Feasibility Studies on Joint Crediting Mechanism Projects towards Environmentally Sustainable Cities in Asia

Final Report

Project on developing Joint Crediting Mechanism (JCM) seeds in the Water Supply Sector in the Kingdom of Cambodia

March 2014

Overseas Environmental Cooperation Center, Japan (OECC)

Executive Summary

The purpose of the "Project on developing JCM seeds in the Water Supply Sector in Cambodia" (hereinafter referred to as the "project") is to find and to formulate potential projects of the Joint Crediting Mechanism (JCM) in the Water Supply Sector in Cambodia, which is stated as one of the top priority sectors in the country's National Strategic Development Plan (NSDP) 2009-2013. The project focused on finding feasible projects for installation of renewable energy power generation, energy-efficient facility, and water leakage controlling system. Japanese technologies were introduced and experiences of the Japanese local government were shared with partnerships with Water and Sewer Bureau of the City of Kitakyushu and the members of Kitakyushu Overseas Water Business Association. The list of potential JCM projects identified in the project is in the table A.

Title	Installation of energy-efficient	Prevention of water leakage in
	facility and renewable energy	water distribution network
	generation to water treatment	
	and water intake	
Facility	Water treatment and water	Water distribution network of
	intake in PPWSA.	PPWSA
Technology	Ceramic membrane filtration	Water distribution monitoring
	system, inverter, transformer,	system, GIS, a computer for
	solar power generation system	monitoring, monitoring control
		panel, a flowmeter,
		transmission device
Cost	Approx. JPY 0.5 - 1.5 billion	Approx. JPY 0.5 - 1.0 billion
estimation		
MRV	Comprehensive	N/A
methodology	energy-efficient facility and	
	renewable energy facility in	
	water supply facilities	
	(attachment 1)	
GHG emission	2,046 tCO2e	N/A
reduction (FS)		
GHG emission	4,195 tCO2e	N/A

Table A. The list of potential JCM projects identified in the project

reduction		
(Scaling-up)		
Co-benefit	Improvement in management,	Improvement in management,
	reservation of water resources,	reservation of water resources,
	and water quality by reduced	and water quality by reduced
	electricity bill	electricity bill

*Estimated by OECC according to result of interviews with companies.

There are common issues to consider for installation of different technologies; energy-efficient technology and renewable energy power generation in a water treatment plant and a water intake, and technologies for water leakage prevention. Basic design and detailed design for facility installation, as well as examining cost effectiveness of each technology and a financial plan are essential.

The table B shows the schedule of implementation of the JCM project. Detailed investigation will be conducted in the first half of the Japanese fiscal year (JFY) 2014, and start the JCM project between the last half of JFY2014 to the first half of JFY2015. The Ministry of the Environment (MOE)'s JCM supporting schemes could be utilized, such as the JCM Feasibility Study for the detailed investigation, and the JCM Model project for installing technologies. Moreover, after successful installation of technologies in PPWSA, the JCM project is expected to be expanded to the other areas in Cambodia, as well to neighboring countries.

Items	20	014	20	015
	First	Second	First	Second
	half	half	half	half
(1) Detailed investigation				
- Basic design for installing technologies	← →			
- Financial planning	◆ ◆			
- Procurement process	◆→			
- Planning for monitoring		•		
(2) Implementation of the JCM project				
- Detailed design for installing				
technologies				
- Delivering and installing technologies		→		

Table B. Schedule for implementation of the JCM project

- Commencing the technologies and evaluating its effect		•	
(3) Scaling-up the project to the other cities and countries			*

Electricity rate in Cambodia is relatively expensive compared to the other countries in the Association of Southeast of Asian Nations (ASEAN): Electricity bill of the Phnom Penh Water Supply Authority (PPWSA) accounts for about 40% of the total operational expense (excluding depreciation cost). Therefore, needs for installing renewable energy power generation, energy-efficient facility, and water leakage controlling system in the Water Supply Sector is relatively high. Utilization of these technologies does not only reduce greenhouse gas (GHG) emissions but also generates co-benefit, as it contributes to operational improvement in water supply and providing safe water to Cambodian citizens.

Table of Contents

1. Overview of the Project

1.1	Objective of the Project	.1
1.2	Selected Technologies and Policies	.1
1.3	Target Area	.2

2. Methods of the Investigation

2.1	Project Activities	.2
2.2	Implementation Arrangement	. 3

3. Result of the investigation

3.1	Activities
3.2	Outcome of the Activities: Overview
3.3	The result of the Component 1: Conducting a preliminary study on assessment
of lo	w-carbon technology needs
3.4	The result of the Component 2: Developing draft MRV methodologies for
intro	oduction of water and energy saving measures under the JCM7
3.5	The result of the Component 3: Organizing a workshop on the JCM and water
and	energy savings

4. Potential JCM projects

4.1	Overview of potential implementation of JCM projects	17
4.2	Issues related to the potential JCM projects	17
4.3	Schedule for implementation of the JCM project	19

Attachment

1 Joint Crediting Mechanism Proposed Methodology Form

1. Overview of the Project

1.1 Objective of the Project

The purpose of the "Project on developing JCM seeds in the Water Supply Sector in Cambodia" (hereinafter referred to as the "project") is to find and to formulate potential projects of the Joint Crediting Mechanism (JCM) in the Water Supply Sector in Cambodia, which is stated as one of the top priority sectors in the country's National Strategic Development Plan (NSDP) 2009-2013. The project focused on finding feasible projects for installation of renewable energy power generation, energy-efficient facility, and water leakage controlling system. Japanese technologies were introduced and experiences of the Japanese local government were shared through partnerships with Water and Sewer Bureau of the City of Kitakyushu and the members of Kitakyushu Overseas Water Business Association. Electricity rate in Cambodia is relatively expensive compared to the other countries in the Association of Southeast of Asian Nations (ASEAN): Electricity bill of the Phnom Penh Water Supply Authority (PPWSA) accounts for about 40% of the total operational expense (excluding depreciation cost). Therefore, needs for installing renewable energy power generation, energy-efficient facility, and water leakage controlling system in the Water Supply Sector is relatively high. Utilization of these technologies does not only reduce greenhouse gas (GHG) emissions but also generates co-benefits, as it contributes to operational improvement in water supply and providing safe water to citizens of Cambodia.

1.2 Selected Technologies and Policies

This project investigated feasibility of formulating the JCM project with below listed technologies in the table 1:

Terms	Definition		
Ceramic membrane	A system that produces clean water using a ceramic		
filtration system	membrane as a filter, typically consisting of		
	membrane modules, a feed pump, a coagulation and		
	flocculation basin and a treated water reservoir.		
Inverter	An electronic devise that changes direct current (DC)		
	to alternating current (AC).		
Transformer	An electrical device that transfers energy between		
	two circuits through electromagnetic induction.		

Table 1. List of technologies investigated

Solar power generation	A system that converts sunlight into electricity,		
system	typically consisting of solar modules, a power		
	conditioner a junction box, and a power distribution		
	panel.		
Small-scale hydro power	A system that produces electricity using natural flow		
generation system	of water, typically consisting of a water turbine, a		
	generator and a power distribution panel.		
Water distribution	This system collects, stores, and monitors		
management system and	distribution flow, pressure, and quality of water in		
Geographic Information	real time, while adjusting distribution pressure,		
System(GIS)	estimating amount of water leakage, and identifying		
	problems that allows prompt solutions.		

1.3 Target Area

The Project targets the Phnom Penh City and surrounding areas.

2. Methods of the Investigation

2.1 Project Activities

The Project included the following components and activities:

Component 1: Conducting a preliminary study on assessment of low-carbon technology needs

Feasibility studies on Japanese low-carbon technologies in water sector for developing projects for the JCM was conducted through cooperation of experts from Water and Sewer Bureau of the City of Kitakyushu and Kitakyushu Overseas Water Business Association. Potential technologies were short-listed after careful consideration of current situation in Cambodia.

Component 2: Developing draft Measurement, Reporting and Verification (MRV) methodologies for introduction of water and energy saving measures under the JCM

Methods for quantitatively evaluate GHG emission reduction through installation of energy-efficient facility, renewable energy power generation, and water leakage prevention in the Water Supply Sector, were developed with cooperation of PPWSA. MRV methodologies for effective monitoring were also investigated. Component 3: Organizing a workshop on the JCM and water and energy savings

Workshops and study sessions in Phnom Penh on the JCM and low-carbon technologies in the Water Supply Sector provided opportunities for discussions on formulation of the JCM projects by utilizing Japanese technologies and support required for implementation.

2.2 Implementation Arrangement

The implementation arrangement of the project is illustrated as the figure 1 and describe as follows:

(1) Implementation Organizations

The Project was implemented by two organizations: (i) the Phnom Penh Water Supply Authority (PPWSA), and (ii) the Overseas Environmental Cooperation Center, Japan (OECC). The Water and Sewer Bureau, City of Kitakyushu and the Pacific Consultants Co., Ltd. provided advice regularly to the PPWSA and the OECC for quality assurance of project outcomes.

(2) Advisory Organizations

The Ministry of Industry and Handicrafts, Cambodia (MIH), The Ministry of Environment, Cambodia (MOEC) will provide timely advice to the PPWSA and the OECC for smooth implementation of the Project.

Figure 1. Implementation Arrangement

3. Result of the investigation

3.1 Activities

The table 2 describes activities of the project. Each activity progressed as planned: Workshop, study sessions on technical issues, and site visits were conducted in the three missions to Cambodia.

	Project activities			
	Component 1:	Component 2:	Component 3:	
	Conducting a	Developing draft	Organizing a workshop	
Month	preliminary study	MRV methodologies	on the JCM and water	
WIOIIUII	on assessment of	for introduction of	and energy savings	
	low-carbon	water and energy		
	technology needs	saving measures		
		under the JCM		
August	Discussing project	objectives, activitie	es, time frame and	
$(1^{st} visit)$	implementation arrar	ngement		
	1-1 Conducting field	1-1 Collecting	3-1 Organizing an	
Sentember	surveys in	information	inception workshop for	
(2nd visit)	Cambodia in		introducing the JCM,	
(2 1510)	corporation with		water and energy	
	technology experts		saving measures	
October		1-2 Quantifying	-	
		GHG emission	-	
		reductions by		
November		introducing water		
		and energy saving		
		measures		
December	1-2 Drafting JCM	1-3 Drafting MRV	3-2 Organizing study	
(3 rd visit)	project proposals	methodologies for	sessions on technical	
		introduction of	issues	
		water and energy	-	
Januarv		saving measures		
		under the JCM in		
		Cambodia		
February	Reporting results of the project to relevant organizations			

Table 2.	Activities	of the	Project
----------	------------	--------	---------

3.2 Outcome of the Activities: Overview

Through the project, potential JCM projects were identified in facilities of PPWSA, and methods for quantifying GHG emission reduction as well as MRV

methodologies were developed in relation to "Comprehensive energy-efficient facility and renewable energy facility in water supply facilities". Furthermore, workshops, study sessions were convened to enhance understanding of officials of PPWSA and relevant Cambodian government organizations on technical issued and the JCM and Japanese technologies. Overview of the outcome of the activities is described in the table 3.

	Activities	Outcome
(1)	Conducting a preliminary study on	Identification of potential
	assessment of low-carbon technology needs	projects for the JCM
(2)	Developing draft MRV methodologies for	Develop calculation methods
	introduction of water and energy saving	for quantifying GHG
	measures under the JCM	emission reduction
(3)	Organizing a workshop on the JCM and	Workshops, study sessions
	water and energy savings	on technical issues were
		conducted to enhance
		understanding

Table 3. Overview of outcome of the Activities

3.3 The result of the Component 1: Conducting a preliminary study on assessment of low-carbon technology needs

(1) Overview of potential JCM projects

The list of potential JCM projects identified through this project is illustrated in below table 4-8.

Technological needs	Current Situation	Proposed Technologies
Efficiency in	The current water treatment	Installation of high voltage
power	facilities are old as they were	substation facility,
transmission	built in 1990s. There is	disconnector, electric
between water	transmission loss between a	receiving station, protective
treatment	water treatment plant to an	at intake facility to receive
plants and an	intake facility, which is 1.3km	electricity directory from grid.
intake facility	away from each other.	This would reduce electricity
		consumption.

Table 4. The Potential JCM Projects in Phum Prek Water Treatment Plant

Improvement	Currently, backwash of a sand	Consumption of electricity
of operation &	filter is conducted once in two	could be reduced through
maintenance	days in dry season, and once in a	decreasing frequency of
	day in rainy season.	backwash of a sand filter
		(could be reduced to once in
		two days for both seasons by
		adjusting amount of
		agglomerating agent usage).

Table 5	The	Potentia	LICM	Proie	ets in	Chamkamon	Water	Treatment	Plant
10010 0.	1110	1 Otomina		11010		onannannon	matter	11 Cutillelle	I Iuliu

Technological needs	Current Situation	Proposed Technologies
Alternate	Current purification method is	Install membrane filtration
water	inefficient as the process involves	method without consuming
purification	suspended solid contact clarifier	electricity.
method	and a filter, causing electricity	
	cost to be relatively high.	
Transmission	The current water treatment	Install a high voltage
between	facilities are old as they were	substation facility, a
water intake	built in 1990s. There is	disconnector, an electric
and	transmission loss between a	receiving station, a
treatment	water treatment plant to an	protective at intake facility to
plant	intake facility which is 0.8km	receive electricity directory
	away from each other.	from grid. This would reduce
		electricity consumption.

Table 6. Th	ne Potential JCM	Projects in	Churoy	Chanwa	Water	Treatment

Technological needs	Current Situation	Proposed Technologies
Water supply	A high pump head is used to	Install an inverter that
system	meet the maximum water	controls number of rotations of
control	demand.	pumps, which would lower the
		height of the pump head at the
		minimum demand. This would
		contributes to reduction of
		electricity consumption.

Solar Power	High dependency on electrical	Installation of solar power on
System	grid with high CO2 emission	top roofs of a distribution
	factor.	reservoir and a pure water
		reservoir to reduce electricity
		consumption derived from
		fossil fuels.

Technological needs	Current Situation	Proposed Technologies
Solar Power	High dependency on electrical	Installation of solar power on
System	grid with high carbon dioxide	top roofs of a distribution
	(CO2) emission factor.	reservoir and a pure water
		reservoir to reduce electricity
		consumption derived from
		fossil fuels.

Table 8. The Potential JCM Projects in Water Distribution Network

Technological needs	Current Situation	Proposed Technologies
Water	The current system was built in	Integrated water distribution
distribution	1990s and does not have capacity	monitoring system (has been
monitoring	to cover all required areas for	installed in the City of
system	water distribution. In addition,	Kitakyushu) and Geographic
	due to expansion of water	Information System (GIS)
	distribution network, it is	that adjusts water pressure
	becoming difficult to manage the	and reduce water leakage.
	system with current human	
	capacity.	

3.4 The result of the Component 2: Developing draft MRV methodologies for introduction of water and energy saving measures under the JCM

This project identified potential MRV methodologies in the Water Supply Sector, which is listed below. The proposed JCM methodologies are described in the Attachment 1.

(1) GHG emissions reduction measures

The methodology is applicable to the project in which GHG emissions is reduced at water treatment plants and/or intake facilities in the Kingdom of Cambodia by implementing energy-saving and renewable energy measures.

(2) Eligibility criteria

Eligibility criteria of the proposed methodologies are listed in the table 9.

Criterion	Description	Reason for selection
Criterion	The project implements two or	Requirement of a positive list of
1	more of the following equipments	potential technologies that could
	with maintenance plans:	be adopted in the JCM projects.
	(1) Ceramic membrane filtration	
	system	
	(2) Inverter	
	(3) Transformer	
	(4) Solar power generation system	
	(5)Small-scale hydro power	
	generation system	
Criterion	The projects include training	Requirement of developing SOP
2	programs on operation and	and conducting training sessions
	maintenance and develops SOP	on operation and management to
	(Standard Operation Procedures)	maximize amount of GHG
	for the selected equipments.	emission reduction.
Criterion	The project is implemented at	Requirement of facilities that are
3	water treatment plants and/or	one of the target areas of the JCM
	intakes facilities.	projects.
Criterion	The project determines electricity	Availability of data necessary for
4	consumption, fossil fuel	evaluating amount of GHG
	consumption and total quantity of	emission reduction through the
	output at selected plants and/or	JCM projects.
	facilities.	

(5) Emission sources and GHG types

Types of GHG and emission sources included in the proposed methodologies are

listed in the table 10, and those being excluded are listed in the table 11. Table 10. Types of GHG and emission sources included in the proposed

methodologies					
Emission sources	GHG types	Description			
Grid electricity	CO2	Influenced by installations of			
consumption		energy-efficient facilities and/or			
		renewable energy generation.			
Fossil fuel consumption	CO2	Influenced by installations of			
for backup generators		energy-efficient facilities and/or			
		renewable energy generation.			

Table 11. Types of GHG and emission sources excluded in the proposed methodologies

Emission sources	GHG types	Description	
Consumption of fossil	CO2	Not influenced by installations of	
fuel by vehicles		energy-efficient facilities and/or	
		renewable energy generation.	
Release of methane from	Methane (CH4)	Not influenced by installations o	
waste water and sludge		energy-efficient facilities and/or	
		renewable energy generation.	

(6) Establishment of reference emissions

Reference emissions are calculated from specific electricity consumption at water treatment plants and/or intake facilities which would stay at the same level as the past 3 years.

Generally, ability of a water supply facility on energy efficiency decreases gradually even with adequate maintenance. As shown in the figure 2, a scenario for decreased efficiency in energy consumption (increased electricity consumption per amount of water supply) has been set as BaU (Business-as-Usual). As conservative scenario, reference has been set for electricity consumption per amount of water supply to stay as the same level as before implementing the project.

Figure 2. Concept of setting a reference scenario

(7) Calculation of reference emissions

The reference emissions are calculated as follows.

$$RE_y = SEC_{RE} * Q_{PJ} * EF_{RE}$$

$$SEC_{RE} = \frac{EG_{RE,grid} + EG_{RE,backup}}{Q_{RE}}$$

$$EF_{RE} = \frac{EF_{grid} * EG_{RE,grid} + \sum_{i} (SFC_{RE,i} * NCV_{i} * EF_{fuel,i})}{EG_{RE,grid} + EG_{RE,backup}}$$

Where:

RE_y	Reference emissions	tCO2e/y		
SEC_{RE}	Specific electricity consumption for the reference	MWh/m ³		
$EG_{RE,grid}$	Electricity consumption from a Cambodian	MWh		
	regional grid system for the reference			
$EG_{RE,backup}$	Electricity consumption from backup generators	MWh		
	using fossil fuel <i>i</i> for the reference			
Q_{PJ}	Total quantity of output for the project m^3			
Q_{RE}	Total quantity of output for the reference	m^3		
EF_{RE}	CO_2 emission factor for total electricity for the	tCO ₂ e/MWh		
	reference			
EF _{grid}	CO_2 emission factor for electricity from a	tCO ₂ e/MWh		
	Cambodian regional grid system			
$SFC_{RE,i}$	Fossil fuel <i>i</i> consumption for the reference	Liter		

NCV _i	Net calorific value of fossil fuel i	MJ/Liter
EF _{fuel,i}	CO_2 emission factor for fossil fuel <i>i</i>	tCO2e/MJ

(8) Calculation of project emissions

The amount of project emissions in the proposed methodologies is considered as amount of GHG emission reduction after installation of facilities. Explanation of the calculation of the project emission is shown below. The project emission is calculated by multiplying CO2 emission factor to electricity consumption of regional grid system after implementation of the project and consumption of fossil fuel.

 $PE_y = PE_{PJ,grid} + PE_{PJ,backup}$

$$PE_{PJ,grid} = EG_{PJ,grid} * EF_{grid}$$

$$PE_{PJ,backup} = \sum_{i} (SFC_{PJ,i} * NCV_{i} * EF_{fuel,i})$$

Where:

PE_y	Project emissions	tCO ₂ e/y	
$PE_{PJ,grid}$	Project emissions from a Cambodian regional grid	tCO ₂ e/y	
	system		
PE _{PJ,backup}	Project emissions from backup generators	tCO ₂ e/y	
$EG_{PJ,grid}$	Electricity consumption from a Cambodian	MWh	
	regional grid system for the project		
EF _{grid}	CO_2 emission factor for electricity from a	tCO ₂ e/MWh	
	Cambodian regional grid system		
$SFC_{PJ,i}$	Fossil fuel <i>i</i> consumption in the project Liter		
NCV _i	Net calorific value of fossil fuel <i>i</i>	MJ/Liter	
EF _{fuel,i}	CO_2 emission factor for fossil fuel i	tCO ₂ e/MJ	

(9) Calculation of emission reductions

Amount of emission reduction will be calculated as shown below. Firstly, theoretical value of the project emission reduction was calculated to exclude voluntarily activities and set as the maximum value. All excessive value is considered as emissions from voluntarily activities.

$$ER_y = RE_y - PE_y$$

Where:

ER_y	Emission reductions	tCO ₂ e/y
RE_y	Reference emissions	tCO ₂ e/y
PE_y	Project emissions	tCO_2e/y

(10) Data and monitoring points for the calculation of GHG emissionThe table 12 shows necessary data for calculating GHG emission reduction. TheFigure 3 illustrates a concept for monitoring points.

Parameter	Description of data	Default	Source
		value	
		/Monitored	
		value	
$EG_{RE,grid}$	Electricity	Default	Phnom Penh Water Supply
	consumption from a	value (P1)	Authority: the mean value
	Cambodian regional		in the past 3 years
	grid system for the		
	reference		
$EG_{RE,backup}$	Electricity	Default	Phnom Penh Water Supply
	consumption from	value (P2)	Authority: the mean value
	backup generators		in the past 3 years
	using fossil fuel <i>i</i> for		
	the reference		
$SFC_{RE,i}$	Fossil fuel <i>i</i>	Default	Phnom Penh Water Supply
	consumption for the	value (P3)	Authority: the mean value
	reference		in the past 3 years
Q_{RE}	Total quantity of	Default	Phnom Penh Water Supply
	output for the	value (P4)	Authority: the mean value
	reference		in the past 3 years
EG _{PJ,grid}	Electricity	Monitored	Phnom Penh Water Supply
	consumption from a	value (P1)	Authority
	Cambodian regional		
	grid system for the		
	project		
$SFC_{PJ,i}$	Fossil fuel <i>i</i>	Monitored	Phnom Penh Water Supply

Table 1	9 List of	data	nooccowy	for	alaulating	снс	omission	roduction
Table 1	\mathbf{Z} . List of	aata	necessary	IOr	calculating	ыпы	emission	reduction

	consumption in the	value (P1)	Authority
	project		
Q_{PJ}	Total quantity of	Monitored	Phnom Penh Water Supply
	output for the project	value (P1)	Authority
EF _{grid}	CO2 emission factor	Default	Ministry of Environment,
	for electricity from a	value	Cambodia: 0.6257 tCO2e
	Cambodian regional		/MWh (Operating Margin)
	grid system		
NCV _i	Net calorific value of	Default	IPCC 2006 Guidelines
	fossil fuel <i>i</i>	value	
EF _{fuel,i}	CO2 emission factor	Default	IPCC 2006 Guidelines
	for fossil fuel <i>i</i>	value	

Figure 3. A concept for monitoring points

(11) Preliminary calculation of GHG emission reduction of PPWSA

PPWSA's emission reduction after implementation of the project was estimated based on the proposed methodologies mentioned above.

If amount of electricity consumption derived from fossil fuel is reduced by 10% per amount of water supply due to implementation of the project, the total annual emission reduction is estimated as 2,064tCO2e. Calculation formulas and parameters are described below:

1) Reference emissions

$RE_y = 0.266 \times 121,117,730 \times 0.6257/1,000 = 20,158 \ tCO_2 e$

$$SEC_{RE} = \frac{29,488,883}{110,854,485} = 0.266 \ kWh/m^3$$

Table 13. Values used to calculate the reference emission

Parameter	Description of data	Value	Source
$EG_{RE,grid}$	Electricity	29,488,883	Phnom Penh Water Supply
	consumption from a	kWh	Authority: the mean value
	Cambodian regional		from 2010 to 2012
	grid system for the		
	reference		
$EG_{RE,backup}$	Electricity	0	Phnom Penh Water Supply
	consumption from		Authority: the mean value
	backup generators		from 2010 to 2012
	using fossil fuel <i>i</i> for		
	the reference		
$SFC_{RE,i}$	Fossil fuel <i>i</i>	0	Phnom Penh Water Supply
	consumption for the		Authority: the mean value
	reference		from 2010 to 2012
Q_{RE}	Total quantity of	110,854,485	Phnom Penh Water Supply
	output for the	m^3	Authority: the mean value
	reference		from 2010 to 2012
Q_{PJ}	Total quantity of	121,117,730	Phnom Penh Water Supply
	output for the project	m ³	Authority: 2012
EF _{grid}	CO ₂ emission factor	0.6257	Ministry of Environment,
	for electricity from a	tCO2e/MWh	Cambodia
	Cambodian regional		
	grid system		
NCV _i	Net calorific value of	43.0 kg	IPCC 2006 Guidelines: Diesel
	fossil fuel <i>i</i>	TJ/Gg	
EF _{fuel,i}	CO ₂ emission factor	74,100	IPCC 2006 Guidelines: Diesel
	for fossil fuel <i>i</i>	kgCO ₂ e/TJ	

2) Project emissions

$PE_{v} = 0.239 \times 121,117,730 \times 0.6257/1,000 = 18,112 \ tCO_{2}e$

*This is under an assumption of 10% reduction of Specific Electricity Consumption (SEC) per amount of water supply at facilities through installation of ceramic membrane filtration system, inverter, transformer, and solar power generation system.

3) Emission reductions

 $ER_{v} = 20,158 - 18,112 = 2,046 \ tCO_{2}e$

(12) Calculation of emission reduction after scaling up the JCM project

The total amount of water supply in all cities in Cambodia was estimated based on the amount of water supply of 95m3 per capita in Phnom Penh in 2009 (calculated by OECC based on data of 2009 received by PPWSA and referring a report of ADB). Estimation of amount of emission reduction after scaling up the JCM project to all cities in Cambodia was calculated by using calculation formulas and parameters stated in (11). In 2009, the number of population with access to water supply was 2,614,027, with annual water demand of 248,332,565m3.

After completion of the project, if amount of electricity consumption derived from fossil fuel per amount of water supply in all cities is decreased by 10%, emission reduction is estimated as 4,195 tCO2e.

3.5 The result of the Component 3: Organizing a workshop on the JCM and water and energy savings

Workshops and study sessions conducted in Phnom Penh, on the JCM and low-carbon technologies in the Water Supply Sector provided opportunities for discussions on development of the JCM projects that utilize Japanese technologies and required support for implementation. The overview of the workshop is described in the table 14, and the contents of study sessions on technical issues are shown in the table 15. The agendas, the list of participants, and presentation materials are shown in the attachment 2.

Time and Monday, 2 September, 2013, 8 : 30-13 : 00
--

Date:			
Venue:	Raffles Hotel Le Royal, Phnom Penh		
Participants:	[Cambodian side]		
	Ministry of Industry and Handicrafts, the Ministry of		
	Environment, Phnom Penh Water Supply Authority (PPWA),		
	regional local governments (Siem Reap Water Supply Authority,		
	Sihanoukville Water Supply, Kampot Water Supply, Kampong		
	Cham Water Supply, Kampong Thom Water Supply, Svay Rieng		
	Water Supply, Battambang Water Supply, Pursat Water Supply)		
	[Japanese side]		
	Embassy of Japan in Cambodia, Water and Sewer Bureau, City of		
	Kitakyushu, Japan International Agency (JICA), JICA Project on		
	Capacity Building for Urban Water Supply System in Cambodia		
	(Phase 3) , OECC		
Objective:	Enhance understanding of Ministry of Industry and Handicrafts,		
	the Ministry of Environment, Phnom Penh Water Supply		
	Authority (PPWA), and regional local governments on the JCM		
	and its supporting schemes.		
	List of potential JCM projects in facilities of PPWSA is shared		
	with Ministry of Industry and Handicrafts and regional local		
	governments		

Table 15. Overview of the study sessions on technologies

Time and	Wednesday, 18 December, 2013, 14 : 00-16 : 30			
Date:				
Venue:	Meeting room in PPWSA			
Participants:	[Cambodian side]			
	PPWSA			
	[Japan side]			
	Geocraft, Co., Ltd., OECC			
Objective:	Enhance understanding of PPWSA officials on Japanese			
	low-carbon technology in Water Supply Sector (water distribution			
	monitoring system and GIS).			

4. Potential JCM projects

4.1 Overview of potential implementation of the JCM projects The list of potential JCM is listed in the table 16.

		- I - J
Title	Installation of an	Prevention of water leakage in
	energy-efficient facility and	a water distribution network
	renewable energy generation	
	to water treatment and a water	
	intake	
Facility	Water treatment and water	Water distribution network of
	intake in PPWSA	PPWSA
Technology	Ceramic membrane filtration	Water distribution monitoring
	system, inverter, transformer,	system, GIS, a computer for
	solar power generation system	monitoring, monitoring control
		panel, a flowmeter,
		transmission device
Cost	Approx. JPY 0.5-1.5 billion	Approx. JPY 0.5-1.0 billion
estimation		
MRV	Comprehensive	N/A
methodology	energy-efficient facility and	
	renewable energy facility in	
	water supply facilities	
	(attachment 1)	
GHG emission	2,046 tCO2e	N/A
reduction (FS)		
GHG emission	4,195 tCO2e	N/A
reduction		
(Scaling-up)		
Co-benefit	Improvement in management,	Improvement in management,
	reservation of water resources,	reservation of water resources,
	and water quality by reduced	and water quality by reduced
	electricity bill	electricity bill

Table 16	The list	of potential	JCM projects
----------	----------	--------------	--------------

*Estimated by OECC according to result of interviews with companies.

4.2 Issues related to the potential JCM projects

Further investigation is required for implementation of the identified JCM projects as stated below.

(1) Issues to consider for installation of technologies

There are common issues to consider for installation of the following technologies, namely energy-efficient technology and renewable energy power generation in a water treatment plant and a water intake, and technologies for water leakage prevention. Basic design and detailed design for facility installation, as well as examining cost effectiveness of each technology and a financial plan are essential. Furthermore, although PPWSA is interested in Japanese technologies, they are required to go through international tender process for purchasing technologies to comply their procurement guideline. Therefore, to use the JCM supporting scheme, procurement process needs to be taken into consideration for adopting Japanese technologies.

[Issues to consider for the technologies]

- Basic design and detailed design for facility installation
- A financial plan
- Procurement process
- Policy for promoting installation of Japanese technologies
- A monitoring plan

(2) Issues related to reduction of water leakage in water distribution network

Below is the list of issues related to reduction of water leakage in a water distribution network. Water distribution management system and GIS are technologies in high demand in PPWSA. However, to install the technologies as a JCM project, development of a methodology to quantify amount of water leakage prevention, made by the technologies, is essential. Moreover, development of employees' capacity to conduct operation and maintenance is indispensable for updating data sustainably after installation of the technology.

[Issues related to reduction of water leakage in water distribution network]

- Development of a methodology to quantifying amount of leakage prevention made by the technology
- A plan for employees' capacity development to conduct operation and

maintenance

4.3 Schedule for implementation of the JCM project

The table 17 shows the schedule of implementation of the JCM project. Detailed investigation will be conducted in the first half of the Japanese fiscal year (JFY) 2014, and start the JCM project between the last half of JFY2014 to the first half of JFY2015. The Ministry of the Environment (MOE)'s JCM supporting schemes could be utilized, such as the JCM Feasibility Study for the detailed investigation, and the JCM Model project for installing technologies. Moreover, after successful installation of technologies in PPWSA, the JCM project is expected to be expanded to the other areas in Cambodia, as well to neighboring countries.

Items	20	014	20	015
	First	Second	First	Second
	half	half	half	half
(1) Detailed investigation				
- Basic design for installing technologies	←→			
- Financial planning	~	-		
- Procurement process	+-	•		
- Planning for monitoring				
(2) Implementation of the JCM project				
- Detailed design for installing				
technologies		• •		
- Delivering and installing technologies			•	
- Commencing the technologies and			•	
evaluating its effect			•	
(3) Scaling-up the project to the other				
cities and countries				• •

Table 17. Schedule for implementation of the JCM project

Attachment 1 Joint Crediting Mechanism Proposed Methodology Form

Joint Crediting Mechanism Proposed Methodology Form

A. Title of the methodology

Energy-saving and renewable energy measures at water treatment plants (Draft)

B. Terms and definition

Terms	Definition	
Ceramic membrane	A system that produces clean water using a ceramic	
filtration system	membrane as a filter, typically consisting of membrane	
	modules, a feed pump, a coagulation and flocculation	
	basin and a treated water reservoir.	
Inverter	An electronic devise that changes direct current (DC) to	
	alternating current (AC).	
Transformer	An electrical device that transfers energy between two	
	circuits through electromagnetic induction.	
Solar power generation	A system that converts sunlight into electricity,	
system	typically consisting of solar modules, a power	
	conditioner a junction box, and a power distribution	
	panel.	
Small-scale hydro power	A system that produces electricity using natural flow of	
generation system	water, typically consisting of a water turbine, a	
	generator and a power distribution panel.	

C. Summary of the methodology

Items	Summary	
GHG emissions reduction	The methodology is applicable to the project which	
measures	reduces GHG emissions at water treatment plants	
	and/or intake facilities in the Kingdom of Cambodia by	
	implementing energy-saving and renewable energy	
	measures. CDM methodology AMS-II.C. "Demand-side	
	energy efficiency activities for specific technologies" is	
	used as a reference for developing this draft	
	methodology.	

Calculation	of	reference	Reference emissions are calculated from specific	
emissions			electricity consumption at water treatment plants	
			and/or intake facilities which would stay at the same	
			level as the past 3 years.	
Calculation	of	' project	Project emissions consist of electricity and/or fossil fuel	
emissions			used in the project equipment.	
Monitoring p	arar	neters	Electricity consumption, fossil fuel consumption and	
			total quantity of output are monitored.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The project implements two or more of the following equipment with		
	maintenance plans:		
	(1) Ceramic membrane filtration system		
	(2) Inverter		
	(3) Transformer		
	(4) Solar power generation system		
	(5) Small-scale hydro power generation system		
Criterion 2	The projects includes training programs on operation and maintenance		
	and develops SOP (Standard Operation Procedures) for the selected		
	equipment		
Criterion 3	The project is implemented at water treatment plants and/or intakes		
	facilities.		
Criterion 4	The project determines electricity consumption, fossil fuel consumption		
	and total quantity of output at selected plants and/or facilities.		

E. Emission sources and GHG types

Reference emissions			
Emission sources	GHG types		
Grid electricity consumption	CO_2		
Fossil fuel consumption	CO ₂		
Project emissions			
Emission sources	GHG types		
Grid electricity consumption	CO ₂		
Fossil fuel consumption	CO_2		

F. Establishment and calculation of reference emissions

F.1 Establishment of reference emissions

Reference emissions are calculated from specific electricity consumption at water treatment plants and/or intake facilities which would stay at the same level as the past 3 years. Business-as-Usual (BaU) scenario assumes that the specific electricity consumption would increase in Cambodia without the assistance from international development partners.

F.2 Calculation of reference emissions

The reference emissions are calculated as follows.

$$RE_{y} = SEC_{RE} * Q_{PJ} * EF_{RE}$$

$$SEC_{RE} = \frac{EG_{RE,grid} + EG_{RE,backup}}{Q_{RE}}$$

$$EF_{RE} = \frac{EF_{grid} * EG_{RE,grid} + \sum_{i} (SFC_{RE,i} * NCV_{i} * EF_{fuel,i})}{EG_{RE,grid} + EG_{RE,backup}}$$

Where:

RE_y	Reference emissions	tCO ₂ e/y	
SEC_{RE}	Specific electricity consumption for the reference	MWh/m ³	
$EG_{RE,grid}$	Electricity consumption from a Cambodian	MWh	
	regional grid system for the reference		
$EG_{RE,backup}$	Electricity consumption from backup generators MWh		
	using fossil fuel <i>i</i> for the reference		
Q_{PJ}	Total quantity of output for the project m^3		
Q_{RE}	Total quantity of output for the reference m^3		
EF_{RE}	CO_2 emission factor for total electricity for the	tCO ₂ e/MWh	
	reference		
EF _{grid}	CO_2 emission factor for electricity from a	tCO ₂ e/MWh	
	Cambodian regional grid system		
$SFC_{RE,i}$	Fossil fuel <i>i</i> consumption for the reference Liter		
NCV _i	Net calorific value of fossil fuel i	MJ/Liter	
EF _{fuel,i}	CO_2 emission factor for fossil fuel <i>i</i>	tCO_2e/MJ	

G. Calculation of project emissions

Project emissions consist of electricity and/or fossil fuel used in the project equipment, determined as follows.

$$PE_y = PE_{PJ,grid} + PE_{PJ,backup}$$

$$PE_{PJ,grid} = EG_{PJ,grid} * EF_{grid}$$

$$PE_{PJ,backup} = \sum_{i} (SFC_{PJ,i} * NCV_{i} * EF_{fuel,i})$$

Where:

PE_y	Project emissions	tCO_2e/y	
$PE_{PJ,grid}$	Project emissions from a Cambodian regional	tCO_2e/y	
	grid system		
$PE_{PJ,backup}$	Project emissions from backup generators tCO ₂ e/y		
$EG_{PJ,grid}$	Electricity consumption from a Cambodian	MWh	
	regional grid system for the project		
EF _{grid}	CO_2 emission factor for electricity from a	tCO2e/MWh	
	Cambodian regional grid system		
$SFC_{PJ,i}$	Fossil fuel <i>i</i> consumption in the project	Liter	
NCV _i	Net calorific value of fossil fuel i	MJ/Liter	
EF _{fuel,i}	CO_2 emission factor for fossil fuel <i>i</i>	tCO2e/MJ	

H. Calculation of emission reductions

The emission reductions achieved by the project activity shall be determined as the difference between the baseline emissions and the project emissions.

$$ER_y = RE_y - PE_y$$

Where:

ER_y	Emission reductions	tCO ₂ e/y
RE_y	Reference emissions	tCO_2e/y
PE_y	Project emissions	tCO_2e/y

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below:

Parameter	Description of data	Source
$EG_{RE,grid}$	Electricity consumption from a	Phnom Penh Water Supply
	Cambodian regional grid system	Authority: the mean value in the
	for the reference	past 3 years
$EG_{RE,backup}$	Electricity consumption from	Phnom Penh Water Supply
	backup generators using fossil	Authority: the mean value in the
	fuel <i>i</i> for the reference	past 3 years
$SFC_{RE,i}$	Fossil fuel <i>i</i> consumption for the	Phnom Penh Water Supply
	reference	Authority: the mean value in the
		past 3 years
Q_{RE}	Total quantity of output for the	Phnom Penh Water Supply
	reference	Authority: the mean value in the
		past 3 years
EF _{grid}	${ m CO}_2$ emission factor for	Ministry of Environment,
	electricity from a Cambodian	Cambodia: 0.6257 tCO ₂ e /MWh
	regional grid system	(Operating Margin)
NCV _i	Net calorific value of fossil fuel i	IPCC 2006 Guidelines
EF _{fuel,i}	CO ₂ emission factor for fossil	IPCC 2006 Guidelines
	fuel <i>i</i>	