to assist net zero energy consumption

* ZEB/ZEH: Net Zero Energy Building / House




Example of ZEH & ZEB (Source: METI, Japan)

Existing ZEB/ZEH Roadmaps - Survey

☐ International organizations, national/local governments, industrial associations, etc.

ZEB/ZEH Definitions

(source) ZEB/ZEH roadmap committee report, Dec.2015 (in Japanese)

	DOE, USA	NREL, USA	REHVA, Europe	Japan
Year	2015	2006/2010	2013	2015
Design or Operation	Operation	Design/ Operation	Design	Design
Target Devices	HVAC*, Water heating, Lighting, Power outlet, Energy exchanged and transformed in building	HVAC, Water heating, Lighting, Power outlet, Energy exchanged and transformed in building	HVAC, Water heating, Lighting	HVAC, Water heating, Lighting, Elevators and moving stairs
Renewable Energy Integration	On-site, On-site + Off-site (for small houses)	Categorized On-site On-site + Off-site	Only On-site	Only On-site

DOE: Department of Energy

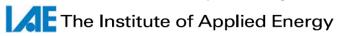
NREL: National Renewable energy Laboratory

REHVA: Federation of European Heating, Ventilation and Air Conditioning Associations

The Institute of Applied Energy

*HVAC: Heating, Ventilation and Air Conditioning

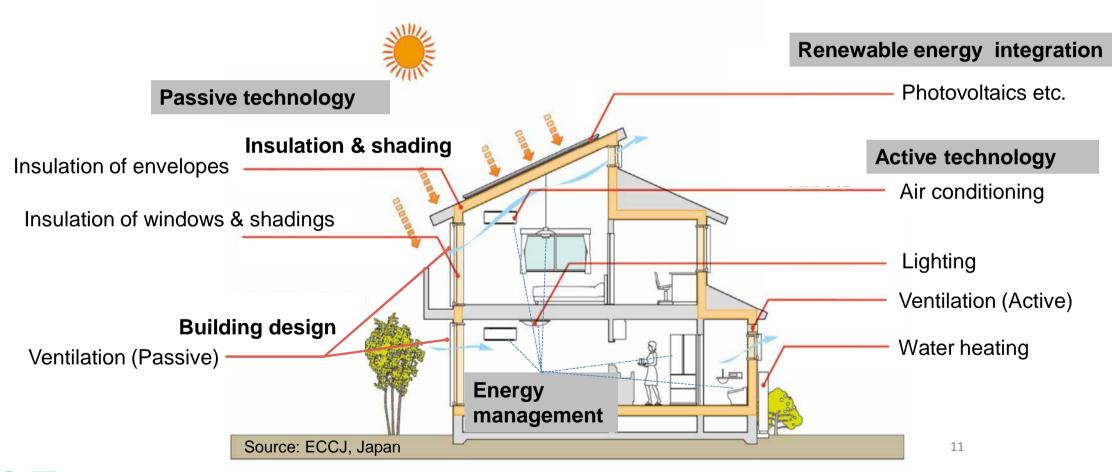
**AnREU: Annual non-Renewable Energy Use

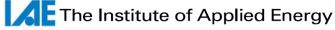

ZEB/ZEH Definitions (cont.)

	DOE, USA	NREL, USA	REHVA, Europe	Japan
Category of ZEBs	ZEB: annual primary energy use is recovered by on-site renewable energy	ZEB: annual energy use is recovered by renewable energy Near ZEB: built as ZEB, but does not met because of weather and operation etc.	PEB: net AnREU** < 0kWh/m²yr ZEB: AnREU < 0kWh/m²yr, self sufficient nZEB: net AnREU = 0kWh/m²yr nnZEB: 0kWh/m²yr < net AnREU < limit of individual country	ZEB/ZEH: Primary energy consumption (PEC) is less than 100% from the standards Nearly ZEB/ZEH: PEC is less than 75% from the standards ZEB ready: PEC is less than 50% form the standards
Building types	Building, Campus, Portfolio, Community	Building	Building	ZEB: Building ZEH: Detached house

DOE: Department of Energy

NREL: National Renewable energy Laboratory

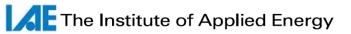

REHVA: Federation of European Heating, Ventilation and Air Conditioning Associations



**AnREU: Annual non-Renewable Energy Use

ZEB/ZEH Technologies

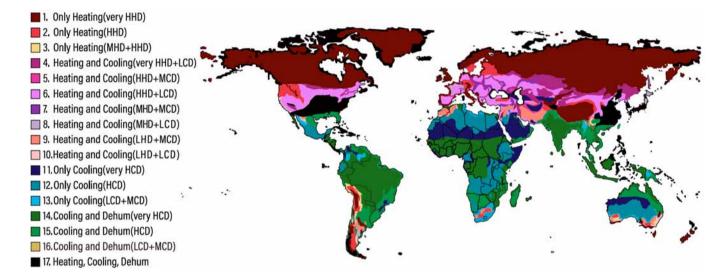
□ Four Technology Categories

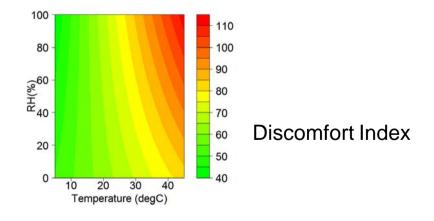


ICEF Roadmap Launch Event, Japan Pavilion, COP22, Marrakech, Morocco, November 16, 2016

Roadmap Variations - Climate and Air Conditioning

■ Average Temperature ■ HDD / Heating Demand (Source: WRI) (Source: Wisconsin U. original data from CRU, U. East Anglia) ■ Relative Humidity / Dehumidification Demand CDD / Cooling Demand

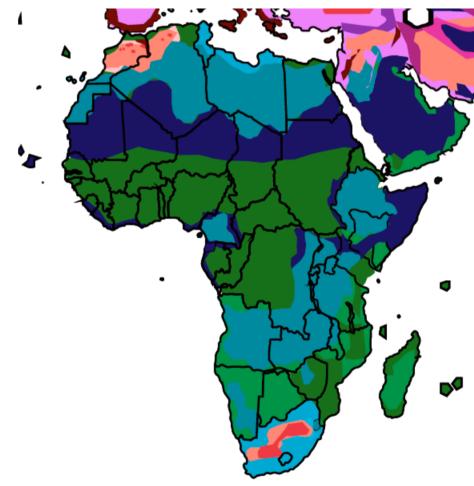

(Source: Wisconsin U. original data from CRU, U. East Anglia)


(Source: WRI)

Roadmap Variations - Climate and Air Conditioning

- □ Climate variation
 - Three types of roadmap
 - Moderate & humid
 Heating, cooling & dehumidification
 - ColdHigh heating demandOnly heating
 - HotHigh Cooling Demand (with Dehumidification)
 - Only cooling
- Discomfort index
- Function of ambient temperature and relative humidity
 The Institute of Applied Energy

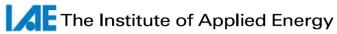
Source: Best Practice Policies for Low Carbon & Energy Buildings
Based on Scenario Analysis May 2012 (Global Building Performance Network)



Climate and Air Conditioning in Africa

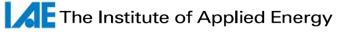
- Cooling demand
 - Very high
 - High
 - Low and moderate
- Both cooling and heating
 - Morocco and others
- Dehumidification demand
 - Yes green (right figure)/ No other colors
- Estimated economic losses from by heat stress
 - Dissemination of high-efficiency indoor and outdoor air-conditioning supports sustainable growth of Africa to avoid estimated losses.

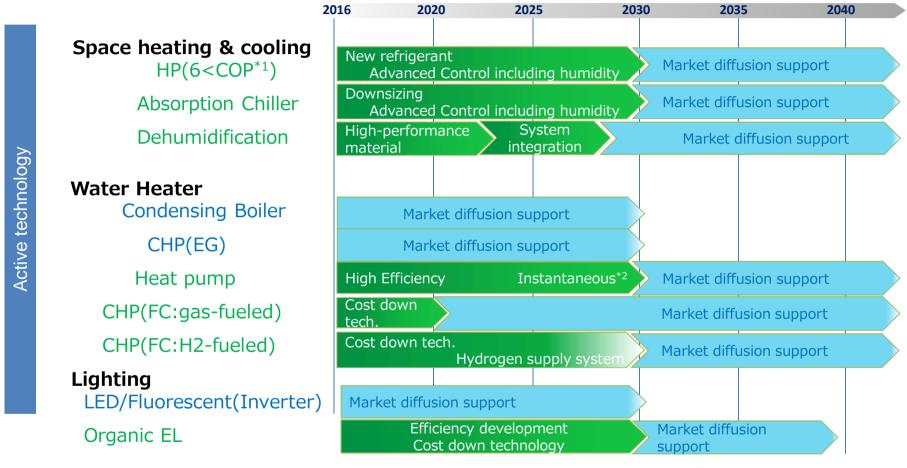
Source: Best Practice Policies for Low Carbon & Energy Buildings
Based on Scenario Analysis May 2012 (Global Building Performance Network)


(Source: WRI)

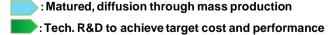
(Source: Wisconsin U. original data from CRU, U. East Anglia)

ZEB/ZEH Technology Roadmap - Concept


- Climate zones
 - Moderate & humid, cold, hot
 - Energy demand of moderate-high temperature and humid regions will increase drastically.
- Technology categories
 - Active Air conditioning, hot water, lighting
 - Passive Envelope, aperture
 - Management
 - Renewable energy integration
- Technology indicators
 - Efficiency, cost, fuel, maturity
 - Climate zone Moderate & humid, cold, hot
- Building vintage
 - New, retrofit
- Common technological elements for ZEB and ZEH. However, realization of ZEH could be faster than ZEB, because of its relatively low energy density.
- References
 - IEA roadmaps, METI, NEDO etc.


Example: Active technology Status (Air Conditioning)

(source) summarized by The Institute of Applied Energy from various information sources


Technology	Efficiency %	Equipment cost*	Fuel type**	Fuel cost*	Maturity*	Climate***	Other Information
Boiler	70-88	L	G/O/B	М-Н	Н	C,M	Floor, Panel heating
Absorption air conditioner	70-120	М	G/O/B	M-H	Н	M,H	
Heat Pump (Electricity)	200-600	L-M	Е	M-H	Н	All	
Heat Pump (Engine)	120-200	L-M	G/O/B	L-M	Н	All	
CHP(Engine)	70-90	M-H	G/O/B	L-M	Н	All	with Elec. supply
CHP(FC)	80-90	Н	G/H	L-H	M	All	with Elec. supply
Dehumidifier	n.a.	Н	Е	Н	М-Н	M,H	heat pump, desiccant, compressor, wet
Humidifier	n.a.	L-H	G/E/O	L-H	Н		evaporation, steam, ultrasonic



Roadmap for Moderate & Humid Regions - Active Technology

^{*1} Top level COP (Coefficient of performance), IEA *2 Hot water supply system without hot water tank. (source) summarized by The Institute of Applied Energy from various information sources

Roadmap for Moderate & Humid Regions - Passive Technology

Passive technology

Ventilation

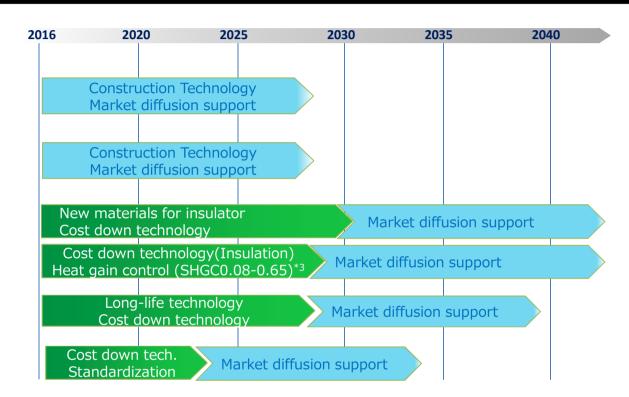
Room, floor, roof etc.

Shading

Automatic-type etc.

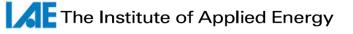
Insulation

Envelope UA*1<0.35


Windows U*2<0.6

Reflection

Material SR*4>0.75


Sealing

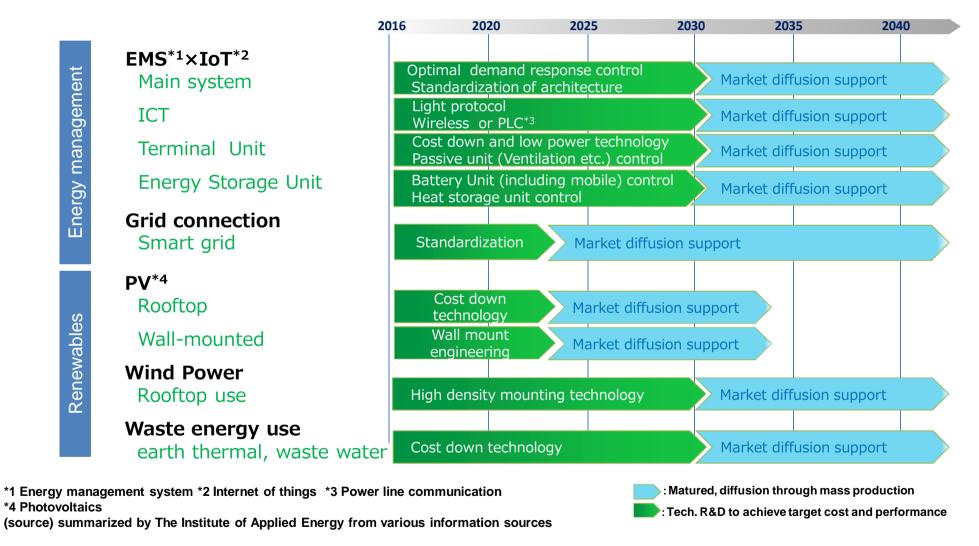
ACH*5<0.5

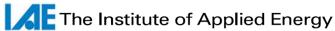
^{*1} Average U value (overall heat transfer coefficient) for wall and roof , IEA

(source) summarized by The Institute of Applied Energy from various information sources

: Matured, diffusion through mass production

: Tech. R&D to achieve target cost and performance


^{*2} U value of whole window for ZEB, IEA


^{*3} Solar Heat Gain Coefficient, IEA

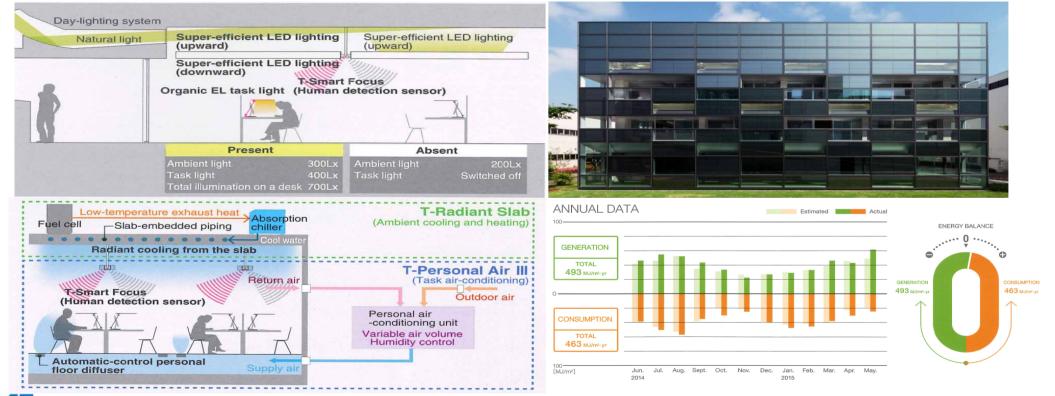
^{*4} SR (Solar reflectance), Long lasting white, in case of colored material SR>0.40, IEA

^{*5} ACH (Air change per hour), IEA

Roadmap for Moderate & Humid Regions - Energy Management and Renewable Integration

ZEB/ZEH Market Creation: Technology and Institution

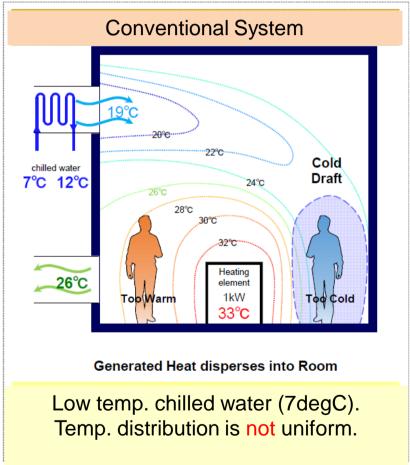
(source) summarized by The Institute of Applied Energy from various information sources

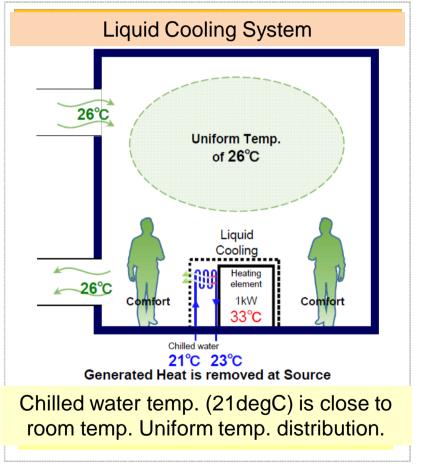

Categories	Actions (examples)
Stakeholder Involvement	 Public Policy coordination among national ministries National/regional/local coordination Capacity building assistance Private Design guidelines as knowledge base
Research, Development and Deployment (RD&D)	 Beyond BAT (best available technology) High performance, low cost Demonstration of building systems and elemental technologies Production at scale
Diffusion	 Building code mandate Economic incentive (e.g. subsidy, tax reduction) Non-energy benefits (e.g. BCP (business continuity planning), indoor-health, real-estate value)

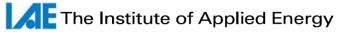
R&D Example(1): ZEB demonstration example in Japan

- □ ZEB demonstration building, Taisei Corp. Research Center (Yokohama, Japan, 2014-)
 - First urban building in Japan achieved annual zero energy balance. BELS five-star (Building Energy Labeling System)
 - Photovoltaics (crystalline roof, organic thin film external wall)

Source: Taisei Corporation

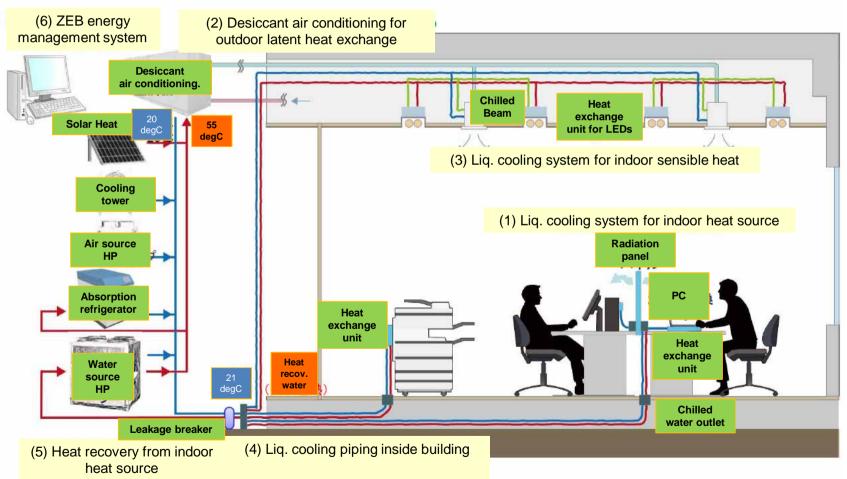

- Lighting conservation (-86%) Natural light, LED, organic EL, illumination control
- Air-conditioning conservation (-75%)
 Task (sensor & personal),
 Ambient (radiation from slab)




R&D Example(2): Commercial Building Cooling

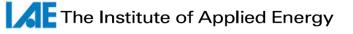
- Developed for ZEB HVAC prototype.
- Liquid cooling for energy conservation and comfort.

Source: NEDO, Japan

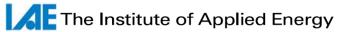


Concept of New Commercial Building Cooling

□ System Concept


Subsystem
Unit or Equipment

Hot Water
Chilled Water
Source: NEDO, Japan


Outline

- 1. Energy System in Building Sector
- 2. Toward ZEB/ZEH
 - Technology and Institution
- 3. Summaries

Summaries – Proposals (1)

- ☐ Sharing net zero energy building as a concept
 - ZEB/ZEH concept in newly constructed buildings and houses
 - Renovation to ZEB/ZEH at retrofitting timings
 - Achievement of net-zero energy building stocks in the long-run
- □ Immediate action via stakeholder involvement
 - Challenges for ZEB/ZEH market creation (especially for retrofit)
 - Some elemental technologies have been available already.
 - Equipment and envelope
 - ➤ Retrofit of envelope expensive
 - Life of building is long and stakeholders are diverse.

Summaries – Proposals (2)

☐ International technology collaboration and roadmap

- Collaboration measures on ZEB/ZEH
 - ➤ Technology collaboration network outreach
 - ➤ Diffusion policy comparison
 - >Harmonization with urban policies
 - >Establishment of international standards
- Roadmap sharing
 - >Transparent approach for all global regions
 - >ZEB/ZEH roadmap reflection to climate policy
 - √ Huge benefits through good practices and capacity building of stakeholders

