Appendix 1 MRV

- 1-1 JCM proposed methodology(PV)
- 1-2 Spread sheet(PV)
- 1-3 JCM proposed methodology(RB)
- 1-4 Spread sheet(RB)
- 1-5 JCM proposed methodology(CR)
- 1-6 Spread sheet(CR)
- 1-7 JCM proposed methodology(TR)
- 1-8 Spread sheet(TR)

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of the Philippines	
Name of the methodology proponents	Oriental Consultants Co., Ltd	
submitting this form		
Sectoral scope (s) to which the Proposed	Energy industries (renewable/ non-renewable	
Methodology applies	sources)	
Title of the proposed methodology, and	Solar PV Systems Introduction to Closed	
version number	Landfills	
	Version number:01.0	
List of documents to be attached to this form	The attached draft JCM-PH-PDD:	
(please check):	Additional information	
Date of completion	14 February 2019	

History of the proposed methodology

Version	Date	Contents revised
01.0	14 February 2019	

A. Title of the methodology

Solar PV System Introduction to Closed Landfills

B. Terms and definitions

Terms	Definitions
Solar photovoltaic (PV) system	An electricity generation system which converts sunlight
	into electricity by the use of photovoltaic (PV) modules.
	The system also includes ancillary equipment such as
	power conditioner required to change the electrical current
	from direct current (DC) to alternating current (AC).

Grid	Spatial extent of the power plants that are physically	
	connected through transmission and distribution lines to the	
	project activity (e.g. the renewable power plant location or	
	the consumers where electricity is being saved).	

C. Summary of the methodology

Items	Summary	
GHG emission reduction	Displacement of grid electricity and/or captive electricity by	
measures	installation and operation of the solar PV system(s).	
Calculation of reference	Reference emissions are calculated based on the AC output of	
emissions	the solar PV system (s) multiplied by either 1) the conservative	
	emission factor of the grid, or 2) the conservative emission	
	factor of captive power generator.	
Calculation of project	Project emissions are calculated based on the electricity	
emissions	consumption of the solar PV system(s) multiplied by either 1)	
	the conservative emission factor of the grid, or 2) the	
	conservative emission factor of captive power generator.	
Monitoring parameters	(i)The quantity of electricity generated by the project solar PV	
	system(s). (ii)The quantity of electricity consumed by the	
	project solar PV system(s).	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Projects for construction and operation of a new solar PV system or capacity	
	addition of an existing power generation unit that uses renewable energy	
	sources.	
Criterion 2	Projects that displacement of electricity that would be provided by a grid or	
	captive power generator.	
Criterion 3	Net electricity generated from the solar PV system can be measured and	
	monitored.	

Criterion 4	The PV modules are certified for design qualifications (IEC 61215, IEC 61646 or IEC 62108) and safety qualification (IEC 61730-1 and IEC 61730-2).
Criterion 5	Power conditioners in the solar PV system have efficiencies higher than 95%.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG type	
Emission from consumption of electricity from the grid	CO ₂	
Project emissions		
Emission sources	GHG type	
Electricity consumption of the system	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions include only CO_2 emissions from electricity generation in power plants that are displaced due to the project activity. The methodology assumes that all project electricity generation above baseline levels would have been generated by existing grid-connected power plants or captive power generators.

F.2. Calculation of reference emissions

$RE_{y} = EG_{PJ,y} \times EF_{co2}$		
REy	Reference emissions (tCO ₂ /y)	
EG _{PJ,y}	Quantity of electricity generated by the project solar PV system during	
	period y (MWh/y)	
EF _{co2}	CO ₂ emission factor of electricity (tCO ₂ /MWh)	

G. Calculation of project emissions

On the other hand, the project emission is the CO_2 emission from the electricity consumption of the solar PV system and calculated as follows.

$PE_y = EC_P$	$_{J,y} \times EF_{co2}$
REy	Reference emissions (tCO_2/y)
EC _{PJ,y}	Electricity consumption by the project solar PV system during
	period y (MWh/y)
EF_{co2}	CO ₂ emission factor of electricity (tCO ₂ /MWh)

H. Calculation of emissions reductions

$ER_y = RE_y -$	· PE _y
PEy	Emission reduction (tCO ₂ /y)
RE_y	Reference emissions (tCO_2/y)
PEy	Project emissions (tCO ₂ /y)

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameters	CO ₂ emission factor of electricity. In the case	Grid emission factor:
	of the PV system connecting to the national	Grid emission factor published
	grid, a conservative grid emission factor is	by the host country (If there is
	applied.	no any requirement from Joint
	In the case of the project replacing a captive	Committee)
	power generator, the lower emission factor	((IGES's List of Grid Emission
	between the grid emission factor and a captive	Factors updated in August
	power generator is applied.	2017)).
	$EF_{CO2} =$	0.670 tCO ₂ /MWh (Philippine
	min (EF _{grid} , EF _{captive})	Combined margin)
		Captive power generator
		(diesel power generator):

	(Table 2 I.F.1, Small Scale
	CDM Methodology: AMS I.F.
	ver.2).
	0.8 kgCO2/kWh

Payatas Landfill

JCM_PH_F_PMS_ver01.0

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (input sheet) [Attachment to Proposed Methodology Form]

Table 1: Parameters to be monitored ex post

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
Monitoring point No.	Parameters	Description of data	Estimated Values	Units	Monitoring option	Source of data	Measurement methods and procedures	Monitoring frequency	Other comments
(1)		Quantiry of electricty generated by the project solar PV system	4,191,660	KWh/y	Option C	Monitored data	 Collecting the data with validated/calibrated monitoring devices and inputting data to a spreadsheet manually or electrically Verified monitoring devices are installed and they are calibrated once a year Verification and calibration shall meet international standard on corresponding monitoring devices. 	Continuous	
(2)		Electricty consumption by the project solar PV system	83,833	KWh/y	Option C	Monitored data	. Collecting the data with validated/calibrated monitoring devices and inputting data to a spreadsheet manually or electrically	Continuous	

Table 2: Project-specific parameters to be fixed ex ante

(a)	(b)	(c)	(d)	(e)	(f)
Parameters	Description of data	Estimated Values	Units	Source of data	Other comments
EFco ₂	CO ₂ emission factor of electricity	0.6700	tCO ₂ /MWh	Grid emission factor of Philippines	

Table3: *Ex-ante* estimation of CO₂ emission reductions

CO ₂ emission reductions	Units
2,752	tCO ₂ /y

[Monitoring option]

Option A	Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifications)
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)

Payatas Landfill

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (Calculation Process Sheet)

[Attachment to Proposed Methodology Form]

1. Calculations for emission reductions	Fuel type	Value	Units	Parameter
Emission reductions during the period of y		2,752	tCO ₂ /y	ERy
2. Selected default values, etc.				
CO ₂ emission factor of electricty	Electricity	0.67	tCO ₂ /MWh	EFco ₂
3. Calculations for reference emissions				
Reference emissions during the period of y		2,808	tCO ₂ /y	REy
Quanity of electricity generated by the project solar PV system		4,192	MWh/y	$EG_{PJ,y}$
4. Calculations of the project emissions				
Project emissions during the period of y		56	tCO ₂ /y	PEy
Electricty consumption by the project solar PV system	Electricity	84	MWh/y	EC _{PJ,y}

[List of Default Values]

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of the Philippines
Name of the methodology proponents	Oriental Consultants Co., Ltd
submitting this form	
Sectoral scope(s) to which the Proposed	Energy demand
Methodology applies	
Title of the proposed methodology, and	Replacement of Conventional Burners with
version number	Regenerative Burners for Reheating Furnaces in
	Steel Mills
	Version number: 01.0
List of documents to be attached to this form	✓ The attached draft PDD:
(please check):	Additional information
Date of completion	14 February 2019

History of the proposed methodology

Version	Date	Contents revised
01.0	14 February 2019	

A. Title of the methodology

Replacement of conventional burners with regenerative burners for reheating furnaces in steel mills

B. Terms and definitions

Terms	Definitions
Regenerative burner	Burner systems, which absorb exhaust gas heat to a
	reservoir and preheat combustion air using the absorbed
	heat in the reservoir to improve energy efficiency.

Conventional burner	Burner systems, which do not have combustion, air
	preheating facility.

C. Summary of the methodology

Items	Summary
GHG emission reduction	By replacing conventional burners with regenerative burners in
measures	reheating furnaces, consumption of fossil fuels can be reduced,
	which leads to reduction of GHG emissions.
Calculation of reference	Reference emissions are the CO ₂ emissions from the use of
emissions	reheating furnaces with conventional burners, which are
	calculated based on the amount of steel production in the project
	and the energy intensity of reference furnaces
Calculation of project	The project emission is calculated based on the fuel and
emissions	electricity consumption of the furnaces in the project and the
	CO ₂ emission factors of the electricity and fuel.
Monitoring parameters	The following parameters need to be monitored
	1) The quantity of fuel consumed by furnaces in the
	project
	2) The quantity of steel produced in the project
	3) The quantity of electricity consumed by the project furnace

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Projects replacing conventional burners with regenerative burners in reheating
	furnaces in steel mills
Criterion 2	Projects targeting new, existing or additional facilities

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types

Combustion of fossil fuel in the reference furnace	CO ₂
Project emissions	
Emission sources	GHG types
Combustion of fossil in the project furnace	CO ₂
Power consumption by the project furnace	CO_2

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emission is the emissions from consuming fossil fuels to produce the same amount of steel bars in the project under a reference condition. In this methodology, energy intensity for reference scenario is determined ex-ante as a default value through surveys before project implementation.

 CO_2 emissions from consumption of electricity by reference furnaces are not considered for conservativeness.

F.2. Calculation of reference emissions

 $\overline{\text{RE}}_{y} = \text{FC} \times P_{y} \times \text{NCV} \times EF_{co2}$

REy	Reference emissions (tCO_2/y)
FC	Energy intensity of a reference furnace (l/t)
P_y	The quantity of steel bars produced in the project (t/y)
NCV	Net caloric value of furnace fuel (TJ/Gg)
EF _{co2}	CO ₂ emission factor of furnace fuel (tCO ₂ /TJ)

G. Calculation of project emissions

Project emissions are calculated based on the quantity of electricity and fuel consumed by a

project furnace and the respective CO ₂ emission factors							
$PE_{y} = EC_{PJ,y} \times EF_{e,co2} + FC_{y} \times NCV \times EF_{co2}$							
PEy	Project emissions tCO ₂ /y)						
EC _{PJ,y}	Electricity consumption by a project furnace (MWh/y)						
EF _{e,co2}	CO2 emission factor of electricity (tCO ₂ /MWh)						
FC _{PJ,y}	Fuel consumption by a project furnace (t/y)						
NCV	Net caloric value of furnace fuel (TJ/Gg)						
EF _{co2}	EF_{co2} CO ₂ emission factor of furnace fuel (tCO ₂ /TJ)						

H. Calculation of emissions reductions

$ER_y = RE_y - PE_y$								
PEy	Emission reduction (tCO ₂ /y)							
RE _y	Reference emissions (tCO ₂ /y)							
PEy	Project emissions (tCO ₂ /y)							

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
FC	Energy intensity of a reference	The most steel bar manufacturing plants
	furnace (liter/ton)	in Philippine have fuel intensity over
		450Mcal/t. For this project, 43 l/ton (411
		Mcal/ton) is applied

EF _{RE,i}	CO ₂ emission factor of	In the case of grid (Official data from		
	electricity	Philippine Government).		
	In the case of grid: 0.670	(IGES's List of Grid Emission Factors		
	tCO ₂ /MWh	updated in August 2017).		
	In the case of captive power	In the case of diesel captive power plant		
	plant (diesel):	(Table I.F.1, Small Scale CDM		
	0.8 tCO ₂ /MWh	Methodology: AMS I.F. ver.2).		
NCV	Net caloric value of furnace fuel	2006 IPCC Guidelines for National		
	(TJ/Gg)	Greenhouse Gas Inventories. Table 1.2,		
	Residual fuel oil: 39.8 TJ/Gg	Chapter 1, Volume 2.		
	Coking Coal: 24 TJ/Gg			
	Natural gas:40.9 TJ/Gg			
	(lower case of default value)			
EF _{co2}	CO ₂ emission factor of furnace	2006 IPCC Guidelines for National		
	fuel (tCO ₂ /TJ)	Greenhouse Gas Inventories. Table 1.4,		
	Residual fuel oil: 75.5 tCO ₂ /TJ	Chapter 1, Volume 2.		
	Coking Coal: 87.3 tCO ₂ /TJ			
	Natural gas:58.3 tCO ₂ /TJ			
	(lower case of default value)			

Cathay Pacific Steel

JCM_PH_F_PMS_ver01.0

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (input sheet) [Attachment to Proposed Methodology Form]

Table 1: Parameters to be monitored ex post

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
Monitoring point No.	Parameters	Description of data	Estimated Values	Units	Monitoring option	Source of data	Measurement methods and procedures	Monitoring frequency	Other comments
(1)	Py	Quantiry of steel produced in the project	218,400	t/y	Option B	Monitored data	.Collecting the data from production logbook and inputting the data to a spreadsheet manually . Cross check with sales records	Daily	
(2)	FC _{PJ,y}	Fuel consumption by the project furnace	8,330	t/y	Option C	Monitored data	Collecting the data with validated/calibrated monitoring devices and inputting to a spreadsheet manually or electrically Verified monitoring devices are installed and they are calibrated once a year Verification and calibration shall meet international standard on corresponding monitoring devices.	Daily	
(3)	EC _{PJ,y}	Electricity consumption by the project furnace	0	MWh/y	Option C	Monitored data	Collecting theelectricty consumption data with validated/calibrated monitoring devices and inputting to Verified monitoring devices are installed and they are calibrated once a year Verification and calibration shall meet international standard on corresponding monitoring devices.	Continuous	

Table 2: Project-specific parameters to be fixed ex ante

(a)	(b)	(c)	(d)	(e)	(f)
Parameter	Description of data	Estimated	Units	Source of data	Other comments
s	Description of data	Values	Units	Source of data	Other comments
FC	Energy intensity of the reference furnace	42.38	Kg/ton	Factory	
EF _{e,co2}	CO ₂ emission factor of electricity	0.67	tCO ₂ /MWh	Grid emission factor of Philippine	

Table3: *Ex-ante* estimation of CO₂ emission reductions

CO ₂ emission reductions	Units
2,781	tCO ₂ /p

[Monitoring option]

Option A Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifica						
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)					
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)					

Cathay Pacific Steel

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (Calculation Process Sheet)

[Attachment to Proposed Methodology Form]

1. Calculations for emission reductions	Fuel type	Value	Units	Parameter
Emission reductions during the period of y		2,781	tCO ₂ /y	ERy
2. Selected default values, etc.				
Net caloric value of furnace fuel	Heavy oil	39.80	TJ/Gg	NCV
CO ₂ emission factor of furnace fuel	Heavy oil	75.5	tCO ₂ /TJ	EF _{fuel}
3. Calculations for reference emissions				
Reference emissions during the period of y		27,810	tCO ₂ /y	REy
Quantity of steel produced in the project		218,400	t/y	Py
Energy intensity of the reference furnace		42	Kg/t	FC
Net caloric value of furnace fuel		39.80	TJ/Gg	NCV
CO ₂ emission factor of furnace fuel		75.5	tCO ₂ /TJ	EFco ₂
4. Calculations of the project emissions				
Project emissions during the period of y		25,029	tCO ₂ /y	PEy
Emission from the project furnace		25,029	tCO ₂ /y	PEy
Fuel consumption by the project furnace		8,330	t/y	FC _{PJ,y}
Electricity consumption by the project furnace		0	MWh/y	EC _{PJ,y}
CO ₂ emission factor of electricity		0.670	tCO ₂ /MWh	EF _{e,co2}

[List of Default Values]

Net caloric value of heavy oil	39.8 TJ/Gg	
CO ₂ emission factor of heavy oil	75.5 tCO ₂ /TJ	

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The republic of the Philippines
Name of the methodology proponents	Oriental Consultants Co., Ltd
submitting this form	
Sectoral scope (s) to which the Proposed	Energy demand
Methodology applies	
Title of the proposed methodology, and	Condensate Recovery and Utilization in Food
version number	Processing Factories
	Version number: 01.0
List of documents to be attached to this form	☑ The attached draft PDD:
(please check):	Additional information
Date of completion	14 February 2019

History of the proposed methodology

Version	Date	Contents revised
01.0	14 February 2019	

A. Title of the methodology

Condensate Recovery and Utilization in Food Processing Factories

B. Terms and definitions

Terms	Definitions
Condensate	Condensate is the liquid formed when steam passes from
	the vapor to the liquid state. In a heating process,
	condensate is the result of steam transferring a portion of its
	heat energy, known as latent heat, to the product, line, or
	equipment being heated.

Condensate recovery and	Practices of recovering high temperature condensate from
utilization	steam traps and returning the condensate directly to boilers
	or through boiler feed water tank in the purpose of reducing
	boiler fuel and water consumption

C. Summary of the methodology

Items	Summary
GHG emission reduction	The quantity of fossil fuel used for producing steam in a boiler
measures	can be reduced through sending back condensate to a boiler feed
	water tank. Reduction in boiler fossil fuel consumption leads to
	reduction of GHG emissions from food processing.
Calculation of reference	Reference emission is calculated based on the quantity of energy
emissions	being recovered and utilized, the efficiency of the boiler and the
	CO ₂ emission factor of the fossil fuel used for providing energy
	to production processes. The conservative values of the
	parameters are used to ensure a reference emission is lower than
	BaU emission
Calculation of project	The project emission is calculated based on the electricity
emissions	consumption of a condensate recovery system and the CO_2
	emission factor of electricity.
Monitoring parameters	The following parameters need to be monitored.
	1) The temperature of feed water to a boiler in the project
	2) The quantity of feed water to a boiler in the project
	3) The quantity of electricity consumed by a condensate
	recovery system.

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Condensate recovery from production processes in existing or new food
	processing factories.
Criterion 2	Appropriate technologies, which can ensure safe recovery of high temperature

	condensate, are applied.	Such as specialized	centrifugal pumps	with ejectors.
--	--------------------------	---------------------	-------------------	----------------

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types
Fossil fuel consumption for generating the same amount of energy	CO_2
recovered from condensate	
Project emissions	
Emission sources	GHG types
Electricity consumption by the condensate recovery system	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emission is the emissions from consuming fossil fuels to retain the same amount of energy recovered from the project

F.2. Calculation of reference emissions

$$RE_{\rm y} = (FWT_{ta} - MWT_{ta}) \times W_{th} \times MW_{\rm y} \times \frac{1}{\rm Ef} \times \rm EF_{\rm CO2, fuel} \times 10^{-6}$$

$$RE_y$$
 Reference emissions (tCO₂/y)

- *FWT*_{ta} Boiler feed water temperature in the project ($^{\circ}$ C)
- MWT_{ta} Boiler feed water temperature in the reference (°C)
- MW_y The quantity of boiler feed water in the project (t/y)
- W_{th} Heat capacity of water (kJ/kg.°C)

EF_{co2} CO2 emission factor of boiler fuel (tCO₂/TJ)

G. Calculation of project emissions

Project emissions are calculated based on the quantity of electricity consumed by the condensate recovery system and the CO₂ emission factor of electricity.

 $PE_y = EC_y \times EF_{elec}$

PEy	Project emissions (tCO ₂ /y)
EC _{PJ,y}	Electricity consumption by the condensate recovery system (MWh/y)
EF _{elec}	CO ₂ emission factor of electricity the system using (tCO ₂ /MWh)

H. Calculation of emissions reductions

$ER_y = RE_y - PE_y$		
PEy	Emission reduction (tCO ₂ /y)	
RE _y	Reference emissions (tCO ₂ /y)	
PEy	Project emissions (tCO ₂ /y)	

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
Ef	Boiler efficiency	Factories
		(100% is used for
		conservativeness)

MWT _{ta}	Boiler feed water temperature in the reference	Average temperature based on
	(°C)	the data gained through field
		surveys at least for 3 months
		before project implementation
EF _{CO2,fuel}	CO ₂ emission factor of the fuel used for steam	2006 IPCC Guidelines for
	generation	National Greenhouse Gas
	Coal: 87.3 tCO ₂ /TJ	Inventories. Table 1.4, Chapter
	Natural gas: 58.3 tCO ₂ /TJ	1, Volume 2.
	(lower case of default value)	
EF _{elec}	CO ₂ emission factor of electricity	In the case of grid (Official
	In the case of grid: 0.670 tCO ₂ /MWh	data from Philippine
	In the case of captive power plant (diesel):	Government).
	0.8 tCO ₂ /MWh	(IGES's List of Grid Emission
		Factors updated in August
		2017).
		In the case of diesel captive
		power plant (Table I.F.1, Small
		Scale CDM Methodology:
		AMS I.F. ver.2).

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (input sheet) [Attachment to Proposed Methodology Form]

Table 1: Parameters to be monitored ex post

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
g point	Parameters	Description of data	Estimate d Values	Units	Monitoring option	Source of data	Measurement methods and procedures	Monitoring frequency	Other comments
(1)	FWT _{ta}	Temperature of boiler feed-water in the project	61	°C	Option C	Monitored data	 Collecting the data with validated/calibrated monitoring devices and inputting the data to a spreadsheet manually or electrically Verified monitoring devices are installed and they are calibrated once a year Verification and calibration shall meet international standard on corresponding monitoring devices. 	Continuous	
(2)		Quantity of boiler feed-water in the project	46,804	t/y	Option C	Monitored data	 Collecting the data with validated/calibrated monitoring devices and inputting the data to a spreadsheet manually or electrically Verified monitoring devices are installed and they are calibrated once a year Verification and calibration shall meet international 	Continuous	
(3)	EC _{PJ,y}	Electricity consumption by the condensate recovery system	25	MWh/y	Option C	Monitored data	standard on corresponding monitoring devices. . Collecting electricity consumption data with validated/calibrated monitoring devices and inputting the data to a spreadsheet electrically . Verified monitoring devices are installed and they are calibrated once a year . Verification and calibration shall meet international standard on corresponding monitoring devices.	Continuous	

Table 2: Project-specific parameters to be fixed ex ante

(a)	(b)	(C)	(d)	(e)	(f)
Parameter	Description of data	Estimate d Values	Units	Source of data	Other comments
S					
Ef	Boiler efficiency	1.00	Ratio	1 is taken for ensure conservativeness	
MWT _{ta}	Temperature of feed-water in reference	34	°C	Average value based on the ex-ante survey	
EF _{elec}	CO ₂ emission factor of electricity	0.67	t CO ₂ /MWh	Grid emission factor of Philippine	

Table3: *Ex-ante* estimation of CO₂ emission reductions

```
CO<sub>2</sub> emission reductions Units
445 tCO<sub>2</sub>/p
```

[Monitoring option]

Option A	Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifications)
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (Calculation Process Sheet)

[Attachment to Proposed Methodology Form]

1. Calculations for emission reductions	Fuel type	Value	Units	Parameter
Emission reductions during the period of y		445	tCO ₂ /y	ERy
2. Selected default values, etc.				
The specific heat of water	Water	4.18	kJ/kg.°C	W _{th}
CO ₂ emission factor the fossil fuel that is used to provide energy	Coal	87.3	t CO ₂ /TJ	EFco ₂
3. Calculations for reference emissions				
Reference emissions during the period of y		462	tCO ₂ /y	REy
Temperature of boiler feed water in the project		61	O°	PWT _{ta}
Temperature of boiler feed water in the reference		34	°C	MWT _{ta}
Boiler efficiency		1.00	ratio	Ef
Quantity of boiler feed-water in the project		46,804	t/y	MWy
4. Calculations of the project emissions				
Project emissions during the period of y		17	tCO ₂ /y	PEy
Emission from electricity consumption by the condensate recovery system				
Electricity consumption by the condensate recovery system		25	MWh/y	EC _{PJ,y}
CO ₂ emission factor of electricity		0.670	tCO ₂ /MWh	EF _{elec}

[List of Default Values]

Specific heat	W _{th}	
Water	4.184	kJ/kg. ℃
CO ₂ emission factor of boiler fuel	EF _{CO2}	
Coal	87.3	t CO ₂ /TJ

Joint Crediting Mechanism Proposed Methodology Form

Cover sheet of the Proposed Methodology Form

Form for submitting the proposed methodology

Host Country	The Republic of the Philippine
Name of the methodology proponents	Oriental Consultants Co., Ltd
submitting this form	
Sectoral scope (s) to which the Proposed	Transport
Methodology applies	
Title of the proposed methodology, and	Vehicle Engine Retrofitting through Introduction
version number	of Diesel-Dual-Fuel (DDF) System
	Version number: 01.0
List of documents to be attached to this form	The attached draft PDD:
(please check):	Additional information
Date of completion	14 February 2019

History of the proposed methodology

Version	Date	Contents revised
01.0	14 February 2019	

A. Title of the methodology

Vehicle Engine Retrofitting through Introduction of Diesel-Duel-Fuel (DDF) System

B. Terms and definitions

Terms	Definitions
Diesel Duel Fuel (DDF) engine	The engine, which uses both conventional diesel fuel and
	liquefied petroleum gas (LPG) fuel, is referred to as 'LPG-
	diesel dual fuel engines'. Diesel engines are modified to
	engines, which use primary fuel as diesel and secondary
	fuel as LPG.

Overhaul	An overhauled engine is an engine which has been
	removed, disassembled (torn down), cleaned, inspected, and
	repaired as necessary and tested using factory service
	manual approved procedures.

C. Summary of the methodology

Items	Summary
GHG emission reduction	DDF helps improve in fuel efficiency, reduce the quantity of
measures	fossil fuel consumption and partly replace diesel with LPG,
	which has a lower CO2 emission factor than diesel.
Calculation of reference	Reference emission is calculated based on the distance of a
emissions	target vehicle travelled, the fuel efficiency of the vehicle before
	retrofitted and the CO2 emission factor of diesel.
Calculation of project	The project emission is calculated based on the quantity of fuel
emissions	consumed by a vehicle and the CO2 emission factors of the
	fuels.
Monitoring parameters	The following parameters need to be monitored.
	1) The quantity of fuel consumed by a vehicle in the project
	2) The distance traveled by a vehicle truck in the project

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Diesel engine vehicles such as trucks, buses, jeepneys
Criterion 2	Vehicle kilometer travelled (VKT) and the quantity of fuel consumed by target
	vehicles can be grasped
Criterion 3	Conform and clear the related regulations and standards of host countries

E. Emission Sources and GHG types

Reference emissions	
Emission sources	GHG types

Fossil fuel consumption of target vehicles for traveling the same	CO ₂
distance as did in the project	
Project emissions	
Emission sources	GHG types
Fuel consumption by target vehicles	CO ₂

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

The reference emission is the emissions from fossil fuel consumption of target vehicles for travelling the same distance as happened in the project

F.2. Calculation of reference emissions

$RE_y = \sum_i RE_i$	i _n y	(1)
$RE_{i,y} = PD_{i,y}$	$/FE_{RE,i,diesel} \times De_{diesel} \times NCV_{diesel} \times EF_{co2,diesel} \times 10^{-6}$	(2)
RE_y	Reference emissions (tCO ₂ /y)	
i	Target vehicle	
$RE_{i,y}$	Reference emission of a target vehicle i (tCO_2/y)	
FE _{RE,i,diesel}	Fuel efficiency of a target vehicle i (Km/l)	
PD _{i,y}	Distance travelled by a target vehicle i (Km/y)	
De _{diesel}	Density of diesel (Kg/l)	
NCV _{diesel}	Net caloric value of diesel (TJ/Gg)	
EF _{co2,diesel}	CO ₂ emission factor of diesel (tCO ₂ /TJ)	
G. Calculation	n of project emissions	

Project emissions are calculated based on the quantity of fuel consumed by target vehicles and

the CO ₂ emissio	on factors of the fuels	
$PE_{y} = \sum_{i} PE_{i,y}$ $PE_{i,y} = (FC_{i} \times$	$Ra_{diesel,i} \times NCV_{diesel} \times EF_{co2,diesel} \times 10^{-3}) + ((FC_i \times Ra_{LPG,i} \times NCV_{LPG}))$	(3) ×
$EF_{co2,LPG} \times 10^{-5}$	⁻³)	(4)
PE_y	Project emissions (tCO ₂ /y)	
i	Target vehicle	
FC _{i,y}	The quantity of fuel consumed by a target vehicle i (t/y)	
Ra _{diesel,i}	Ratio of diesel in the fuel of a vehicle i in the project	
NCV _{diesel}	Net caloric value of diesel (TJ/Gg)	
EF _{co2,diesel}	CO_2 emission factor of diesel (t CO_2/TJ)	
Ra _{LPG,i}	Ratio of LPG in the fuel of a vehicle i in the project	
NCV _{LPG}	Net caloric value of LPG (TJ/Gg)	
$EF_{co2,LPG}$	CO ₂ emission factor of diesel (tCO ₂ /TJ)	

H. Calculation of emissions reductions

 $\mathrm{ER}_{\mathrm{y}} = \mathrm{RE}_{\mathrm{y}} - \mathrm{PE}_{\mathrm{y}}$

- RE_y: Reference emissions (tCO₂/y)
- PE_y: Project emissions (tCO_2/y)

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source
FE _{RE,i,diesel}	Fuel efficiency of a target	Field survey data (calculated based on the
	vehicle (Km/l)	measured distance and fuel consumption of a
		target vehicle)
EF _{co2,diesel}	CO ₂ emission factor of fuels	2006 IPCC Guidelines for National Greenhouse
EF _{co2,LPG}	consumed by vehicles:	Gas Inventories. Table 1.4, Chapter 1, Volume
	Diesel: 72.6 tCO ₂ /TJ	2. (Table 1.4)
	LPG:61.6 tCO ₂ /TJ	Lower
NCV _{diesel}	Net caloric values of fuels	2006 IPCC Guidelines for National Greenhouse
NCV _{LPG}	consumed by vehicles	Gas Inventories. Table 1.4, Chapter 1, Volume
	Diesel: 41.4 TJ/Gg	2. (Table 1.2)
	LPG: 44.8 TJ/Gg	
De _{diesel}	Density of diesel	Philippine National Standards on Petroleum,
	Diesel: 0.832 Kg/l	Department of Energy (DOE)
	(Average density)	Density at 15 °C: 0.820-0.860 Kg/l.

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (input sheet) [Attachment to Proposed Methodology Form]

Table 1: Parameters to be monitored ex post

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
Monitoring point No.	Parameters	Description of data	Estimated Values	Units	Monitoring option	Source of data	Measurement methods and procedures	Monitoring frequency	Other comments
(1)	Pd _{i,y}	Distance travelled by the target truck in the project	8,395	Km/y	Option C	Monitored data	Collecting the data with validated/calibrated monitoring devices (GPS) and inputting data to a spreadsheet manually or electrically . Verified monitoring devices are installed and they are calibrated once a year . Verification and calibration shall meet international standard on corresponding monitoring devices.	Daily	
(2)	FC _{i,y}	Quantity of fuel consumed by the target truck in the project	9	t/y	Option C	Monitored data	Collecting the data with validated/calibrated monitoring devices and inputting data to a spreadsheet manually . Verified monitoring devices are installed and they are calibrated once a year . Verification and calibration shall meet international standard on corresponding monitoring devices.	Daily	

Table 2: Project-specific parameters to be fixed ex ante

(a)	(b)	(c)	(d)	(e)	(f)
Parameters	Description of data	Estimated Values	Units	Source of data	Other comments
FE _{RE,i,diesel}	Fuel efficiency of the target truck in reference	0.60	Km/l	Truck company	
Raupo :	Ratio of LPG in the fuel of the target truck in the project	0.432	tCO ₂ /MWh	Grid emission factor of Philippine	

Table3: *Ex-ante* estimation of CO₂ emission reductions

CO ₂ emission reductions	Units
10	tCO ₂ /y

[Monitoring option]

Option A	Based on public data which is measured by entities other than the project participants (Data used: publicly recognized data such as statistical data and specifications)
Option B	Based on the amount of transaction which is measured directly using measuring equipments (Data used: commercial evidence such as invoices)
Option C	Based on the actual measurement using measuring equipments (Data used: measured values)

Joint Credit Mechanism Proposed Methodology Spreadsheet Form (Calculation Process Sheet)

[Attachment to Proposed Methodology Form]

Calcul	ations for emission reductions	Fuel type	Value	Units	Parameter
Emiss	sion reductions during the period of y		10	tCO ₂ /y	ERy
Select	ed default values, etc.				
Net c	aloric value of diesel	Diesel	41.40	TJ/Gg	NCV _{diesel}
CO ₂ e	emission factor of diesel	Diesel	72.60	tCO ₂ /TJ	EF _{CO2,diesel}
Dens	ity of diesel	Diesel	0.83	Kg/l	De _{diesel}
Net c	aloric value of LPG	LPG	44.80	TJ/Gg	NCV _{LPG}
CO ₂ e	emission factor of LPG	LPG	61.6	tCO ₂ /TJ	EF _{CO2,LPG}
Calcul	ations for reference emissions				
Refer	rence emissions during the period of y		35.0	tCO ₂ /y	REy
D	Distance travelled by a target truck in project		8,395	Km/y	PDi,y
F	uel efficiency of the truck in reference		0.6	Km/l	FE _{Re,I,diesel}
C	CO ₂ emission factor of diesel		72.6	tCO ₂ /TJ	EF _{CO2,diesel}
N	let caloric value of diesel		41.4	TJ/Gg	NCV _{diesel}
D	Density of diesel		0.832	kg/liter	De _{diesel}
Calcul	ations of the project emissions				
Proje	ct emissions during the period of y		25	tCO ₂ /y	PEy
	Quantity of fuel consumed by the target truck		9	t/y	FCi
	Net caloric value of diesel		41	TJ/Gg	NCV _{diesel}
	CO ₂ emission factor of diesel		73	tCO ₂ /TJ	EF _{CO2,diesel}
	Net caloric value of LPG		45	TJ/Gg	NCV _{LPG}
	CO ₂ emission factor of LPG		62	tCO ₂ /TJ	EF _{CO2,LPG}
	Ratio of LPG in the fuel of the target truck		0.432		Ra _{LPG,i}
	[List of Default Values]				
	Net caloric value of diesel		TJ/Gg		
	CO ₂ emission factor of diesel		tCO ₂ /TJ		
	Density of diesel	0.832	<u> </u>		
	Net caloric value of LPG		TJ/Gg		
	CO ₂ emission factor of LPG	61.6	tCO ₂ /TJ		