FY2017 Study of City-to-City Collaboration Project for Low Carbon Society

Study on feasibility of a low-carbon waste treatment system and micro-grid system and promotion of activities under inter-regional collaboration in Ayeyarwady region and Sagaing region

Project Report

March 2018

Mitsubishi Research Institute, Inc. Fujita Corporation

Tab	le of Contents	i
List	t of Abbreviations	ii
List	t of Figures	iv
List	t of Tables	v
Exe	ecutive Summary	1
1.	Purpose and Implementation Arrangement	6
	1.1 Project Objective	6
	1.2 Survey Items	6
	1.3 Survey Arrangement	7
	1.4 Overview of City-to-City Cooperation	9
2.	Overview and Needs of the Area	14
	2.1 Overview of the Area and Local Policies	14
	2.1.1 Socio-Economic Situation of the Area	14
	2.1.2 Power Sector Situation	18
	2.2 Local Needs	24
3.	JCM Project Feasibility Study	27
	3.1 JCM Project Formulation	27
	3.1.1 Project Overview	27
	3.1.2 Project Site	27
	3.1.3 Applied Technology	28
	3.2 GHG Emission Reduction	32
	3.2.1 Analysis of Emission Reduction of Energy-Derived CO2 & Greenhouse Gas	32
	3.3 Business and Policy Proposals	34
	3.3.1 Business Scheme	34
	3.3.2 Environmental and Social Impacts	36
	3.3.3 Project Effects	37
	3.4 Project Planning and Capacity Building	39
4.	Future Project Development	44

Table of Contents

Appendix

Appendix I: Overview of Project Results

Appendix II: Workshop Agenda, Minutes, and Photos

Appendix III: Materials from the Workshops

Appendix IV: Details and References

Appendix V: JCM Methodology

List of Abbreviations

This report uses the following standardized units and abbreviations.

Units		
Т	ton	
Kg	kilogram	
MJ	Megajoule	
MW	Megawatt	
kW	Kilowatt	
kWh	Kilowatt hour	
GWh	Gigawatt hour	
TWh	Terawatt hour	
MPa	Megapascal	
На	Hectare	
Km	kilometers	
m2	Square meter	
m3	Cubic meter	
t-CO2	Carbon dioxide emissions (t)	
kg-CO2	Carbon dioxide emissions (kg)	
MMK	Myanmar kyat	
USD	U.S. dollar	
JPY	Japanese Yen	

Abbreviations

ADB	Asian Development Bank	
CDM	Clean Development Mechanism	
COP International Conference of the Parties		
EIA Environmental Impact Assessment		
EIAP	Environmental Impact Assessment Procedure	
EMP Environmental Management Plan		
EPC	engineering, procurement, construction	
EPGE	Electric Power Generation Enterprise	
ESE	Electricity Supply Enterprise	
FY	Fiscal Year	
GHG greenhouse gas		
GIZ Deutsche Gesellschaft für Internationale Zusammenarb		
IEE	EE Initial Environment Examination	
IFC International Finance Corporation		
IMF	International Monetary Fund	
INDC	Intended Nationally Determined Contributions	
JCM	Joint Crediting Mechanism	
JICA Japan International Cooperation Agency		
LDC	Least Developed Country	
MALI	Ministry of Agriculture, Livestock and Irrigation	
MAPCO Myanmar Agribusiness Public Corporation		
MESC Mandalay Electricity Supply Corporation		
MIC Myanmar Investment Commission		

MIMU	Myanmar Information Management Unit		
MRV	Measurement, Reporting and Verification		
PV	Photovoltaics		
SIDS	Small Island Developing States		
SPC	Special Purpose Company		
YESC	Yangon Electricity Supply Corporation		
UMFCCI	The Republic of the Union of Myanmar Federation of		
	Chambers of Commerce and Industry		

List of Figures

Figure 1-1 Organizational Structure	
Figure 1-2 Local Workshop with the Chief Minister of the Region (September 2017))13
Figure 1-3 Courtesy Visit to the Minister of Agriculture, Livestock and Irriga	ation of
Myanmar (February 2018)	
Figure 1-4 Local Workshop (February 2018)	13
Figure 2-1 Population Pyramid in Sagaing Region	14
Figure 2-2 Map of Sagaing Region and Shwebo Region	15
Figure 2-3 Energy Demand by Sector in 2030 (middle scenario, mtoe)	
Figure 2-4 Final Energy Consumption by Energy Carrier (middle scenario, mtoe)	19
Figure 2-5 Installed Capacity for 2030 (GW)	19
Figure 2-6 Actors Involved in Power Supply in Myanmar	22
Figure 2-7 Local Situation of Rice Husk Waste (Piled Up)	24
Figure 2-8 Situation of Local Waste Treatment (Burnt off the field of former airport	site) 25
Figure 3-1 Boiler Turbine Generator (BTG) Power Generation Flow	30
Figure 3-2 Project Organizational Structure (Proposal)	35
Figure 4-1 Key Points and Future Plans	48
Figure 4-2 Creation of New Values by Rice husk power generation	49

List of Tables

Table 1-1 Overview of Ayeyarwady Region and Sagaing Region	12
Table 2-1 Sagaing Region Population by District	15
Table 2-2 Grain Production Amount	16
Table 2-3 Rice Production by Region	17
Table 2-4 Mini-Grid Projects with ADB Support	21
Table 2-5 Electricity Tariff in Myanmar	22
Table 3-1 Grid Emission Factor based on IEA Data (t-CO2/MWh)	32
Table 3-2 Result of Emission Reductions Calculation (Biomass Power Plant Project)	33
Table 3-3 Project Scheme	34
Table 3-4 Specifications of the Rice Husk Power Plant	34

Executive Summary

Study on feasibility of a low-carbon waste treatment system and micro-grid system and promotion of activities under inter-regional collaboration in Ayeyarwady region and Sagaing region

Under inter-regional collaboration in Ayeyarwady Region and Sagaing Region, JCM feasibility of a low-carbon waste treatment system (e.g. power plant projects using fuels such as rice husks) and micro grid system was studied. The study also assisted efforts on creation of regional waste treatment system and local distributed self-reliant power system (e.g. capacity building, and planning support for facilitating the implementation of waste treatment project) in the regions.

1. Background of the project

Through inter-regional collaboration between Ayeyarwady Region, Sagaing Region and Fukushima City, "Partnership for Low-Carbon Initiative (with Ayeyarwady region: starting from in 2015, and with Sagaing Region: starting from August 2017)" was established. Under the initiative, workshops were held in Monywa, Sagaing Region and Yangon, in which through discussions on policy trends, current situation and local needs of the region, activities in Fukushima City, and relevant technologies (e.g. waste treatment) were introduced. Possibility for JCM project formulation and collaboration for low-carbon development in waste treatment and renewable energy area was discussed.

<Overview of Sagaing Region, Myanmar>

Sagaing Region is located in the north-western part of Myanmar, with large amount of rice production. Large number of rice mills exist in Shwebo District, located in the eastern part of the region and in the north-western part of Mandalay (the second largest city after Yangon), making the district one of the most populated area of rice mills in the region. The quality of rice is higher than that of Ayeyarwady Region; rice mill business management is well done in the area, and construction of new rice mills, expansion and renewal of existing rice mills are expected in the future. The area is one of the most promising rural regions for future economic development.

<Overview of Fukushima City>

Fukushima City, while putting the utmost importance on the introduction of renewable energy sources through cooperation among the municipal governments, citizens and business operators, has also been engaged in various initiatives and activities such as "creation of a low-carbon, circular-type society with effective global-warming preventive measures and low burden on the environment," "restoration from nuclear disaster," "revitalization of local areas" and "promotion of the building of townships resistant to disasters and emergencies," aiming at making "Fukushima" a vigorous and environmentally most advanced city, based upon well advanced local production and consumption features, as well as safe and secure energy sources, in the future.

2. Current Situation and Challenges for Low-Carbon Development

Through Partnership for Low Carbon Initiative, importance of developing a sustainable, low-carbon, circular-type, vigorous and environmentally advanced region, and measures for such development (roadmap) have been shared among the participants. With such shared understanding, feasibility of a rice husk power plant in a new industrial zone within the region has been considered.

Additionally, regarding waste treatment and renewable energy, experiences of Fukushima City have been shared, and current situation of policy dialogue between Ayeyarwady Region and Fukushima City (creating a masterplan, discussions on environmental education, etc.) was shared, as part of capacity building for government officials and other stakeholders (rice mill business industry).

Item	Key activities	Outcome and future tasks	
JCM	Examination of	Development plans for project formulation	
Project	candidate sites	with stakeholders (MRF (Myanmar Rice	
Formulation		Federation) and MAPCO (Myanmar	
	Basic plan was	Agribusiness Public Corporation))	
	created and	 Specific plans for rice husk power plant 	
	proposed to	project	
	stakeholders		
Policy	Forming	 Shared recognition on expansion with not 	
dialogue	consideration group	only the Chief Minister and the responsible	
	in the region under	minister of the region but also with other	
	the leadership of	relevant parties including Minister of	
	Chief Minister of	Agriculture, Livestock and Irrigation of the	
	Sagaing Region	Union of Myanmar. (Securing electricity by	
		renewable energy is an effective approach to	
	Building	the development of rice milling business; and	
	relationships with	controlling CO2 emissions and preventing	
	counterpart Minister	environmental pollution caused by waste are	
	of Energy	important.)	
		 Policy dialogue was conducted on specific 	
	Through the	measures for low-carbonization concept in	
	workshop in the	the developing Myaung Mya Industrial Zone	
	region, common	(The responsible regional minister has high	
	understanding was	interest in promotion of local electrification	
	obtained on the	using renewable energy. Direction of plan has	

	importance of rice husk power plant for restructuring of industrial zones and rice mills.	 been shared and now is the phase for specific policy development). Relationship building with working-level officials will be left as future task (it is essential to acquire trust from them for JCM formulation) More policy dialogue is needed for implementation of micro-grid system and specific measures for collaboration with neighboring area development. (Such issues have been shared with the Chief Minister of
and capacity building	 region, Activities of companies in Fukushima City (waste treatment, etc.) were introduced to relevant business 	 sector has an important role in realizing a low-carbon society. Dialogue with Chamber of Commerce and companies in Myanmar was a new attempt. They have high expectations on Japanese companies. Because of this, we share the recognition that continued exchange is important. (From business dialogue triggered by policy dialogue to the utilization of
	 parties. Opinions were exchanged on the possibility of cooperation between companies in Myanmar and Fukushima City. Importance of dialogue to embody businesses was confirmed and recognition was shared. 	functions of the Chamber of Commerce, and further to business that will contribute to establish a low-carbon community)

Rice Husk Power Plant Activities in Industrial Zone

<Local needs and significance of the project>

As with Ayeyarwady Region, for which a policy dialogue was conducted previously in an city-to-city cooperation, Sagaing Region is facing social problems to be solved such as increase in waste and power consumption (environmental pollution, access to energy, etc.,) that follow economic development. In particular, problems related to disposal of rice husks are more severe in Sagaing Region where open-air burning of husks is performed on a large scale, compared to Ayeyarwady.

The rice husk power generation project in Ayeyarwady Region (JCM subsidiary project on facilities) is an activity providing two benefits, i.e., effective use of rice husks that are disposed of (i.e., waste reduction) and power generation. Relevant parties in the region and rice milling enterprises are both interested in the project. In rice milling businesses, a challenge is to reduce production costs and enhance the quality of rice for improved competitiveness as an industry by increasing the scale of businesses and replacing facilities. To promote this activity, it is essential for rice milling enterprises to secure electricity stably. For survival of the rice milling industry in Myanmar, it has been recognized as an effective approach to use rice husks as a resource and take measures to secure electricity independently, not relying solely on power supply from the national grid.

<Tasks for realization>

Because the stable and long-term procurement of rice husks is indispensable to realize a rice husk power generation project, cooperation must be established among the government, business enterprises and industry groups to create a mechanism of procuring rice husks generated at rice mills. Discussion for realization will be made hereafter.

<Establishment of a model for further development of rice husk power generation projects>

As heat is produced in addition to electricity in rice husk power generation, it was pointed out that the heat might be used effectively. Specifically, this is an idea of producing cold energy using the heat and applying it to the cold energy demand in factories and depositories. Reduction in greenhouse effect gas emissions and increase in economic efficiency are also expected by it. We have to examine the feasibility of this idea hereafter to establish a cogeneration type rice husk power generation system through detailed discussion on its technological aspect and needs of cold/hot water, considering specific cases.

<Power supply to neighboring regions>

For the rice husk power generation at rice mills in this region targeted, the regional government has great expectation on not only the use of electricity in the industrial zone but also contribution to improvement in electrification rates and stability of power supply. To realize this, development of micro-grids, etc., is necessary to supply electricity to the regions surrounding the industrial zone. However, it is economically difficult for business enterprises to bear the costs of developing micro-grids. During this policy dialogue, we explained that the wheeling service of electricity, which was a mechanism to supply electricity virtually through existing power distribution networks, had been developed in Japan, and the power generation using waste was realized in Fukushima City with this mechanism. We proposed that Myanmar examined the feasibility of this mechanism. Because there is a substation at a site adjacent to the industrial zone, which is the main candidate site, wheeling service using this substation and existing distribution networks may become a solution as a power supply scheme for consumers of other regions. However, detailed technical and institutional conditions have to be examined. Discussion with relevant parties in the region should be deepened on whether or not a business model of supplying power to the regions adjacent to the industrial zone can be established with a method like wheeling service.

<Support for policy development regarding waste treatment>

The outcome of city-to-city collaboration between Fukushima City and Ayeyarwady Region, "promotion of new measures for waste treatment following economic development," was shared among parties in Sagaing Region. The urban area of Sagaing Region, like in Ayeyarwady Region, faces large amount of untreated waste (e.g. plastic waste from food containers); waste treatment measures in the urban area will be essential in the future.

Based on the development plans and action plans considered in Ayeyarwady Region, measures for Sagaing Region with respect to its regional characteristics will need to be considered.

<Capacity building (business exchange)>

As for business exchanges between Fukushima Chamber of Commerce and Industry, its members and the local Chamber of Commerce and its members, in-depth business dialogue will be needed for possible future collaboration in specific business projects.

1. Purpose and Implementation Arrangement

1.1 Project Objective

All countries attended the 21st International Conference of the Parties (COP21) on the United Nations Framework Convention on Climate Change held in December 2015 in Paris, France. They adopted the Paris Agreement, a legal framework of equitable and effective measures against climate change from 2020 onward. The Paris Agreement demands the promotion of activities toward decarbonization, stating that the temperature rise of the earth should be less than 2 degrees C adequately compared to the preindustrial era and efforts should be made to decrease it down to less than 1.5 degrees C. COP21 also decided that the activities of non-state entities including cities must be grasped, and that the efforts of all nongovernmental entities (cities and other local public bodies) are appreciated and their scale-up must be promoted.

"Marrakech Action Proclamation for Our Climate and Sustainable Development" adopted in COP22 held in November 2016 in Marrakech, Morocco, emphasized again that the global climate was warming at an unprecedented rate and we were obliged to take urgent countermeasures. It was recognized that global actions of not only national governments but also municipalities, as well as economic turnabout, would give a positive opportunity to further prosperity and sustainable development.

A city is the place of activities that support the development of society and economy. Many people live there. About 50% of the world population live in cities, the area of which is less than 2% of that of all lands in the world. The ratio is anticipated to increase up to 70% by 2050. As it is estimated that more than 70% of CO2 emissions in the world were from cities in 2006, the role that cities play in mitigating climate change is great. For achieving the goal of Paris Agreement, it is important to implement measures against climate change steadily in urban areas to reduce emissions of greenhouse gas.

In this project, Japanese research institutes, private companies and universities as well as Japanese municipalities having experience regarding the formation of a lowcarbon society supported such formation by the cities of developing countries based on intercity cooperation. To promote the formation, capacity building in the cities of developing countries was also propelled with the support of Japanese municipalities.

1.2 Survey Items

Based on the aforementioned background and objective, this research surveyed the following items for a low-carbon waste treatment system and micro-grid system in a new industrial zone in progress in Sagaing Region, Myanmar.

- (1) Overview of the area and local needs
- (2) JCM Project Feasibility
- (3) Low-carbon society development support
- (4) Participation in local surveys, workshops and other meetings

1.3 Survey Arrangement

The research was conducted by Mitsubishi Research Institute (MRI) as the representative, cooperating with Fujita, its research partner, Fukushima City, and Fukushima Chamber of Commerce and Industry Companies. The research was conducted in coordination with local companies and with cooperation from Sagaing Region and Ayeyarwady Region.

<Roles of entities from Japan>

Mitsubishi Research Institute, with its rich experiences in policy implementation, planning, and JCM research for the Japanese national and municipal government, collected relevant information, managed workshops, considered measures for forming JCM projects, and supported policy dialogue between Fukushima City and the local government (Sagaing Region), in addition to its role of the overall project management.

Fujita Corporation, with its knowledge and experiences in industrial, urban, and regional development, considered possibilities for specific project formulation (rice husk power plant).

Fukushima City had policy dialogue with the officials of the local government to discuss policy-side approach for low-carbon, environmentally friendly regional development, introducing its experiences in establishing waste treatment plans, renewable promotion plans, and raising environmental consciousness (e.g. educational programs at school). Department of environment served as the main counterpart from Fukushima City.

Fukushima Chamber of Commerce and Industry Companies cooperated with its member companies to introduce their technologies and know-how in businesses, and to investigate possibilities in transferring technologies of companies from Fukushima City.

<Roles of entities from Myanmar >

MAPCO (Myanmar Agribusiness Public Corporation) served as the local partner company.

Various stakeholders from the Sagaing Regional government contributed, including the Minister of Sagaing Region (Minister of Electricity, Industry, Road & Transportation, Regional Government Republic of the Union of Myanmar) as the head, and other officials from the related departments.

Figure 1-1 Organizational Structure

1.4 Overview of City-to-City Cooperation

Ayeyarwady Region, which is the main product region of rice, is concerned with work of clearing off large amounts of rice husks (in rice cropping districts, the largest amount of waste is rice husks).

As economy grows, addressing power shortages and emerging environment problems (waste, water preservation, etc.) became the most important issue in local cities in Myanmar.

Establishment of low-carbon, environmentally-friendly industrial zone is expected by applying the experiences of Japanese municipalities and companies. Additionally, such unique regional development is important for attracting businesses and promoting the industrial sector.

Myanmar has high expectations for Japanese experiences and technologies which have undergone rapid economic growth in the past. When the Chief Minister of Ayeyarwady Region visited Japan towards the end of April 2015, he learned about the activities related to energy efficiency and renewable energy in Fukushima City. Then, in June of the same year, the Chief Minister sent an official letter of intent to the Mayor of Fukushima City asking for support and cooperation in the development of Pathein Industrial City (letter asking for support and cooperation for the creation of a sustainable low-carbon city under an inter-city cooperation scheme).

In response to such a request for support and cooperation, Fukushima City, the Fukushima Chamber of Commerce and Industry, Mitsubishi Research Institute, and Fujita Corporation jointly established a partnership called the "Partnership for a Low-Carbon Initiative in Ayeyarwady" as a platform for city-to-city collaboration, and decided to perform activities for such purpose. In FY 2015, the Partnership held workshops in Pathein City in Ayeyarwady Region as well as in Fukushima City, conducted field surveys and made policy dialogues, and examined the possibilities of developing a project applicable to the subsidies under JCM Scheme. And furthermore in February 2016, when government officials of Fukushima City visited the site in Ayeyarwady Region, they handed the Chief Minister of the Region a letter from the Mayor of Fukushima City's willingness to cooperate with Ayeyarwady Region not only in the sectors of renewable energy and waste treatment but also in various important matters such as the formulation of a master plan, based on Fukushima City's experience hitherto so as to achieve a sustainable, resilient, and low-carbon society in Pathein City.

<Past Activities>

lune 2015	Chief Executive of Ayeyarwady Region made a request to Mayor		
Julie 2015	of Fukushima City for cooperation.		
October 2015	Relevant parties of Ayeyarwady Region visited Fukushima City.		
	Relevant parties of Fukushima City (Deputy Director of		
February 2016	Environment Division, etc.) visited Ayeyarwady and hand over a		
Tebruary 2010	reply letter of Mayor of Fukushima City regarding the request to		
	the responsible Minister of Ayeyarwady Region.		
Sontombor 2016	Workshop in Ayeyarwady (attendance of Chief Executive of the		
	region)		
Octobor 2016	Director of Urban Development Bureau of Ayeyarwady Region,		
	etc., visited Fukushima City.		
	Discussion on the direction of project expansion at WS in		
January 2017	Ayeyarwady (attendee: responsible Minister of Ayeyarwady		
	Region, Chief of Environment Section of Fukushima City, etc.)		

With such background, central government officials, in discussions for policy development regarding local distributed power supply system, asked MAPCO to consider expanding the first JCM project in Myanmar for rice husk power plant (Myaung Mya project, by Fujita and MAPCO) in other areas from Ayeyarwady Region; Sagaing Region (Shwebo District in particular) was proposed as a specific candidate project site.

MAPCO conducted its own local survey, and Fujita Corporation conducted preparatory survey in June. Afterwards, request for constructive development support under collaboration between Sagaing Region and Ayeyarwady Region was proposed (as an official letter from the regional minister to mayor of Fukushima City). The letter consisted of following requests:

- Promoting measures for waste treatment system (including local rice husk power plant project)
- Promoting micro-grid systems utilizing local renewable energy sources

As a result of discussion between Fukushima City and Fukushima Chamber of Commerce, it was decided that activities under Partnership for Low-Carbon Initiative in Ayeyarwady would be expanded to inter-regional collaboration between Sagaing Region as well.

•		
July 2017	Responsible Minister of Ayeyarwady Region made a request to	
	Mayor of Fukushima City for cooperation for development under	
	collaboration of Sagaing and Ayeyarwady Regions.	
September 2017	17 Workshop in Sagaing Region (in Monywa City, Sagaing Region	
	with attendance of the Chief Minister of the region)	
February 2018	Workshop in Ayeyarwady	
February 2018	Discussions in Fukushima City	
March 2018	Reporting of city-to-city collaboration activities (Naypyidaw)	

<Activities conducted this year>

Part of the activities under city-to-city cooperation through the partnership for lowcarbon initiative are conducted in cooperation with FY 2017 Feasibility Study of Joint Crediting Mechanism Project by City to City Collaboration ("Study on feasibility of solar power generation system and solar powered low-carbon water treatment system, and promotion of activities in Ayeyarwady Region" and FY 2017 Feasibility Study of Joint Crediting Mechanism Project by City to City Collaboration ("Study on feasibility of a lowcarbon waste treatment system and micro-grid system and promotion of activities under inter-regional collaboration in Ayeyarwady region and Sagaing region").

<Results of policy-dialogue in February in Myanmar>

Inter-regional workshop between Ayeyarwady Region and Sagaing Region was held in a meeting room in Yangon on February 6th from 3 pm. There were 10 participants from Japan and 18 participants from Myanmar in the workshop.

Not only government officials from Ayeyarwady Region and Sagaing Region, but also various people from relevant organizations and ministries, such as Ministry of Industry and Agricultural Department of Yangon, Myanmar Rice Federation, and MAPCO, participated in the workshop. Activities in Fukushima City, including relevant policies and local generation and consumption scheme at a waste power plant in Arakawa Clean Center, were introduced. There was particularly high interest in rice husk power plant, as there was one project under construction in Myaung Mya in Ayeyarwady Region; lively discussion was conducted regarding the topic.

During the courtesy visit to the Minister of Agriculture, Livestock and Irrigation, interregional collaboration activities between Ayeyarwady Region and Sagaing Region were explained; the Minister expressed that while meeting electricity demand was important, it was equally important to conduct measures for reducing CO2 emission and environmental pollution from waste, and that the rice husk power plant project would be an effective solution for such issues. He also commented that Fukushima City is a city rich with tourism resources and agricultural products, and showed appreciation towards past support through city-to-city collaboration.

The Minister showed his gratitude towards Fukushima City for its continuous support, and commented that activities for establishing rice husk power plant, which is environmentally-friendly, are meaningful for the country and should be promoted; he also showed his intent for continuous exchange with Fukushima City to build deeper relationships for food processing technologies using rice.

	Myanmar	Sagaing Region	Ayeyarwady Region
Area	680,000 km2 (1.8 times the area of Japan)	94,000 km2	35,000 km2
Population	50 million	5 million	6 million
Overview	Consists of 7 Divisions and 7 States	Located in the northwestern part of Myanmar, next to Kachin State, Shan State, Mandalay Region, Magway Region, Chin State, and Nagaland State and Manipur State of India Capital: Sagaing City	Located adjacent to Yangon; located in the delta of Ayeyarwady River Capital: Pathein City
Economic	Last frontier of Asia;	There is large amount	The largest granary
Trends	many Japanese	of rice production in	area in the country (rich
	companies are	the area; quality of	production of rice, soy
	advancing as well.	rice is better than that	beans, corn); it is
			gainering attention as a
		Region.	new developing area.

Table 1-1 Overview of Ayeyarwady Region and Sagaing Region

Figure 1-2 Local Workshop with the Chief Minister of the Region (September 2017)

Figure 1-3 Courtesy Visit to the Minister of Agriculture, Livestock and Irrigation of Myanmar (February 2018)

Figure 1-4 Local Workshop (February 2018)

2. Overview and Needs of the Area

2.1 Overview of the Area and Local Policies

In this section, the socio-economic situation of Sagaing Region and Shwebo District is described.

2.1.1 Socio-Economic Situation of the Area

Sagaing Region is the second largest region in Myanmar (the largest is Shan). The regional capital is located along the Ayeyarwady River. The region has an area of approximately 93,000 km2, with 8 districts, 37 townships and one self-administered zone. The population is a little more than 5 million; its composition does not differ much from that of the whole country, and an increasing trend in population can be seen.

Figure 2-1 Population Pyramid in Sagaing Region

Source) Department of Population, Ministry of Immigration and Population "The 2014 Myanmar Housing and Population Census: Sagaing Region"

https://reliefweb.int/report/myanmar/2014-myanmar-population-and-housing-census-sagaing-region-census-reportvolume-3-e

(Last accessed: March 6th, 2018)

As there are two main rivers in the region (Ayeyarwady River and Chindwin River), the main industry of the region is rice milling, but production of other grain products is rich as well. Aside from agriculture, the region is blessed with natural resources such as gold, coal, and oil; therefore, the living standard of the region is relatively high compared with the whole country. However, it is important to note that a large difference in living standards remains in the region; the southern part with plain field is more developed, while the mountainous northern region faces serious poverty issues.

Shwebo District, which is the candidate district for the project, is the most populated district within the region, with population of approximately 1.5 million population (refer to the table below).

State/Region/District	Population
Sagaing (Overall)	5,350,299
Sagaing	520,399
Shwebo	1,431,450
Monywa	757,092
Katha	860,360
Kalay	508,015
Tamu	144,827
Mawlaik	163,896
Hkamti	423,283
Yinmarpin	508,015

Table 2-1 Sagaing Region Population by District

Source) Department of Population, Ministry of Immigration and Population "The 2014 Myanmar Housing and Population Census: Sagaing Region"

https://reliefweb.int/report/myanmar/2014-myanmar-population-and-housing-census-sagaing-region-census-reportvolume-3-e

(Last accessed: March 6th, 2018)

Figure 2-2 Map of Sagaing Region and Shwebo Region

Source) Department of Population, Ministry of Immigration and Population "The 2014 Myanmar Housing and Population Census: Sagaing Region"

https://reliefweb.int/report/myanmar/2014-myanmar-population-and-housing-census-sagaing-region-census-reportvolume-3-e

(Last accessed: March 6th, 2018)

Shwebo District is one of the foremost areas in Sagaing Region for rice production; agriculture with a focus on grain production is popular. The district focuses on its highbrand rice, "Shwebo Paw San," in particular. The production of agricultural product in Shwebo is shown below.

	Mon	soon	Summe	r/Winter	Total		
Crop Name	Yield (Basket/acre) (ton/ha)	Production (basket) (ton)	Yield (Basket/acre) (ton/ha)	Production (basket) (ton)	Yield (Basket/acre) (ton/ha)	Production (Basket) (ton)	
Deddy	85	67,913,946	94	28,319,798	88	96,233,744	
Paddy	4.39	1,419,401	4.85	591,884	4.54	2,011,285	
Diack grow	17	250,800	19	1,617,004	18	1,867,804	
ыаск gram	1.37	8,201	1.54	52,876	1.45	61,077	
Crean gran	16	2,697,369	18	775,615	17	3,472,984	
Green gram	1.29	88,204	1.45	25,363	1.37	113,567	
0	12	441,133	17	3,070,269	16	3,511,402	
Sesame	0.73	10,808	1.03	75,222	0.97	86,029	
	42	5,560,480	65	10,482,663	55	16,043,143	
Groundhut	1.18	63,389	1.83	119,502	1.55	182,892	

Source) JICA (2016) "Preparatory Study for Intensive Agriculture Promotion Program in the Republic of the Union of Myanmar"

http://open_jicareport.jica.go.jp/807/807_104_12250759.html

(Last accessed: March 6th, 2018)

Rice production in Myanmar is shown below by region. Ayeyarwady is the largest riceproducing region in delta area, while Sagaing Region is the largest rice-producing region in the dry area.

		2004/	2004/05 - 2008/09		2	2009/10)	2010/11			2011/12		
		Rainy	Dry	Total	Rainy	Dry	Total	Rainy	Dry	Total	Rainy	Dry	Total
Delta Area	Ayeyarwady	5,563	2,303	7,866	5,944	2,563	8,507	5,944	2,563	8,507	5,972	2,510	8,482
	Bago	4,259	585	4,844	4,790	791	5,581	4,790	791	5,581	4,803	630	5,433
	Yangon	1,625	283	1,908	1,709	333	2,042	1,709	333	2,042	1,710	320	2,030
	Subtotal	11,447	3,171	14,618	12,443	3,687	16,130	12,443	3,687	16,130	12,485	3,461	15,946
Dry Area	Naypyidaw	NA	NA	NA	NA	NA	NA	NA	34	34	287	43	329
	Magway	1,162	271	1,433	1,467	262	1,729	1,501	322	1,823	1,524	332	1,856
	Mandalay	1,401	435	1,836	1,298	346	1,644	1,307	369	1,675	993	331	1,324
	Sagaing	2,746	751	3,497	3,131	874	4,005	3,179	865	4,044	3,109	745	3,855
	Subtotal	5,309	1,457	6,766	5,896	1,482	7,378	5,986	1,590	7,577	5,913	1,451	7,364
Coast Area	Mon	1,213	181	1,394	1,278	222	1,500	1,278	222	1,500	1,294	206	1,500
	Rakhine	1,638	31	1,669	1,825	31	1,856	1,825	31	1,856	1,697	29	1,726
	Tanintharyi	534	43	577	544	24	568	544	24	568	510	25	535
	Subtotal	3,385	255	3,640	3,647	277	3,924	3,647	277	3,924	3,501	260	3,761
Mountain Area	Chin	103	*	103	120	*	120	120	*	120	127	*	127
	Kachin	680	27	707	925	45	970	925	45	970	945	18	963
	Kayah	123	15	138	137	17	154	137	17	154	140	17	157
	Kayin	595	173	768	721	215	936	721	215	936	755	217	972
	Shan	2,099	171	2,270	2,394	160	2,554	2,394	160	2,554	2,409	154	2,563
	Subtotal	3,600	386	3,986	4,297	437	4,734	4,297	437	4,734	4,374	407	4,781
Total	·	23,742	5,269	29,010	26,283	5,883	32,166	26,373	5,991	32,365	26,273	5,579	31,852

Table 2-3 Rice Production by Region

Source) Myanmar: Capitalizing on rice export opportunities, The World Bank, Report number 85804 dated 28 February 2014.

http://documents.worldbank.org/curated/en/570771468323340471/Myanmar-Capitalizing-on-rice-exportopportunities

(Last accessed: March 6th, 2018)

2.1.2 Power Sector Situation

(1) Main Policies for the Power Sectors

There are three main policies related to the electricity sector in Myanmar: Myanmar Energy Master Plan, National Electricity Master Plan, and National Electrification Plan.

Myanmar Energy Master Plan was formulated under the support of ADB (Asian Development Bank). It analyzed the effective use and the optimum energy composition of various primary energy resources toward 2030. A trial calculation of energy demand by sector (residential, commercial, industrial and agricultural) was made in the plan.

Figure 2-3 Energy Demand by Sector in 2030 (middle scenario, mtoe) Source) Myanmar National Energy Master Plan

http://www.burmalibrary.org/docs22/2015-12-Myanmar Energy Master Plan.pdf (Last accessed: March 6th, 2018)

As known from the above prospect, significant increase in energy demand following economic development is anticipated. In particular, increase in the industrial sector is large. Final energy consumption by energy carrier is shown below.

Figure 2-4 Final Energy Consumption by Energy Carrier (middle scenario, mtoe) Source) Myanmar National Energy Master Plan

http://www.burmalibrary.org/docs22/2015-12-Myanmar_Energy_Master_Plan.pdf

(Last accessed: March 6th, 2018)

Electricity demand is shown in orange at the top of the bar chart. It is seen that increase of the demand toward 2030 is larger compared to other energy carriers.

National Electricity Master Plan was formulated under the support of JICA (Japan International Cooperation Agency). It examined the prospect of electricity supply and the ideal energy composition toward 2030. Power source composition toward 2030 is shown below.

Figure 2-5 Installed Capacity for 2030 (GW)

Source) Power Development Opportunities in Myanmar

http://www.myanmarinvestmentforum2017.com/themes/demo/assets/download/Power%20Development%20Oppourt unites%20in%20Myanmar.pdf

(Last accessed: March 6th, 2018)

Myanmar is rich in water resources. In 2015, hydropower generation occupied more than 60% of the nation's installed capacity, while gas-fired power occupied a little over 30%, coal-fired power and diesel power being the remainder. A problem of this power source composition is the difference in the production of electricity between rainy season and dry season. A policy of decreasing the dependence on hydropower was expressed in the prospect toward 2030. Anticipated power source composition in 2030 is: hydropower 8,896 MW (38%), coal-fired power 7,940 MW (33%), gas-fired power 4,758 MW (20%), and others including renewable energy 2,000 MW (9%).

The supply and demand projection of electricity and master plans were established in Myanmar. However, its average electrification rate is thirty odd percent, the rate being lower in some regions. Based on this situation, Myanmar Government, setting the goal of achieving 100% electrification rate in 2030, showed a roadmap in National Electrification Plan formulated under the support of World Bank.

The plan assumed that 99% of the households were electrified by power transmission from the central grid while the regions located at the fringe of the grid were electrified by off-grid (use of mini-grid and household-use photovoltaic power generation) to promote electrification more rapidly. The responsible ministry of realizing the electricity supply from the central grid is Ministry of Electricity and Energy, while the one of realizing the mini-grid projects is Ministry of Agriculture, Livestock and Irrigation. Overseas organizations (World Bank, ADB, GIZ of Germany) are now providing technical support on mini-grid, the specification and level being formulated.

Minigrid projects funded by ADB (80% of project cost covered) are shown below. Vendors must own the responsibility of maintenance and management for three years, and renew battery system installed with the system after three years.

Township	Households	Population	PV Capacity	Battery kWh	Cost Total USD	Туре
Magway Region						
Thayet	197	931	7.2	57.6	73,350	Stand- alone
Sinbaungwe	270	2,170	8.7	63.3	82,368	Stand- alone
Minbu	89	336	4.9	57.6	44,100	Diesel hybrid
Yenangyaung	330	1,654	130	92.2	102,300	Stand- alone
Salin	143	625	6.5	38.4	50.832	Stand- alone
Pauk	157	836	6.0	46.1	50.856	Stand- alone
Mandalay Regio	n	I	1	1	1	
Kyaukse	317	925	10.8	86.4	98,580	Grid ready
Nyaung-U	200	977	9.8	115.2	75,000	Stand- alone
Kyaukpadaung	103	484	4.9	57.6	97.090	Stand- alone
Taungtha	110	654	4.9	57.6	07,900	Stand- alone
Sagaing Region	Sagaing Region					
Sagaing	170	569	6.0	46.1	102 770	Stand- alone
Khin-U	165	668	7.0	61.4	102,110	Stand- alone

Table 2-4 Mini-Grid Projects with ADB Support

Source) ADB "Developing Renewable Energy Mini-Grids in Myanmar: A Guidebook"

https://www.adb.org/documents/developing-renewable-mini-grids-myanmar-guidebook (Last accessed: March 6th, 2018)

Note) "Stand-alone" refers to an off-grid system, "Diesel hybrid" refers to a hybrid system of diesel and solar, "Grid Ready" refers to a system that can be connected to the grid

(2) Financial Situation of the Power Sector

As described above, considerable new investments in facilities are anticipated in the electricity sector in Myanmar hereafter. From a financial point of view, however, serious deficit situations continue in the electricity sector in Myanmar. Power generation projects in Myanmar are implemented by private power generation enterprises and publicly-owned Electric Power Generation Enterprise (EPGE). First, energy produced is bought by EPGE temporarily (if supplied to the grid), and then bought by transmission and distribution enterprises (Electric Supply Enterprise (ESE), Yangon Electricity Supply Corporation (MESC), or Mandalay Electricity Supply Corporation (MESC) depending on

regions) and supplied to consumers. Electricity charges are determined based on the living standards of consumers for improved electricity access (see the table below). However, as this is not the level of electricity charges sufficient to recover the costs of power generation, procurement, transmission and distribution, the electricity sector in Myanmar is in serious deficit situations (anticipated deficit in fiscal 2017 is about 37.7 billion kyat). The government subsidizes the operation (anticipated to be Ks.22.66/unit in fiscal 2017) to cover the deficit. The subsidy is as much as the value that occupies a little under 10% of the budget of Ministry of Electricity and Energy.

Residential		Industrial	
~100 kWh	35 Kyat/kWh	~500 kWh	75 Kyat/kWh
	(USD 0.03)		(USD 0.06)
101~200 kWh	40 Kyat/kWh	501~10,000 kWh	100 Kyat/kWh
	(USD 0.03)		(USD 0.07)
200 kWh~	50 Kyat/kWh	10,001~50,000	125 Kyat/kWh
	(USD 0.04)		(USD 0.09)
		50,001~300,000 kWh	150 Kyat/kWh
			(USD 0.11)
		300,001~ kWh	100 Kyat/kWh
			(USD 0.07)

Table 2-5 Electricity Tariff in Myanmar

Source) Lincoln Legal Services (Myanmar) "Legal and Tax Considerations when Investing in Myanmar's Renewable Energy Sector with a Focus on Electricity Tariffs"

https://www.lincolnmyanmar.com/wp-content/uploads/2017/08/Green-Energy-Summit-Lincoln-Myanmar.pdf (Last accessed: March 6th, 2018)

Figure 2-6 Actors Involved in Power Supply in Myanmar

Source) Lincoln Legal Services (Myanmar) "Legal and Tax Considerations when Investing in Myanmar's Renewable Energy Sector with a Focus on Electricity Tariffs"

https://www.lincolnmyanmar.com/wp-content/uploads/2017/08/Green-Energy-Summit-Lincoln-Myanmar.pdf

(Last accessed: March 6th, 2018)

In addition to construction of large-scale power plants and expansion of the national grid, power supply using distributed energy resources is being considered in Sagaing Region. As already explained, there is a large amount of rice production in the region, which generates a large amount of waste, rice husks; such rice husks are high potential for biomass power in the area.

2.2 Local Needs

As with Ayeyarwady Region, for which a policy dialogue was conducted previously in an city-to-city collaboration with Fukushima City, Sagaing Region is facing social problems to be solved such as increase in waste and power consumption (environmental pollution, access to energy, etc.,) that follow economic development. In particular, problems related to disposal of rice husks are more severe in Sagaing Region where open-air burning of husks is performed on a large scale, compared to Ayeyarwady.

<Problems with rice husk waste>

There is large amount of rice husk waste generated in the area, and most is thrown away.

Figure 2-7 Local Situation of Rice Husk Waste (Piled Up) Source) Provided by MAPCO

Figure 2-8 Situation of Local Waste Treatment (Burnt off the field of former airport site) Source) Provided by MAPCO

<Needs for Power Supply>

To achieve 100% electrification in 2030, Myanmar is considering power supply through grid expansion and off grid. However, even in areas that already receive power supply from the national grid, power supply is not stable, particularly in areas located towards the end of the grid. Diesel generators are often installed in these areas. There is increasing interest in local generation and consumption of electricity utilizing micro-grid to improve quality of power supply. However, there remain some challenges to promote micro-grids in Myanmar.

While power supply through micro-grids and minigrids are mentioned in the national electrification plan with provision of subsidies, there is no standard or specification for micro-grids and minigrids. Interconnection rules with the national grid are not established. These regulations and rules must be established in parallel with promotion of micro-grids and minigrids.

Aside from policy challenges, challenges remain from business feasibility perspective. Distributed energy resources including renewable energy (e.g. solar and biomass) are promising generation technologies for middle to small scale micro-grids, but standard power purchase price in Myanmar for large scale power plants would not be sufficient to make a business case for renewable energy projects. Power sector in Myanmar is in a serious financial deficit due to subsidies provided for retail electricity tariff, and providing additional subsidies for renewable power plants would worsen the situation. Based on such circumstances, it can be concluded that micro-grids that sell electricity to the grid would not be a realistic business model at this moment. Private power lines can be

constructed especially for the micro-grids to supply power only within the micro-grid, in which case power purchase price can be set freely even under the current regulations. However, constructing private power lines can be extremely costly, and it would also mean double investing in social infrastructure, which would pose additional social costs; therefore, micro-grids with private power lines would not be a realistic business model.

Another option for a micro-grid business model is supplying power to consumers within the micro-grid using existing power line infrastructure. Generally in developed countries, cost for using the existing power lines would be collected in a form of "wheeling charge," but no regulation exists for such concept in Myanmar currently, and therefore no price is set. In order for this business model to be realized, negotiations with the local government would be necessary.

Financing is another challenge for conducting renewable energy projects in Myanmar. Local banks do not have experiences in providing loans for renewable energy projects, making it difficult for them to assess various risks associated with renewable energy projects. Even when using foreign banks, negotiations with the local banks would still be needed, and higher interest rate is expected.

3. JCM Project Feasibility Study

3.1 JCM Project Formulation

Promising technology for low-carbon waste treatment system would be rice husk power generation technology. As already mentioned, Shwebo District in Sagaing Region is an agricultural area, with rich generation of rice husks. In fact, the largest waste generated in Shwebo District is rice husks, and their inappropriate treatment is leading to environmental pollution, raising needs for their utilization. Even compared with Ayeyarwady Region, rice husks are burnt open-air on a large scale, posing more serious problems in Sagaing Region in particular.

Feasible JCM project for low-carbon waste treatment system (rice husk power plant) in Shwebo District, Sagaing Region, along with its candidate site and applied technology, is considered.

3.1.1 **Project Overview**

As a power plant to be installed in the industrial zone and rice mills in Shwebo District, Sagaing Region, achievement of an early operation of a 3 MW scale biomass power plant using rice husks under the SPC established between Japanese and Myanmar local companies is aimed (application for JCM subsidy between latter half of fiscal year 2018 and first half of fiscal year 2019, starting operation in 2021).

3.1.2 Project Site

The following locations in Shwebo District were considered as candidate sites for the project: area within an industrial zone, and area adjacent to a large scale rice mill.

There are 120 rice mills in Shwebo, so it is possible to collect enough rice husk. Particularly in the Shwebo Industrial Zone, there are as many as 100 rice mills. If the average amount is 20 t, the total amount is 2,000 t and the amount of rice husk is 400 t. 100 t is required for 3 MW and 200 t for 6MW. It is readily possible to procure the required amount of rice husk.

In particular, industrial zone with many rice mills and large-scale rice mill (Wetlet District), two most promising sites for the project, are compared.

- Industrial Zone in Shwebo District
 - Of the 357 sections in the industrial zone, 80% are already occupied with factories, of which half are rice mills (rice mills accumulation area). There is a large amount of unused rice husks generated in the area. Power is supplied from the grid, but in times of shortage, diesel generators are used; stable supply of power is an important issue.
- Large Scale Rice Mill in Wetlet District Currently, the district it has a rice milling facility which handles 150 tons of rice per day, producing 30 tons of rice husk per day. In this fiscal year, another rice milling

facility, which handles 100 tons of rice per day, will be added. Thus, this mill will produce 50 tons of rice husk per day. At present, although the power demand is almost satisfied, there is a little uncertainty because of the economic development around the area. Because there is no usage of rice husk, it is being burned in a large vacant lot.

Based on the comparison, from the aspect of stable rice husk supply, a large-scale rice mill operated by a single rice miller would be more feasible, while the region's intent was to prioritize installation within the industrial zone that would benefit multiple rice millers.

Therefore, implementation in the industrial zone would be prioritized, and in the later development stage, project expansion in larger scale industrial zones would be considered. Regarding development in large-scale industrial zone, further considerations would be needed for explaining the project benefit.

3.1.3 Applied Technology

Technology to be applied in the proposed project is considered from the following perspectives to sustainably operate the project: (1) collectable amount of rice husks, (2) generation system, and (3) rice husk supply.

(1) Collectable Amount of Rice Husks

From the viewpoint of a power plant business, the larger the plant the better economic feasibility. However, in cases of renewable energy power plants such as rice husk biomass power plant, stable procurement of fuels and maintaining stable prices are one of the keys for project success. Many of the projects that failed in Southeast Asia are due to difficulty in procurement of rice husks.

In utilizing JCM scheme, stable operation of the power plant during its legal duration period is necessary. To achieve this, rice husks should be collected from a limited, reachable areas.

From such perspectives, potential amount of rice husks was considered as follows:

- Total amount of generated rice husks Industrial Zone in Shwebo: estimated amount from rice production is 85,700 ton/year (357 sections*80%*50%*20t/day*50%*20%*300days/year=85,700t/y)
- Amount of rice husks that can be utilized Unlike in Ayeyarwady Region, rice mills using gasification power plant as selfpower supply facility are limited in Shwebo District. Assuming that 50% of the rice millers participate in the project, 42,900 ton of rice husks can be collected each year, which is enough for a power plant larger than 4 MW.

(2) Electricity Demand and Current Power Supply

Of the 357 sections in Shwebo Industrial Zone, 80% are already occupied with factories, of which half are rice mills (rice mill accumulation zone). There is a substation nearby, and power is supplied from the grid, but in times of power shortage, diesel generators are utilized. There is a large amount of unused rice husks. Stable power supply and burning off of unused rice husks on the field are serious issues of the area.

(3) Power Generation System

Considering the characteristics of rice husks, possible choices of power generation systems are gasification type and direct burning type (Boiler Turbine Generator: BTG). For small scale power plants, efficiency is generally low for BTG, and gasification plants are considered favorable. Even though latest Japanese gasification systems offer adequate considerations for environmental impact, there are still some skeptical opinions about gasification plants, as they have short implementation history, and many of the local gasification systems are hand-made with heavy environmental impact due to tar and ashes.

Recently, Japanese engineering companies have been manufacturing BTG systems below 3 MW with 20% efficiency; this system will be utilized for the project.

The study proposes to utilize the turbine technology, which serves as the core technology in the system, of a Japanese company with high efficiency even at a small scale. As for the boiler technology, partner company will be selected with regards to conformity with the conditions of the turbine technology. The overview of the generation system is shown below.

Figure 3-1 Boiler Turbine Generator (BTG) Power Generation Flow

The aforementioned system is used in the first JCM project by Fujita Corporation and MAPCO in Myaung Mya District in Ayeyarwady Region. This system will be used as a base with some modifications to construct an optimized system for the region.

Based on the experiences in the first JCM project, the optimal system will be created (from the aspects of equipment cost and generation efficiency).

Differences between the first JCM project in Myaung Mya District in Ayeyarwady Region are shown below:

<Common Features>

- Both project sites do not have large rivers nearby; pumping up underground water can negatively affect rice cultivation. Returning of underground water will be conducted after careful discussions with the stakeholders of the local agricultural department, but changing the steam cooling method to air-cooling method will be considered as well.
- After re-examination of equipment from the first project, measures for reducing initial cost will be considered.
- Ground foundation is expected to be better than that of the first project; increase in construction cost is expected to be eliminated.
- Consideration of surplus power supply

<Candidate Site: Shwebo District>

- To assure stable procurement of necessary rice husks, formation of a rice husk power supply organization, consisting of small and middle scale rice millers, is necessary.
- Benefits of participating in the project need to be clarified.

3.2 GHG Emission Reduction

3.2.1 Analysis of Emission Reduction of Energy-Derived CO2 & Greenhouse Gas

Methods of emission reduction of CO2 from fuel combustion and greenhouse gas of the rice husk biomass power plant project were examined. Based on this, reduction volume of such energy-derived CO2 was calculated. The outline of the examination is described below.

(1) Reference

Generated electricity will fulfill electricity demand. The industrial city is connected to the grid; therefore, reference value will be assumed as power supply from the grid. There is no official emission factor provided by the government of Myanmar, and it is difficult to acquire data on power plants connected to the grid; therefore, emission factor was calculated based on IEA data according to the CDM method. The result is shown below.

101010 0				
	Coal	Oil	Gas	Average
2009	1.055	0.864	0.729	0.202
2010	1.057	0.786	0.729	0.265
2011	0.979	0.853	0.729	0.192
2012	0.961	0.826	0.729	0.218
2013	0.956	0.825	0.729	0.195
2014	0.969	0.848	0.729	0.280
2015	0.973	0.825	0.729	0.304
Emission	-	-	-	0.214
factor (2009~				
2013)				
Emission	-	-	-	0.230
factor (2010~				
2014)				
Emission	-	-	-	0.238
factor (2011 \sim				
2015)				

Table 3-1 Grid Emission Factor based on IEA Data (t-CO2/MWh)

Furthermore, installation of gas power plant is under discussion in Myanmar; in the future such thermal power plants will hold a higher share in Myanmar's generation mix from hydropower plants. Therefore, reduction from the proposed project is likely to increase as well. Therefore, estimation of grid emission factor will be treated as ex post.

It is important to keep in mind that monitoring point must be established which can appropriately monitor the amount of electricity sold to the grid, not including the electricity consumed within the plant. In addition, when conducting heat supply as well, it is assumed that boiler with the highest energy efficiency at the thermal supply site or in Myanmar is to be altered. On the other hand, when altering conventional rice husk drying process under the sun, the amount of emission reduction will not be accounted for.

(2) Project Emission

1) CO2 Emission from Transport

CO2 emission from fuel use for transporting rice husks and plastic waste used for power generation is estimated. Most of them will be transported by human power, but for conservativeness, default value of CDM tool (for light vehicles), 245g-CO2/t-km may be applied.

2) Electricity Consumption within the Power Plant

When the electricity is supplied for equipment in the rice husk biomass power plant as backup power, the amount of emission from fuel consumption must be considered. Monitoring is done according to the sales receipt of fuel.

Based on the idea of the materiality (The threshold of materiality for verification is set at five (5) percent of emission reductions. etc.), small amount of emission resource will not be considered.

(3) Other Sources of Emission

Methane generated from rice husk disposal:

Methane emissions arising from disposal of rice husk under anaerobic condition may be considered as part of the reduction in this project by utilizing these rice husks. However, rice husk disposals in Myanmar are not always under anaerobic condition; therefore for conservativeness, they are not part of emission reduction in this project.

(4) Emission Reductions

Assuming the above, emission reduction is calculated as follows.

3.0	MW
21,600	MWh/year
0.238	kg-CO2/kWh
5,141	t-CO2/year
30,900	t/year
0 *	t-CO2/year
5,141	t-CO2/year
	3.0 21,600 0.238 5,141 30,900 0 * 5,141

Table 3-2 Result of Emission Reduction	ons Calculation (Biom	ass Power Plant Project)
--	-----------------------	--------------------------

Note) Regarding project emissions, about half of rice hulls are procured from adjacent rice mills and the remaining half are contracts to procure from nearby rice mills, which are considered small amount of emissions resource and are not taken into consideration in calculating reductions.

Business and Policy Proposals 3.3

Business scheme (technology specifications, funding, and organizational structure), and measures for JCM project formulation are considered. In addition, possible environmental impact and social impact and measures are considered with reference to local legislations.

Business Scheme 3.3.1

The business scheme of the project is shown below.

Implementation Site	Industrial Zone in Shwebo District, Sagaing Region
Size	3 MW Scale
Fuel	Rice Husk
Applied Technology	Boiler Turbine (Biomass Power Generation)
Power Supply	Generated power will be used within the rice mill, and surplus will be sold to the neighboring community and other factories in the industrial zone (distribution via micro- grid)
Project Scheme	Establishment of SPC assumer (e.g. Japanese company and local partner) Utilization of JCM Subsidy

Table 3.3 Project Schome

(1) Technology Specifications

Considering the amount of rice husk supply and power demand in the industrial city, this study proposes the following system.

Table 3-4 Specifications of the Rice Husk Power Plant				
Installed capacity	3,360	kW		
Self-consumption	360	kW		
Sold electricity	3,000	kW		
Availability	24	hrs/day		
	300	days/year		
Generated electricity	72,000	kWh/day		
	21,600,000	kWh/year		
Rice husk	4	t/h		
	103	t/day		
	30,900	t/year		
(Reference)	0.011	t/h		
Plastic waste to be co-	0.264	t/d		
fired	79.2	t/year		

T-1-1-040			D:			L
Iable 3-4 Sp	Decifications	of the	Rice	HUSK	Power Plant	ε

(2) Project Investment

Equipment cost (estimate) excluding civil engineering works is 689 million JPY (gross generation capacity of 3.3 MW). Project investment cost will be distributed according to SPC investment.

(3) Project Organizational Structure

<Project Implementation in Industrial Zone>

The facility is considered as part of the infrastructure prepared by MAPCO; therefore, operational organization should be MAPCO. However, considering the past development experiences in Myanmar local companies, establishment of a joint venture with experienced company would be best. Therefore, with possibility of utilizing JCM scheme, establishment of an SPC between a Japanese and Myanmar local company is being considered. The international consortium structure is shown below:

Figure 3-2 Project Organizational Structure (Proposal)

The installed technology requires specific knowledge and experiences. Consigning the whole operation and maintenance process to an EPC company is planned.

(4) Sales of Generated Power

All of the generated power will be sold to MAPCO. The power will be supplied to MAPCO facilities and neighboring factories. The power will be sold off-grid.

(5) Identification of Participating Entities in the Project

Local company from Myanmar assumed to be participating in the project is MAPCO, which has purchased the land for industrial zone and planning construction of rice mills.

To roll out similar projects in other areas, investment rate of Japanese companies should be gradually lowered; however, at the current economical standard in Myanmar, the project scale is too large for a single entity to participate. Therefore, it is assumed that about three companies will be participating in the project.

3.3.2 Environmental and Social Impacts

Possibility of environmental impact (e.g. air and water contamination) from the rice husk power plant project and necessary measures, procedures for environmental impact assessment, possibility of social impact and measures are discussed.

Foreign investment must undergo investment approval procedures at MIC (Myanmar Investment Committee) under Foreign Investment Law and Foreign Investment Rules.

In order to acquire approvals for foreign investment, project categories identified under the EIAP (Environmental Impact Assessment Procedures) must conduct EIA (Environmental Impact Assessment) or IEE (Initial Environmental Examination), or prepare an EMP (Environmental Management Plan).

EIAP identifies the following project categories to conduct IEE or EIA: 1) Project in which investment is decided by the Parliament or the government cabinet or the President, 2) energy sector development, 3) agriculture, livestock and forestry development, 4) manufacturing (food and beverage manufacturing, garments, textiles and leather products, wood manufacturing, chemicals manufacturing, manufacture of glass and ceramics, manufacture of construction materials, metal, machinery and electronics), 5) waste management, 6) water supply, 7) infrastructure and service development, 8) transportation, and 9) mining.

There is no compulsory environmental standard referenced in EIA. National Environmental Quality (Emission) Guideline was established in 2015 with reference to Environmental Health and Safety Guideline established by IFC (International Finance Corporation), but this standard is only a reference standard. Therefore, currently, EIA must be conducted with regards to international standards (e.g. JICA, IFC, ADB, etc.).

The 3 MW scale rice husk power plant project would fall under the project category "Power Plants from Waste Products" in EIAP. Under this category, projects over 50 MW need to undergo IEE, and projects designated by the government need to undergo EIA. Therefore, it is expected that the proposed project does not need to undertake IEE nor EIA.

In terms of individual environmental standards, such as ambient air quality, industrial effluent, water contamination and noise, compliance with the guideline of exhaust gas emission from small scale combustion facilities, in the general and thermal power IFC EHS Guideline (International Finance Corporation Environmental Health and Safety).

Small scale combustion process points to the system designed to supply electricity, machinery power, steam, heat and/or the combination of these equivalent to 3-50MW in thermal output derived from the total of rated value heat capacity, irrespective of types of fuel.

Environmental protection of power plant

<Exhaust emission>

- IFC EHS Guidelines (general)
- Assuming compliance with "Exhaust gas guidelines of small-scale combustion facility (Heat output3-50MW, Solid fuel)"
- Particulate matter: Cyclone dust collector
- NOx and Sox: Since nitrogen and sulfur component of rice husk is small, special processing is unnecessary
- Dioxin: Although rice husk hardly contain chlorine, it is assumed that it is shifted to rice hulls by absorbing dioxin of soil (no guideline value)

<Ash>

- Fry ash: Considering the introduction of bag filter or electrostatic precipitator (include assume dioxin measures also)
- Main ash: Study multiple reuse (Cement, fertilizer, Building material, other)

Currently, there are no regulations for landfill of burnt ash generated from rice husk power plant, but necessary measures for reducing environmental impact will be taken under discussions with the regional stakeholders.

3.3.3 Project Effects

(1) Economic Impact

- Utilization of rice husk waste and economic benefits There are strong needs for utilization of rice husks; their utilization will generate economic benefits for rice millers
- Power supply in industrial zone The industrial zone can supply power for construction electricity needs. Stable production in the industrial zone is expected.
- Green power supply to the industrial zone and securing disaster-resilient independent distributed power Rural areas in Myanmar experience large-scale floods during the rainy season, requiring measures for disaster resiliency. Self-reliant distributed energy

resources can supply power during disasters, contributing to increased resiliency in the region.

• New business opportunities

While rural industrialization becomes a challenge in economic development, growth of new industries (e.g. processed rice products, agricultural processed products, distribution of marine products, etc.) is an important issue. The proposed project of rice husk power plant can supply not only electricity but also heat. Heat can be utilized for drying rice, or other products; it may create new opportunities for businesses.

(2) Contribution to the Local Society

 Improving electricity access in the local community Challenges associated with energy access and waste treatment are one of the most serious issues Myanmar is facing. Rice husk power plant is one solution that can be expanded in other areas in Myanmar. The central government is transitioning into policy development utilizing distributed power system (renewable energy, micro-grids, etc.) to fundamentally improve electricity supply. The proposed project can be an embodiment of a business model for such policy.

3.4 Project Planning and Capacity Building

(1) Policy Development Support

In local workshop held in Sagaing Region (September 2017 in Monywa), as a support for policy development in the waste treatment field through city-to-city cooperation , activities for waste treatment in Fukushima City were introduced; in Fukushima City, "Fukushima City Fundamental Plan for General Waste Treatment" is established to promote appropriate treatment and reduction of waste. In the plan, the following three fundamental policies are proposed:

- Promotion of 3R activities (reducing, reusing, and recycling of waste) and establishment of a circular-type society
- Promotion of appropriate waste treatment and securing safe and comfortable living environment
- Environmental conservation through collaboration between citizens, businesses, and the government

In local workshop held in Yangon (February 2018), policies in Fukushima City regarding renewable energy promotion were introduced, and discussions were held on energy policies related to low-carbon waste treatment system in Myanmar (rice husk power plant) and PV system implementation. Myanmar is in power supply shortage, but utilizing environmentally-friendly renewable energy resources is meaningful for the country, and it was concluded that further considerations would be conducted under public-private cooperation based on city-to-city collaboration.

The following policies in Fukushima City were introduced:

> Fukushima City Renewable Energy Promotion Plan

Future Visions of Fukushima City

> Arakawa Clean Center (Local generation and consumption of waste power plant)

> Deployment of Renewable Energy Power Plant

► PV System Installment Subsidy

> Programs for Interest Subsidy for Renewable Energy Related Facilities

Additionally, there was a courtesy visit for the Ministry of Agriculture, Livestock and Irrigation of the Union of Myanmar. The activities in Ayeyarwady Region and Sagaing Region under city-to-city cooperation, along with features of Fukushima City (tourism, agriculture, food processed products such as bread utilizing rice flour and Japanese sake) were introduced. The Minister showed appreciation for continued support by Fukushima City, and expressed his intent to provide further support for low-carbon waste treatment system (rice husk power plant).

Through the workshop, a shared understanding for the importance of utilizing renewable energy in industrial zones and rice mills development was formed. The understanding was shared not only with the government officials, but also with the union officials such as the Minister for the Ministry of Agriculture, Livestock and Irrigation of the Union of Myanmar (power supply with renewable energy for development of rice mill

industry)

• Overview of Joint City-to-City Collaboration Workshop with Ayeyarwady Region and Sagaing Region

Date	February 6 th (Tue) 15:00~17:00
Venue	Meeting Room in Yangon
Participants	• Japanese side: 10 participants (including: Fukushima City officers,
(28 in total)	Fukushima Chamber of Commerce and Industry board directors,
	Mitsubishi Research Institute, Fujita Corporation (including Yangon
	Branch staffs, etc.)
	Myanmar Side: 18 participants (including: Engineers from Sagaing
	Region and Ayeyarwady Region, officers from Yangon, Myanmar
	Rice Federation, MAPCO, etc.)
Overview	• Renewable energy promotion plan in Fukushima City was
	introduced, and energy policies related to PV system installation and
	low-carbon waste treatment system (rice husk power plant) in
	Myanmar were discussed.
	• Myanmar is in shortage of power supply, but additional electricity
	would need to utilize environmentally friendly renewable energy, and
	it was agreed that specific measures would be considered with the
	public and private sector under the city-to-city collaboration.

• Overview of Courtesy Visit to the Minister of Agriculture, Livestock and Irrigation

Date	February 7 th (Wed) 13:30~14:00			
Venue	The Republic of the Union of Myanmar Federation of Chambers of			
	Commerce and Industry (UMFCCI) Meeting Room			
Participants	Japanese side: 10 participants (including: Fukushima City officers			
(15 in total)	Fukushima Chamber of Commerce and Industry board director			
	Mitsubishi Research Institute, Fujita Corporation (including Yangon			
	Branch Staffs))			
	• Myanmar side: 5 participants (including Minister of Agriculture,			
	Livestock and Irrigation, UMFCCI, Myanmar Rice Federation)			
Overview	There was a courtesy visit to the Minister of Agriculture, Livestock			
	and Irrigation, and the activities in Ayeyarwady Region and Sagaing			
	Region under city-to-city cooperation, along with features of			
	Fukushima City (tourism, agriculture, processed products such as			
	bread utilizing rice flour and Japanese sake) were introduced.			
	• The Minister showed appreciation towards the past support by			
Fukushima City, and expressed his intent to provide furthe				
	for low-carbon waste treatment system (rice husk power plant).			

(2) Business Exchange

On invitation to Fukushima City in July, there was a networking event with the member companies of Fukushima Chamber of Commerce and Industry. The officers shared current situation and trends in investment law and discussed about the possibility for Fukushima companies to do business in Myanmar.

During the networking event in February in Yangon with the local business stakeholders, companies from Fukushima were introduced, including those engaged in waste paper recycling, biogas power plant from waste water, and unique products for environmental conservation and industry promotion.

Discussions were held on the possibility for collaboration between Myanmar companies and Fukushima City companies; a shared understanding was formed that business dialogues are important for embodiment of collaborations. To achieve a low-carbon society, project formulation in the business sector, along with policy development, is important. The related stakeholders recognized such low-carbon society concept as a business opportunity as well (through the shared experiences of Fukushima City companies).

This was the first attempt to conduct business-side dialogue between the local chamber of commerce, and it was understood that there were high expectations for Japanese government, and continued exchange would be important (e.g. collaborations with MAPCO; MAPCO is a large company engaged in agricultural businesses in Myanmar).

Date	February 7 th (Thu) 14:00~16:00	
Venue	Union of Myanmar Federation of Chambers of Commerce and	
	Industry (UMFCCI) Meeting Room	
Content	During the networking event, activities of Fukushima City were	
	shared from the Chamber of Commerce and Industry, and discussion	
	was held on possibility for collaboration between Myanmar local	
	companies and Fukushima City companies. The importance of	
	business dialogue for establishing specific plans was understood	
	among the participants.	
Participants	Japan side: 10 participants (Fukushima Chamber of Commerce	
(26 in total)	and Industry, local companies, Fukushima City officials, Mitsubishi	
	Research Institute, Fujita Corporation)	
	• Myanmar side: 16 participants (Union of Myanmar Federation of	
	Chambers of Commerce and Industry, Myanmar Rice Federation,	
	MAPCO, local companies)	

 Overview of Discussions with Union of Myanmar Federation of Chambers of Commerce and Industry (UMFCCI) and other Business Stakeholders

(3) Capacity Building

During the local workshop (February 2018, Yangon), as an outcome of city-to-city collaboration between Fukushima City and Ayeyarwady Region, concept of "Promotion of new waste treatment in correspondence with economic development" (sharing understanding on challenges, measures for resolving challenges, action plan for city-to-city collaboration), was shared with related parties in Sagaing Region.

Waste treatment: measures for waste treatment promotion in correspondence with economic development is explained below.

<Vision>

In correspondence with increasing waste due to economic development, transition into 3R model (reduce, reuse, recycle) and achieving low-carbon, circular-type urban development is important.

<Development Plan>

- Utilizing the fact that the area is one of the foremost rice producing area in Myanmar, energy utilization of waste through rice husk power plant will be promoted (using Japanese supporting scheme including JCM), as a means of biomass waste treatment. For long-term sustainable rice husk power plant operation, long-term stable supply of rice husk is essential; collaboration between the government, businesses, and industry groups will be promoted for procuring rice husks generated in rice mills.
- Along with advanced projects (rice husk power plant), raising awareness for waste in the local society is important, and activities for this purpose will be promoted (e.g. environmental education is effective for establishing waste sorting scheme, and school education can be a place for such education).
- Development in other area: In the future, based on city-to-city collaboration activities, activities in other areas (e.g. promotion of renewable energy, resource circulation, energy conservation, etc.) and in other regions (other cities in the region and other industrial zones) will be conducted.

Understanding of challenges, future development, and action plans (proposal)

Waste treatment area ~ Promotion of new waste treatment in correspondence with economic development ~

<Understanding of challenges>

- Even in rural areas, municipal waste is treated by landfill; in urban area, waste is increasing due to economic development, and dispersed waste in the agricultural area and limited final treatment site are foreseen as future challenges.
- Japanese municipalities, which have experienced rapid economic development, activities for transition from landfill treatment to incineration treatment,

strengthening of 3R (reduce, reuse, recycle) activities are undertaken. In particular, sorting waste is one of the most important activities in 3R.

• In Sagaing Region, one of leading regions for agriculture in Myanmar, agricultural waste treatment and utilization (e.g. biomass power plant) is necessary.

<Development Plans for Solving Issues>

- Therefore, based on the current local situation and Japanese experiences, appropriate treatment of biomass waste such as rice husks (and their utilization), and considerations of action plan for waste sorting activities, are necessary.
- Along with advanced projects, it is important to raise awareness for waste in the local society; to establish waste sorting scheme, it is effective to implement environmental education activities (utilizing school education, etc.)

<Action Plan Based on City-to-City Collaboration (Proposal)>

As an action plan for promotion of new waste treatment in correspondence with economic development in Sagaing Region, the following are important: 1) appropriate treatment (utilization) of biomass waste such as rice husks (energy use of waste through rice husk power plant), 2) strengthening measures from policy perspective (policy guidance, etc.) and raising awareness (support for environmental education activities for establishing waste sorting scheme)

- (1) Business on biomass waste treatment (utilization) such as rice husks
- Development of rice husk power plant business using JCM Scheme
- Building structure for rice husk procurement (collaboration between the government, business entities, and business association)
- (2) Strengthening measures from the policy side and raising awareness
- Clarification of vision for waste treatment in the local area (reference: fundamental plan in Fukushima City)
- Raising awareness for adhering to regulations (reference: study meetings in Japanese Chamber of Commerce and Industry, awareness raising activities)
- Environmental education activities for establishing waste sorting scheme (reference: educational program in elementary school)
- Sorting and recycling activities with participation from the government, business, citizens (households), school and the community

4. Future Project Development

Based on this year's survey results, plans for future project development were considered.

Challenges	Results	Future Plans
Examination	Discussion with three Japanese	Of the relevant
of business	companies regarding equipment	stakeholders, MRF and
feasibility	procurement and O&M	MAPCO agree on
		conducting project of 3 MW
	Confirmation of power plant size	scale or larger; further
		discussions will be held for
	Examination of development plan	specific measures
	(It is expected that the first phase will	
	be 3 MW scale power plant in an	
	industrial zone in Shwebo District)	
Negotiations	Planning of measures for policy	Embodiment of
with urban	guidance	development plans for not
development	Confirmation of power plant size	only industrial zone but also
		neighboring area (rice mill
	Discussions were held on policy	business is the core industry
	guidance during inter-regional	of agricultural area, and co-
	collaboration workshop	existence with the local
	<direction guidance="" of="" policy=""></direction>	development is important.)
	-Policy guidance for appropriate	
	treatment of rice husk waste	
	-Using waste as energy (local	
	generation and consumption)	
	-Contribution to electrification of	
	neighboring regions	
	-Ideas for roll out of micro-grid	
Negotiations	-Sharing understanding with the	Negotiations need to be
for electricity	Regional Minister of Electricity	made with the central
sales	-Discussions with MRF and MAPCO	government, regarding grid
	-Discussions with relevant	interconnection and micro-
	governmental departments	grid; specific advantages
	-Shared understanding was	and disadvantages will be
	established that power supply using	clarified (leading to specific
	renewable energy is an effective	discussions for policy
	means for CO2 emission reduction	development and
	and prevention of environmental	technology implementation)
	contamination due to waste, and that	
	rice husk power plant is one promising	
	solution.	
	-Discussions for possibility for	

Challenges	Results	Future Plans
	implementing micro-grid system (the	
	discussion has just initiated)	
Negotiations	-Considerations will be made with the	Forming of an organization
with entities	regional government	of small to middle scale rice
to participate	-Discussion will be conducted,	millers will be discussed in
in business	focusing on two sites (Shwebo and	March.
	Wetlet, prioritizing Shwebo)	
	-Discussions for business planning	
	with MAPCO	
	-Forming organization for rice husk	
	supply, consisting of individual rice	
	millers of local (Shwebo) area	
Negotiations	-Considerations will be made with the	Specific discussions to be
on	regional government	conducted in project
construction	-Discussion will be conducted,	formation phase
site	focusing on two sites (Shwebo and	
	-Considerations will be aligned with	
	MAPCO business plan (Shwebo)	
	-Confirmation of Individual business	
Ammanual	owner's plan in wetlet	On a sifin dia superiore to ha
Approval	-Basic process for approval and	-Specific discussions to be
and	Averyony dy Region	formation phase
permission	Ayeyarwady Region	It is acceptial to build
process	-Detailed processes will be checked	-it is essential to build
		stakeholders of the region
		(Minister and officers)
Specific	-During the local workshop in Sagaing	
supporting	-During the local workshop in Sagaing Region held in Sentember	strong relationships with the
measures	understanding on the project and basic	relevant departments and
through city-	plans was acquired from the Chief	officers (to be continued as
to-city	Minister of the region and relevant	a future task)
collaboration	stakeholders	-Establishment of low-
o o naboration	-Ministers of relevant departments in	carbonization model in an
	Sagaing Region were to participate in	existing industrial zone with
	Fukushima City workshop in January.	accumulation of rice mills.
	with courtesy visit, workshop and	which is considered as one
	network event planned, but VISA could	of the most promising
	not be issued due to complications in	candidate sites for the
	Myanmar.	project (The first project in
	-During the local workshop in	Ayeyarwady Region is a
	February, relevant stakeholders from	new industrial zone, while

Challenges	Results	Future Plans
	Ayeyarwady Region and Sagaing	this survey examined the
	Region participated, sharing their	possibility of a project in
	experiences and leading to	existing industrial zone)
	collaboration between the two regions.	-Further measures for
	-Policy dialogue between regions with	growth into low-carbon
	JCM experiences would be an	urban development model
	effective approach.	with regards to neighboring
	-Regarding micro-grids and their	areas (regarding policy
	development, wheeling system in	aspect and technical aspect
	Japan was introduced.	of micro-grid, wheeling
		scheme, etc.)
		-The central government
		has high expectations for
		such activities as well.

Activities regarding rice husk power generation in industrial zones

Local needs and significance of the project

As with Ayeyarwady Region, for which a policy dialogue was conducted previously in an intercity cooperation, Sagaing Region is facing social problems to be solved such as increase in waste and power consumption (environmental pollution, access to energy, etc.,) that follow economic development. In particular, problems related to disposal of rice husks are more severe in Sagaing Region where open-air burning of husks is performed on a large scale, compared to Ayeyarwady.

The rice husk power generation project in Ayeyarwady Region (JCM subsidiary project on facilities) is an activity providing two benefits, i.e., effective use of rice husks that are disposed of (i.e., waste reduction) and power generation. Relevant parties in the region and rice milling enterprises are both interested in the project. In rice milling businesses, a challenge is to reduce production costs and enhance the quality of rice for improved competitiveness as an industry by increasing the scale of businesses and replacing facilities. To promote this activity, it is essential for rice milling enterprises to secure electricity stably. For survival of the rice milling industry in Myanmar, it has been recognized as an effective approach to use rice husks as a resource and take measures to secure electricity independently, not relying on power supply from the national grid only.

<Specific Measures (proposal)>

- Considerations for a business model from the aspect of increasing competitiveness of rice millers (production of rice-processed food using renewable energy)
- Establishment of a business model in which rice husk, which is waste resource, contributes to power supply, leading to new businesses using such power

Tasks for realization

Because the stable and long-term procurement of rice husks is indispensable to realize a rice husk power generation project, cooperation must be established among the government, business enterprises and industry groups to create a mechanism of procuring rice husks generated at rice mills. Discussion for realization will be made hereafter.

<Specific Measures (proposal)>

- Considerations for forming an organization through MRF
- Policy guidance from the government

Establishment of a model for further development of rice husk power generation projects

As heat is produced in addition to electricity in rice husk power generation, it was pointed out that the heat might be used effectively. Specifically, this is an idea of producing cold energy using the heat and applying it to the cold energy demand in factories and depositories. Reduction in greenhouse effect gas emissions and increase in economic efficiency are also expected by it. We have to examine the feasibility of this idea hereafter to establish a cogeneration type rice husk power generation system through detailed discussion on its technological aspect and needs of cold/hot water, considering specific cases.

<Specific Measures (proposal)>

- Examining heat demand in rice husk power plant area
- Consideration for a system using both power and heat (detailed study on economic and technical feasibility)

Power Supply to Neighboring Area

For the rice husk power generation at rice mills in this region targeted, the regional government has great expectation on not only the use of electricity in the industrial complex but also contribution to improvement in electrification rates and stability of power supply. To realize this, development of micro-grids, etc., are necessary to supply electricity to the regions surrounding the industrial complex. However, it is economically difficult for business enterprises to bear the costs of developing micro-grids. During this policy dialogue, we explained that the wheeling service of electricity, which was a mechanism to supply electricity virtually through existing power distribution networks, had been developed in Japan, and the power generation using waste was realized in Fukushima City with this mechanism. We proposed that Myanmar examined the feasibility of this mechanism. Because there is a substation at a site adjacent to the industrial complex, which is the main candidate site, wheeling service using this substation and existing distribution networks may become a solution as a power supply scheme for consumers of other regions. However, detailed technical and institutional conditions have to be examined. Discussion with relevant parties in the region should be deepened on whether or not a business model of supplying power to the regions adjacent to the industrial complex can be established with a method like wheeling service.

<Specific Measures (Proposal)>

- Consideration of possibility for power supply using electricity wheeling service (policy dialogue with stakeholders from the electricity-related sectors of the regional government)
- Grasping the construction situation of distribution grid around the industrial zone
- Specific measures for local electrification

Supporting Policy Development for Waste Treatment

The outcome of city-to-city collaboration between Fukushima City and Ayeyarwady Region, "promotion of new measures for waste treatment in correspondence with economic development," was shared with the Sagaing Region stakeholders. In the urban area of Sagaing Region, like Ayeyarwady Region, faces large amount of abandoned waste (e.g. plastic waste from food containers), and waste treatment measures in the urban area will be essential in the future.

Based on the development plans and action plans considered in Ayeyarwady Region, measures for Sagaing Region with respect to its regional characteristics will need to be considered.

Figure 4-2 Creation of New Values by Rice husk power generation