

FY 2015 Feasibility Studies on Joint Crediting Mechanism Projects towards Environmentally Sustainable Cities in Asia

Report on

"JCM projects development (energy efficiency, and waste and waste water) under the Bangkok Master Plan on Climate Change, and study on financial and other facilitation schemes for introducing low carbon technologies"

March 2016

(Overseas Environmental Cooperation Center, Japan)

Feasibility study on JCM projects development (energy efficiency, and waste and waste water) under the Bangkok Master Plan on Climate Change, and study on financial and other facilitation schemes for introducing low carbon technologies

As of 18th March, 2016 Overseas Environmental Cooperation Center

Contents

I. Summary of Operations
1. Purpose of Operations
2. Contents of Feasibility Study
(1) Development of JCM projects in the sector of energy efficiency, waste
management and waste water treatment3
(2) Identification of candidate to form JCM projects
3. Overview of the Bangkok Master Plan on Climate Change 2013-20237
(1) Climate Change Policy of the Kingdom of Thailand7
(2) Climate Change Policy of Bangkok Metropolitan Administration (BMA) 7
(3) Overview of the Bangkok Master Plan on Climate Change 2013-2023
II. JCM projects development in the sector of energy saving, waste management and
waste water treatment
1. Energy saving sector
(1) Summary of the study
(2) Schedule of the study
(3) Elaborating on a plan for applying programme approach for building energy
efficiency and financial scheme for introducing low carbon technologies 16
(4) Elaboration on introducing energy saving code such as CASBEE as eligibility
criteria of JCM methodology
(5) Elaborating on a plan for comprehensive energy saving in industrial park 25
2. Waste management sector
(1) Summary of the study
(2) Schedule of the study
(3) Study and elaboration on developing JCM project at waste incineration plant
28
(4) Study on actual situation of landfill site, waste collecting system and
administration/regulations in Thailand35
(5) Elaboration on waste management JCM project at residential district of
Royal Thai Air Force

3. Waste Water Treatment Sector	41
(1) Summary of the study	41
(2) Schedule of the study	41
III. Identification of candidates to form JCM projects	47
1. Summary of the study	47
2. Outcomes of the study	48
(1) Summary of JCM project candidates that have high feasibility for its	
implication	48
(2) "Program approach for building energy efficiency" and program support	
scheme with private finance	51
(3) Roof-top PV System with Demand Control Implementation Project	52
IV. Implementation of Low Carbon Technology workshop and Matchmaking session	n
and Study tour in Japan	57
1. Implementation of Low Carbon Technology workshop and Matchmaking session	on
57	
(1) Summary of the Low Carbon Technology workshop and Matchmaking sess	ion
57	
(2) List of the participant	59
(3) Outcomets of the holding of the Low Carbon Technology Workshop and	
Matchmaking session study tour	60
(4) Individual site visits	62
2. Implementation of Study tour in Japan	63
(1) Summary of the study tour in Japan	63
(2) Schedule of the study tour	63
(3) List of participants	65
(4) Program and results of the study tour	66
V. Presentations of the international conferences and workshops	

I. Summary of Operations

1. Purpose of Operations

The Bangkok Metropolitan Administration (BMA), the local government of Bangkok, and the capital of Thailand, has been making active efforts to address climate change, starting with the Bangkok Declaration on Climate Change Mitigation in 2007. The Bangkok Metropolitan Administration Action Plan on Global Warming Mitigation (BMA Action Plan 2007-2012) is a comprehensive plan covering the following 5 areas (1) development of public transportation and improvement of transportation systems, (2) encouragement of the use of alternate fuels, (3) improvement of electric power use in buildings, (4) improvement of waste and wastewater treatment and (5) greening measures.

Moreover, the new Bangkok Metropolitan Master Plan on Climate Change 2013-2023 was completed under a technical cooperation project of the Japan International Cooperation Agency (JICA) and approved in July, 2015 by the governor of Bangkok. The new master plan covers 5 areas: (1) sustainable transportation measures, (2) promotion of measures for energy saving and renewable energy, (3) measures for wastes and wastewater, (4) urban greening, and (5) adaptation planning.

Meanwhile, in October 2013, the City of Yokohama and BMA signed a memorandum of understanding concerning urban development in Yokohama and Bangkok to further deepen cooperation between the municipalities and take concrete actions for urban development in such fields as environment and low carbon. As the agreement includes provision of technical advice from Yokohama in such fields as energy management, waste management and sewage management for sustainable development in Bangkok, it contributes to the establishment and implementation of the above-mentioned BMA Master Plan on Climate Change.

The above mentioned JICA technical cooperation aims to support the making of the Master Plan and consolidate the implementation system of the plan. Based on the aim above, a feasibility study on "Joint Crediting Mechanism Projects towards Environmentally Sustainable Cities in Asia" was conducted in last fiscal year 2014 with considerations for preparing business funds for implementation of the Master Plan and building the foundations for a low carbon society via technical transfer.

Based on the cooperation between Yokohama city and BMA, we identified items to develop JCM projects, dispatched a low-carbon technology mission, which was mainly composed of companies participating in the Y-PORT¹ and YSPA² and implementing an energy saving diagnosis at the hospital run by BMA in the feasibility study in last fiscal year 2014. Through the study, we recognized good potential for JCM projects in three sectors: energy sector including public and private hospitals and a food processing plant located in Bangkok, waste management sector including incineration plants and plants for intermediate waste treatment, and waste water management sector.

In addition, Japan and Thailand signed a bilateral document to start the Joint Crediting Mechanism (JCM) on 19th November, 2015 and development of JCM projects development will be speeded up.

Considering the above background, we conducted two studies in this fiscal year: a "Study on JCM projects development in the sector of energy efficiency, waste management and waste water treatment", which was based on outcomes of the feasibility study in last fiscal year 2014, and a "Study on identification candidates to form JCM projects" to develop JCM projects in the early stage to enable the implementation of the Master Plan.

 $^{^1}$ Y-PORT: Yokohama Partnership of Resources and Technologies, which is an international technical cooperation project through a public-private partnership that harnesses Yokohama's technology and know-hows to contribute to the emerging countries

² YSBA: Yokohama Smart Business Association, which operates various projects such as introduction of renewable energy, energy management of households, buildings and local communities and next generation transportation systems through the collaborating of Yokohama city and the private sector.

2. Contents of Feasibility Study

Based on the Bangkok Master Plan and outcomes of the feasibility study in last fiscal year 2014, the following studies were implemented. Details of studies are shown below.

- Development of JCM projects in the sector of energy efficiency, waste management and waste water treatment

- Identification of candidates to form JCM projects

(1) Development of JCM projects in the sector of energy efficiency, waste management and waste water treatment

Based on the feasibility study in last fiscal year 2014, we found that there were immediate needs and potential for improvement of energy cost reduction and GHG mitigation in the sector of energy efficiency, waste management and waste water treatment. We conducted studies for each sector to develop these potentials.

(a) Study of energy efficiency

In this study, we mainly conducted the following three activities. Details of studies are shown in each chapter.

- Elaborating on a plan for applying programme approach for building energy efficiency and financial scheme for introducing low carbon technologies
- Elaboration on introducing energy saving code such as CASBEE as eligibility criteria of JCM methodology
- Elaborating on a plan for comprehensive energy saving in industrial park

(i) Elaborating on a plan for applying programme approach for building energy efficiency and financial scheme for introducing low carbon technologies

We found that public and private hospitals in Bangkok showed strong interests in implementing scheme to cut energy cost and mitigate GHG by renewing boilers and chillers etc., and introducing ESCO³ service in their buildings. We conducted preliminary works, including formulating an international consortium among private companies both Japanese and Thai, and strengthening a system for providing indirect supports, to develop JCM projects smoothly after Thailand joins the Joint Crediting Mechanism (JCM) shortly. In Particular, we selected sites for implementing the model ESCO project among public hospitals under the BMA, considering installation of equipment in their hospitals without value oriented public bidding.

On the other hand, we proposed "Expanding Green Hospital Concept" via the

³ ESCO: Energy Services Companies. It provides a comprehensive energy solutions including designs and implementation of energy savings projects, retrofitting, energy conservation, energy infrastructure outsourcing, power generation and energy supply, and risk management. And the energy saving effect is guaranteed by operating companies.

installation of energy efficiency equipment as the JCM project to be conducted in the 5th sub group.

(ii) Elaboration on introducing energy saving code such as CASBEE as eligibility criteria of JCM methodology

BMA officials were strongly interested in the evaluation scheme for energy performance scheme, CASBEE, during the discussions of the Master Plan, and they strongly required making consideration for installing CASBEE to the implementation of the Master Plan. Taking into account of the situation above, we considered how Yokohama's experience in implementing CASBEE could be transferred to and used in Bangkok.

(iii) Elaborating on a plan for comprehensive energy saving in industrial park

In addition to the hospital's needs, we also recognized the feasibility of installing energy-saving equipment, a high-efficiency boiler, a high-efficiency chiller and an air compressor, into a food processing plant in an industrial estate located near Bangkok.

In this study, we surveyed the possibility of comprehensive energy saving at the plant as well as the possibility of energy saving mentioned above with a view to implementing project development more effectively while also further reducing CO2.

(b) Study of waste management

Based on last year's feasibility study, we conducted study on two projects for the realization: "Elaborating on JCM projects at incineration plants in Bangkok" and "Study on actual situation of landfill site, waste collecting system and administration/regulations in Thailand".

(i) Elaboration on JCM project at incineration plants in Bangkok

We found that rules for public bidding apply to the installation of new equipment in public institutions in Bangkok. With public bidding, the life cycle cost of equipment with a long lifespan is not considered, just the initial cost of its installation. In addition, we discovered that the criteria for safety, environment, and technology features, including energy efficiency and durability at the installation site had not been determined yet.

Considering the above agendas, we conducted policy dialogues between Yokohama city and BMA, based on the task force in the Master Plan, to formulate common understanding on the installation of incineration, and share the information and knowledge of waste management service in Yokohama city. (ii) Study on actual situation of landfill site, waste collecting system and administration/regulations in Thailand

Based on the outcomes of the field survey last year, we realized the possibility of installing semi-carbonization technology, which generates biomass energy-pellets from general waste, to a vast residential area located near Bangkok. This technology was developed by Finetech Co. Ltd., which has participated in the feasibility study since last year, and the technology not only reduces energy usage but also reduces general waste.

The study considered how this technology could be installed in the residential area via the JCM scheme and how anticipated waste reduction from using this technology and utilization of regenerated energy in the residential area would achieve carbon neutrality.

The garbage generated from residential areas accounts for around half the amount of the waste generated in Bangkok. Considering this situation, the study also looked at the guidelines at national level, and rules on implementing those guidelines at local government level related to the general waste collection system, including final landfill sites, in Thailand.

(c) Study of Waste Water Management

The feasibility of installing energy efficiency equipment into new and existing public institutions handling waste water management was considered in this study. Data concerning low-carbon and low-cost technologies use by Japanese companies were shared with BMA, and installation feasibility was considered

(2) Identification of candidate to form JCM projects

Based on the fiscal study last year, we investigated whether or not the potential projects could be aligned with Japan's low-carbon technology (in particular, companies that would participate via Y-PORT). We also considered the institutional requirements of JCM, in order to consider commercialization.

After going through the above process, we identified some highly feasible candidates for JCM projects among the above inspected projects, and developed proposals for MRV⁴ schemes, etc. More specifically, we collected necessary data and other information concerning specs and standards of the target technologies and examined settings of baseline and reference scenarios.

In addition to the above studies, we conducted policy dialogs for each sector, a low

⁴ MRV: Measurement, Reporting and Verification of GHG emission.

carbon technology workshop and a matching session with concerned parties, and training in Japan, which included practical learning programs for all Thai participants, in order form them to view the low-carbon society in Yokohama city and technologies that Y-PORT members have. 3. Overview of the Bangkok Master Plan on Climate Change 2013-2023

(1) Climate Change Policy of the Kingdom of Thailand

The Kingdom of Thailand has been setting Five-Year National Economic and Social Development Plans (NESDP) as a national mid-term development plan since 1961. Since the Seventh National Development Plan, the government of Thailand is focusing on "sustainable development" in the way in which economic and social development and resources and environmental conservation are harmonized. The government highlights the importance of developing low-carbon-society that is resilient to climate change in the Eleventh NESDP (2012-2016) issued in October 2011 under one of the sixth focal areas "Strategy for Managing Natural Resources and Environmental toward Sustainability".

The Royal Government of Thailand has been working on climate change issues based on the NESDP. In 1994, the country ratified the United Nations Framework Convention for Climate Change (UNFCCC) and established Sub-Committee on Climate Change for international negotiations and policy planning (was subsequently changed to National Climate Change Committee in 2006 putting the Prime Minister as a chairman). In January 2008, the cabinet approved the "National Strategy on Climate Change Management (2008-2012)".

Against this background, in November 2014, the NCCC endorsed key policy directions, which were authorized by the Cabinet, including endorsement of the Thailand Climate Change Master Plan (2012-2050), and the Thailand Nationally Appropriate Mitigation Actions (NAMAs), as well as preparation for an agreement for the Joint Crediting Mechanism (JCM) with Japan. In October 2015, Thailand submitted Intended Nationally Determined Contribution (INDC) as mitigation policy after 2020 responding to request from the UNFCCC. In addition, in November 2015, Ms. Tamayo Marukawa, Minister of the Environment, Japan and H.E. General Surasak Karnjanarat, Minister of Natural Resources and Environment, The Kingdom of Thailand signed the bilateral document of the Joint Crediting Mechanism (JCM) in Tokyo. Now Japan and Thailand are preparing to establish the Joint Committee and launch the JCM scheme between two countries.

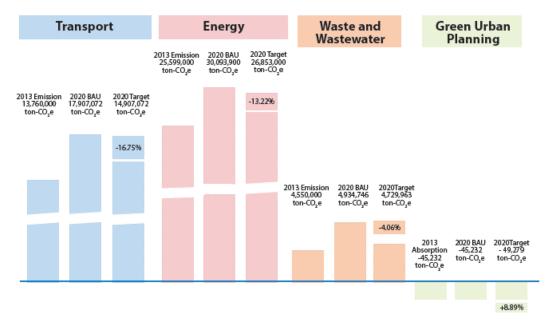
(2) Climate Change Policy of Bangkok Metropolitan Administration (BMA)

As for a local government, Bangkok Metropolitan Administration (BMA) has been setting ambitious strategies on climate change. In 2007, BMA with cooperation of 35 institutional stakeholders adopted "Bangkok Declaration on Mitigation of Climate Change" and started activities related to climate change policies. BMA prepared the BMA Action Plan on Global Warming Mitigation 2007-2012 which aims to reduce its emission at least 15% by 2012 compared to the projected baseline of business as usual. Under the declaration, BMA has been undertaking five initiatives as follows: (i) Expand mass transit and improve traffic system, (ii) Promote the use of renewable energy, (iii) Improve building electricity consumption efficiency, (iv) Improve solid waste management and wastewater treatment efficiency, and (v) Expand park area.

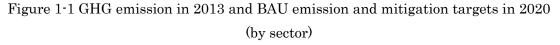
BMA evaluated the implementation of the BMA Action Plan 2007-2012, and drafted more holistic climate change long-term plan "Bangkok Master Plan on Climate Change 2013-2023" (BMA Master Plan 2013-2023) in July 2015 under the JICA technical cooperation project the Bangkok Master Plan on Climate Change 2013-2023.

(3) Overview of the Bangkok Master Plan on Climate Change 2013-2023

The Bangkok Master Plan on Climate Change 2013-2023 covers the whole geographical area of BMA, in the following 5 sectors:


- Environmentally sustainable transport,

- Energy efficiency and alternative energy,
- Efficient solid waste management and wastewater treatment,
- Green urban planning
- Adaptation planning


Quantification of GHG emission, mitigation targets, mitigation measures and MRV methodologies of each sectors were elaborated under the master plan. Figure 1-1 ⁵shows GHG emission in 2013 and BAU emission and mitigation targets in 2020 of 5 sectors.

Based on advices from Ministry of Environment, Japan, approach for the study was discussed that it is necessary to proceed not only "Bottom-up approach" for developing JCM projects but also "Top-down approach" for specifying sectors from higher important policies. Proposed mitigation measures of (2) Energy efficiency and alternative energy sector and (3) Efficient solid waste management and wastewater treatment sector which are targeted by this study are shown in table 1-1, 1-2 and 1-3.

⁵ Reference: Bangkok Master Plan on Climate Change 2013 - 2023

GHG emission in 2013 and BAU emission and mitigation targets in 2020 (by Sector)

Category			Possible mitigation measures (countermeasures)		
1. BMA	1.1 Energy	1.1.1 General	1) Developing systematic schedules of retrofitting BMA's existing building for appropriate management of energy		
government buildings &	saving renovation/r	tasks	2)	Systematic implementation of energy saving retrofitting works of BMA's existing building	
facilities			3)	Selection of model project for energy saving renovation work Intensive adoption of top-runner appliances	
			4)	Energy saving requirements for retrofitting works of BMA facilities and setting of high-level of energy efficiency Acquisition of certification for energy saving renovation work (CASBEE or LEED etc.)	
1.1.2 Improving		5)	Consideration of renovation work, extension work, conversion at the time of facilities update (maximum utilization of existing stocks)		
		6)	Efficient retrofitting/renovation work for energy saving by introducing private capital know-how		
		1)	Introduction of thermal barrier roof coatings		
		insulation	2)	Improving external insulation and waterproofing	
performance (renovation		*	3)	Introduction of roof greening	
		technique)	4)	Improving heat insulating window (high heat insulating glass such as low-e pair glass)	
			5)	Improving heat insulating window (thermal barrier film)	
1. BMA			6)	Controlling solar radiation heat by installing louver or eaves	
government buildings &		1.1.3 Cutting	1)	Replacing existing air-conditioning equipment by high- efficiency one	

facilities		down air	2)	Introduction of variable flow controller
		conditioning /	3)	Introduction of task ambient air conditioning system -
		ventilation load	4)	controlled by motion/temperature sensor, timer etc. Introduction of high-efficiency fan (total heat exchanger)
		(retrofitting technique)	4) 5)	Introduction of cogeneration system
			-	Introduction LED lighting or fluorescent lamp
		Cutting	1)	Introduction of task ambient lighting
		down lighting load	2)	Installing motion sensor lighting to bathroom, corridor or
		(retrofitting technique)	3)	staircase
			4)	Daytime energy reduction by daylight sensor
		1.1.5 Energy	1)	Upgrading water saving sanitary appliances
		reduction by	2)	Introduction of rainwater recycling system
		water- saving	3)	Introduction of waste water recycling system (reuse as toilet bowl flushing water)
		1.1.6 Others	1)	Introduction of Solar power generation systems
		o thors	2)	Introduction of BEMS, building energy management systems
			3)	Replacing street lighting to LED
	1.2 Energy	1.2.1Genera l tasks	1)	Constructing high energy efficiency building
	saving for new construction		2)	Introducing requirements of certificate for new construction of PMA facilities (Engage standard such as CASPEF or
				of BMA facilities (Energy standard such as CASBEE or LEED etc.)
	1.3 Information	1.3.1 Conducting	1)	Promoting environmental education at school
	campaign	campaign to citizens	2)	Support to exhibition of energy saving merchandise for BMA facility
		citizens	3)	Visualization of energy saving of BMA facility Notify saving energy activities by panel or monitor
			4)	Promoting "Green Curtain" installation at school to reduce air conditioning load
			5)	Holding workshop on energy saving repair work for public participation (schools, public facilities)
	1.3	1.3.2	1)	Raising preset cooling temperature
	Information campaign	Conducting campaign to the officials	2)	Award for saving energy activity
			3)	Turning off lightings during lunch break
			4)	Thorough power saving setting on PC or OA equipment
	1.4	1.4.1	1)	Setting up low-carbon model area, each fields top runner
	Promotion of low	Model areas		measure, intensive equipment investment
2.	carbon city 2.1	2.1.1	1)	Promotion of low-carbon/energy saving detached house
Civil Categories	Residential	Promotion of energy	1)	(Publicity of cost benefit from the viewpoint of low carbon community, backup exhibition, provide advertising spaces
(Residential/	part	saving		at BMA facilities
Commercial/ Industries)		house	2)	Facility equipment introduction promotion of energy saving house
				(LED lights, energy-saving air conditioning system or hot -
		2.1.2	1)	water apparatus etc.) Publicity of cost benefit by repair work for energy saving
			1)	

	of energy saving home		
	appliances 2.1.4 Promotion of energy saving	1)	Promote better understanding of air conditioner maintenance (conduct free cleaning)
	measure 2.1.5	2)	Promotion of solar panel installation
2.2 Commercial/ Business	Others 2.2.1 Promotion of energy	1)	(subsidy system or mediating installable roof) Incentive for constructing/repairing saving energy factory (tax reduction, subsidy, zero-interest finance etc.)
part	saving building		
	2.2.2 Promotion	1)	Conducting energy saving inspection of public buildings
	of energy saving repair work for existing building	2)	Promotion of ESCO business for existing buildings (Explaining ESCO business, advertisement promotion support, subsidy system for energy saving diagnostic)
		3)	Promotion of repair work for energy saving: insulation upgrade by double glazing, heat barrier film, renew air conditioning device (subsidy system etc.)
		4)	Publicity of cost benefit by Electricity Peak-Cut Introduction support for automatic control facility of Electricity Peak-Cut
	2.2.3 Promotion	1)	Promotion of saving energy activity (publicity of cost benefit etc)
	of energy saving	2)	Raising preset cooling temperature at public buildings Turn off lightings during lunch break
	measure	3)	Thorough power saving setting on PC or OA equipment
	0.0.4	4)	Award for saving energy activity
	2.2.4 Others	a	Promotion of solar panel installation (subsidy system or mediating installable roof)
2.3 Industrial part 2-3.	2.3.1 Promotion of energy saving factory	1)	Incentive for constructing/retrofitting saving energy factory (tax reduction, subsidy, zero-interest finance etc.)
Industrial	2.3.2	1)	Conducting energy saving inspection of factories
part	of energy saving repair work for existing	2)	Promotion of repair work for energy saving (subsidy system etc.)
			Publicity of cost benefit by Electricity Peak-Cut
	for existing	3)	Introduction support for automatic control facility of Electricity Peak-Cut
		3)	Introduction support for automatic control facility of
	for existing factory 2.3.3		Introduction support for automatic control facility of Electricity Peak-Cut Promotion activity for factory's energy saving technique (for

	2)	Promotion of beneficial use of factory exhaust heat
--	----	---

Category	Measure		
1. Waste generation	1.1 Promoting participation on waste reduction and separation at source		
	1.2 Reducing the amount of plastic waste		
2. Waste collection and	2.1 Improving fuel efficiency of waste collection and transportation		
transportation	system		
3. Intermediate	3.1 Promoting utilization of organic waste		
treatment	3.2 Constructing waste-to-energy incineration facility		
	3.3 Constructing Waste segregation plant		
4. Final disposal	4.1 Installing environment- friendly landfill system		

Table 1-2 Proposed mitigation measures of waste sector

Table 1-3 Proposed mitigation measures of wastewater sector

Category	Measure	
1. Wastewater	1.1 Promoting reduction of water usage at house	
generation	1.2 Promoting collection of wastewater tariff	
2. Wastewater collection	2.1 Feasibility study for construction of separated sewerage collection	
	system	
	2.2 Implementing separated sewerage collection system	
	2.3 Constructing separated sewerage collection system	
3. Wastewater	3.1 Improving operation and equipment of existing WWTPs	
treatment	3.2 Constructing new energy efficient WWTPs	
4. Sludge treatment	4.1 Promoting utilization of sludge	
5. Water reuse	5.1 Promoting water reuse	

II. JCM projects development in the sector of energy saving, waste management and waste water treatment

- 1. Energy saving sector
- (1) Summary of the study

Based on the outcomes of feasibility study in last fiscal year 2014, we conducted "Elaboration on applying Program approach for building energy efficiency and program support scheme with private finance", "Elaboration on introducing energy saving code such as CASBEE as eligibility criteria of JCM methodology" and "Elaboration on comprehensive energy saving in the industrial plant"

We had several policy dialogues and a small study session to install low carbon equipment in public hospitals with Thai side. In addition, on-sight visiting of buildings where implemented ESCO projects and an explanation of the JCM scheme and the Financing Programme for JCM Model Projects were given to the public hospital and the Industry Estate.

(2) Schedule of the study

(a) Policy dialogues

Based on the partnership between Yokohama and Bangkok, we conducted several policy dialogues and a small study sessions to implement ESCO projects and develop JCM projects in public hospitals. Participants for the discussions are technical experts from Yokohama city and private companies, and OECC as Japanese side, on the other hand, officials form Department of Environmental Office: DOE and Fiscal Policy Office :FPO and Bangkok public hospitals. DDS and FPO as Thai side. The discussion schedule is shown in Table 2-1.

Date	Venue	Participants	Contents
Jul. 13th	Ballroom2, S31	DOE, Yokohama	-Yokohama's experience
12:30~15:40	Sukhumvit-Hotel	city, OECC	and knowledge of ESCO
			program were shared with
			BMA and other Thai
			agencies through
			presentation and
			discussion. Also from Thai
			side, green procurement
			regulation and situation of
			ESCO business in

Table 2-1 The Schedule of the energy efficiency dialogue between Yokohama city and

BMA

			Thailand was introduced
			to Japanese side.
			-It was discussed that
			introduction of energy
			saving measurements
			(ESCO program and
			CASBEE scheme) in BMA
			public facilities.
Sep. 29th	2nd floor, meeting	DOE, OECC	-The draft agenda and
9:00~9:30	room 1, DOE		preparation for the next
			dialogue was explained to
			BMA officials and
			discussed with them.
Oct. 27th	2nd floor, meeting	Department of	-DEDE introduced the
13:30~15:30	room 1, DOE	Public Works	overview of ESCO
		(DPW),	program and relevant
		Department	governmental policies in
		Energy	Thailand.
		Alternative	- The DPW explained the
		Development	issues and challenges for
		and Efficiency	implementing ESCO
		(DEDE),	projects in public facilities
		Yokohama city,	of BMA.
		OECC	-Yokohama's experience
			and knowledge of how
			they installed ESCO
			program to public facilities
			were shared with BMA
			side.
			-Implementation of ESCO
			Model project in public
			hospitals was discussed.
Nov. 25th	2nd floor, meeting	DOE, DPW,	-The overview and benefits
10:00~12:00	room 1, DOE	FPO, TGO, BMA	of building energy
1000 1200		public hospitals,	efficiency and ESCO were
		Yokohama city,	presented by the City of
		OECC, A	Yokohama and A company.
			- Some challenges and
		company	- Some chanenges and

			possible solutions for utilizing ESCO, including
			how to apply the rules of
			public procurement and
			contracts were shared and
			discussed among the
			Bangkok and Japan side.
Jan. 20th	BMA2, 6th floor,	DOE, DPW, The	-To success of
10:00~12:00	meeting room	FPO, Yokohama	implementing ESCO
		city, OECC	projects, increased
			motivation, appropriate
			goal settings based on the
			analysis and successful
			experience in short term
			were suggested as main
			factors.
			-Information of
			procurement processes in
			BMA public facilities were
			shared among Japan side.

(b) On-site visits

In parallel, we visited buildings where ESCO projects have been implemented, and several facilities that have high feasibility of installing low carbon equipment and implementing ESCO projects. The visiting schedule is shown as follows.

Date	Venue	Participants	Contents
Sep. 28 th	P hospital	OECC	-The OECC proposed the
14:00~15:30			expanding of "Green
			hospital concept" with
			implementing JCM project
			in the large hospital group
			A with P hospital, and
			discussed about its
			possibility.
Oct. 26th	P hospital	OECC	-The OECC proposed the
10:00~12:00			expanding of "Green

Table 2-2 The schedule of the visits related to the energy efficacy sector

			hospital concept" with
			implementing JCM project
			in the large hospital group
			A with Dr. Yongyuth,
			Phayathai hospital.
Nov. 23th	P hospital	OECC,	-The OECC proposed to the
10:30~11:30		Yokohama city	CEO of 5 th sub-group, Mr.
			Att , that the expanding of
			"Green hospital concept"
			with implementing JCM
			project in the group.
Nov. 26th	QSNICH	DPW,	-Their way to success of the
13:30~16:00		Yokohama city,	ESCO project was explained
		OECC	to the participants, and Q &
			A session was also
			conducted to understand
			detailed project
			implementation.

(3) Elaborating on a plan for applying programme approach for building energy efficiency and financial scheme for introducing low carbon technologies

(a) Summary of the study

Considering to the outcomes of feasibility study in last fiscal year 2014, replacement needs of equipment in public and private hospitals, and the fact that "energy efficiency in buildings" is one of the targeting sector of the Master Plan⁶, We conducted the study to develop JCM projects at an early date for public and private hospitals.

(i) Study of public hospitals

There are some benefits for implementing ESCO project: 1) comprehensive energy saving in the building is able to archive via replacement old machine, 2) installing high efficiency equipment and inverter control, the effect of energy reduction via the project is granted by ESCO company, and 3) investment cost of equipment is paid by ESCO company and energy saving surplus account is returned to the ESCO company.

On the other hand, if we will install new equipment to public hospitals, we need go through the public bidding as one of the public procurement process. And the CAPEX⁷

⁶ Refer to table 1-1 Proposed mitigation measures of energy sector

 $^{^7\,}$ CAPEX: The cost for installed equipment

is key factor for make a decision of the budding, so low carbon equipment, which is comparatively expensive than general one, is not appropriate for the installation under the public bidding.

Therefore, we considered implementation of the ESCO project in public hospitals as the archiving way of its comprehensive energy saving as well as avoiding way of the value oriented public bidding.

In particular, we had a Q and A session by DEDE including explanation of implementing ESCO pilot projects in Thailand and its agendas, and visited to QSNICH which has implemented ESCO project in the hospital and has same procurement system of BMA. Moreover we discussed feasibility of implementing ESCO projects in the public hospitals with concerned parties including ESCO companies and public hospital themselves etc. In the discussion, we considered analysis of the success in QSNICH hospital and the draft plan of implementing ESCO project in T hospital based on the energy study in last fiscal year 2014. Table 2-3 shows outline of the ESCO project in QSNICH and the tentative plan of the ESCO project in T hospital.

project in Thospital			
	QSNICH	T hospital (1st Op.:	T hospital (2nd
		Full retrofitting and	Op.: Partial
		installation)	retrofitting and
			installation)
Equipment	- "Ozone generator	-Change old lighting	-Change old
	for Cooling tower	bulb to LED lighting	lighting bulb to
	water treatment	bulb	LED lighting bulb
	installation" for	-Installation of VWV	-Installation of
	Water cooled chiller	control for air condition	VWV control for air
	air condition system.	system primary pump	condition system
		and condensing pump	primary pump and
		-Installation of heat	condensing pump
		pump for hot water	-Installation of heat
		system	pump for hot water
		-Change old package air	system
		condition to high	
		efficient package air	
		condition	
Investment	1,979,500	42 million	8.2 million
Cost (baht)			

Table2-3 Outline of the ESCO project in QSNICH and the tentative plan of the ESCO project in T hospital

Saving	0.6 million	4.61 million	1.68 million
Energy Cost			
(baht /year)			
Pay Back	3.06	9.1	4.9
Period			
(year)			

Visits of the study tour

We implemented the study tour in the city of Yokohama with participation of officials of public hospitals that are candidate of implementing ESCO pilot study on the end of October, 2015. In the study tour, they visited to fasciitis in Yokohama city that have implemented ESCO project, and explanation of the project implementation and its agendas were done by staff of the facilities. The detail is mentioned in the chapter IV-2.

Small study session with public hospitals

We conducted a small study session of implementing ESCO project with staff of public hospitals. Implementation of ESCO project, its benefits and preparations for the project including energy study were explained to the participants. Moreover the outcome of energy study in last fiscal year 2014 and draft plan of ESCO project in the T hospital were presented by ESCO company A.

(ii) Study of the private hospital

Officials of P hospital requested us to develop a plan for energy saving based on the BMA Maser Plan and to promote CSR activities in the 5th sub-group of large hospital group. A group has 43 hospitals and is divided for 5 sub-groups. P hospital belongs to the 5th sub-group, and the 5th sub-group has 9 hospitals. Among the 5th sub-group, P hospital and S hospital have been engaged in the energy saving activities as "Green Hospital". In this study, considering the above situation, we suggested installing energy saving equipment to hospitals in the 5th sub-group via the Financial Program for JCM Model Projects, and discussed of its implementation to expand energy saving activities among the 5th sub-group.

(b) Outcomes of the study

(i) Study of public hospitals

Yokohama city explanation of ESCO implementation and suggestions for Bangkok. This presentation enabled Bangkok officials to better understand ESCO business. Conducting study tour with officials of the public hospitals and a small study seminar were suggested in the policy dialogue and we carried out them. This activities motivated Bangkok officials for the ESCO installation on their facilities. In addition, the visit to the hospital where ESCO project has been implemented accompanying staff members of DPW, and discussions for ESCO implementation with concerned parties were done by BMA officials.

In the discussion, it was explained by DEDE that there are 4 agendas in implementing ESCO project in public facilities in Bangkok: several years contract, repayment of excess electric bugged by energy saving, the procurement rule of public bidding based on the initial cost, and long payout time because of cheap electricity cost.

They also commented that because of the limited budget of BMA, it would be better to implement ESCO project with Shared Saving type: ESCO pays for entire cost of implementation and facility administrator pays constant rate from the reduction by energy-saving.

In addition, there was 3 key success factors of the ESCO project in QSNICH: the project scale is small enough to use self-finance for the implementation, management level were very impressive to energy save and implementation of the project, they were able to obey the rule of procurement using equipment made in Thai for the project.

And they shared common perceptions that there were 6 agendas for the ESCO implementation: because of the procurement rule it is difficult to contract for several years, payment of saving cost to ESCO companies is difficult for the public facility administration, considering procurement rule for ESCO projects, luck of funds to implement ESCO project, and low carbon technology is expensive in general, so it is not appropriate for the public bidding judged from the initial cost, and needs of continuous discussions to solve these agendas.

BMA also commented that generally the subsidy is pained after the implementation, however it would be better for advanced payment considering the procurement rule of BMA. For the finance preparation, we need consider several finance schemes showed in figure 2-1. In the past case study, cooperating with Denmark, BMA used special measurement for installing equipment to the public. We need continues discussion with the task force for the installing and survey for outstanding case studies.

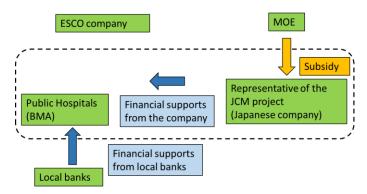


Figure 2-1 Financing Scheme for the JCM project

(ii) Study for the private hospital

We gained the approval of our suggestion: comprehensive energy saving plan for the model hospital as expanding of the "Green Hospital" from the CEO. First, high efficiency equipment such as air-conditioning and LED etc., are installed to buildings of the model hospitals in the 5th of a group to save energy, and then we increase the number of hospitals that install high efficient equipment among A group.

Especially, we discussed "Program Approach" ⁸ how to bundle each energy saving projects among the 5th sub-group with taking into account "Programmer of Activities" under CDM scheme and, "CDM programme of Activities".Generally, investment decision is determined at the committee where the CEO of the each sub-group has key role, so in this case it would be better to bind each projects by formulating a task force under the committee.

Installing equipment in the each hospitals are different, so for the project monitoring, it would be better to record and manage of GHG reduction data in each hospital with using on-line monitoring systems and supporting of ESCO companies that provide energy management services. After that, grouping reduction data in each hospital together for one, sub-group level, is enable us accurate measurement and cut-off of monitoring cost. Using data on the monitoring system is appropriate for the project verification.

Based on the discussion, preparation of the energy study, including reduction target setting and estimation of reduction cost, has been arranged by the ESCO company A. In addition to the energy study, we need determination of the model hospital and installed equipment for projects development. Moreover A group realized that educational activities for energy saving in the hospitals are one of the key factors for success of increasing "Green Hospital", and requested for some supports of educational activities to us. We need extra discussion to implement the project as well as support for educational activities in the future.

⁸ Bundling several small projects together to increase amount of total GHG reduction

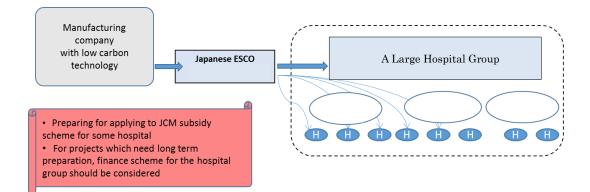


Figure 2-2 Elaboration of applying "Program approach for building energy efficiency" and program support scheme with private finance (Hospital) in A group

(4) Elaboration on introducing energy saving code such as CASBEE as eligibility criteria of JCM methodology

(a) Summary of the study

BMA is considering to introduce program for evaluating environmental performance of public buildings and it is listed as one of mitigation measure in the Bangkok Master Plan on Climate Change 2013-2023⁹.

Meanwhile, it is expected that such program for evaluating environmental performance of buildings can be adopted as eligibility criteria of JCM methodology regarding energy saving of buildings. In this study, BMA officials in charge of public works developed an understanding about CASBEE (Comprehensive Assessment System for Built Environment Efficiency) which developed in Japan through the study tour and the study meeting. It was also studied that situation of relevant similar programs for evaluating environmental performance of buildings in Thailand.

As results of the study, it was clarified that CASBEE and similar evaluation programs can be used as reference for energy efficient facility in case of installing such facilities in building. For example, installation of high efficient boiler or chiller compared to regular one in the market achieves certain GHG reduction required for JCM project. But generally that kind of market research takes time and it is possible to use reference value defined in the evaluation programs.

Intangible measurements of CASBEE such as energy management method are unsuitable for specifying the reference but it can be used for necessary item to be

⁹ Refer to table 1-1 Proposed mitigation measures of energy sector

considered or be dealt as eligibility criteria of JCM methodology.

It is also important to consider reference value with utilizing LEED¹⁰ and TREES because those programs have been becoming popular in Thailand.

(b) Implementation of site visit of the study tour and the study meeting

(i) Site visit of the study tour

BMA officials visited Japan in the end of October 2015 for the study tour. The participants observed some buildings in and around Yokohama city which are certified as CASBEE certification scheme and learned energy saving measures and evaluation of environmental performance of buildings. Details of the site visits, see section IV - 2.

(ii) Study meeting with department of public works of BMA

Information of CASBEE was provided to officials of department of public works (DPW). Following information of CASBEE was provided to DPW officials, overview of CASBEE series, unique evaluation index called "BEE (Built Environmental Efficiency)", labeling of environmental performance using graphic charts, cases of utilizing CASBEE by local governments, incentives for certified buildings or owners.

It was studied in the meeting and by follow-up e-mail questionnaires that situation of relevant similar program in Thailand such as TREES (Thai's Rating of Energy and Environmental Sustainability) which is also a program for evaluating environmental performance of buildings.

(c) Outcomes of the study

(i) Utilization and dissemination of programs for evaluating environmental performance of building in Thailand

Since late 2000's, third party certification programs for evaluating environmentally considered building generally called "Green Building" began to spread gradually in Thailand. At present, there are several tens of commercial buildings mainly in Bangkok which voluntarily obtained certification for their environmental performance. At present, most of certified buildings are using LEED (Leadership in Energy and Environmental Design) which developed by U.S. Green Building Council (USGBC) and most popular program of its kind in the world.

In the meantime, development and operation of domestic programs for evaluating environmental performance of building have been proceeded recently in Thailand. TREES (Thai's Rating of Energy and Environmental Sustainability) ¹¹ is developed by Thai Green Building Institute (TGBI) which was established jointly by Association of

¹⁰ Website: [http://www.gbj.or.jp/leed/]

¹¹ Website: [<u>http://www.tgbi.or.th/intro.php</u>]

Siamese Architects under Royal Patronage and Engineering Institute of Thailand under HM the King's Patronage. BMA is recently implementing a measure utilizing TREES in order to promote dissemination of green buildings and a number of certified buildings is increasing and TREES is expanding its presence¹².

It seems that LEED is referred in developing TREES and 2 programs similar to each other for their structure of evaluation methodology. It has been developed 3 types of program according to evaluating subject and phase of building life cycle: TREES-NC (New Construction), LEED-CS (Core & Shell), TREES-EB (Existing Building). TREES evaluates buildings by total scores and classifies its certification in 4 phases: from highly evaluated "Platinum", "Gold", "Silver" and "Certified". There are 8 categories as for evaluation index: 1) Building Management, 2) Site and Landscape, 3) Water conservation, 4) Energy and atmosphere, 5) Material and resources, 6) Indoor environmental quality, 7) Environmental protection, 8) Green innovation in design.

Apart from TREES, following 2 programs for evaluating environmental performance of building have been developed and operated recently. But the number of cases using those programs is quite small compared to cases using LEED and TREES.

1) TEEAMS (Thailand's Energy and Environmental Assessment Method): It is a program according to the "Ministerial Regulation Prescribing the Type and Size of Buildings and Standards, Rules and Procedures for Designing Energy Conservation Buildings 2009" simply called "Green Building Code" and developed by Ministry of energy and Chulalongkorn University

2) DGNB/TASC: It is developed by Thailand Association for Sustainable Construction (TASC) with corporation by German Sustainable Business Council (DGNB) and German Company for International Cooperation (GIZ). This program is based on DGNB Certification System originally developed and operated by DGNB to be applied in Thailand adjusted to its situation.

(ii) Utilization of program for evaluating environmental performance of building by BMA

It is defined to give incentives to environmentally superior buildings which are certified by TREES in "The Ministerial Regulation on The Bangkok Comprehensive Plan 2013" regarding urban planning of Bangkok in order to promote dissemination of green buildings in Bangkok. Specifically, it is defined to give bonus of ratio of total floor space which is determined responding to site space of the building. Bonus is decided by 4 phases of TREES certification from 5% to 20% as following: platinum (5%), gold (10%),

 $^{^{12}}$ Actual achievements of 2013: LEED $~(50~{\rm registered},\,21~{\rm certified})$, TREES $~(17{\rm registered},\,1{\rm certified})$ [http://www.solidiance.com/whitepaper/thailands-green-building-goals-aspirations-vs-realities.pdf]

(iii) Potential for utilizing CASBEE by BMA

In this study, CASBEE was introduced to officials of DPW and strong interest was shown in the point of view of considering policies to increase building stock with better environmental performance from now on.

Meanwhile, as BMA has already introduced the measure utilizing TREES regarding implementation of its urban planning, at this moment it is less likely that BMA newly utilizes other programs for evaluating environmental performance of buildings such as CASBEE. Officials of DPW showed opinion that BMA will more likely to continue to utilize TREES.

From the above situation, it is expected that BMA continues to consider measures based on TREES to be consistent with present measures. Therefore it seems appropriate that unique evaluation index adopted by CASBEE can be considered as complementing elements of energy saving code and eligibility criteria of JCM methodology.

¹³The Bangkok Comprehensive Plan 2013: [<u>http://cpd.bangkok.go.th:90/web2/NEWCPD2556/The%20Bangkok%20Comprehensive%20Plan%202013_a4_pdf.pdf</u>]

- (5) Elaborating on a plan for comprehensive energy saving in industrial park
- (a) Summary of the study

Advancement of Japanese manufacturing companies is thriving in Thailand. Their productive activities have been done at their own plants and industrial estate.

In this study, we had discussions with H industrial estate on referral from Ministry of Industry in Thailand which was participated to the Low Carbon Technology workshop at this feasibility study to surveyed feasibility of comprehensive energy saving via the JCM at the plants of Japanese companies in the industrial estate.

(b) Outlines of the study

In this study, we visited H industrial estate three times including monthly meeting of Japanese companies. In the meeting we gave explanations for the JCM scheme, the Financing Programme for JCM Model Projects and developments of comprehensive energy saving projects in the industrial estate. There are limited subsidies for energy saving activities in abroad, so conducting comprehensive energy savings via the Financing Programme for JCM Model Projects in their plants are appropriate as energy saving activities above mentioned. Most of them are minor business companies, so it would be considered energy saving not only for the each company but also for the industrial estate comprehensively.

In response to the above comments, we had discussions with H company that provide management service of wastewater and waste in the industrial estate. We need considerations of project management way of potential sites in the future.

2. Waste management sector

(1) Summary of the study

Following studies were implemented based on the results from previous feasibility study in fiscal last year 2014: 1) Study and elaboration on developing JCM project at waste incineration plant, 2) Study on actual situation of landfill site/system of collecting waste/administration and regulations in Thailand, 3) Elaboration on waste management JCM project at residential district of Royal Thai Air Force. Policy dialogues were held with participated by DOE, FPO, experts from Yokohama city and companies in Yokohama and site visits for waste management facilities were also conducted.

(2) Schedule of the study

(a) Policy dialogues

Policy dialogues regarding waste management were implemented several times based on the inter-city cooperation between BMA and Yokohama city according to following schedule.

Date	Venue	Participants	Contents
7/15 9:00-	BMA 2	DOE, Yokohama city,	Experience/knowledge of
10:00		JFE Engineering, M	Yokohama regarding Waste to
		company, OECC	Energy measure was shared.
			Advanced technologies of
			waste management were also
			introduced by Japanese
			companies.
9/29	BMA 2	DOE, Yokohama city,	Study on incineration plant
11:00-11:30		JFE Engineering,	being constructed (Phase 1
		OECC	project) was conducted and
			procedure for further
			elaboration was discussed.
10/27	BMA 2	DOE, Yokohama city,	WtE technologies and waste
11:00-13:00		JFE Engineering, M	segregation/recycle measures
		company, OECC	were introduced. Necessity
			for considering entire waste
			management including waste
			segregation and waste
			incineration.
11/24	BMA 2	DOE, Yokohama city,	Regulation on exhaust gas

Table 2-4 Schedule of policy dialogues regarding waste management

10:00-12:30		JFE Engineering, M	from waste incineration and
		company, S company,	disclosure to citizens in
		OECC	Yokohama was introduced.
			Further study on Incineration
			plants constructed in
			Bangkok was conducted as
			well.
1/19	BMA 2	DOE, Yokohama city,	Package proposal of waste
10:00-12:00		JFE Engineering, M	management measures was
		company, S company,	explained by Yokohama and
		OECC	relevant companies.

(b) Site visits

Site visits at intermediate treatment facilities, waste land fill site and model district of waste segregation were conducted in order to clarify actual waste management in Bangkok in parallel with the policy dialogues according to following schedule.

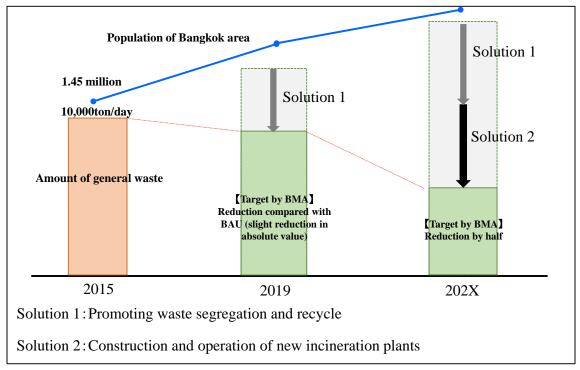
Date	Venue	Participants	Contents
10/30	On Nut	Yokohama city,	Study on actual waste
11:00-13:00	intermediate	OECC	treatment in On Nut
	treatment facility		intermediate
			treatment facilities
			was conducted.
11/23	On Nut	Yokohama city, M	Additional study on
13:00-15:30	intermediate	company, S	facilities not observed
	treatment facility	company, OECC	in previous study was
			conducted. (Separation
			and composting etc.)
11/25	Panomsarakham	Yokohama city, M	Study on situation of
15:00-16:30	landfill site	company, S	Panomsarakham
		company, OECC	landfill site and power
			generation by methane
			were conducted.
1/18	Suan Luan district	Yokohama city, M	Study on waste
13:00-15:00		company, S	segregation activity at
		company, OECC	Suan Luan district
			was conducted.

Table 2-5 Schedule of site visits regarding waste management

1/19	Chatuchack district	Yokohama city, M	Study on waste
15:30-16:30		company, S	segregation activity
		company, OECC	and a base of waste
			collection trucks at
			Chatuchack district
			was conducted.

(3) Study and elaboration on developing JCM project at waste incineration plant(a) Overview of the study

BMA is considering and implementing measures regarding waste segregation/recycle forward its utilization and construction of waste incineration plant with aiming to reduce waste emission and landfilling which became serious issue recently in Bangkok. In this study, existing measures considered by BMA were investigated and knowledge/experiences of Yokohama city and companies in Yokohama regarding waste management were shared with BMA. Finally it was also discussed to refer draft proposal introduced by Japanese side in measures of BMA.


(b) Results of the study

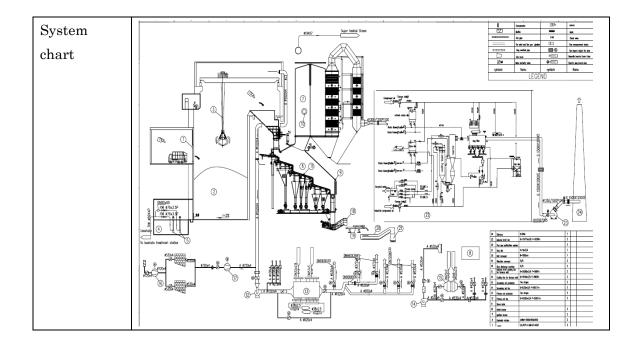
(i) Situation on implementation of constructing waste incineration plant in Bangkok

At present, general waste and industrial waste are not distinguished in Bangkok and wastes emitted from households and business places are collected and treated by BMA under its direct administration. Amount of waste emission is approximately 10,000 ton/day and firstly are gathered at 3 intermediate treatment facilities and part of the waste are composted or are formed as Refuse-Derived Fuel (RDF) but most part of the waste are reshipped in large trucks and transported to 2 landfill sites out of Bangkok. Remaining of the landfill site counted until 2020 but it is not regarded enough capacity against increasing waste and limit of the capacity are pointed out recently.

Prayuth administration inaugurated in 2014 declares to enforce measures regarding waste issues as one of 11 priority matters, so local governments such as BMA are required to implement concrete measures. From this circumstances, BMA changed existing policy direction and proceeding constructing new waste incineration plant but it seems that it will take certain time until the completion. Therefore, BMA intends to achieve waste reduction through waste segregation and enforcing function of intermediate treatment facility as preliminary step.

According to the "BMA Solid Management Plan2015-2019" which planned by BMA, it is aiming to achieve 7 % reduction of waste emission from households by 2019 through full implementation of waste segregation and installment of waste segregation facility. In addition, as long-term target, it is aimed to reduce waste in half by installing new incineration plants. (*Information based on hearing study with DOE)

Following figure shows simple image of waste reduction plan of BMA.


Figure 2-3 Image of waste reduction plan of BMA

Regarding construction of new waste incineration plants, it is planned to proceed "phase 1 project" and "phase 2 project" in 2 steps. Phase 1 was contracted by Chinese company and the construction had been completed in 2015 and it is expected to start trial operation from 2016.

Venue	Site of Nongkham intermediate treatment facility
Operation	Trial operation from 2016
Treatment	Input: 300 ton/day
capacity	
Power	8MW (over 5MW power generation capacity is required in the
generation	specification)
capacity	
Constructing	9600 million BHT (Utilizing private investment)
$\cos t$	
Operating	Tipping fee for waste treatment: 970BHT/ton (BMA pays to the

Expected specification of phase 1 project is as following:

Cost	operator)		
	BMA obtain revenue from selling electricity to the grid.		
Contract &	Contract period: 20 years		
Operating	After 20 years contract, it is defined that the facility will become BMA's		
period	property.		
Specification	Disclosed on the internet but only in Thai language.		
for bidding	(Foreign companies generally translate it by themselves)		
Drawing of			
completed			
facility	and the second s		
T C			
Layout of			
the site			
	12 13 5 5 Sinck Stock		
	III III III III II III III III II II		
	7. Oli Tank 8. Weigh Bridge 9. Woste water treatment station		
	10. Treste 11 10. Integration 11 11. Fly san curing 12. Londscape 13. Office Building		
	Image: Construction of Substation		
	5 11 17. Woste water storage tank 18. Neutralization tank 19. Filter tank		
	IG III		
	Light of the second		

Also specification of the phase 2 project may be elaborated with considering situation of operating the phase 1 project and analyzation. Expected treating capacity is 2,000 ton/day and expected GHG reduction can be calculated as following.

	(tCO2e/year)
GHG reduction	609,128
Reference emission of GHG	1,011,610
CH4 emission from landfill sites	535,450
CO2 emission from power plants	476,160
Project emission of GHG	402,482
CO2 emission from incineration	350,898
N2O emission from incineration	26,322
CO2 emission from facilities in the plant	23,808
CO2 emission from combustion assistant fuel	1,454

[Calculation conditions] Input of waste: Municipal Solid Waste (MSW) Treating capacity: 2,000 ton/day Power generating capacity: 40 MW Operating days: 310 days/year

* Other conditions are set as same as the waste to energy project in Yangon city implemented by JFE Engineering.

(ii) Construction of common understanding through knowledge/experience sharing by Yokohama city and relevant companies

It is necessary to establish standards regarding safety, environmental performance, energy efficiency and durability for construction of waste incineration plant. In the policy dialogues, cases of Yokohama were explained and construction of common understanding over waste management by local government and concept for installing incineration plant was attempted.

Specifically, regulation on exhaust gas from waste incineration and disclosure to citizens in Yokohama was introduced as shown in following table.

Item	Unit	Target value	Regulation value %
Dust	g/m³	0.01	0.04
Hydrogen chloride (HCl)	ppm	15	26
Sulfur oxide (SOx)	ppm	15	319
Nitrogen oxide(NOx)	ppm	30	50
Dioxins (DXNs)	ng-TEQ/m ³	-	0.1

Table 2-6 Regulation values and target values of exhaust gas at Kanazawa incineration plant

※Values of Dusts, HCL, NOx defined by "横浜市生活環境の保全等に関する条例"
 Values of Sox defined by "大気汚染防止法" *Converted from K value
 Values of DXNs defined for Kanazawa plant under "ダイオキシン類対策特別措置法"

					_
平成27年)	度 ごみ焼却工場ダイオキシ	シ類調査結果			
	D排出ガス、ばいじん処理物、焼却灰、排れ 「回りました。また、工場敷地内土壌のダイ			出水のダイオキシン類濃度は、いずれも法に基づく排出基準	■値及
性等価係数は	はWHO-TEF(2006)を使用し、毒性等量を計	算する場合は定量下限未	満の数値は「o」として計算しています。		
	1 排出ガス調査結果	<u> 2 ばいじん処理物</u>	調査結果 3 焼却灰調査結果 4 排水	<u> 见理施設処理水調査結果</u>	
	5 排水処理汚泥調	<u> 査結果 6 土壌調査結果</u>	<u>7 汚水系公共下水排出水調査結果</u> 8 <u>雨水</u> ;	系公共用水域排出水調查結果	
排出ガス調	査結果				
出ガス中のダ	。 イオキシン類濃度範囲は 0.00000048 ~	0.050 ng-TEQ/m ³ Nで、法	記基式/排出基準値1ng-TEQ/m ³ N(金沢工場は 0.1 ng-	EQ/m ³ N)を下回りました。	
单位:ng−TEQ,	ı/m3N)				
	工場名	号炉	平成27年度		
143			採取日	測定結果	
	保土ヶ谷	1	通年稼動停止	-	
保土		2	通年稼動停止	-	
		3	通年稼動停止	-	
	都筑	1	5/25	0.0042	
都労		2	整備中	-	
		3	7/31	0.050	
	鶴見	1	6/1	0.000014	
鶴見		2	6/29	0.00028	
		3	8/27	0.000013	
	姐	1	6/16	0.0020	
旭		2	7/30	0.0062	
		3	9/15	0.00079	
		1	8/3	0.000048	

Figure 2-4 Disclosure of measurement on the website (Dioxins) 14

(iii) Further consideration and procedure

BMA has just started trial operation of the phase 1 project recently, so specifications of the phase 2 project is still under consideration. Under this circumstances, it was requested by DOE in the policy dialogues for JEE Engineering and Yokohama city to conduct study and analyzation on implementation of the phase 1 project and also preparing proposal for the phase 2 project.

It is expected that the phase 2 project will be launched at earliest after 2017 after finalization of the specifications. It is considered that it is effective to continue long term discussion and proposition in order to proceed JCM project development with the phase 2 project.

In addition, as results of studying entire waste management policy and its implementation in Bangkok, it was clarified that BMA is considering comprehensively waste management policy including waste segregation, recycle and incineration for the purpose of total waste reduction. For example, from the view of enforcing functions of intermediate facility, it is expected to consider most effective measures by installing material recovery facility and incineration plant. Therefore, it is considered that it can

¹⁴ Resources&Wastes Circulation Bureau on results of dioxin emission facts from waste incineration plants(Japanese only)

⁽http://www.city.yokohama.lg.jp/shigen/sub-data/data/tyosa/dxns/20160104152818.html)

be more successful to make packaged proposal considering entire waste management based on the inter-city cooperation between Bangkok and Yokohama in order to increase possibility of installing the facility by relevant company.

Specifically, it is expected to elaborate a packaged project proposal of incineration process and segregation process as shown in following figure. This packaged project proposal was already introduced to BMA in the policy dialogue and it is planned to proceed further elaboration of detail in following study.

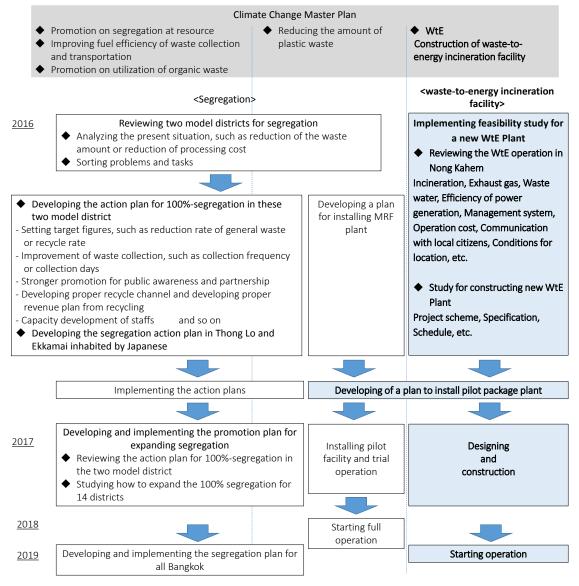


Figure 2-5 Proposal for packaged project of waste management (Draft roadmap)

(4) Study on actual situation of landfill site, waste collecting system and administration/regulations in Thailand.

Visited at the large commercial facilities: "G facility" and "I facility" in Bangkok and conducted study on waste management process.

Collected waste from each floors are gathered in backyard and simplified segregation are done by manual work in G facility. Dust boxes are set at each floors and calling for waste segregation but various wastes are mixed in actual and re-segregated for plastic, paper, can, glass, metals etc. in backyard. Segregated plastic, paper, can, glass, metals are collected by BMA and transferred to 3 intermediate treating facilities¹⁵ at Saimai, Nongkham and On nut. Transferred wastes are separated in general waste, hazard waste, recyclable waste, etc. and transferred to 2 landfill sites located in neighboring provinces.

Organic waste are put in 2 volume reduction and solidification facilities in backyard (Figure 2-5). Capacity of each facility is 15 ton. Purpose of the facility is to dehydrate organic waste which are high moisture waste. These are products of a Japanese company.

Figure 2-6 Volume reduction and solidification facility for temporary storage of organic waste

Treated waste are collected by BMA and transferred to landfill sites.

Studied on an intermediate treatment facility at Saimai area which was constructed by a Japanese company as per request from BMA (Figure 2-7). As previously mentioned, the waste are collected from G facility and some parts of waste are took by waste pickers to be sold/recycled before entering the intermediate treatment facility. At the intermediate facility, some recyclable or valuable wastes are segregated and remains are treated by compactor and loaded in containers. Finally, container trucks transfer the

¹⁵ The treatment process is done by Mechanical-biological waste treatment.

wastes to the landfill site located 40km away.

Figure 2-7 Intermediate treatment facility at Saimai

At present, there are only 2 waste incineration plants officially at Phuket and Samui in Thailand excluding small scale incinerator for hazard waste. There is no waste incineration plant in and around Bangkok and most of waste are landfilled.

According to recent statics, annual total waste generated in urban areas is 15 million ton and 600 g/day, person. It is higher especially in Bangkok which is biggest city in Thai, so average is 1,000g/day, person. From collected waste, 20% are recycled. Also, 7 million ton of waste are illegally dumped per year.

(5) Elaboration on waste management JCM project at residential district of Royal Thai Air Force

(a) Summary of the study

Finetech Co., Ltd. participated "Second low carbon technology mission" of the feasibility study in last fiscal year during 27th January to 30th January. Meeting with a unit of Royal Thai Air Force (RTAF) in charge of environment and renewable energy was held at Don Mueang air base with cooperation of P company who is a partner company of this study in Thailand in order to obtain beneficial information for JCM project development and needs from Thai side.

Mr. Surasak Meemanee vice-admiral who is top officer of administrative office of the base and other members in charge of introducing renewable energy participated the meeting. Technology of recycling unused biomass based on JCM scheme was explained discussed. RTAF requested proposal of functionally-distributed facility which can treat organic waste at emission source emitted from 5,000 households in residential area 5 ton/day.

Considering the above facts, Finetech Co., Ltd. elaborated a proposal of recycling treatment with using mainly "Torrefaction" technology of Finetech Co., Ltd..

Figure 2-8 Meeting with RTAF members

Participated members from RTAF teamed up as section of promoting introduction of renewable energy in the base with Mr. Surasak Meemanee vice-admiral as a leader of the team.

There is educational facility of displaying renewable energy technologies in the base. Meanwhile, Finetech Co., Ltd. explained concept of "Smart Green Park" ¹⁶as per request by Mr. Surasak Meemanee and RTAF members showed strong interest on this.

Figure 2-9 Interactive educational facility of renewable energy

¹⁶ Smart Green Park (Registered trademark of Finetech Co., Ltd.): Show case site of community aiming to operating in off-grid as much as possible by managing it with monitoring/control functions utilizing renewable energy and relevant technology developed by Finetech Co., Ltd.

Figure 2-10 "Smart Green Park"

Renewable energy and biomass energy technology developed in "Smart Green Park" enable stable operation of facilities associating with grid power by monitoring/control with SCADA control technology. Specifically, "Smart Green Park" has following power generation facilities: 1) Mega PV plant, 2) Waste-to-Energy plant using residue of coffee (biomass gas power generation), 3) Torrefaction: Converting unused biomass including organic waste to fuel, Other: Floating PV plant, small hydrogen power plant, small wind power plant.

According to discussion with RTAF members, problem of rise in population and urbanization with economic development is becoming apparent in Thailand. Infrastructure development and environmental measures can't keep up with the problems and expanding. Specifically, waste management problem is serious in Bangkok and its surrounding area with 900 million population with approximately 10,000 ton waste emission per day. It is important to improve waste management in emission resources and reduce waste brought to waste treatment facility especially at place like residential area of the air force where management system is well arranged.

Measures described above are equally important in industrial parks locating around Bangkok because of following reasons: 1) For energy infrastructure, it is indispensable to construct self-contained distributed electricity system in sole industrial park. 2) Technology/idea of recycle emitted waste and reusing it as energy is really important in view of effective utilization of limited land. 3) It is possible to proceed horizontal development of this model to ASEAN area started from this activity. It was also commented that it is desirable to place the project of JCM scheme in "Smart Green Park".

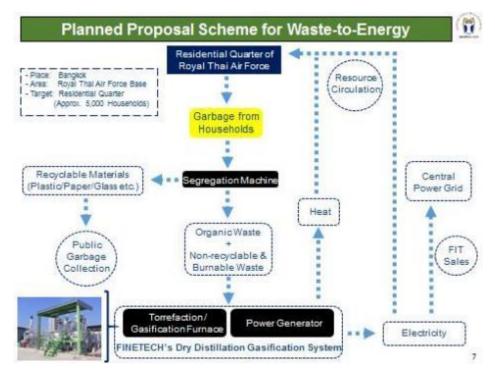


Figure 2-11 Proposed process of recycle/power generation of facility

(b) Results of the study

As described above, discussion between Finetech and RTAF conducted and the recycling/power generation system of various unused biomass was proposed to RTAF as a possible JCM project development by this study. The project expected to manufacture biomass fuel alternative to fossil fuel from organic waste emitted by residential area of the air force and reusing with gasification power generation. (Figure 2-10)

Both Fintech and RTAF intend to continue discussion on this project. It is expected that introduction of the technology through this study contributes to raise practical level of independent environmental measures and pushing sustainable development in Thailand.

Based on the meetings and site visits, examination of manufacturing biomass fuel was conducted using sample of organic waste emitted from the residential area at Fintech plant in Japan. Continuing negotiation and arrangement with RTAF will be proceeded based on results of the examination.

(i) Schedule for project development

It is necessary to prepare basic design for collaborating units for treating waste from residential area and conduct pilot project for actual project development with considering result from the examination on single unit. It is also necessary to obtain permission from central/local government for constructing power generation plant. Therefore it will take about 1 year for preparation before the construction and will take about 2 years until its completion.

(ii) Amount of CO2 reduction and cost performance

Capacity of xxx system is 5 to 6 time larger than PV power generation system. Estimating average annual electricity consumption from a household in RTAF is 1,800kWh¹⁷ and its total is 9 million kWh, it is expected that the facility to be installed may be capacity of 500kW to 1 MW. CO2 reduction is expected to be 4000 to 5000 CO2/year with the emission factor 0.554 t-CO2/MWh¹⁸ provided by TGO. Cost performance for CO2 reduction can be calculated under \$10,000/t-CO2.

(iii) Issues for JCM project development

It is necessary to harmonize with various measures against urbanization problems under expansion of economy in Thailand for the project development especially collaboration with other waste management measures. Reduction of waste brought to landfill site is shown as a higher vision by Thai government. Both material and thermal recycle will be implemented under this vision. RTAF basically agrees with proposed technologies and system but it is necessary to discuss with relevant stakeholders. According to the mention by RTAF, issues relating with xxx is complicated and it is firstly necessary to discuss with relevant administration about institutional structure for the project implementation.

¹⁷ Reference: National Statistic Office of Thailand

 $^{^{18}}$ Reference: the emission factor for the CDM project, reported by TGO

3. Waste Water Treatment Sector

(1) Summary of the study

We conducted policy dialogues and on-site visits with experts of Yokohama city, Japanese company which have low carbon technology, and DDS which takes responsibility of waste water management in Bangkok. The purpose of this study was introducing waste water management equipment and facilities to waste water treatment plants that cover several communities and plants for local community in Bangkok.

(2) Schedule of the study

(a) Conducing policy dialogues

We conducted several policy dialogues based on the partnership between Yokohama and Bangkok. The composition of dialogue is technical experts from Yokohama city and private companies, and OECC as Japanese side, on the other hand officials form DDS and FPO as Thai side. The meeting schedule is shown in Table 2-7.

Date	Place	Participants	Contents
Sep. 29 th	2nd floor, room1,	DOE, OECC	-The draft agenda and
10:00~10:30	DDS		preparation for the next
			dialogue was explained to
			BMA officials and discussed
			with them.
Oct. 29th	2nd floor, room1,	DDS, FPO,	-Water quality management
13:30~15:30	DDS	Yokohama city,	and funding policy/system of
		OECC	the waste water management
			in BMA were explained to the
			Japanese sides.
			-Wastewater treatment in the
			City of Yokohama was
			introduced to BMA.
			-It was discussed that how to
			implement the JCM projects
			and apply the Financing
			Programme for JCM Model
			Projects for the wastewater
			management
			equipment/services in
			Bangkok.

Table 2-7 Schedule of policy dialogues in the waste water sector
--

Nov. 24th	2nd floor, room1,	DDS, FPO,	-OECC explained about outline
12:30~15:30	DDS	Yokohama city,	of the JCM scheme such as
		OECC	scope of project, process of
			application, size of subsidy etc.
			-DDS explained about
			overview of 12 "Community
			WWTPs" in Bangkok.
			-In order to find potential JCM
			project in Community WWTPs,
			DDS will study the GHG
			reduction potential in there
			and continue information
			sharing of JCM scheme with
			OECC by Email until next
			policy dialogue in January.
			- Yokohama city explained
			about their sewerage system
			focusing on budgetary
			arrangement, charge collection
			system and measures for cost
			reductions etc.
Jan. 20th	2nd floor, room1,	DDS, FPO,	-DDS introduced wastewater
13:30~15:30	DDS	Yokohama city,	treatment plants which have
		OECC, UBA,	feasible plans for replacement
		AMCON	of facilities.
			- Received there explanation,
			the feasibility study for
			replacements of facilities were
			discussed at the meeting.

(b) On-site visits

In parallel, we visited several scale of wastewater management plants in Bangkok to understand current situation of these plants and its operation. The visiting schedule is shown as follows.

Date	Place	Participants	Contents
10/28	Bang Sue	DDS, Yokohama	-GETCo explained about

Table 2-8 Schedule of on-site visits in the waste water sector

13:30~15:00	Environmental	city, OECC, Global	the overview of the Bang
10.00 10.00	Education and	Environmental	Sue environmental
	Conservation	Technology Co.,Ltd	education and
	Center	(GETCo)	conservation center.
	Center	(GE1C0)	- It was asked about the
			capacity and coverage of
			the Bang Sue facility,
			technique and system of
			the facility, contract
			process for operator from
			Japanese side.
11/26	Community	DDS, Yokohama	- We visited to Tung Song
9:00~12:00	WWTP :	city, OECC	Hong2 WWTPs, and
	Thung Song		studyed the process of
	Hong, Lak Si		wastewater treatment
			with "activated sludge".
			- We visited to Tung Song
			Hong1 WWTPs, and
			studyed the process of
			wastewater treatment
			with "aerated lagoon"
			process.
1/19	Dindaeng Water	DDS, Yokohama	-We visited to Dindaeng
13:00~13:40	Environment	city, OECC, UBA,	Water Environment
	Control Plant	V company	Control Plant, owned by
			BMA and operated by
			UBA, and studyed the
			feasibility of developing
			JCM projects.
1/19	Community	DDS, Yokohama	-We visited to Huay
14:00~14:40	WWTP : Huay	city, OECC, V	Khwang, owned and
	Khwang	company	operated by BMA, and
	_		studyed the feasibility of
			developing JCM projects.
		l	

(c) Outcomes of the study

We surveyed feasibility of developing JCM project for wastewater treatment plants via policy dialogues with Yokohama city and DDS and visiting of wastewater treatment plants. BMS owns 8 large scale plants of wastewater treatment that covers several communities. 6 plants of them are operated by private companies with 5 year contract and remains are operated by BMA. On the other hand, BMA also owns and operates 12 small scale plants of community waste water treatment, called Community WWTs.

We founded that the plants of Community WWTs needs replacements of equipment because of its age: most of them were built 20~30 years ago on average. DDS reported that they are intended to sign a MOU with Japanese companies N and M, to conduct JCM feasibility study: replacement of old equipment/facilities to Rom Kla Community WWT, which have been implemented by METI Japan. For remains community, they would like to replacement of old equipment via using other subsidy program including the Financing Programme for JCM Model Projects. Table 2-9 shows 8 large scale plants of wastewater treatment and Table 2-10 shows 12 Community WWTs in Bangkok¹⁹.

Table 2-98 large scale plants of wastewater treatment(* visited plants)

(Visited plants)				
large scale plants of	Served	Process Treatment	Flow	
wastewater	Population		Design	
	(person)		(m3/day)	
Si Phraya	120,000	Contact Stabilization A.S.	30,000	
Rattanakosin	70,000	Two Stage A.S.	40,000	
Din Daeng*	1,080,000	A.S.	350,000	
Chong Non Si	580,000	Cyclic A.S.	200,000	
Nong Khaem	520,000	Vertical Loop Reactor A.S.	157,000	
Thung Khru	177,000	Vertical Loop Reactor A.S.	65,000	
Cha Tu Cchak	432,000	Cyclic A.S.	150,000	
Bang Sue*	223,990	Step Feed A.S.	120,000	

Table 2-10 12 Community WWTs owned/operated by BMA (* visited plants)

Community WWTs	Served Population (person)	Process Treatment	Flow Design (m3/day)
Bang Na	8,280	Oxidation ditch	1,300
Hua Mark	Iua Mark 9,940		2,000
		Pond	
Bon Kai	2,200	Extended AS	400

¹⁹ Reference: Policy dialogue documents provided by DDS

Klong Chan	36,000	Activated Sludge	6,500
Klong Toey	7,200	Completely	1,200
		mixed AS	
Rom Kla	19,000	Extended AS	3,800
Bang Bua	8,000	Pump to	1,200
		Chatuchak	
		WWTP	
Huay Kwang*	16,800	$\operatorname{Conventional}\operatorname{AS}$	2,400
Ram Indra	4,060	Extended AS	800
Tung Song Hong1*	15,000	Aerated Lagoon	3,000
Tung Song Hong2*	5,500	Activated Sludge	1,100
Tha Sai	8,280	Oxidation ditch	1,300

If these old equipment will replaced via the Financing Programme for JCM Model Projects, long term monitoring during life period will be needed. Considering avobe, DDS commented that if new equipment will be installed to the plants via the Financial Programme, it would be better for the plants which are owned and operated by BMA. In the above case, the Thai partner of international consortium would be BMA, and then we should consider the issue of the value oriented public bidding, as we mentioned in the energy saving study. The low carbon equipment is not appropriate for the price-oriented public bidding, because of its higher price compared to usual one.

One the other hand, when we install equipment to plants operated by private companies, BMA will contract with a private company with a condition of the provision: installed equipment via the JCM scheme do not allow to replace during its life period, thus we are able to monitor the installed equipment during its life period. In this case installation of equipment should be same time as contract renewal. In the above case, we will able to make a B to B contract with BMA's permission, thus we avoid the step of public building. And the Thai partner of the international consortium should be BMA as owner of plants and the private company as operator of plants.

To promote JCM projects development, we need some solutions to avoid value oriented bidding to install equipment for the public operated plants. On the other hand, for the private operated plants, we need some candidate sites that have renewable plans of equipment. In addition to the above findings, BMA requested developing update scheme of two old public plants via the discussions and technological sharing from experts of Yokohama city and companies. Moreover BMA and Private companies in Thai have a high interest to the dehydrator of A company, and they had business discussion to install the machine.

We need extra studies and discussions about installing sites and technologies to realize the plans that had been discussed at this feasibility study. Concerning the above, implementing the feasibility study in next fiscal year for its realization is under way.

- III. Identification of candidates to form JCM projects
- 1. Summary of the study

We have taken studies for JCM projects candidates that were developed in the feasibility study in last fiscal year 2014 for its realization. In addition, we conducted the Low Carbon Technology seminar and Matchmaking session, and provided opportunities to share the information of the JCM project development among both Japanese and Thai concerned parties which have high interest for the project development. As preparation for the above-described Low Carbon Technology seminar and Matchmaking, we carried out studies of hearing and questionnaire to all concerned parties, and collected necessary data and information including specs and standards of the target technologies, expected amount of reduction and bugged plans etc. Based for the collected information, we conducted the matchmaking effectively.

We identified and listed up highly feasible candidates of developing JCM projects via implementation of the Low Carbon Technology seminar and Matchmaking, and took follow-up studies for developing the funding scheme, reduction cost, implementation structure and schedule for implementation.

We set a schedule for two projects among above projects: "Program approach" for building energy efficiency at a large hotel group by introducing BEMS²⁰ system, and Hybrid roof-top PV system implementation project for applying the Financing Programme for JCM Model Projects in the next fiscal year which is temporally scheduled at the middle April. Moreover, we examined settings of baseline and reference scenarios and developed proposals of MRV schemes, etc. to prepare for the application.

In addition to the above operations, we visited to some companies that have high potential for installing low carbon facilities and equipment such as U-PCL, and give an explanation of the JCM and the Financing Programme for JCM Model Projects for them, and studied their needs via hearing.

The last study in January, we had a meeting with TGO which is the JCM secretariat of Thailand, and presented JCM project candidates that were identified from the feasibility study this year and give an explanation of tentative schedule for projects development in near future. During the meeting, TGO commented that cooperating with Yokohama city, they are able to conduct public awareness activities, such as conducting matchmaking with Japanese company, and dispatch information of the JCM toward Thai. In particular, TGO expected to continues information sharing from Japanese side, so that they are able to support for the early realization of B to B JCM projects.

²⁰ BEMS: The system of management energy usage in the buildings to cut down energy consumption by managing the operations of equipment.

2. Outcomes of the study

(1) Summary of JCM project candidates that have high feasibility for its implication

We found the four JCM projects candidates with high feasibility for its implication via implementation of the Low Carbon Technology seminar and Matchmaking, and have considered its realization for each project. The outlie of each project are shown in the list below: table 3-1. Especially, we set a schedule of applying for the Financing Programme for JCM Model Projects in the next fiscal year in two projects among the list : "Program approach" for building energy efficiency at a large hotel group and Hybrid roof-top PV system implementation project.

Title	"Program approach" for	Program approach" for	Project development of	Hybrid roof-top PV	Introducing high efficiency
	building energy	building energy	west to energy for	system implementation	equipment, sludge hydrate
	efficiency at a large hotel	efficiency at hospitals	waste disposal of public	project	etc., for the waste water
	group	group	facilities		treatment facilities in
					Bangkok.
Thai	E group	A group	RTAF	T company	The waste water
Participants					treatment facilities in
					Bangkok.
Japanese	P company,	A company	Finetech Co., Ltd.	Finetech Co., Ltd.	V company
Participants	A company				
Facilities	High-efficient chiller,	Chiller, Boiler etc	PV system with	PV panel, Power	Sludge hydrate etc.
/technologies	VWV control of pumps,		demand control, EMS	Control System,	
	LED lighting		system	Energy Management	
				System	

Table 3-1 JCM projects plans that have high possibility for its implication

Expected CO2 reduction	Around 2,000	3,000 t-CO2/year	4000~5000	2,000	TBC
(t- CO2/year)					
Schedule of the meetings	 -Installing equipment and formulating the international consortium were considered at the third and fourth study. -Energy study was conducted and some potentials for energy reduction were founded. -Necessary procedure and documents for applying next the Financing Programme for JCM Model Projects and the schedule for preparation were 	 The project outline was explained to the contact person of the P hospital at the fourth study. The project outline was explained to the CEO of the 5th sub-group and got a green light for implementation at the fifth study. Scheduling and the preparation for the energy study were started by A company. 	 Project development have been under consideration continually since the last fiscal study. The details are shown at chapter II .2.(5). 	 Proposed site and installing equipment were considered between Finetech and T company from October. Necessary procedure and documents for applying next the Financing Programme for JCM Model Projects and the schedule for preparation were calcified from January. Consultation for the GEC was done in the 	 We founded out the needs of replacement of facilities, screws and belt- press, in the 6th study. DDS and private management companies had interest to the sludge hydrate system of V company. We need extra considerations for financial support to the replacement.
	calcified at the sixth study.			middle of March.	

• Consultation for the	e		
GEC was done.			

(2) "Program approach for building energy efficiency" and program support scheme with private finance

(a) Summary of the Project

The E group PLC is a property developer, and they develop luxury hotels, office buildings and shopping center in the central area of Bangkok. This project aims to reduce energy usage and CO2 emission of 5 hotels that belongs to E group via installing high efficiency equipment, such as inverter, chiller and LED etc.

The energy survey for the above buildings have already done, and prospected CO2 reduction is 2,058t-CO2/year in 5 hotels, yet each building have few amount of CO2 reduction. Cost for reduction would be 3,800 yen/t-CO2 with 15 years and per 50% subsidy and 2,300 yen/t-CO2 with15 years and per 30% subsidy. It is considered that conducting comprehensive energy management including energy shifting at all buildings by network system in the future.

(b) Project Structure

International consortium member is P LTD. as a representative of this project, A company as ESCO company, InterAct as support for drafting JCM metrology and E group as Thai partner. Some companies in Yokohama city are expected for providing equipment.

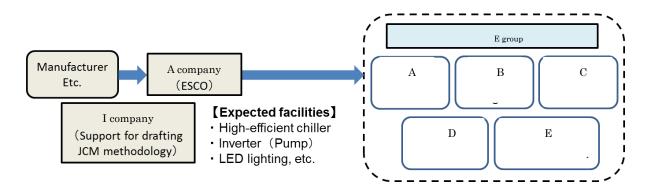


Figure 3-1 Project structure: "Program approach for building energy efficiency" and program support scheme with private finance

(c) Development of Proposals of MRV methodology

A MRV methodology (proposal) and PDD for the project were prepared, and the outline of them are presented in Appendix 2.

(3) Roof-top PV System with Demand Control Implementation Project

(a) Project contents

T Ltd is one of the paint giant in Thailand which manufactures paints for automobiles and vessels, and the company leads the ASEAN painting industry.

In addition, T Ltd. has built up significant achievements for the core projects including industry estates, mineral oil refineries, petrochemical plants, power-generating plants and cement plants etc.

They have large scale paint factories in the industry estate which goes 3KM southward from Suvarnabhumi International Airport. Project for installing of hybrid roof-top PV solar system at the factories is already under way. The project has three phases, Gen.1 to Gen.3, and proposed production of electricity is around 4MW in total. Installing the equipment with around 1.5MW of power generation capacity to the plants is scheduled in the first phase.

Figure 3-2 T Ltd. factories located near Bangkok

The project installing roof-top PV system with demand control and usage of its generated electricity as an alternative power supply in the factories are proposed as a JCM project through discussions with T Ltd, Fintech, one of the implementing member of this feasibility study, and P Ltd., which is partnering company of Fintech. In addition,

the installing of small wind power generator is under the way. Based on the installation, reducing electricity from existing power supply and its CO2 emission will be archived.

There are painting materials with inflammability and its storages in the factories of T Ltd., so it is reduce the use of firearms in there. Therefore the factories of T Ltd. have electric service vehicles and relatively large terminals for electricity storage.

T Ltd. aims to smart usage of energy in the factories with the linkage of the roof-top PV system, and the installations on the A building and the C building are scheduled at the first stage. Details are refers in Figure 3-3, Figure 3-4, Figure 3-5.

Figure 3-3 Buildings installed PV systems at the first stage

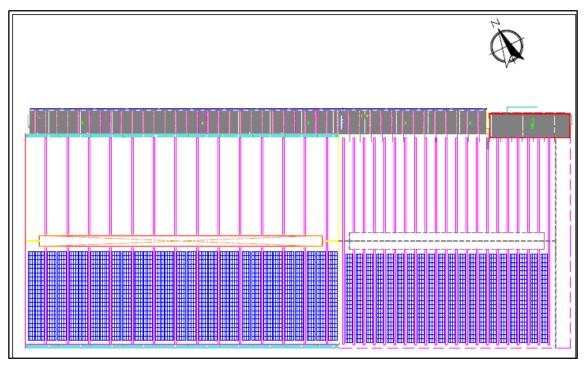


Figure 3-4 Solar panels on the building ${\rm A}$

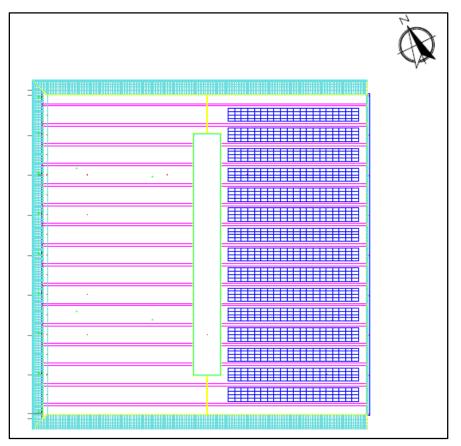
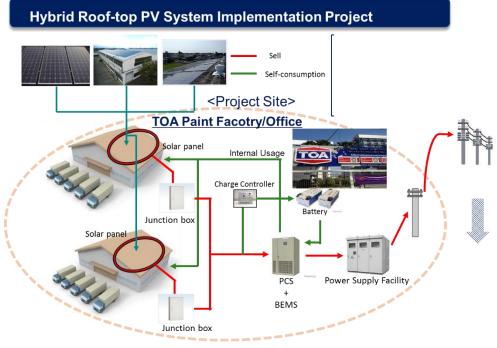
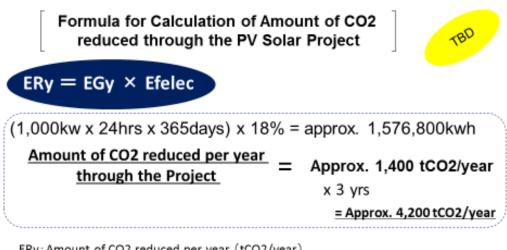


Figure 3-5 Solar panels on the building ${\rm C}$




Figure 3-6 Project concept

(b) Project structure

International consortium member is Finetech, take a role of a representative and energy management for this project, T Ltd. and P company, as participants from host country, and installing equipment produced by Y-PORT participating company are considered as well.

(c) Proposed CO2 reduction

Proposed CO2 reduction is shown in the below.

ERy: Amount of CO2 reduced per year (tCO2/year)

EGy: Amount of Electricity generated per year (MWh/year)

EFelec: Emission Factor for Grid Electricity (0.839 tCO2/MWh)

Figure 3-7 Proposed CO2 reduction: Roof-top PV System with Demand Control Implementation

(d) Future project process

Finetehch have already explained the needs of formulating the international consortium and the MRV system to concerned parties for the implementation of the project. In addition, it was explained to T Ltd. that the restriction of reconstruction are applied for the buildings that will be installed PV systems during useful time of the installed equipment.

For the preparation of developing the project, we need additional operations as below: (i)

Having discussions with concerned parties to prepare the submission of application for the Financing Programme for JCM Model Projects

(ii)

Having discussions to formulate the international consortium with concerned parties, and to prepare the financial support for project implementation with mainly P company.

(iii)

Developments for a solid system in the T Ltd.to implement the project including MRV etc.

IV. Implementation of Low Carbon Technology workshop and Matchmaking session and Study tour in Japan

1. Implementation of Low Carbon Technology workshop and Matchmaking session

(1) Summary of the Low Carbon Technology workshop and Matchmaking session

BMA, the City of Yokohama, and the OECC held the Low Carbon Technology workshop and Matchmaking session at S31 Sukhumvit Hotel from July 13th to 15th. Based on the cooperation between Thai and Japanese concerned parties, promoting JCM projects development was main purposes of this workshop and matchmaking.

Besides, policy dialogues between BMA and Yokohama city in particular sectors and site visits related to the JCM projects were held in parallel.

We conducted presentations of the JCM and the Financing Programme for JCM Model Projects, policy dialogues and site visits during 3 days. Approximately 90 people from BMA, Yokohama city, Japanese companies, Thai Companies, and among others attended the workshop and the session.

Table 4-1 Schedule for the Low Carbon Technology Workshop and Matchmaking session

	Room1		Room2
Time	Content	Time	Content
	Work shop	AM	
9:30-9:50	Opening remarks (BMA and		
9:50-	Yokohama City)		
10:00	Photo session (All		
10:00-	participants)		
10:30	Explanation of the JCM,		
	focusing on road-map of		
	JPY2015, organizing an		
	international consortium and		
10:30-	formulating an 'Energy		
11:00	efficiency group alliance'.		
	(OECC)		
11:00-			
11:30	Presenting case study of the		
	JCM project that was		
	conducted in JPY2014 with		

13th July: Work-Shop/ Business-meeting, G to G meeting

11:30- 12:30	OECC's support.(OECC) Presenting case study of the professional check focusing on the Energy-Efficiency.(A company) Lunch	11:30- 12:30	Lunch
12:30-		PM	Match-making session
14:00	Closed Meeting		-Promoting exchange of
	(BMA and Yokohama City)		information and ideas
	Closed Meeting focusing on		through free discussion.
	the ESCO.		Around 10 Japanese
			organization desks are
			placed with Thai-Japanese
			interpreters, and Thai
			participants are welcome to
			visit these desks for
			discussing information in
			more detail.

14th July: Individual sightseeing

Time	Content
9:00-	Departure from hotel in Bangkok
11:00	
11:00-	Site visit @ Infinit Green, Eastern Seaboard Industrial Estate
14:00	
14:00-	Back to the hotel
17:00	

15th July: Individual Business matching (Thai companies – Japanese companies)

Time	Content
9:00	Closed Meeting
	(BMA and Yokohama City)
	Closed Meeting focusing on the waste disposal.

(2) List of the participant

As shown in Table 4-2 below, 15 Japanese companies participated in the Low Carbon Technology workshop and Matchmaking session.

Table 4-2 List of Japanese Participants in the Low Carbon Technology workshop and
Matchmaking session

Company	Field	
No.		
1	Consulting	
	(Waste-to-Energy, MSW, biomass, biogas project, JCM, CDM)	
2	Sludge Treatment / Sludge handling / Wastewater Treatment /	
	Energy Saving	
3	Environmental Solution Services and Others	
4	(1) Industrial Waste Processing	
	(2) Fluff fuels producing from waste plastics	
	(3) Producing wooden chips for boiler fuels	
	(4) Sales of Solar power system	
5	Environment/Water Treatment	
6	Green Energy & Resource Recovery Technology	
7	Engineering and Construction	
8	Air Conditioning Chiller, VRF air conditioning	
9	Air Conditioning; Electrical Engineering; Eco-Friendly Solutions;	
	Mechanical & Electrical Engineering Contractor	
10	Boiler	
	-Once Through Steam Boiler	
	-Hot Water Heater	

11	Financial services
12	Energy Saving Solution
	Building Energy Management System
	(BEMS)(ESCO)
13	Waste to Energy Plant
14	Manufacturing
15	Waste to Energy

(3) Outcomes of the holding of the Low Carbon Technology Workshop and Matchmaking session study tour

Approximately 90 people from BMA, the City of Yokohama, Japanese companies, Thai Companies, among others, attended the meeting. At the beginning of the workshop, Ms. Swanna Jungrungrueng, Deputy Director General, Development of Environment, BMA and Mr. Toru Hashimoto, Director of Development Co-operation Department International Affair Bureau, the City of Yokohama expressed their expectations about 2nd phase of the promotion of climate change mitigation measures and technology transfer through the JCM scheme in Thailand. Following the speech of opening remarks, 3 topics; In-depth explanation of the JCM, Case study of the JCM project supported by OECC and, the professional check focusing on the Energy-Efficiency, are presented by OECC and A company. These presentation promoted understanding of procedure and requirements of applying for the subsidies, formulating "International consortium" and preparation for the implementation of JCM projects. In addition, OECC proposed "the formulating EE alliance" for smooth cooperation with persons involved to conduct JCM projects in the workshop and let them join to the EE alliance via follow-up form.

Follow the workshop, we held a matchmaking session. Here, the participating all Japanese companies, held a booth to introduce their business to Thai companies and exchange information.

After 3 days session, OECC conducted follow-up of their progress situation via sending questionnaires, having face to face meeting and using mailing list for the alliance. Please refer to the some significant comments below for the outcome of the matchmaking session.

Company	Progress	
No.		
1	We considered supporting JCM projects making as consultant.	
2	We had meetings of introducing waste water system to the H industry.	
3	We explained RDF producing machine and W to E project with S company.	
4	We proposed a joint examination for the quality improvement of RDF to S company.	
5	We explained our technologies to B company.	
6	 We proposed resource recovery technology to E company. We proposed our Gasification System with Power Generation Function to B company. 	
7	We considered taking a part of a coordinator between Japanese companies and Thai companies.	
8	We prepared for the 2 nd call of the the Financing Programme for JCM Model Projects.	
9	We had a discussion of introducing ventilations with W company.	
10	We prepared the bidding scheduled in September at T hosilital, G hospital, C hospital to installing our boiler.	
11	We considered to be the representative of international consortium.	
12	We discussed our indirect support, providing our EMS services and technologies etc.	
13	We had a meeting with S company to introduce waste energy facilities.	
14	Some companies had our W to E technology, and we considered them individually.	
15	Same as No.8	

Table 4-3 The outcome of the matchmaking session

The Low Carbon Technology Workshop and Matchmaking session

(4) Individual site visits

Japanese participants visited I Ltd. that conducts PV projects in the Saraburi and Eastern Seaboard Industrial Estate where low carbon technologies might be introduced. During visit they had a productive discussion related to their technologies, visited facilities etc.

(a) I Ltd

- The overview of their project, renewable energy and manufacturing biomass products, and the CDM project that they implemented before were explained to the Japanese participants and had Q and A session.

-After presentation session, the participants visited to the solar panel site at their office.

Visit to Eastern Seaboard Industrial Estate

Visit to I company

(b) Eastern Seaboard Industrial Estate

-Overview of Industrial parks operated by H company was introduced to Japanese participants focusing on waste and waste water facilities because participants came from that sector.

-It was agreed that all participants of this visit will continuously share information regarding feasible JCM projects

2. Implementation of Study tour in Japan

(1) Summary of the study tour in Japan

The study tour was conducted in October 2015 for the purpose of enforcing relationship between Thai and Japanese companies/organizations and raising motivations for introducing low carbon technologies which will lead to JCM projects development in Thailand.

11 participants (BMA:6, BMA hospitals:4, renewal energy investment company:1) were invited to the study tour and were separated in following 2 courses:

- Course 1: Energy efficiency and saving of building and plant
- Course 2: Waste and wastewater management

(2) Schedule of the study tour

The study tour was conducted from 19th, October 2015 to 23rd, October 2015 during 5 days.

Date	Time	Program	Location
18 th Oct	17:55	Arriving Haneda airport	Tokyo
	20:30	Arriving hotels	Yokohama
$19^{\mathrm{th}} \operatorname{Oct}$	09:00-09:30	Hotels→@Business Center Kannai	Yokohama
(All)	09:30-10:30	Kick-off meeting	Conference room
(BMA:2)	10:30-11:00	@Business Center Kannai	
		→Pacifico Yokohama	
	11:00-12:30	Attending MOEJ JCM Workshop	Pacifico
	12:30-13:30	Lunch	Yokohama
	13:30-17:20	Attending MOEJ JCM Workshop	
	17:20-18:00	Pacifico Yokohama→Hotels	Pacifico
	18:00	Arriving hotels	Yokohama
(Hosp:4)	10:30-11:30	@Business Center Kannai	
		→Azbil Fujisawa Techno Center	
	11:30-13:00	Lunch	Fujisawa city
	13:00-17:00	Visiting Azbil Fujisawa Technology	Azbil Fujisawa
		Center	Technology
	17:00-18:00		Center
	18:00	Azbil Fujisawa Technology	
		Center→Hotels	
		Arriving hotels	
$20^{\mathrm{th}} \operatorname{Oct}$	08:30-09:30	Hotels→Minato Mirai Center Building	Yokohama
	09:30-12:00	Visiting Minato Mirai Center Building	Minato Mirai
			Center Building
	12:00-13:00	Lunch, Minato Mirai Center	
	10:00 10:00	Building→InterContinental	
	13:00-16:00	Attending Yokohama Asia Smart City	InterContinental
		Conference	

[Course 1: Energy efficiency and saving of building and plant]

	16:00-16:30	InterContinental→Hotels	
		Arriving hotels	
$21^{\mathrm{st}} \operatorname{Oct}$	8:30-09:30	Hotels→Yokohama Sports Medical	Yokohama
		Center	
	09:30-12:00		Yokohama Sports
		Visiting Yokohama Sports Medical	Medical Center
	12:00-13:00	Center	
	13:00-14:00		Yokohama
		Lunch	
	14:00-16:00	Yokohama Sports Medical	Nissan Stadium
	16:00-17:00	Center→Nissan Stadium	
		Visiting Nissan Stadium	
		Nissan Stadium→Hotels	
		Arriving hotels	
22 nd Oct	08:00-09:00	Hotels→Yokohama City University	Yokohama
	09:00-11:00	Hospital	Yokohama City
		Visiting Yokohama City University	University
	11:00-12:00	Hospital	Hospital
			Yokohama
		Yokohama City University	
		Hospital→Hotels	
23 rd Oct	07:30-11:20	Hotels→Haneda airport	Tokyo

[Course 2: Waste and wastewater management]

Date	Time	Program	Location
18 th Oct	17:55	Arriving Haneda airport	Tokyo
	20:30	Arriving hotels	Yokohama
19 th Oct	09:00-09:30	Hotels→@Business Center Kannai	Yokohama
	09:30-10:30	Kick-off meeting	Conference room
	10:30-12:00	Lecture: Waste to Energy technology (JFE Engineering)	
	12:00-12:30	@Business Center Kannai →Pacifico Yokohama	
	12:30-13:30	Lunch	Pacifico
	13:30-17:20	Attending MOEJ JCM Workshop	Yokohama
	17:20-18:00	Pacifico Yokohama→Hotels	Pacifico
	18:00	Arriving hotels	Yokohama
20 th Oct	09:00-09:30	Hotels→JFE Engineering	Yokohama
	09:30-11:30	Visiting the Tsurumi fluorescent lamp	JFE Engineering
		recycling plant, incineration plant	
	11:30-13:00	Lunch, JFE	
	13:00-16:00	Engineering→InterContinental	
		Attending Yokohama Asia Smart City	InterContinental
	16:00-16:30	Conference	
		$InterContinental \rightarrow Hotels$	
		Arriving hotels	
$21^{st} \operatorname{Oct}$	9:00-10:00	Hotels→Yokohama North Sludge	Yokohama
		Treatment Center	
	10:00-12:00		Yokohama North
	10:00 10:00	Yokohama North Sludge Treatment	Sludge Treatment
	12:00-13:00	Center	Center

	13:00-15:00	Yokohama North Sludge Treatment	
	15:00-16:00	$Center \rightarrow$	Yokohama
		Lunch, Yokohama Kanazawa plant	Kanazawa plant
		Visiting Yokohama Kanazawa plant	-
		Yokohama Kanazawa plant→Hotels	
		Arriving hotels	
22 nd Oct	09:00-10:00	Hotels→Mansei Recycle Systems	Yokohama
	10:00-12:00	Visiting Mansei Recycle Systems	Mansei Recycle
			Systems
	12:00-13:00	Mansei Recycle Systems→Hotels	Yokohama
23 rd Oct	07:30-11:20	Hotels→Haneda airport	Tokyo

(3) List of participants

1 person from department of public works and 5 persons from BMA public hospitals participated in the "course 1" and 3 persons from department of Environment and 1 person from department of drainage and sewerage and 1 person from the investment company participated in the "course 2". Name and title of participants are shown in following tables.

Name-Surname	Title	
Mr. Tawatchai Napasaksri	Chief of Building Engineering Sub-division	
	Department of Public Works, BMA	
Mr. Nattapong Mephokkit	Deputy director of BMA General Hospital	
Ms. Busakorn Nualyong	Deputy Director	
	Taksin Hospital, BMA	
Ms. Suppaya	Deputy Director	
Chiewroongroj	Luangpho Thaweesak Hosptial, BMA	
Ms. Ladda Huiprasert	Deputy Director	
	Wetchakarunrasm Hospital, BMA	
Ms. Kumjong Wongthai	Registered Nurse	
	Ratchapipat Hospital,BMA	

[Course 1: Energy efficiency and saving of building and plant] (6 persons)

[Course 2: Waste and wastewater management] (5 persons)

Name-Surname	Title
Ms. Wannipa Wongyara	Sanitation Technical Officer, Department of
	Environment, BMA
Mr. Jirathep Thaochoo	Electrical Engineer Department of Environment, BMA
Mr. Kasame Thepnoo	Sanitation Technical Officer Department of Drainage

	and Sewerage, BMA
Ms. Natnares Macharoen	Environmentalist Department of Environment, BMA
Mr. Thanomsin Chanjirajit	Project Engineer, Engineering Section, Prime Road
	Group Co., Ltd

(4) Program and results of the study tour

[Conferences regarding Inter-city cooperation]

(a) JCM Inter-city Cooperation Workshop (Ministry of Environment, Japan)

6 Participants from BMA attended the "JCM Inter-city Cooperation Workshop" which hosted by Ministry of Environment, Japan and listened to afternoon sessions: 1) Activities toward JCM project development-Learning from Successful case of JCM finance program-, 2) Discussion toward promoting low carbon society.

This workshop targeted Japanese local governments, Asian local governments and relevant companies/organizations who are involved in the feasibility study of JCM project development under Inter-city cooperation supported by MOEJ. In the afternoon session, some cases of inter-city cooperation were explained by Japanese local governments and successful projects of JCM finance program were introduced by companies and then, the participants discussed on how to successfully implement JCM projects.

(b) The 4th Asia Smart City Conference 2015 (City of Yokohama)

All the participants attended the "4th Asia Smart City Conference 2015" hosted by City of Yokohama and listened to afternoon session. Representatives from Asian cities and experts of town/community development were invited to the session. In the session, results of 4 thematic meeting in the morning were reported and discussed by panelists. 4 themes are following: 1) City to city cooperation towards sustainable urban development, 2) Roles of city leaders to attract good involvement of private sector, 3) Cocreate urban solutions through smart technologies, 4) Indices to facilitate sustainable urban development

[Course 1: Energy efficiency and saving of building and plant] (c) Lecture & Site visit: Azbil Fujisawa Technology Center

The participants visited Azbil Fujisawa Techno Center which is a base of R&D of Azbil Corporation. There is a space of products introduction regarding building automation technologies and participants learned Building Energy Management System (BEMS) through lecture and demonstration. Mechanism of ESCO business provided by Azbil was also explained. In addition, participants visited an office building which acquired CASBEE certification of S rank and observed actual facilities and systems regarding energy saving technologies.

Lecture

Demonstration of BEMS

(d) Lecture & Site visit: Minato Mirai Center Building

The participants visited "Minato Mirai Center Building" which was constructed by Taisei Corporation in 2010. Minato Mirai Center Building is an office building which has superior environmental performance and acquired S rank of CASBEE Yokohama certification program. The participants observed structures and facilities contributing high energy efficiency and the architecture who designed the building explained concept of the building. Participants learned basic concept of energy saving of the building such as reduction of lighting energy by using natural lighting system and reduction of heating load by using exhaust heat from air conditioner.

Eco-void & Natural lighting system

Lecture

(e) Lecture & Site visit: Yokohama Sports Medical Center

The participants visited Yokohama Sports Medical Center and Tokyo Gas Corporation who is implementing ESCO project at this facility lectured on their ESCO project. Firstly, basic mechanism and situation of ESCO business in Japan was introduced. Next, renovation of facilities/systems and results of energy saving achieved by ESCO project was explained. Participants learned about energy interchange among facilities in the site, gas-cogeneration system, utilization of exhaust heat by heat source equipment and ESCO project as well.

Comparison of new & old boilers

Utilization of exhaust heat

(f) Lecture & Site visit: Nissan Stadium

The participants visited a multi-purpose stadium called "Nissan Stadium" located in Shin-Yokohama Park and observed its facilities. Person in charge of facility management from Yokohama city introduced overview of the stadium and Azbil Corporation who is implementing ESCO project at the stadium lectured on their ESCO project. Participants also observed and learned about utilization of recycled wastewater and energy saving by using wastewater heat as heating source.

Heat exchanger for wastewater heat

Lecture

(g) Lecture & Site visit: Yokohama City University Hospital

The participants visited Yokohama City University Hospital and studied its ESCO project. Japan Facility Solution Corporation who is implementing the ESCO project introduced overview of ESCO project and installed facilities and systems. The Participants also observed energy management system, boiler, heat pump, chiller etc..

Facilities

[Course 2: Waste and wastewater management]

(h) Lecture: Waste to Energy technology (JFE Engineering)

Waste to Energy technology was introduced by JFE Engineering Corporation. Process of energy generation and safety of the technology was explained such as air quality or possibility of construction in urban area as technical aspect and also overview of products provided by JFE Engineering. From technical aspects, the participants learned about measurements against air pollution such as removal of NOx, SOx and control of bad smell and consideration to citizens living around waste incinerator such as consultation before construction and activities contributing to region.

Lecture

Group photo with lecturer

(i) Lecture & Site visit: Tsurumi fluorescent lamp recycling plant and incineration plant (JFE Kankyo Corporation)

The participants visited JFE Kankyo Corporation and observed "Tsurumi fluorescent lamp recycling plant" and the incineration plant called "Yokohama Eco Clean". Tsurumi fluorescent lamp recycling plant is one of the largest scale of its kind such as segregating mercury, glass and metal from fluorescent lamp. Method of extraction, control and treatment of mercury were explained by administrator of the plant. This plant consists of the incineration and melting system combining a kiln/stoker-type furnace and kiln-type ash-melting furnace and it has ability of treating various wastes such as sludge, waste plastics and PCB. It was explained that flow of waste treatment from collection to incineration and treatment of remaining ash. The participants asked about tipping fee of waste treatment and process of recycling.

Front of the plant

Lecture & observation

(j) Lecture & Site visit: Yokohama North Sludge Treatment Center

The participants visited "Yokohama North Sludge Treatment Center" which is conducting power generation by using wastewater sludge. JFE Engineering which is the administrator of power generator introduced overview of the facility and SPC established for investments to the center. The participants also observed facilities such as the power generator and heat exchanger.

Lecture

Front of the digestion tank

(k) Lecture & Site visit: Yokohama Kanazawa plant (Resource recycling facility) The participants visited "Yokohama Kanazawa plant" of resource recycling facility. It was explained that waste incineration facility, operation state and resource recycling. The participants also observed the control room and treatment of wastes.

Lecture

Group photo with staffs of the facility

(l) Lecture & Site visit: Mansei Recycle Systems Co., Ltd.

The participants visited recycling facility of Mansei Recycle Systems Co., Ltd.. Project conducted by Mansei Recycle Systems in Cebu city in Philippine was explained as a successful case of newly introduced waste recycle system in South Asia. The participants also observed facility for manufacturing of board and chip from timber waste and fluff fuel from waste plastics.

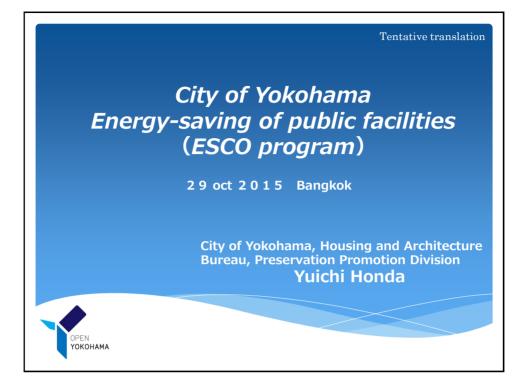
Lecture

Group photo in front of the facility

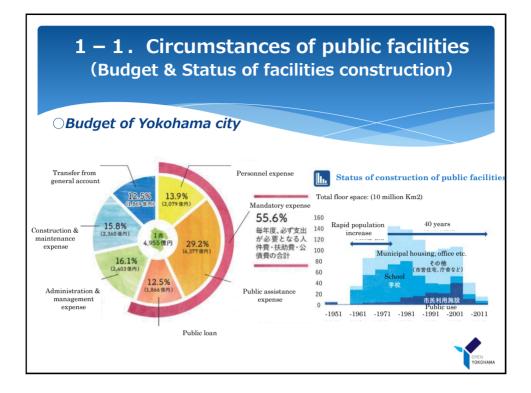
V. Presentations of the international conferences and workshops

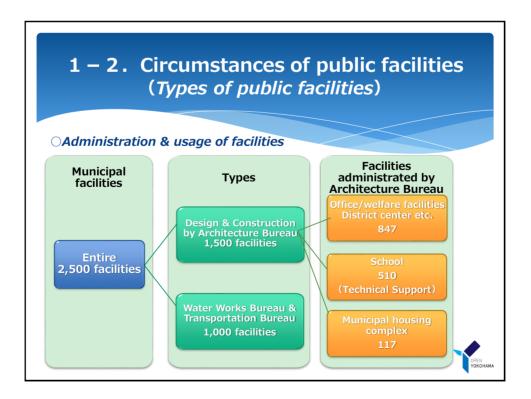
The OECC presented summary of this feasibility study including outline, outcomes, and future activities in the international conferences and workshops. In addition, activities conducted by Yokohama city and the cooperation between Yokohama city and BMA were presented in several conference with support of OECC, making presentation documents, dispatching technical experts etc. Tables 5-1 shows outline of presentations.

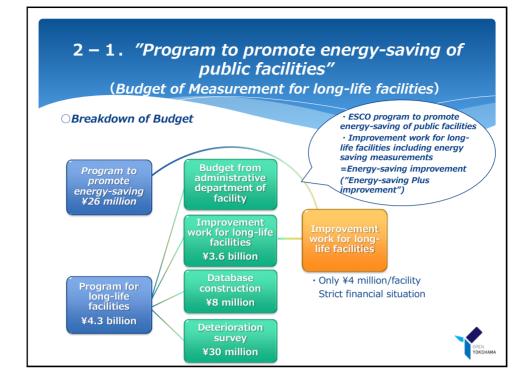
Date	Place	Participants	Contents
May,	Y-PORT Working	OECC	Implementing the
2015	Venue: Yokohama city		Bangkok Master Plan on
			Climate Change 2013-
			2023 via conducting
			JCM project
			developments and its
			potentials of
			participation of Y-PORT
			member.
Decemb	COP21 side event of	OECC	JCM Project
er, 2015	Japan pavilion		Opportunities under the
	Venue: Paris		Bangkok Master
			Plan on Climate Change
January,	the JCM City to City	Yokohama city	JCM project
2016	Collaboration, Institute	and BMA	developments based on
	for Global Environmental		the City to City
	Strategies		Collaboration
March,	7 th High Level Seminar	Yokohama city	Outcomes and future
2016	on Environmentally	(Mr. Tetsuya	activities of JCM project
	Sustainable Cities	Nakajima,	developments based on
	Venue: Hanoi	Executive	the City to City
		Director for	Collaboration
		Development	
		Cooperation,	
		International	
		Affairs Bureau)	

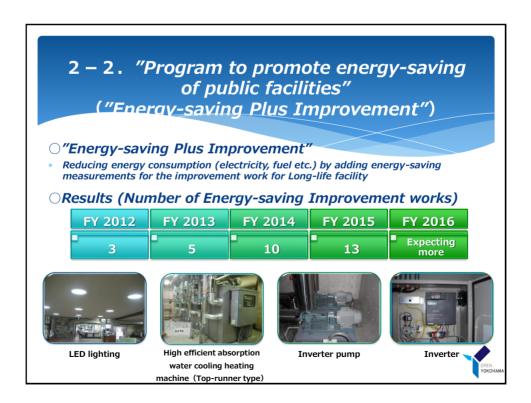

Table 5-1 Presentations of the international conferences and workshops

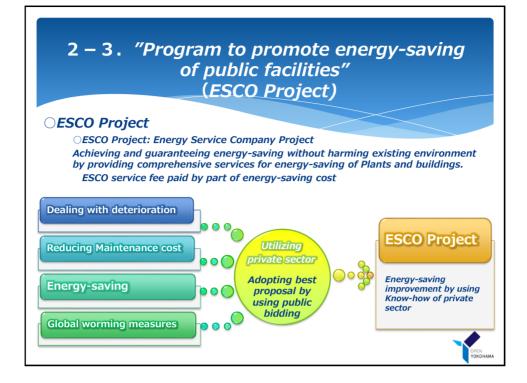
Appendex 1 Dcuments of Policy Dialogue: Energy Efficency Sector

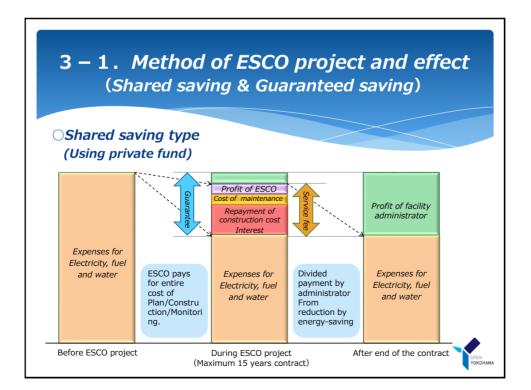

A presentation document of Yokohama city:
 City of Yokohama Energy-saving of public facilities (ESCO program)

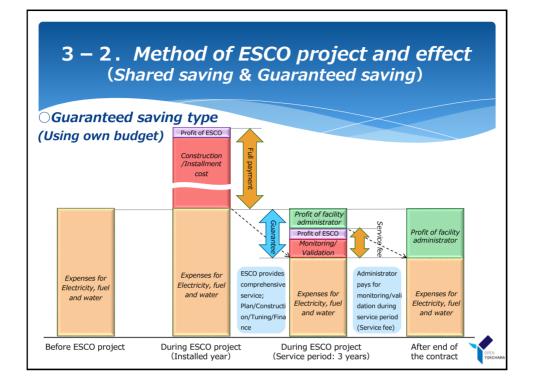

➤ A presentation document of BMA:


Presentation on Learning from ESCO project implementation at QSNICH and Potential for ESCO pilot project development at public hospitals of BMA









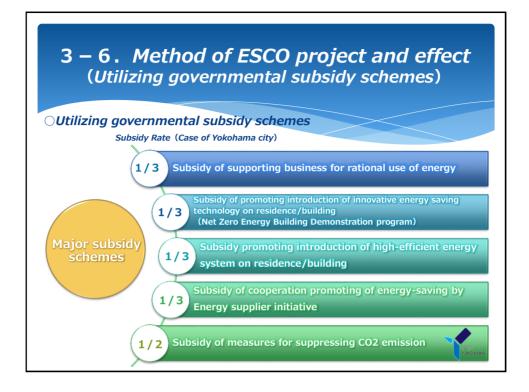


OR	esults	of in	ntrod	ucin	g ESC	O pro	oject						\geq	\leq				
FY 2003	2004	FY	2000	FY	2006	FY	2007	FY	2008	FY	FY 2009	2010	FY	FY 2011	FY 2012	FY 2013	FY 2014	2015
Model PJ	1 st PJ	2 nd PJ	о _{rd} рј	4 th PJ	5 th PJ	6 th РЈ	7	8 th PJ	9 th PJ	10 또 면	11 뜻 면	12 또 면	13 5 РЈ	14 뜻 면	15 5 9	16 또 면	17 뜻 면	18 5 면
院(○総合保健医療センター (Medical sports center) ○総合リハビリテーションセンター ○障害者スポーツ文化センター横浜ラポール	O松風学園(School)	O戸塚センター (District center)	Oこども科学館(Science museum)	○技能文化会館 (Culture center) ○関内ホール (Event Hall) ○中区総合庁舎 (General Office)	O 伊央図書館 (Librany)	〇市大木原生物研究所(Laboratory)	○横浜国際ブール (Swimming pool) ○ 都筑区総合庁舎 (General Office) ○ 青葉区総合庁舎 (General Office)	O市大福浦キャンパス (Campus of City University)	O栄区総合庁舎 (General Office)	O横浜国際総合競技場(Stadium)	O市民病院(Hospital)	O神奈川区総合庁舎(General Office)	O鶴見区総合庁舎(General Office)	O 吉野町市民プラザ(Community plaza)	O栄公会堂・栄スポーツセンター(Public hall, Sports center)	O港北区総合庁舎(General Office)	O永田地区センター(District center)

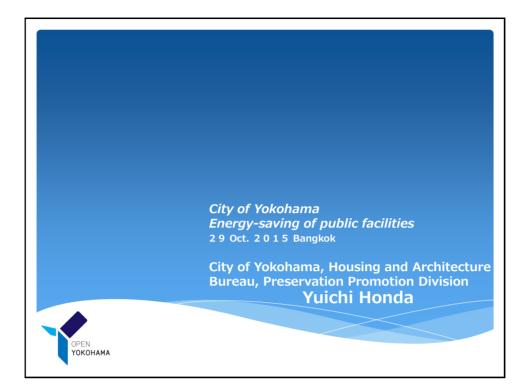
3 – 5. Method of ESCO project and effect (Effectiveness of ESCO project)

OEffects of ESCO project

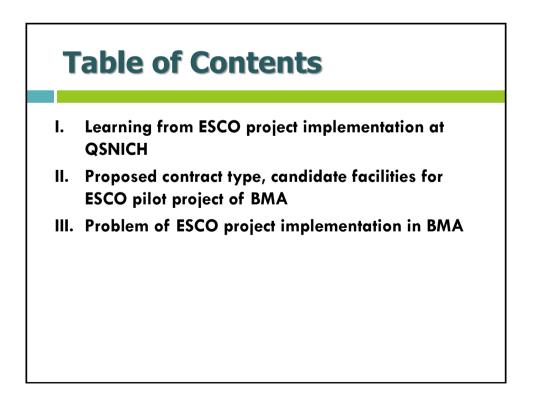
Г

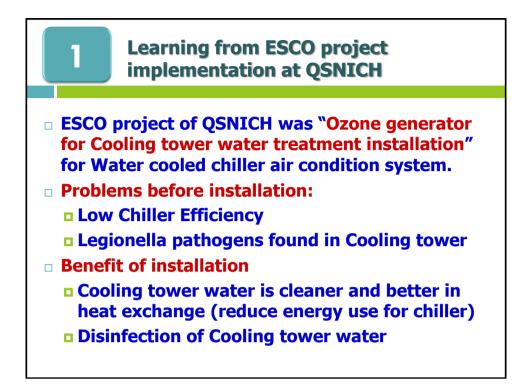

	Res	ults of FY 2014		
	Estimate % 1	Result % 2	Acheive ment	
Number of facilities	24	24	_	
Energy reduction	21.2%	25.5%	120%	× 1 Estimated reduction of
Cost reduction	¥620,125 thousand∕year	¥690,575 thousand⁄year	111%	contract % 2 Result of final year is
CO ₂ reduction	14,938ton⁄year	16,469ton∕year	110%	referred for finished project

Other effects of ESCO project

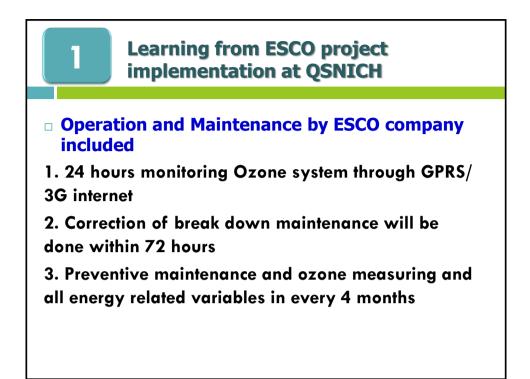

 Feature: It is required for proposer to include at least one company whose headquarter locates in Yokohama city in the consortium in order to let companies in Yokohama participate not only major companies from outside.

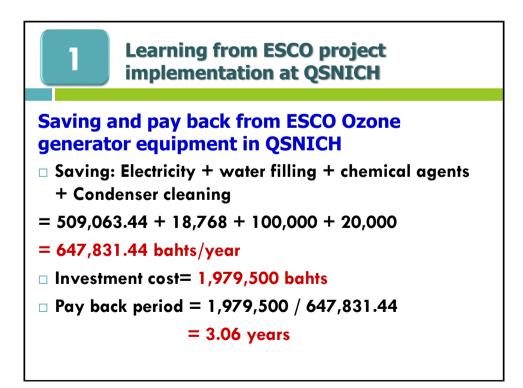

* It is also useful for supporting development and activation of companies in Yokohama


 ESCO projects are able to utilize subsidy schemes which can't be used by general improvement work



QSNICH site visit of Yokohama, OECC and BMA officers on 26 November 2015


Learning from ESCO project implementation at QSNICH


 ESCO contract type of QSNICH Project: <u>Guarunteed</u> <u>Saving</u>, investment by hospital budget in 2013
 Guarunteed saving conditions in contract as follows:

1. Using approach temperature measurement guarantee at full load chiller functions " not more than the approach temperature after thoroughly tube cleaning of the system plus 2 degrees Fahrenheit"

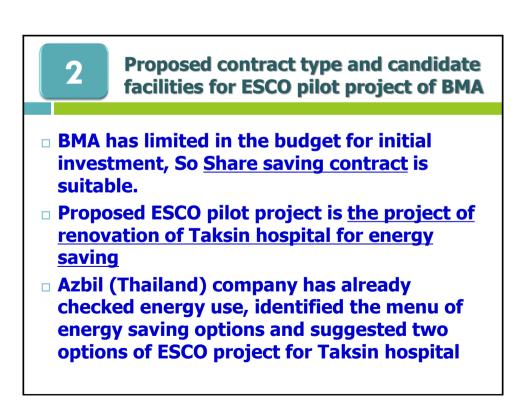
2. Bank guarantee deposit will be 5% of total cost of the ozone equipment for cooling tower water treatment and in case of guarantee failure, it will be used to pay for all corrective expenses

3. Monitoring of approach temperature will be done in every months by company service teams

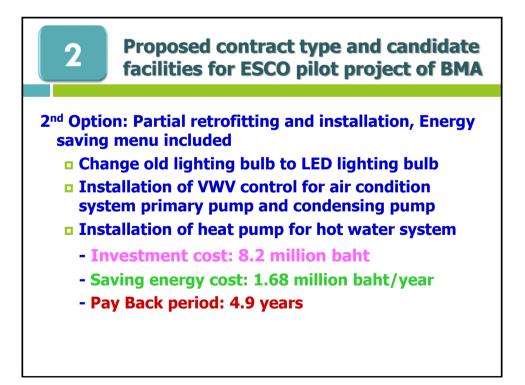
Learning from ESCO project implementation at QSNICH

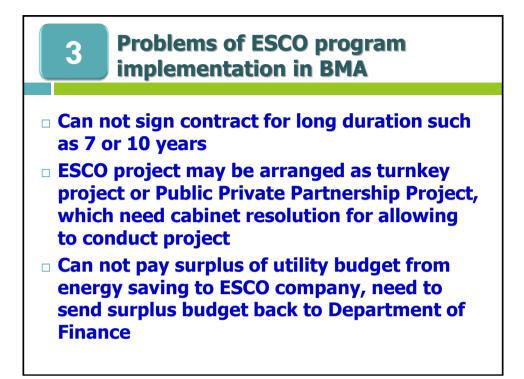
2. Can BMA implemented ESCO pilot project followed QSNICH ESCO Guarunteed saving type project or not, what are the problems?

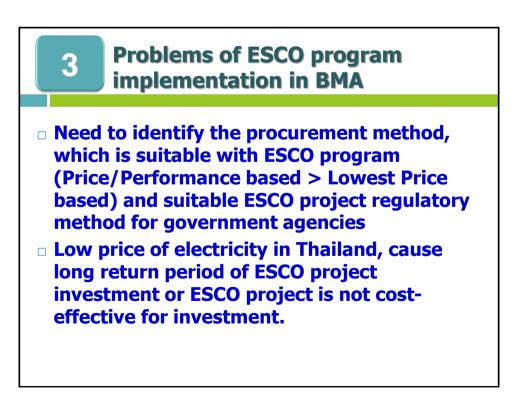
(1) Lack of budget, For example, Taksin hospital need to invest 42 million baht of full retrofitted equipment for energy saving project which is larger budget than QSNICH ESCO project, and this project is difficult in budget request from BMA

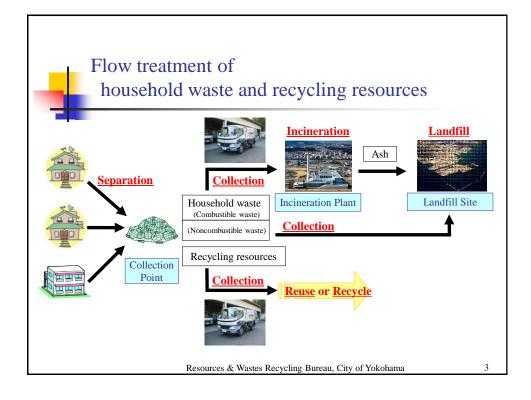

(2) Question about JCM can be applied with guarunteed saving ESCO project or not

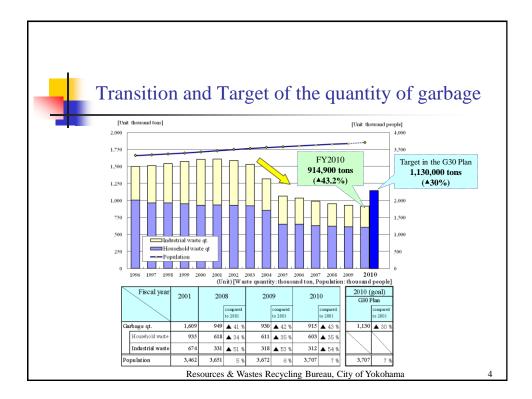
Learning from ESCO project implementation at QSNICH

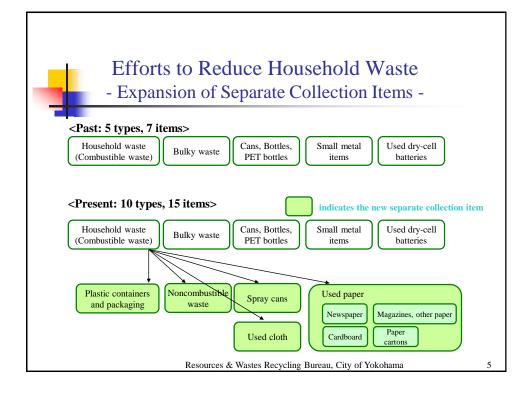

1


2. Can BMA implemented ESCO pilot project followed QSNICH ESCO Guarunteed saving type project or not, what are the problems? (continue)


(3) Difficult to use top-runner equipment because it is higher price compared with normal equipment (Need to follow Lowest Price based procurement for Thai government agencies)

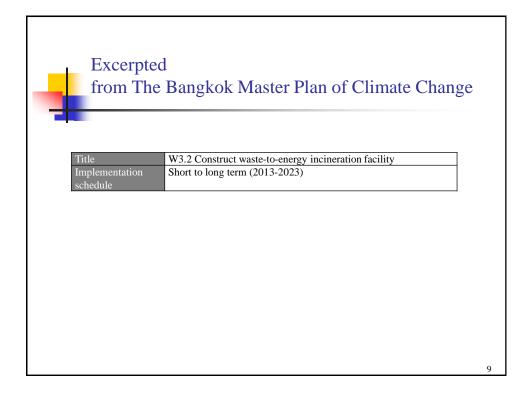

Appendex 2 Dcuments of Policy Dialogue: Waste Management Sector

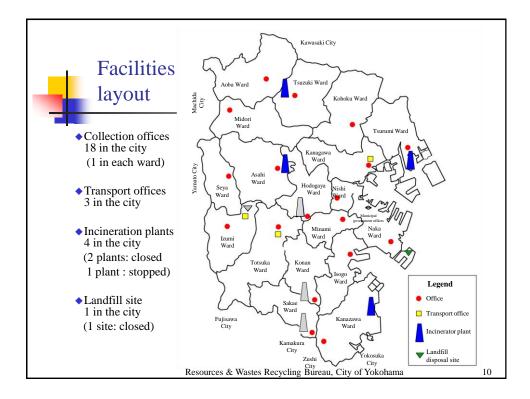

A presentation document of Yokohama city:
 Waste treatment of Yokohama

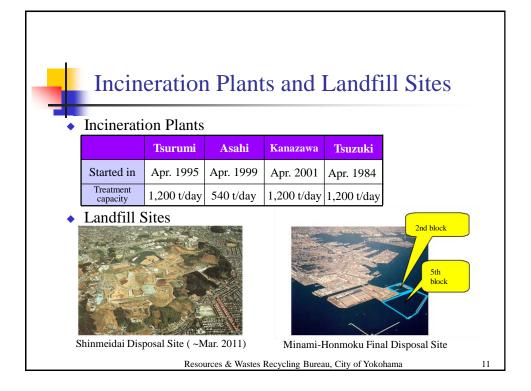

Prsesentation documents of BMA: ราชงานความคืบหน้าการก่อสร้างโรงงานเตาเผามูลฝอยขนาด 300คันต่อวันที่สูนย์กาจัดมูลฝอยหนองแขม Thailand Holistic Waste Management in BangkokContents

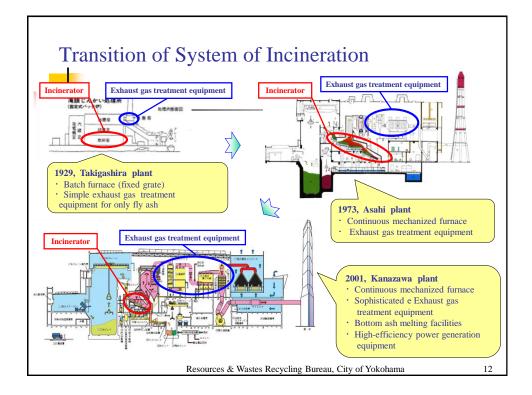


Cit	ty of Yokohama Profile
Population	3,712,170 (as of April.1, 2015)
Households	1,638,946 (as of April.1, 2015)
Frequency of garbage collection	Household waste (Combustible waste), Dry-cell batteries, Noncombustible waste, Spray cans : Twice a week Cans, Bottles, PET bottles, Small metal items, Plastic containers and packaging : Once a week Used paper, Used cloth : collection by resource recovery groups Oversize objects : upon request (collection for a fee)
Collection sites	75,783(as of end of March, 2015)
	Resources & Wastes Recycling Bureau, City of Yokohama 2







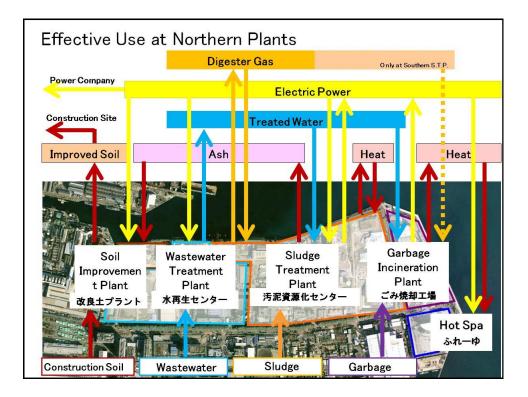


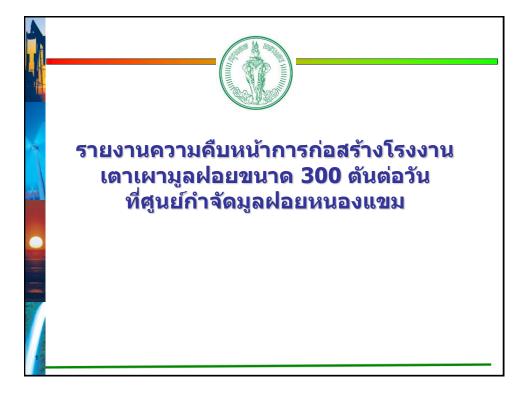
Excerpte	
from Th	a Danalsals Master Dlan of Climate Chan
	e Bangkok Master Plan of Climate Chan
Tite	W1.1 Promote participation on waste reduction and separation at source
Details	a) Enhance public awareness and partnership on waste management through public relation and campaigns
	b) Expand community based solid waste management (CBM)
	c) Promote partnership with the private sector in the management
	of solid waste at source
Implementation schedule	Short to long term (2013-2023)
Title	W1.2 Reduce the amount of plastic waste
Details	a) Encourage cloth bags and bio-packing use instead of plastic
	bags b) Promote plastic waste separation for recycling
	c) Promote manufactures and trader to reduce packaging and foan

Digestion Gas (Bio Mass Gas)

Northern Sludge T.Plant

12 Egg Shaped Digestion Tanks

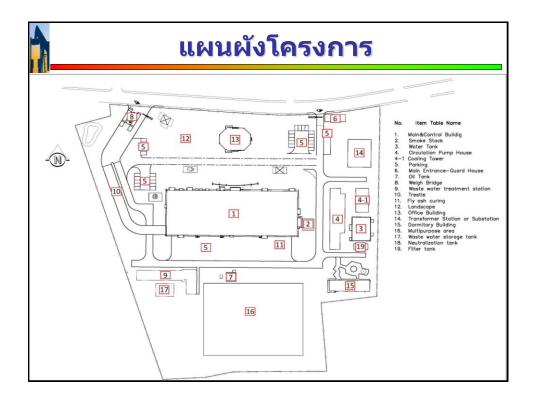

Digestion gas emission : 17,000,000 m[®]N/year

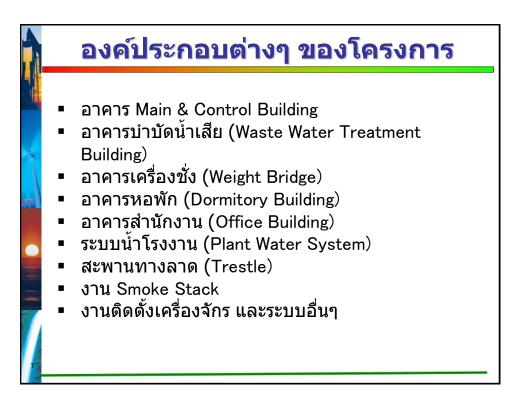


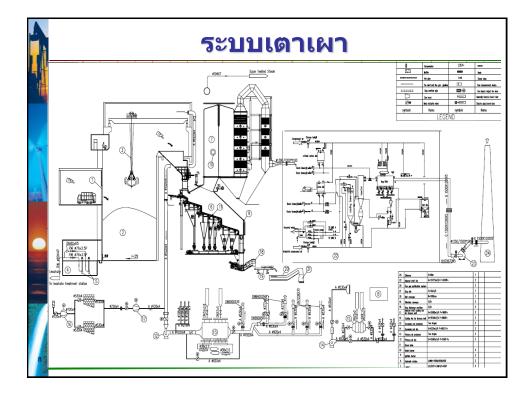
Southern Sludge T.Plant

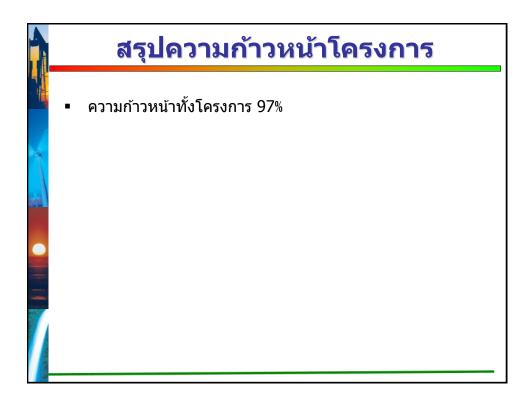
9 Egg Shaped Digestion Tanks

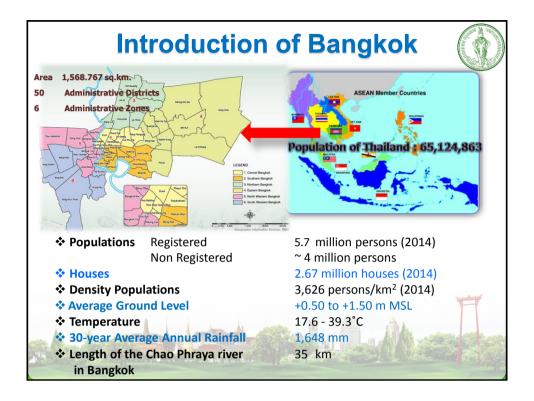
Digestion gas emission : 12,000,000㎡N/year

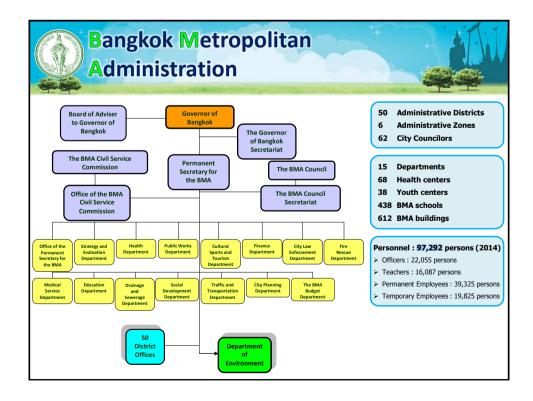


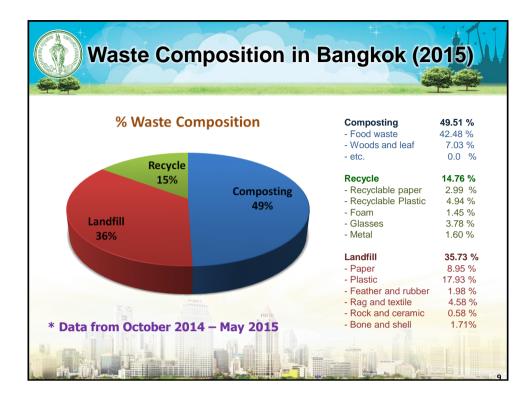






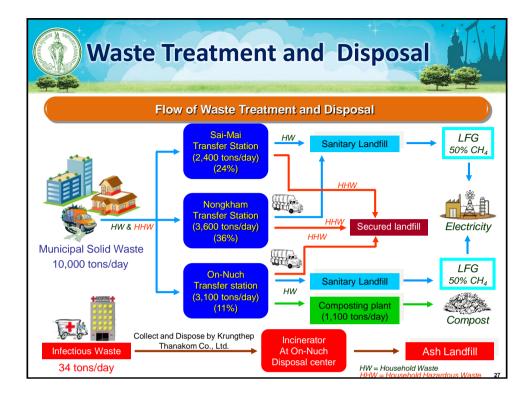




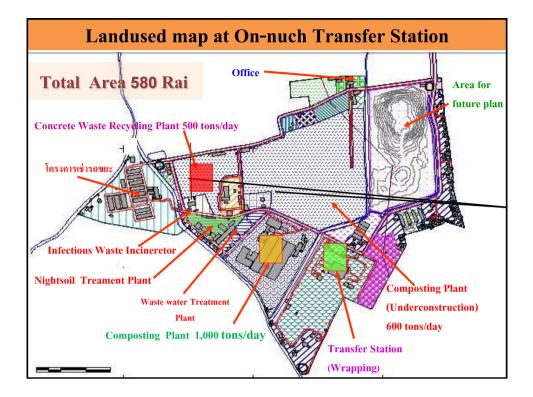


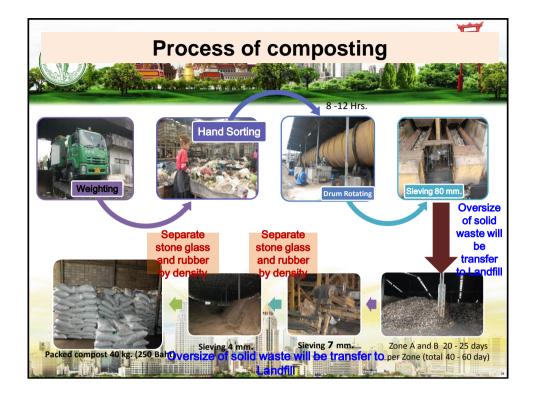
Fact Sheet					
Waste Collection		Waste Personnel			
General waste	9,940 tons/day (2014)	Waste collection drivers	2,587 persons		
	88% disposed by sanitary landfill	Waste collection workers	7,591 persons		
	12% treated by composting	Sweepers	9,042 persons		
Infectious waste	30 tons/day by incinerator	Waste tow volunteers	311 persons		
		Waste tow communities	279 communities		
		waste collection trucks	1,856 trucks (1,438 hired trucks)		
		Waste collection boats	66 boats		
2016/3/1-					

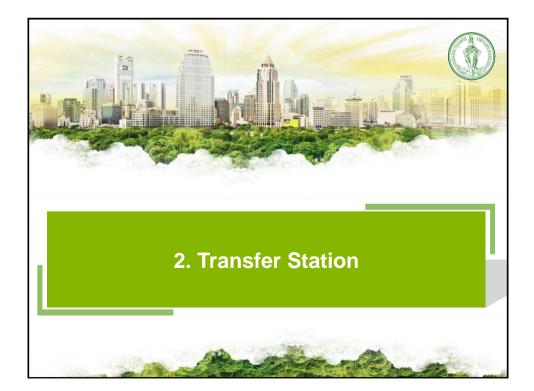
The utiliza	ation of waste in 20	15
Recyclable waste (3,088 tons/day)	 Public /Enterprises Junk shop Waste pickers 	
Food waste (400 tons/day)	 Promote waste separation at source to district offices , communities and enterprises 	
Branches and yard waste (150 tons/day)	• District office services branches trimmer and announced the appointment time to collect branches waste	Composting Plant
Bulky waste (30 tons/day)	• District office service to collect the bulky waste and appointment time to collect	District office repair and sorting bulky waste for recycle

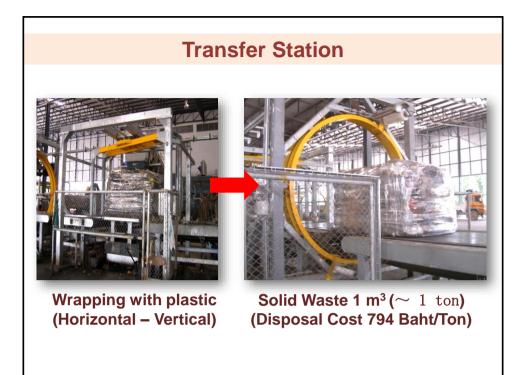










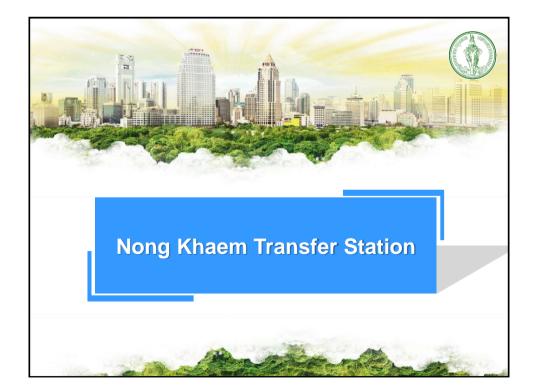


Transfer by conveyer

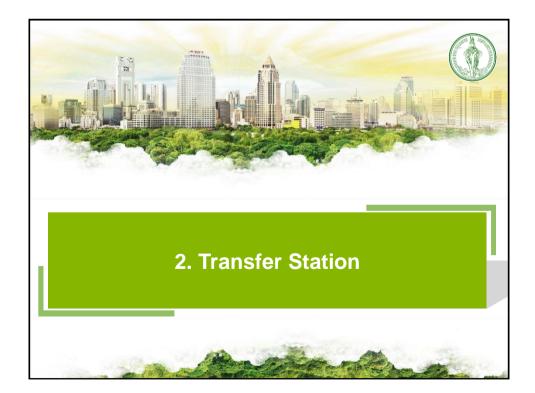
Hydraulic compactor (High pressure) Tight with wire

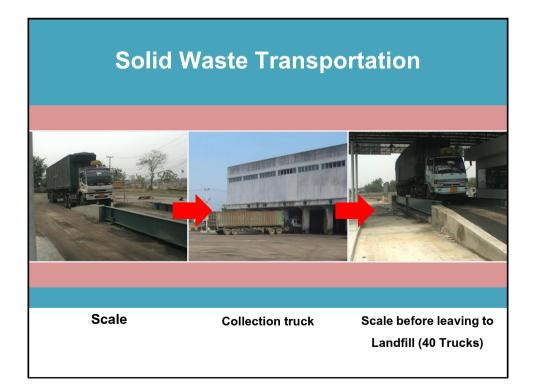
<section-header><complex-block><complex-block><text><text>

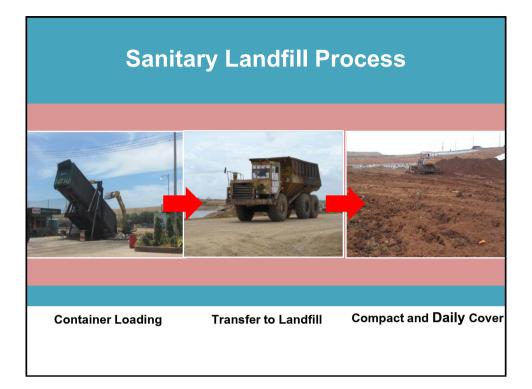
Solid Waste Transfer Process

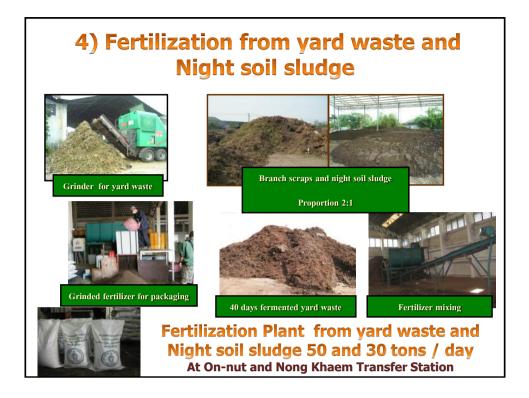


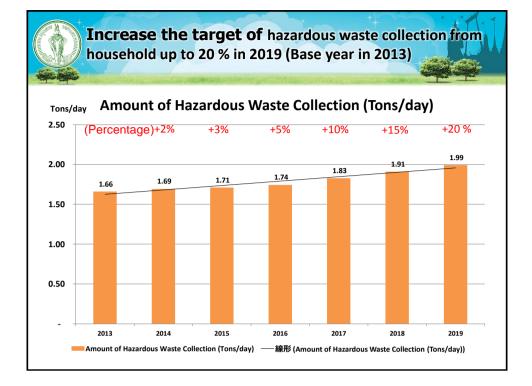


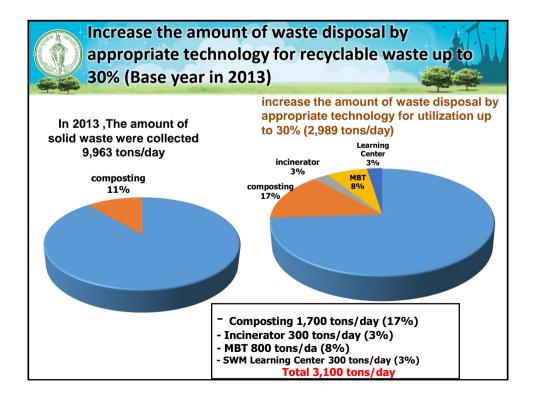


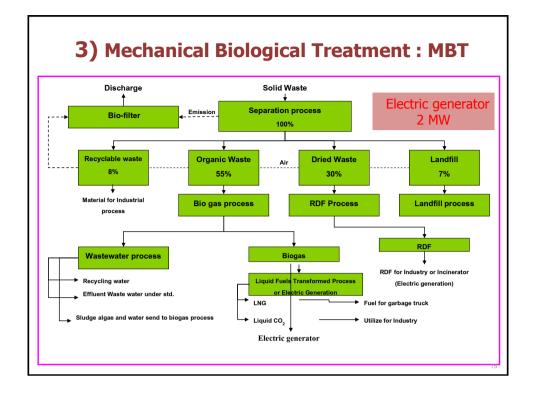




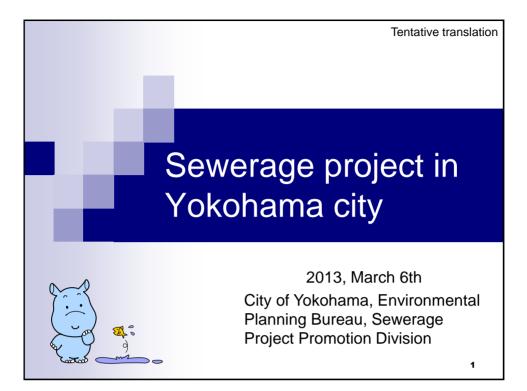




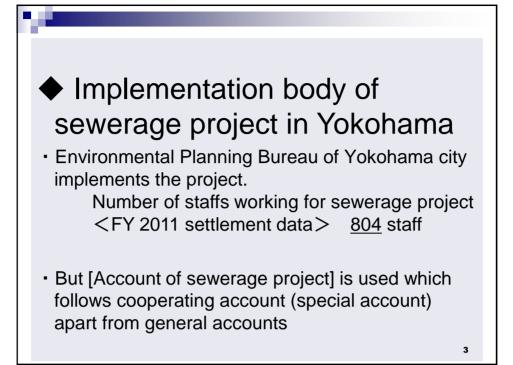


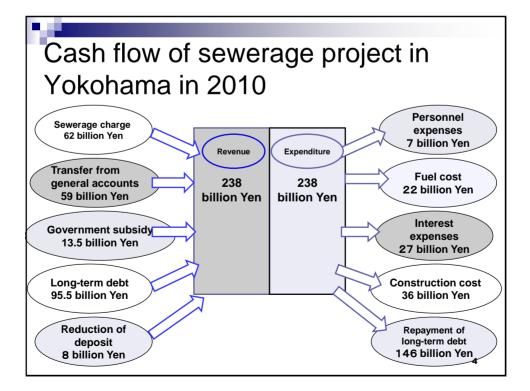


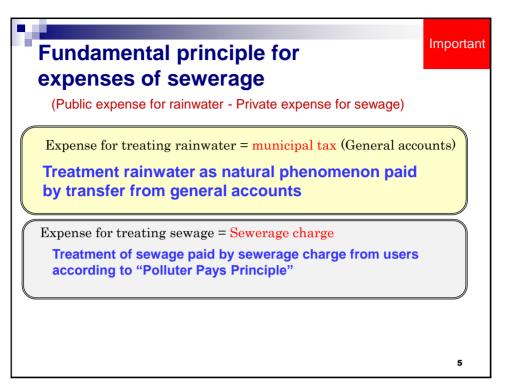
Bang	Bangkok's Solid Waste Management Plan (20 years)																				
Transfer	Technology for		Technology for Fiscal Year																		
Station	SWM	Capacity (t/d)	58	59	60	61	62	63	64	65	66 6	7 6	8 69	70	71	72	73	74 7	5 76	77	78
							-	_							_						
Nong Khaem	Landfill	2,000	~		>	← -		-	จ้า	งเห	มาต่	อ	-	->							
Knaem	Incinerator	300		<																→	
									-			_	-	-							
	Landfill	1,800	~								-	≯∢	-		1	้างเ	หม	าต่อ		->	
	Composting Plant	1,100	~		>	← -		ন	้างเ	หมา	เต่อ		-	->							_
On-Nut	Composting Plant	600	สร้าง ทดส		~								>								
	Mechanical Biological Waste Treatment (MBT)	800		FS	สรั ทดล	าง+ สอบ	~														>
Sai Mai																					
Sairiai	Landfill	1,700	←								-	*			จ้า	งเห	มาด	ก่อ		>	
Future F	Future Plan																				
Feas	Feasibility Study of Waste to Energy Technology for solid waste disposal Capacity 2,000 tons: Electric genaration not less than 33 MW																				
	Electric Generation not less than 43 MW (According to the plan)																				

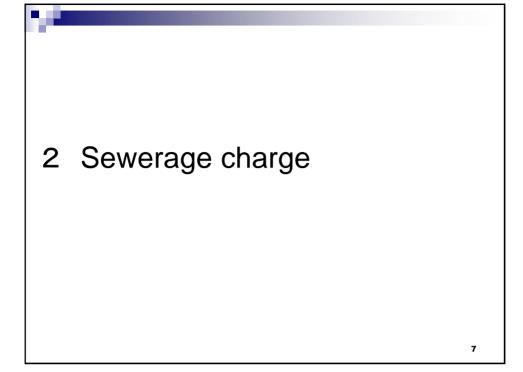


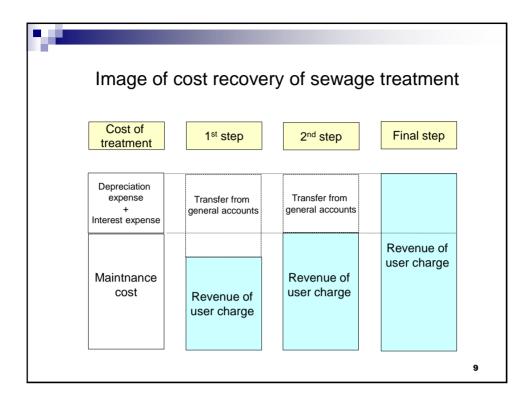


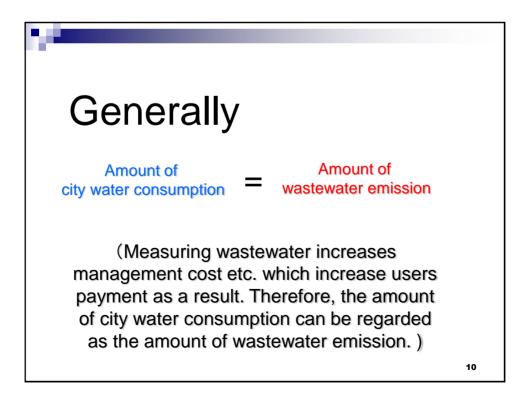

Appendex 3 Dcuments of Policy Dialogue: Wastewater Management Sector


A presentation document of Yokohama city:
 Sewerage project in Yokohama city

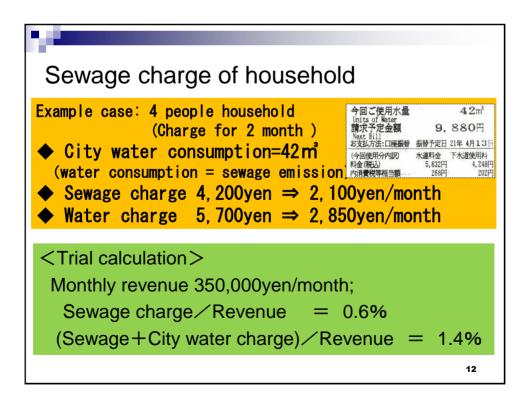

A presentation document of BMA:
 Community Wastewater Treatment Plant

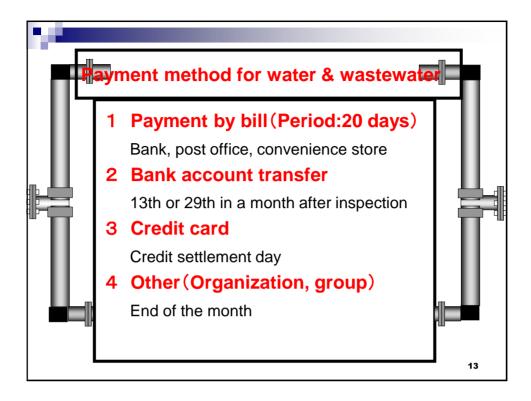


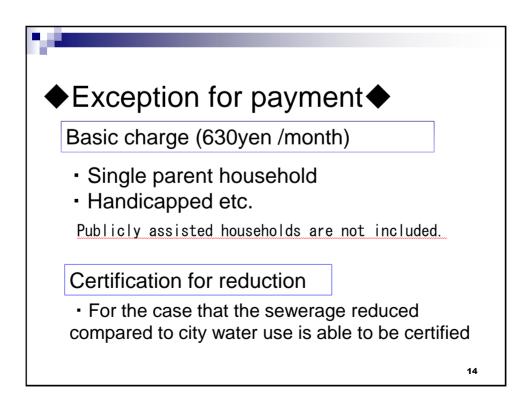


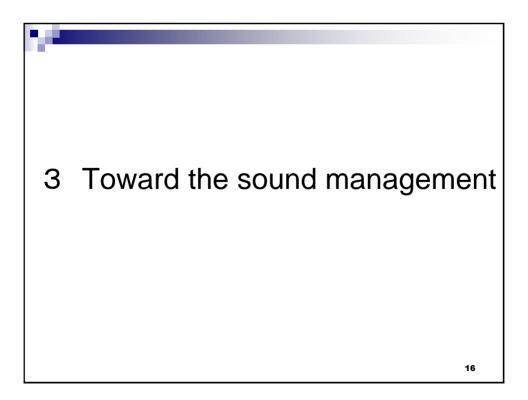


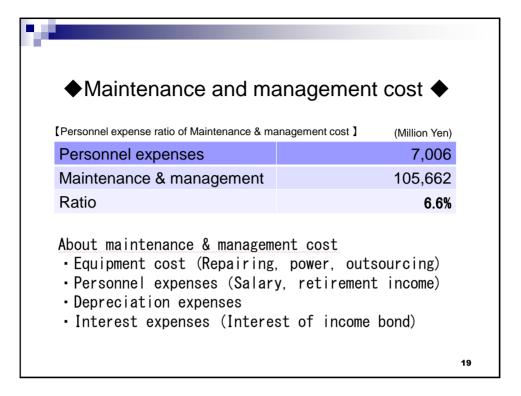
Brea	Breakdown of maintenance cost									
While sewerage facilities operated by local government as their own business, national government is responsible for promoting sewerage project and subsidize it.										
As athe verage	is used except governmenta e life of sewerage facilities is rs) is used to maintain equal	about 40 years	•							
	Breakdown in 2011 (Unit	: Million Yen)								
	Government subsidy	13,751								
	Municipal loan	18,131								
	Part of users charge 1,540									
	Total expenses 33,422									
			6							

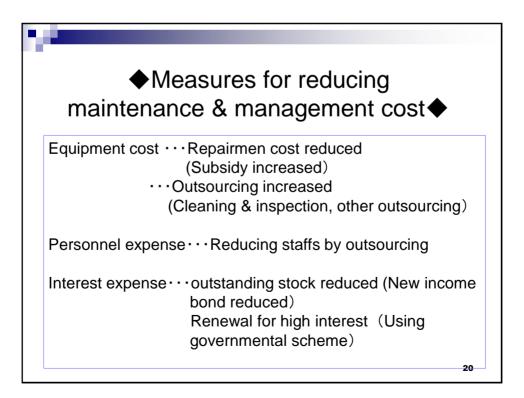


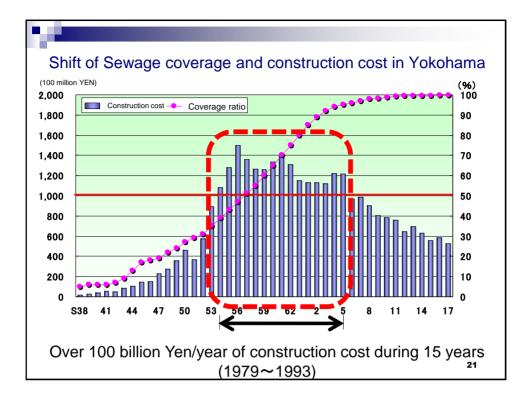

Unit price of sewerage		Wastewat	Price updated in 2005	
General wastev (1 month)		(1 month) m ³ (Basic		Unit price (Yen)
			(Basic charge)	630
Progressive charge		9~10	Per 1m ³	20
II		11~20	"	118
More wastewater		21~30	"	173
\downarrow		31~50	"	234
More expensive unit price		51~100	"	264
		101~200	"	299
		201~500	"	341
		501~1,000	"	389
		1,001~2,000	"	416
		2,001~	"	472,

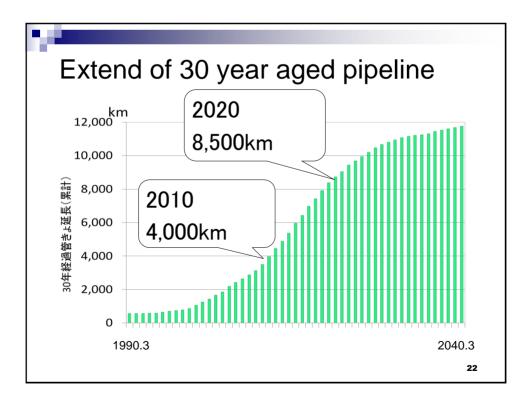


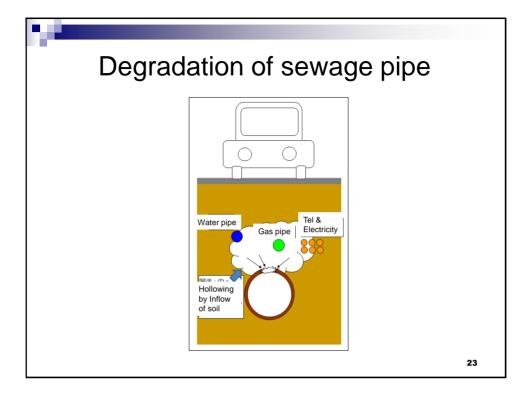


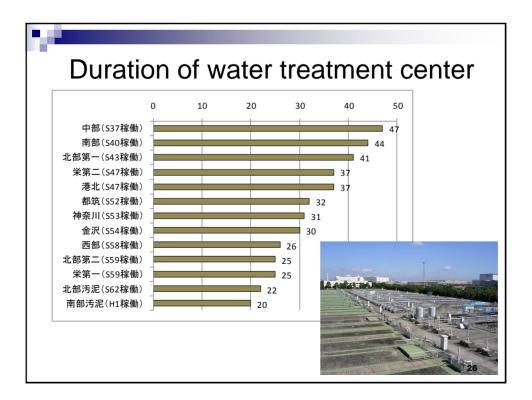


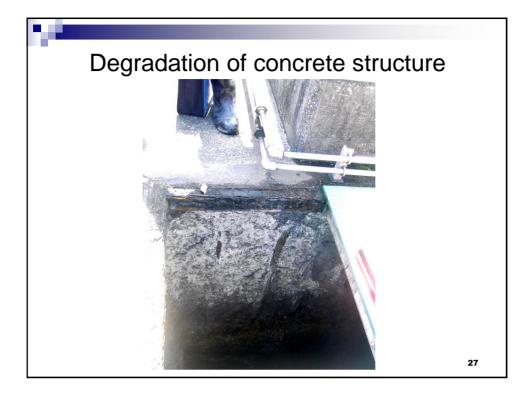

		ant of roinwork						
	Cost for treatment of rainwater							
Expen	Expense for treating rainwater = municipal tax (General accounts)							
	Concept for	r payment						
	2011	(542 million US \$)						
	Separated	100%						
	Combined	70%						
			15					

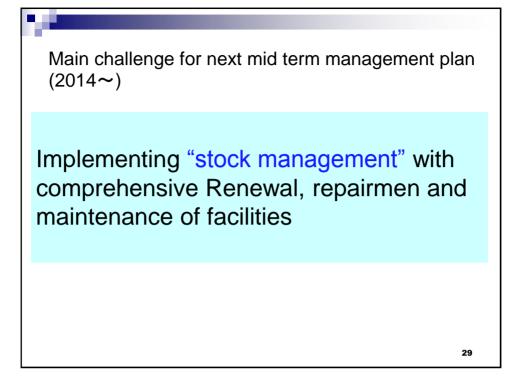


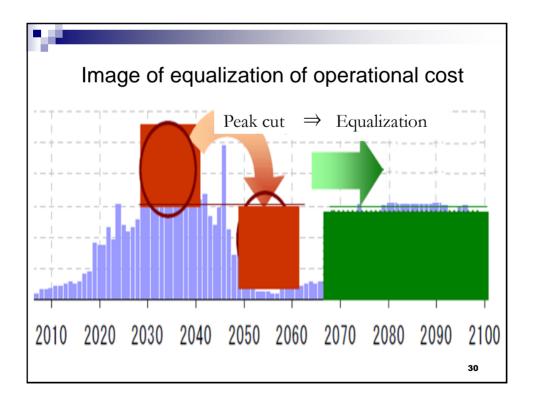


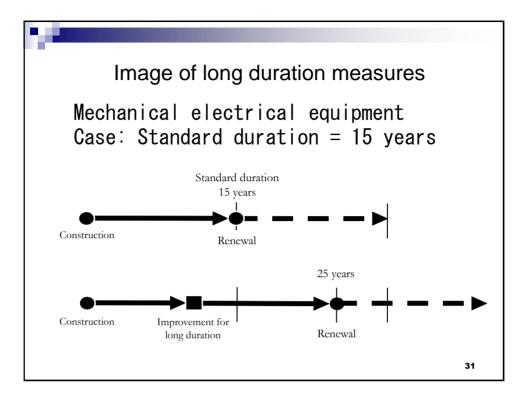


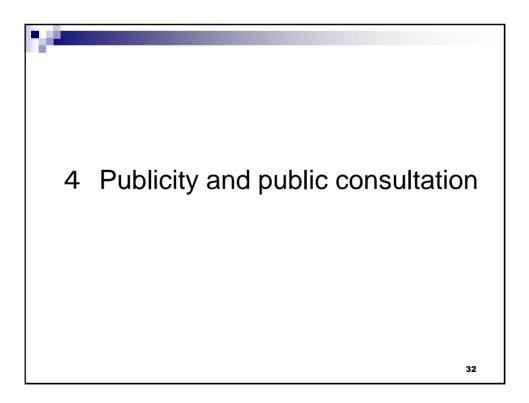


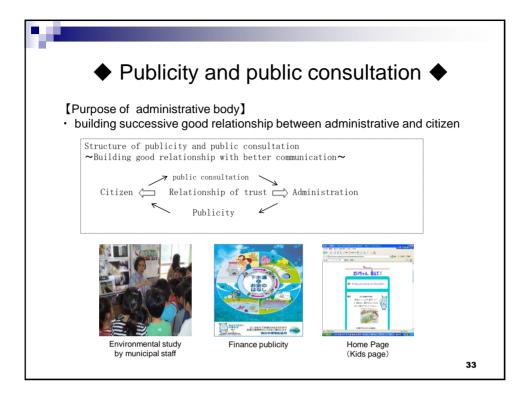


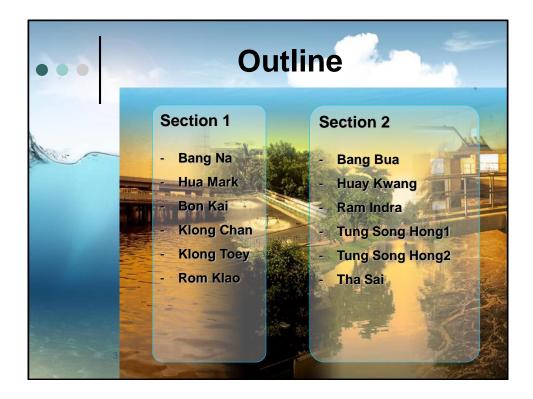


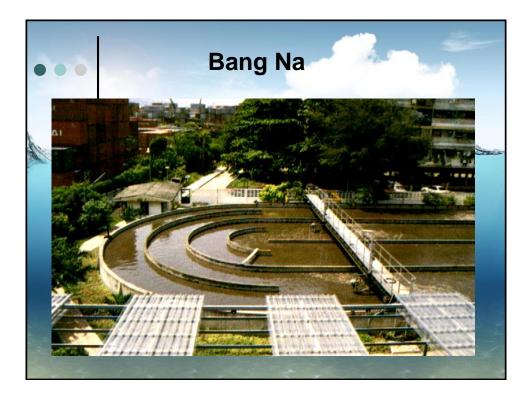


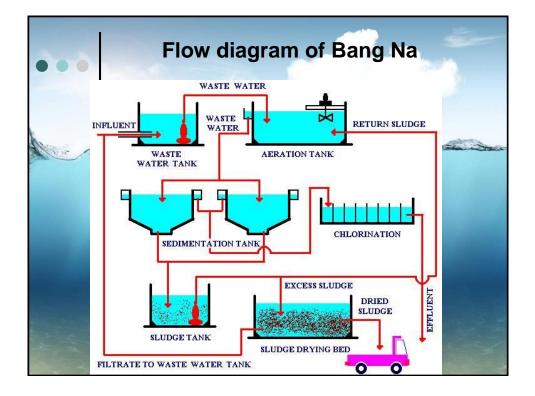


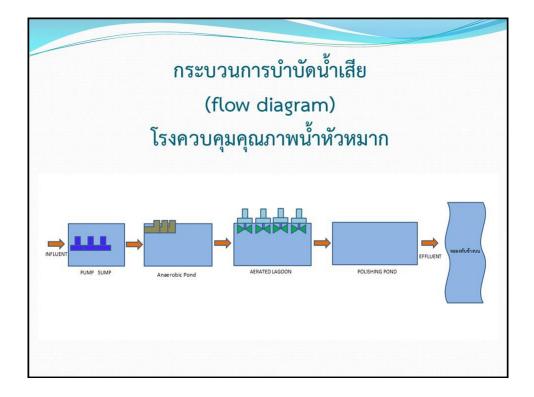


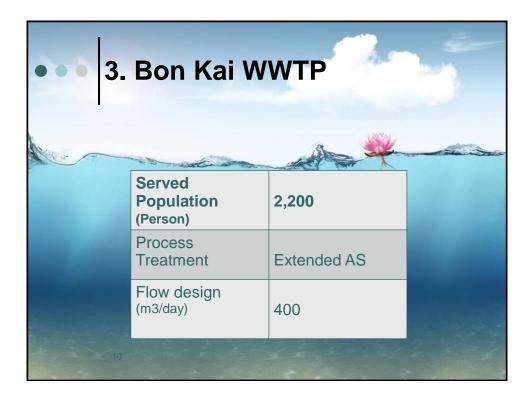

ſ	R	evenue	e from	users	charge	•	
	Mid term plan 2007				Mid	term plan	2011
Year	2007	2008	2009	2010	2011	2012	2013
Plan	638	638	636	635	614	610	606
Result	637	627	616	621	605		
I	8	ł		3			
							28



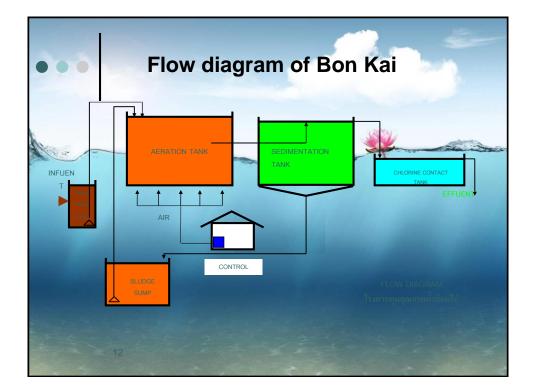


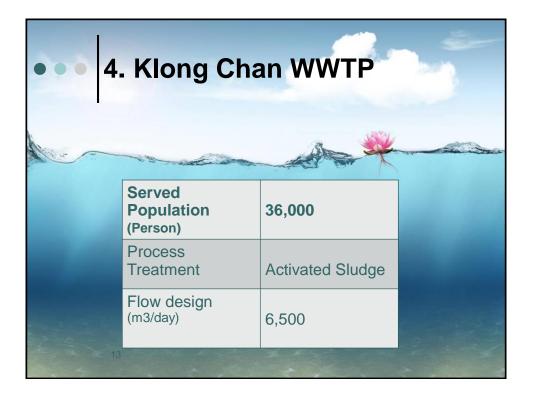


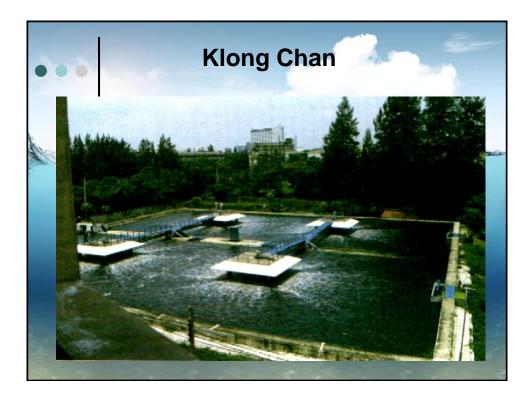


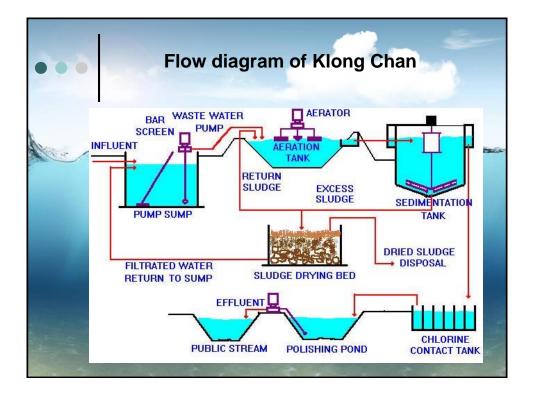




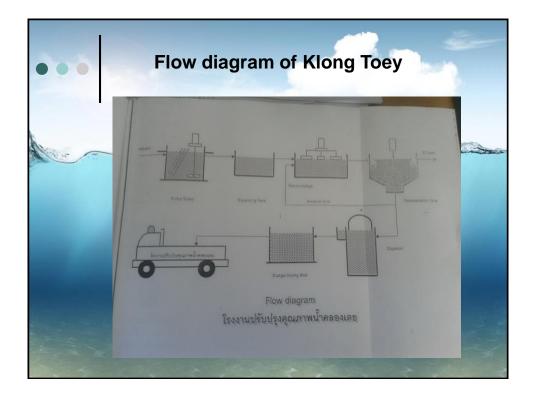

	2.Hua Mar	k WWTP	
and the second s	Served Population (Person)	9,940	
	Process Treatment	Stabilization Pond	
	Flow design (m3/day)	2,000	
7			

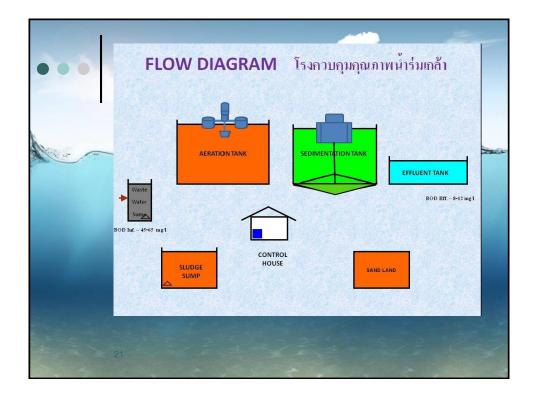




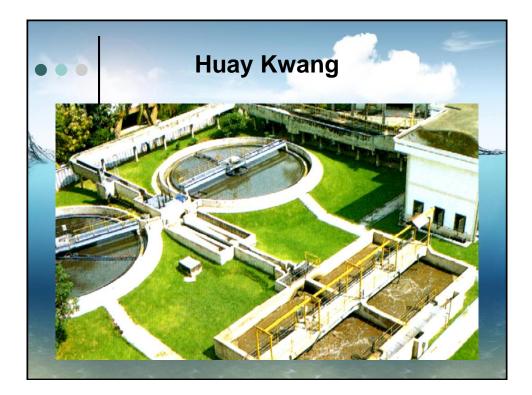


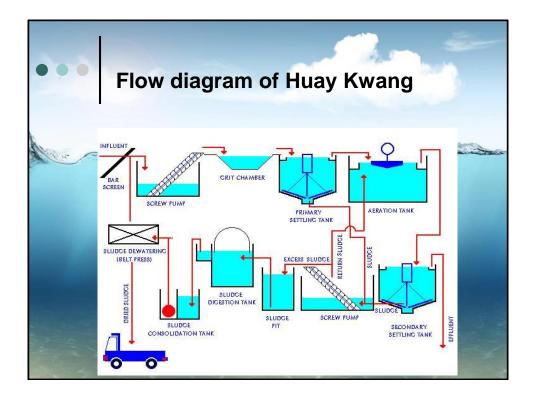




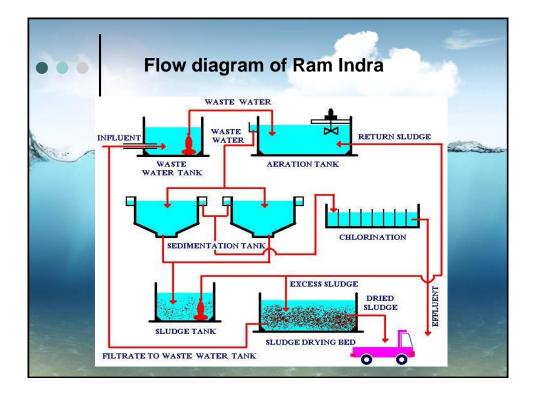

•••	5. Klong Toe	y	-
Alter -	Served Population (Person)	7,200	- Charles
	Process Treatment	Completely mixed AS	
	Flow design (m3/day)	1,200	
	16		No No

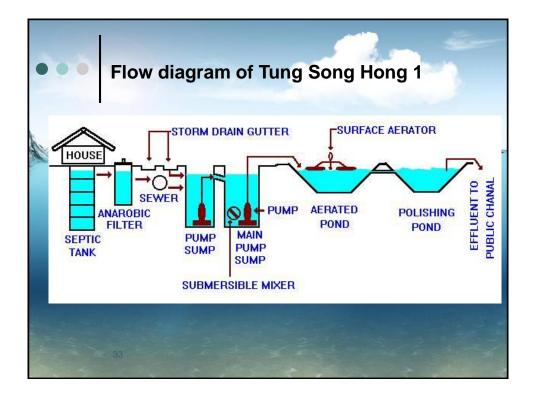
•••	6. Rom Kloa	WWTP	1
Aller -	and the second se		and interest
	Served Population (Person)	19,000	
	Process Treatment	Extended AS	
	Flow design (m3/day)	3,800	
	19		

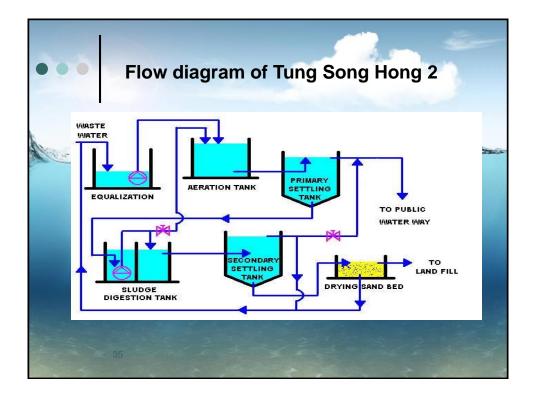



		BOD (I	mg/L)		SS (mg/	L)
	Inf	Eff	Remove (%)	Inf	Eff	Remove (%)
Bang Na	94	4	94.5	98	7	92.7
Hua Mark	69	6	90.6	64	15	76.5
Bon Kai	200	4	98.4	180	6	97.0
Klong Chan	114	8	93.1	62	18	71.2
Klong Toey	153	8	94.6	117	10	91.4
Rom Kloa	66	9	86.3	70	22	67.9

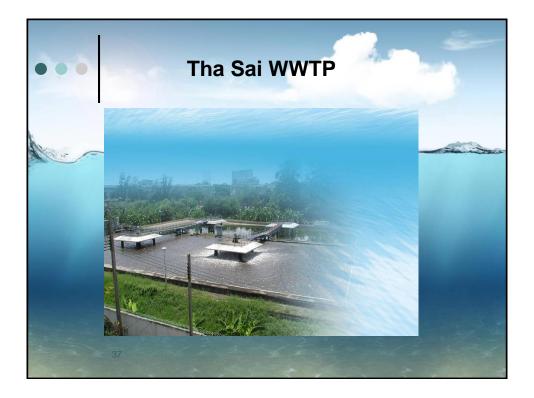
• • •	7. Bang Bua	WWTP	1
All a	Served Population (Person)	8,000	- and the
	Process Treatment	Pump to Chatuchak WWTP	
	Flow design (m3/day)	1,200	
	24		

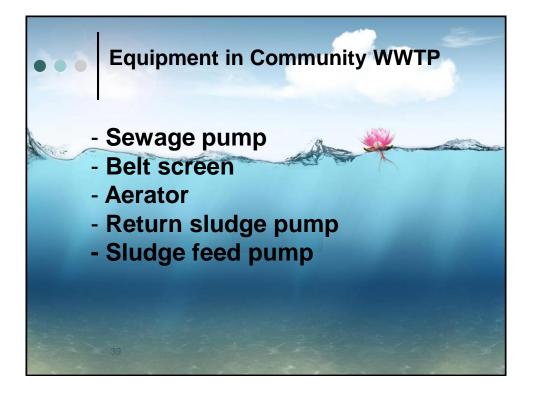

•••	8. Huay Kwa	ng	2
All a man	Served Population (Person)	16,800	
	Process Treatment	Conventional AS	
	Flow design (m3/day)	2,400	
	25		

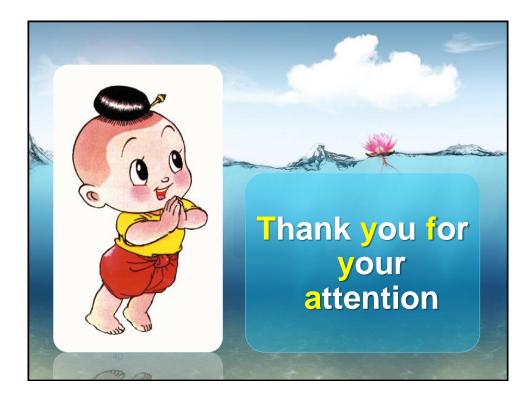

•••	9. Ram Indra	a WWTP	
Alter	Served Population (Person)	4,060	and and a
	Process Treatment	Extended AS	
	Flow design (m3/day)	800	
4	28		



••••	10. Tung Son	g Hong 1 WWTP
All and and	Served Population (Person)	15,000
	Process Treatment	Aerated Lagoon
	Flow design (m3/day)	3,000
	31	




••• 11.	Tung So	ng Hong 2	5
Aller -		A Martin	- Ala Star
	Served Population (Person)	5,500	
	Process Treatment	Activated Sludge	
	Flow design (m3/day)	1,100	
34			



••••	2. Tha Sai	WWTP	
Alter	Served Population (Person)	8,280	
	Process Treatment	Oxidation ditch	
	Flow design (m3/day)	1,300	
	36		

		BOD (I	mg/L)		SS (mg/	L)
	Inf	Eff	Remove (%)	Inf	Eff	Remove (%)
Bang Bua	174	-	-	-	-	-
Huay Kwang	81	5	93.6	52	6	88.6
Ram Indra	69	5	92.6	43	6	85.6
Tung Song Hong 1	45	10	78.7	45	17	63.2
Tung Song Hong 2	148	4	96.6	76	6	92.1
Tha sai	45	3	93.1	31	5	83.4

Appendex 4

"Program approach for building energy efficiency in the E group via introducing high efficiency equipment"

> JCM Proposed Methodology

> JCM Project Design Document

JCM Proposed Methodology Form

Cover sheet of the Proposed Methodology Form		
Form for submitting the proposed methodology		
Host Country	Thailand	
Name of the methodology proponents	I company	
submitting this form		
Sectoral scope(s) to which the Proposed	3. Energy demand	
Methodology applies		
Title of the proposed methodology, and	Comprehensive energy saving at building	
version number	(Hotel etc.), Version 1.0	
List of documents to be attached to this	The attached draft JCM-PDD:	
form (please check):	Additional information	
Date of completion	2016.2.15	

History of the proposed methodology

Version	Date	Contents revised
1.0	2016.2.15	First edition

1

A. Title of the methodology

Comprehensive energy saving at building (Hotel etc.), Version 1.0

B. Terms and definitions

Terms	Definitions		
BEMS	Building Energy Management System: System for		
	facility management and energy saving control and		
	also supporting improvement of environmental and		
	energy performance at building by energy		
	management.		

C. Summary of the methodology

Items	Summary
GHG emission reduction	Achieving reduction of electricity consumption and CO_2
measures	emission by installing BEMS and other energy saving
	technologies.
Calculation of reference	Reference emissions are calculated by "Build up
emissions	method" or "Comprehensive method" with multiplying
	reference electricity consumptions and grid CO_2
	emission factor.
	Build up method is calculation for each
	facilities/equipment installed. Reference electricity
	consumptions are obtained by past data of project
	participant, ex-ante measurement or calculation
	method. Comprehensive method is adopted in case of
	being unable to clarify electricity consumption of
	facilities and only able to clarify electricity
	consumption of entire power system.
Calculation of project	Project emissions calculated by "Build up method" or
emissions	"Comprehensive method" as same as reference
	emissions.

Monitoring parameters	Build up method
	- Electricity consumption [MWh/p] of
	facilities/equipment (i) during period (p) after the
	project implementation
	- Operating time [hours/year] of facilities/equipment
	(i) in year (y) including period (p) after the project
	implementation
	Comprehensive method
	- Reference electricity consumption [MWh/p] of entire
	power system of the building or power system
	including all the facilities/equipment.
	- Operating time [hours/year] of the building (i) in
	year (y) including period (p) after the project
	implementation

D. Eligibility criteria

Criterion 1	Target scope of facilities includes hotel, office building, commercial
	facility such as shopping mall, hospitals and governmental office etc
Criterion 2	Achieving reduction of electricity consumption and CO2 emission by
	installing BEMS (Building Energy Management System) and other
	energy saving technologies.
Criterion 3	Replacement for LED lighting, replacement for high efficient chiller
	and installation of Variable Water Volume (VWV) control etc. are
	regarded as Energy saving technologies
Criterion 4	Possible to monitor electricity consumption of the facilities/equipment
	or the entire building after the project implementation.
Criterion 5	There is no significant expansion/contraction of the building which
	influence energy consumption during project implementation.

E. Emission Sources and GHG types

Reference emissions

Emission sources	GHG types	
Electricity consumption of facilities/equipment	$\rm CO_2$	
Project emissions		
Emission sources	GHG types	
Electricity consumption of facilities/equipment	CO_2	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emission is defined as amount of GHG emitted from existing equipment without installations of the equipment of the scheme. One or other of following 2 methods will be adapted depending on available data.

1. Build up method

In case of being able to clarify electricity consumption of facilities to be replaced, build up method should be adopted. Reference emission is defined as amount of GHG emitted from existing equipment without installations of the equipment of the scheme. The reference emission of the each equipment will be calculated by multiplying the electricity consumption by emission factor of electricity. And the total reference emission amount is total of all facilities/equipment.

The reference electricity consumption can be obtained by past data, ex-ante measurement, or calculation method. The length of past data must be at least 1 year. The ex-ante measurement must be conducted at least 60 days in cool season when energy load is considered low, considering the conservativeness.

If the reference electricity consumption can't be calculated by the past data or the measurement data, it can be estimated by energy efficiency of the equipment reported by manufacturer etc. and the project electricity consumption.

And the reference electricity consumption is corrected by appropriate activity data such as operating time of the equipment.

E.g. (Reference electricity consumption) \times (Operating time of the equipment after the project)/ (Operating time of the equipment before the project).

2. Comprehensive method

In case of being unable to clarify electricity consumption of facilities and only able to clarify electricity consumption of entire power system, comprehensive method must be adopted. The reference emission amount defined as amount of GHG JCM TH F PM ver01.0

emitted from existing equipment without installations of the equipment. The reference emission amount will be calculated by multiplying the reference electricity consumption by emission factor of the electricity. The reference electricity consumption will be set by the past data or the measurement data before the project. Length of past data must be at least a year. The measurement data should be measured at least a year. Considering conservativeness, selecting a month with lowest electricity consumption and multiplying 12 month for calculating annual electricity consumption. And the reference electricity consumption is corrected by appropriate operating time of the equipment as same as build up method.

Moreover, in case of using comprehensive method, it is necessary to show that there are no equipment or activities that influence the project energy consumption or, if there are some equipment or activities influencing the project, it is necessary to prove that the influence is small enough to be ignored.

F.2. Calculation of reference emissions

1. Build up method

(In case of being able to clarify electricity consumption of facilities to be replaced.)

The reference emission is calculated according to the following formula. However, in case of being unable to apply the formula for certain equipment, the reference emission is calculated as following.

①Formula shown in appendix

②Using formula defined in other approved methodologies. (Used methodology must be specified in PDD)

³ Proposing new formula which will applicable for the facilities/equipment. (The methodology must be specified in appendix)

 $RE_{p} = \sum_{i} [EC_{RF,i} \times EF_{CO2,elec} \times \alpha_{p,i}]$

EC_{RF.i} : Reference electricity consumption of facilities/equipment (i) [MWh/p]

- EF_{CO2.elec} : CO₂ emission factor of grid power system [tCO₂/MWh] : Correction factor of activity fluctuation $\alpha_{\rm p}$ i
 - : Facilities/equipment (i)

In case of being unable to obtain appropriate measured value for $EC_{RF,i}$, it can be estimated by formula below.

$$EC_{RF,i} = \frac{EC_{p,i}}{1 - \eta_i}$$

EC _{p,i}	: Electricity consumption of facilities/equipment (i) during (p)
	after the project implementation [MWh/p]

: Estimated energy saving effect of the facilities/equipment

Correction factor of activity fluctuation is defined as following. Following case is an example regarding operating time as an index for activity data. Other indices can be used as activity data in some cases.

 $\alpha_{p,i} = \frac{T_{p,i}}{T_{HS,i}}$

T_{HS.i}

T_{p.i}

 η_i

- : Maximum of operating time of facilities/equipment for 3 years before project implementation [hours/year]
- : Operating time [hours/year] of facilities/equipment in year (y) including period (p) after the project commencement

2. Comprehensive method

(In case of being unable to clarify electricity consumption of facilities and only able to clarify electricity consumption of entire power system.)

 $RE_p = EC_{RF,total} \times EF_{CO2.elec} \times \alpha_n$

EC _{RF,total}	: Reference electricity consumption of entire power system of the		
	building or power system including all the facilities/equipment		
	[MWh/p]		
EF _{CO2,elec}	: CO_2 emission factor of grid power system [tCO ₂ /MWh]		
α _p	: Correction factor of activity fluctuation		

Correction factor of activity fluctuation is defined as following. Following case is an example regarding operating time as an index for activity data. Other indices can be used as activity data in some cases

 $\alpha_{\rm p} = \frac{T_{\rm p}}{T_{\rm HS}}$

T_{HS}

Tn

: Maximum of operating time of building for 3 years before project
implementation [hours/year]
: Operating time of building in year (y) including period (p) after

the project commencement [hours/year]

G. Calculation of project emissions

1. Build up method

(In case of being able to clarify electricity consumption of facilities to be newly installed.)

The project emission is calculated according to the following formula. However, in case of being unable to apply the formula for certain equipment, the project emission is calculated as following.

① Formula shown in appendix

②Using formula defined in other approved methodologies. (Used methodology must be specified in PDD)

③ Proposing new formula which will applicable for the facilities/equipment. (The methodology must be specified in appendix)

```
PE_{p} = \sum_{i} [EC_{p,i} \times EF_{CO2,elec}]
```

 $EC_{p,i}$: Reference electricity consumption of facilities/equipment (i) [MWh/p]

2. Comprehensive method

(In case of being unable to clarify electricity consumption of facilities and only able to clarify electricity consumption of entire power system.)

$PE_p = EC_{p,total} \times EF_{CO2,elec}$

EC _{p,total}	: Reference electricity consumption of entire power system of		
	building or power system including all the facilities/equipment		
	[MWh/p]		
EF _{CO2,elec}	: CO_2 emission factor of grid power system [tCO ₂ /MWh]		

H. Calculation of emissions reductions

Build up method ER_p = RE_p - PE_p ER_p : CO₂ emission reduction during period (p) [tCO₂/p] RE_p : Reference emission during period (p) [t-CO₂/p] PE_p : Project emission during period (p) [t-CO₂/p] 2. Comprehensive method

Considering possibility for $\rm CO_2$ reduction caused by external factors, maximum value of $\rm CO_2$ reduction achieved by the project is set as 20% of reference emission. $\rm ER_p = min(RE_p - PE_p, 0.2 \times RE_p)$

I. Data and parameters fixed *ex ante*

Parameter	Description of data	Source		
Build up method				
EC _{RF,i}	Reference electricity	Past data of project participant, ex-		
	consumption of	ante measurement or calculation		
	facilities/equipment [MWh/p]	method.		
		Past data: At least data during 1		
		year must be used.		
		Ex-ante measurement: Considering		
		conservativeness, conducting		
		minimum 60 days measurement		
		during cool season when energy load		
		of building is estimated lower.		
		Calculation data: Calculated by		
		energy saving effect of		
		facilities/equipment set in advance		
		and electricity consumption after		
		the project implementation.		
Comprehens	Comprehensive method			
EC _{RF,total}	Reference electricity	Past data of project participant, ex-		
	consumption of entire power	ante measurement.		
	system of the building or power	Past data: At least data during 1		

JCM_TH_F_PM_ver01.0

	system including all the	year must be used.
	facilities/equipment [MWh/p]	Ex-ante measurement: Conducting
		at least 1 year measurement.
		Considering conservativeness,
		selecting a month with lowest
		electricity consumption and
		multiplying 12 month for calculating
		annual electricity consumption.
Common		1
EF _{CO2,elec}	CO ₂ emission factor of grid	i) Lately announced value or
	power system [tCO ₂ /MWh]	ii) Average of all power source
η_i	Estimated energy saving effect	Conservative value based on
	of the facilities/equipment	measurement by manufacturer etc.
		(Result must be based on
		measurement conducted in same
		type and size of building.)
T _{HS,i}	Maximum of operating time of	Recorded value by project
	facilities/equipment for 3 years	participant
	before project implementation	
	[hours/year]	
T _{HS}	Maximum of operating time of	Recorded value by project
	building for 3 years before	participant
	project implementation	
	[hours/year]	

Reference: Monitoring parameter

Parameter	Description of data	Source	
Build up me	thod		
EC _{p,i}	Electricity consumption of	Electricity meter (monthly	
	facilities/equipment (i) during	tabulation)	
	(p) after the project		
	implementation [MWh/p]		
T _{p,i}	Operating time [hours/year] of	Recorded value by project	
	facilities/equipment in year (y)	participant (monthly tabulation)	
	including period (p) after the		
	project commencement		

EC _{p,total}	Reference electricity	Electricity meter (monthly	
	consumption of entire power	tabulation)	
	system of the building or		
	power system including all the		
	facilities/equipment [MWh/p]		
Tp	Operating time of building in	Recorded value by project	
	year (y) including period (p)	participant (monthly tabulation)	
after the project commencement [hours/year]			
Common	on		
α _{p,i}	Correction factor of activity	Calculated value	
fluctuation			

Appendix 1 Calculation for CO_2 reduction: High efficient chiller

(1) Reference CO₂ emission

$RE_{p} = \sum_{i} \left[EC_{p,i} \right]$	$_{i} \times \frac{\text{COP}_{\text{PJ},i}}{\text{COP}_{\text{RE},i}} \times \text{EF}_{\text{CO2,elec}} \times \alpha_{\text{p},i}$
REp	: Reference emission during period (p) [t-CO ₂ /p]
EC _{p,i}	: Project electricity consumption of chiller (i) [MWh/p]
$\text{COP}_{PJ,i}$: COP of chiller (i) to be installed by the project
$\text{COP}_{\text{RE},i}$: COP of reference chiller (i)
EF _{CO2,elec}	$\div \mathrm{CO}_2$ emission factor of grid power system [tCO_2/MWh]
α _p	: Correction factor of activity fluctuation
i	: Chiller (i)

(2) Project CO₂ emission

$$\begin{split} & \text{PE}_{\text{p}} = \sum_{i} [\text{EC}_{\text{p},i} \times \text{EF}_{\text{CO2,elec}}] \\ & \text{PE}_{\text{p}} & \vdots \text{Project emission during period (p) [t-CO_2/p]} \\ & \text{EC}_{\text{p},i} & \vdots \text{Project electricity consumption of chiller (i) [MWh/p]} \end{split}$$

(3) CO₂ Emission reduction

$$\begin{split} & ER_p = RE_p - PE_p \\ & ER_p \\ & \vdots CO_2 \text{ emission reduction during period (p) } [tCO_2/p] \end{split}$$

Reference: Joint Crediting Mechanism Approved Methodology ID AM002"Energy Saving by Introduction of High Efficiency Centrifugal Chiller" Appendix 2 Calculation for CO₂ reduction: LED

(1) Reference CO₂ emission

$RE_{p} = \sum_{i} \left[EC_{p,i} \right]$	$_{i} \times \frac{\eta_{PJ,i}}{\eta_{RE,i}} \times \text{EF}_{\text{CO2,elec}} \times \alpha_{p,i}$
REp	: Reference emission during period (p) [t-CO ₂ /p]
EC _{p,i}	: Project electricity consumption of lighting equipment (i) $[\mbox{MWh/p}]$
$\eta_{PJ,i}$	\vdots Luminous efficiency of lighting equipment (i) to be installed by the
project	
$\eta_{RE,i}$: Luminous efficiency of reference lighting equipment (i)
EF _{CO2,elec}	: CO ₂ emission factor of grid power system [tCO ₂ /MWh]
α _p	: Correction factor of activity fluctuation
i	: Lighting equipment (i)

(2) Project CO₂ emission

$$PE_{p} = \sum_{i} [EC_{p,i} \times EF_{CO2,elec}]$$

PEp	: Project emission during period (p) [t-CO ₂ /p]
EC _{p,i}	: Project electricity consumption of lighting equipment (i) [MWh/p]

(3) CO₂ Emission reduction

$$\begin{split} & ER_p = RE_p - PE_p \\ & ER_p \\ & \vdots & CO_2 \text{ emission reduction during period (p) } [tCO_2/p] \end{split}$$

Reference: Joint Crediting Mechanism Approved Methodology ID_AM005"Installation of LED Lighting for Grocery Store"

JCM Project Design Document Form

A. Project description

A.1. Title of the JCM project

Program approach for building energy efficiency in the E group via introducing high efficiency equipment

A.2. General description of project and applied technologies and/or measures

This project aims to reduce CO2 emission of 5 hotels that belongs to 5 hotels via installing high efficiency equipment, such as VWV control, chiller and LED etc. Introduced equipment are shown in the below.

No. of Sub-project		0	2	3	4	5
Hote	əl	А	В	С	D	Е
Equ	LED	0	-	-	-	-
Equipment	Heat control	0	0	0	0	0
ent		(VWV control				
		of 1^{st} pump)	of 1^{st} pump)	of 1^{st} pump)	of 1^{st} pump)	of 1 st pump)
	High efficiency	0	-	-	-	-
	chiller					
	Condensate control	0	0	0	0	0
		(VWV	(VWV	(VWV	(VWV	(VWV
		Control)	Control)	Control)	Control)	Control)
	Distribution pump	0	0	0	-	-
		(VWV control	(VWV control	(VWV control		
		of 2nd	of 2nd	of 2nd		
		pump)	pump)	pump)		

A.3. Location of project, including coordinates

Country	Thailand
Region/State/Province	$\operatorname{Sub-project}(1)$: Bangkok
etc.:	Sub-project2 : Bangkok
	Sub-project ³ : Pattaya

	Sub-project @: Pattaya
	Sup-project 5 : Bangkok
City/Town/Community	Sub-project① : Klongtoey
etc.:	Sub-project② : Rajdamri Road
	Sub-project③ : Chonburi, Banglamung, Nongprue
	Sub-project④ : Chonburi, Banglamung, Nongprue
	Sub-project 5 : Pathumwan

A.4. Name of project participants

Kingdom of Thailand	E group
Japan	P company

A.5. Duration

Starting date of project operation	October, 2016
Expected operational lifetime of	Ten years
project	

A.6. Contribution from developed countries

This project applies the Financing Programme for JCM Model Projects supported by MOE and will receive financing support of, 50% of initial cost at a maximum, in exchange of JCM credits. Technology transfer, running machines and capacity building will be conducted by P company with local companies.

B. Application of an approved methodology(ies)

B.1. Selection of methodology(ies)	
Selected approved methodology No.	Comprehensive energy saving
	in the commercial buildings
Version number	Version 1.0
Selected approved methodology No.	
Version number	
Selected approved methodology No.	
Version number	

B.2. Explanation of how the project meets eligibility criteria of the approved methodology

	Eligibility	Descriptions specified in the	Project information
--	-------------	-------------------------------	---------------------

criteria	methodology	
Criterion 1	Target scope of facilities	Target scope of facilities is hotel
	includes hotel, office building,	buildings.
	commercial facility such as	
	shopping mall, hospitals and	
	governmental office etc	
Criterion 2	Achieving reduction of	Comprehensive energy reduction
	electricity consumption and	project by installing BEMS
	CO2 emission by installing	(Building Energy Management
	BEMS (Building Energy	System) and other energy saving
	Management System) and	technologies.
	other energy saving	
	technologies.	
Criterion 3	Replacement for LED lighting,	Installed energy saving
	replacement for high efficient	technologies are LED lighting,
	chiller and installation of	replacement for high efficient
	Variable Water Volume (VWV)	chiller and installation of Variable
	control etc. are regarded as	Water Volume (VWV) control etc.
	Energy saving technologies	
Criterion 4	Possible to monitor electricity	Monitoring of electricity
	consumption of the	consumption of the
	facilities/equipment or the	facilities/equipment is possible.
	entire building after the	
	project implementation.	
Criterion 5	There is no significant	There is no significant
	expansion/contraction of the	expansion/contraction of the
	building which influence	building which influence energy
	energy consumption during	consumption during project
	project implementation.	implementation.

C. Calculation of emission reductions

C.1. All emission sources and their associated greenhouse gases relevant to the JCM

project

Reference emissions	
Emission sources	GHG type
Emission sources	GHG type

Electricity usage of the facilities/equipment in the targeting	CO_2
hotels	
Project emissions	
Emission sources	GHG type
Electricity usage of the facilities/equipment in the targeting	CO_2
hotels	

C.2. Figure of all emission sources and monitoring points relevant to the JCM project Sub-project ① : A hotel

C.3. Estimated emissions reductions in each year

Year	Estimated Reference	Estimated Project	Estimated Emission
	emissions (tCO _{2e})	Emissions (tCO _{2e})	Reductions (tCO_{2e})
2016	$4,060.6t^{-}CO_{2}$	$3,546.2t$ - CO_2	$514.4t$ - CO_2
2017	$16,242.3t-CO_2$	$14,184.6t-CO_2$	$2,057.7t$ - CO_2
2018	16,242.3t-CO ₂	$14,184.6t-CO_2$	$2,057.7t$ - CO_2
2019	16,242.3t-CO ₂	$14,184.6t-CO_2$	$2,057.7t$ - CO_2
2020	16,242.3t-CO ₂	14,184.6t-CO ₂	2,057.7t-CO ₂
Total			$8,745.2t$ - CO_2
(tCO_{2e})			

D. Env	D. Environmental impact assessment				
Legal	requirement	of	environmental	impact	The rest is omitted.
assessment for the proposed project					

E. Local stakeholder consultation

E.1. Solicitation of comments from local stakeholders

The rest is omitted.

E.2. Summary of comments received and their consideration

Stakeholders	Comments received	Consideration of comments received
The rest is omitted.	The rest is omitted.	The rest is omitted.

F. References

Reference lists to support descriptions in the PDD, if any.

Annex

Revision h	Revision history of PDD		
Version	Date	Contents revised	
1.0	March, 2016		

Appndex 5

Implementation of the Low Carbon Technology workshop, Matchmaking session and Study tour in Japan

➤ List of participants :

The Low Carbon Technology workshop, Matchmaking session and Study tour in Japan

> Presentatin docments of OECC:

JCM Project Opportunities under the Bangkok Master Plan on Climate Change Presenting case study of the JCM project that was conducted in JPY2014 with OECC's support

- (1) 低炭素技術ワークショップ・マッチング参加者リスト
- 1)13日ワークショップタイ側参加者

JCM	WORKSHOP			
Low ·	Carbon Technology	nission in Bangkok th	rough Joint Crediting Mechanism (JCM)	
13th July 2015 at 9:00 AM BALLROOM 2 (5TH FLOOR, S31 SUKHUMVIT HOTEL)				
No.	Organization	Name	Title	
ลำดับ		ชื่อ	ดำแหน่ง	
1	Taksin Hospital	Mrs. Kanthima Thangvuthi	Director of Taksin Hospital	
		นางกันธิมา ธันขาวุฒิ	ผู้อำนวยการ โรงพยาบาลตากสิน	
		Mrs. Busakorn Nualyong	Deputy Director of Taksin Hospital	
		นางบุษกร นวลยง	รองผู้อำนวยการโรงพยาบาลตากสิน	
		Mr.Sooksan Jinhirun	Electrician,Taksin Hospital	
		นายสุขสันต์ จินหิรัญ	นายช่างไฟฟ้าชำนาญงาน	
2		Technician professional level, Sirinthorn		
		นายวันชัย เอี่ยมศรี	Hospital	
3	Klang Hospital	Mr.Nattapong	Techician professional level, Klang Hospital	
		Kongpol		
		นายณัฐพงษ์ กองพล		
		Mr.Kttidech	General Techician,Experience lv.	
		Tadthaisong		
		นายกิตติเคช ถาคไธสง	โรงพยาบาลหลวงพ่อทวีศักดิ์ ชุตินุธโร อุทิศ	
4	Bangkok Hospital	Mr.Akasak	Engineer, Bangkok Hospital	
		Suwanna		
		นายเอกศักดิ์ สุวรรณา		
5	Phyathai 2	Ms.Narissara	Service Support Division Manager, Phyathai 2	
	International	Ronnarongrit	International Hospital	
	Hospital			

6	The Siam Cement Group	Ms.Somying Panyacheevita นางสาวสมหญิง ปัญญาชีวิตา	Engineer SCG
7	Infinite Green Co.ltd.	Mr.Johnny Ko	Managing Director, Infinite Green Co.ltd.
8	Wan Thai Foods	Mr.Narong	Engineering Manager , Wan Thai Foods
	Industry	Pengpool	Industry
		นายณรงค์ เพึ่งพูล	ผู้จัดการฝ่ายวิศวกรรม
		Mr.Kriskorn Yooa	Environmental Control Manager, Wan Thai Foods Industry
		นายกฤษกร อยู่เอ	ผู้จัดการฝ่าขควบคุมสิ่งแวคล้อม
9	Global Utilities Services Co.Ltd.	Mr.Varanon Laosuwan นายวรานล เหล่าสุวรรณ	Marketing communication manager Global Utilities Services Co.Ltd.
10	PEA ENCOM International Co.,Ltd.	Mr.Yongyut Photong นาขยงยุทธ โพธิ์ทอง	Project Manager PEA ENCOM International Co.,Ltd.
		Mr.Supan Thonprom นายสุพรณ ค้นพรม	Project Engineer PEA ENCOM International Co.,Ltd.
11	PTT Public Company Limited	Dr.Nattasith Chiarawatchai คร.ณัฐสิทธิ์ เจียรวัฒน์ชัย	HSE officer PTT
		Mr.Naruechai Koonthong นาขนฤษัย ลูณทอง	HSE officer PTT
12	Energy Saving Products co.ltd	Mr.Lumpool Ounruan นายอำพูล อุ่นเรือน	Managing Director, Energy Saving Products co.ltd
		Ms.Uraiphan Sirichatchai	General Manager, Energy Saving Products co.ltd

		นางสาวอุไรพรรณ ศิริชาติชัย	
13	.3 Blue Sky Mr.Praphakorn Technology Charoenwipasjet Services co.ltd. นายประภากร เจริญวิภาสเจด		Sales Manager Blue Sky Technology Services co.ltd.
		Mr.Natthapong Doungkaew นาชพัฏฐพงษ์ ควงแก้ว	Sales Engineer Blue Sky Technology Services co.ltd.
14	SCB	Mr.Wasutana Pattanathaworn นายวสุธนา พัฒนถาวร	AVP,Building Operation ,SCB
		Mr.Tanongsak Sothon นายทนงศักดิ์ โสทน	Buiding Operations&Maintaenace,SCB

The Participants for the site visiting 14th July, 2015

Wan Thai Foods Industry Co.,Ltd.

No.	Organization name	Name
1	Thai Takasago Co., Ltd.	Takafumi Doudou
2	Thai Takasago Co., Ltd.	Kouji Fujishiro
3	OECC	TBC
4	Yokohama City	TBC

Infinite GreenCo.,Ltd

No.	Organization name	Name
1	Eight-Japan Engineering Consultants Inc.	Taisuke Odera
2	Mitsubishi Heavy Industries Asia Pacific Pte. Ltd.	Toru Nakajima
3	Mitsubishi Heavy Industries, Mahajack Air Conditioners Co. Ltd	Mitsunobu Karasawa
4	Mitsubishi Heavy Industries, Mahajack Air Conditioners Co. Ltd	Ekachai Lertjiaranai
5	OECC	TBC
6	Yokohama City	TBC

Hemaraj Land & Development

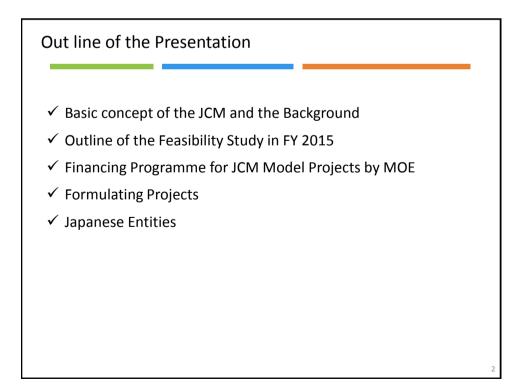
Car1:

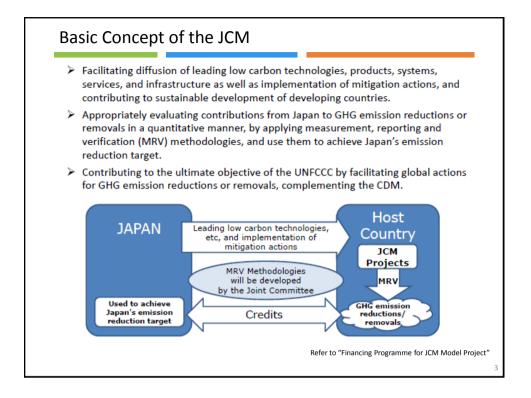
No.	Organization name	Name	
1	AMCON Inc.	Youichi Hirose	
2	AMCON Inc.	Buntaro Shiono	
3	FINETECH CO., LTD	Motoyuki Okada	
4	FINETECH CO., LTD	Kikuo Sagawa	
5	JFE	Hirofumi Hamayotsu	

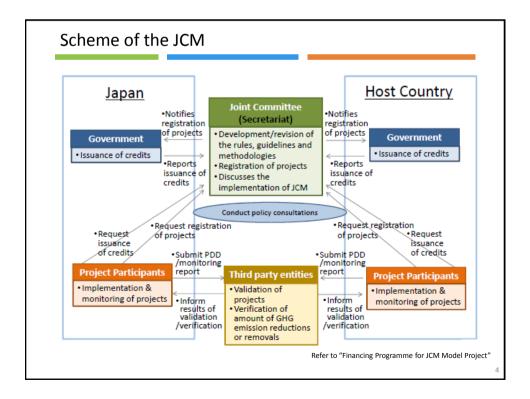
6	OECC	TBC	
7	Yokohama City	TBC	

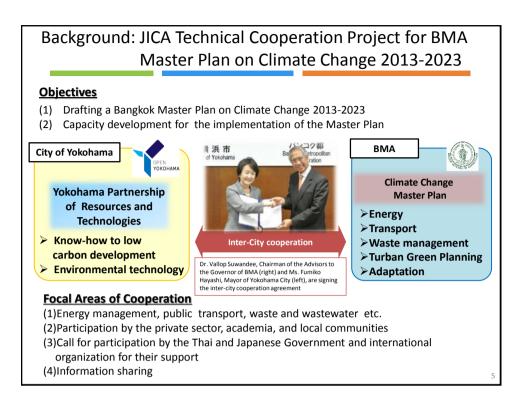
Car2:

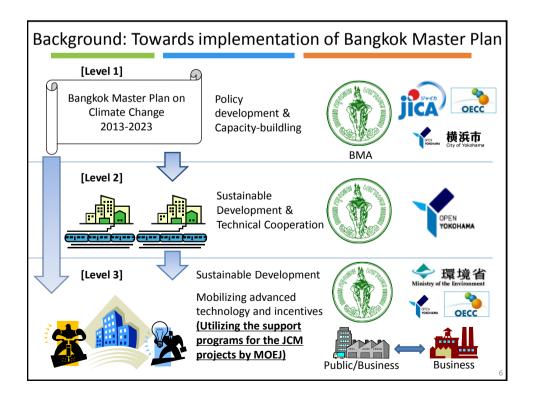
No.	Organization name	Name	
1	OECC	TBC	
2	Mansei	Takeshi Konishi	
3	Mansei	Yasuhiko Hisano	
4	JUSTEC Corporation	Koutarou Doi	
5	JUSTEC Cooperation	Yoshiaki Murota	
6	Yokohama City	TBC	

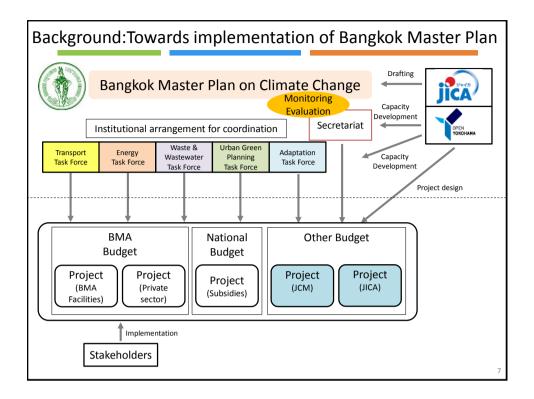

List of the study tour

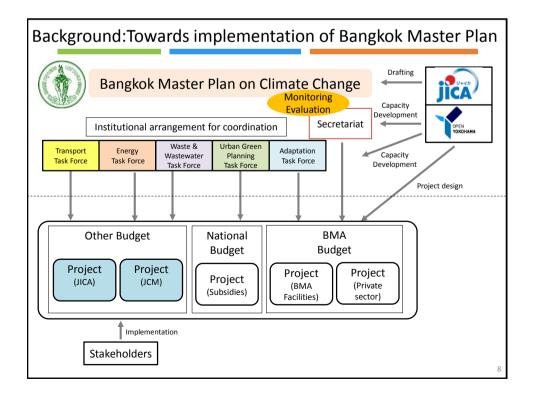

18-23, October, 2015

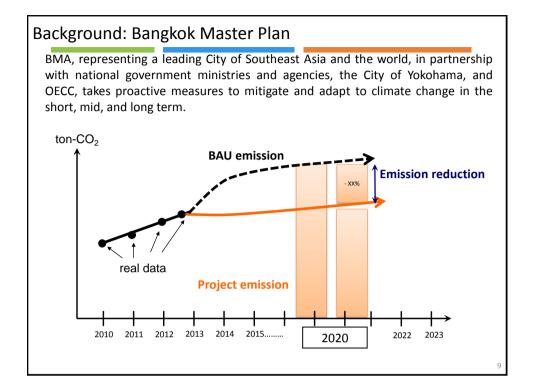

		Name	Organization, Company/Job title	Group
	1	Mr. Tawatchai Napasaksri	Chief of Building Engineering Sub-division, Department of Public Works, BMA	Energy
	2	Ms. Wannipa Wongyara	Sanitation Technical Officer, Department of Environment, BMA	Waste and Waste water management
BMA	3	Mr. Jirathep Thaochoo	Electrical Engineer Department of Environment, BMA	Waste and Waste water management
ΛA	4	Mr. Kasame Thepnoo	Sanitation Technical Officer Department of Drainage Sewerage, BMA	Waste and Waste water management
	5	Mr. Nattapong Mephokkit	Deputy director of BMA General Hospital	Energy
	6	Ms. Natnares Macharoen	Environmentalist Department of Environment, BMA	Waste and Waste water management
	7	Mrs.Busakorn Nualyong	Deputy Director, Taksin Hospital	Energy
Hospita	8	Mrs.Suppaya Chiewroongroj	Deputy Director, Luangpho Thaweesak Chutinutaro Uthih Hospital	Energy
ital	9	Mrs.Ladda Huiprasert	Deputy Director, Wetchakarunrasm Hospital	Energy
	10	Ms. Kumjong Wongthai	Registered Nurse, Rachaphiphat Hospital	Energy
PRC	11	Mr. Thanomsin Chanjirajit	Project Engineer, Engineering Section, Prime Road Group Co., Ltd	Waste and Waste water management

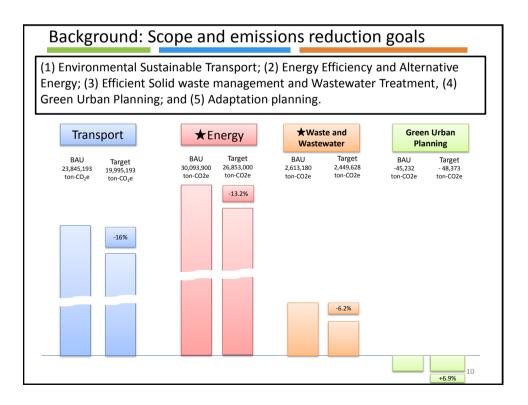


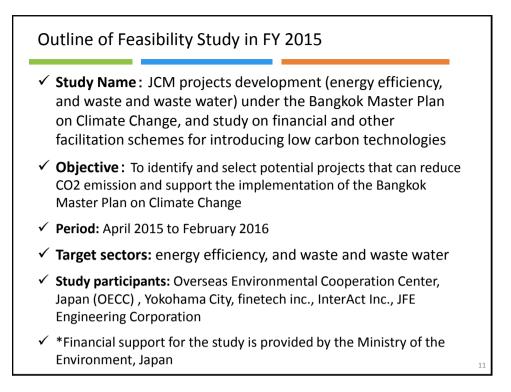


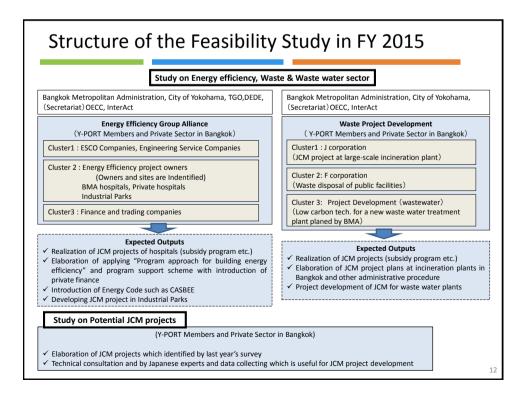


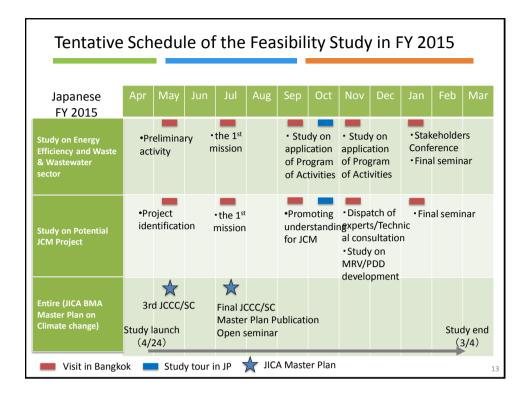


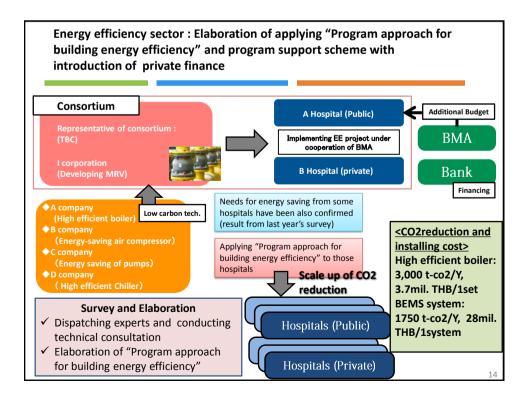


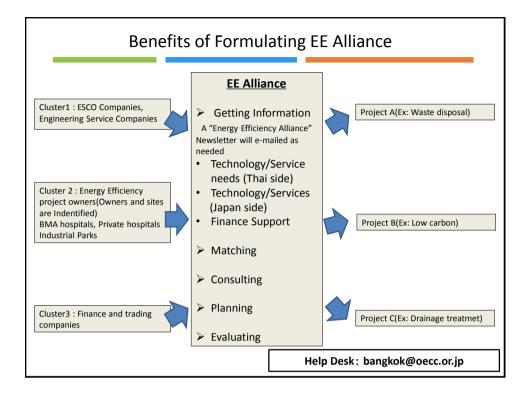


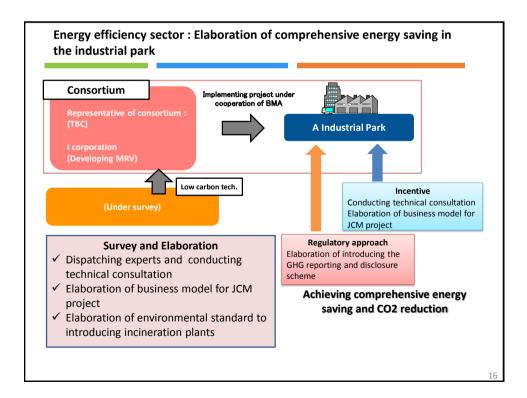


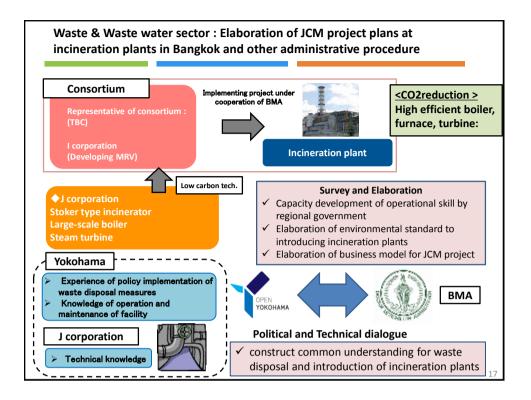


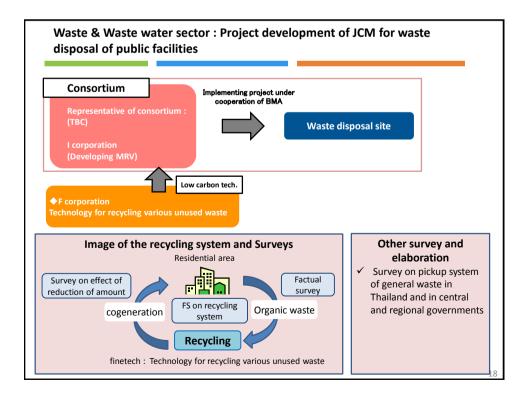


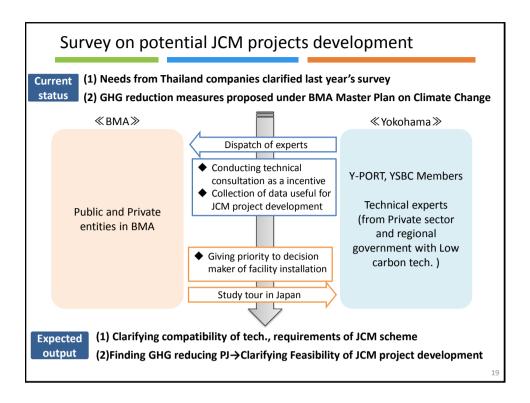


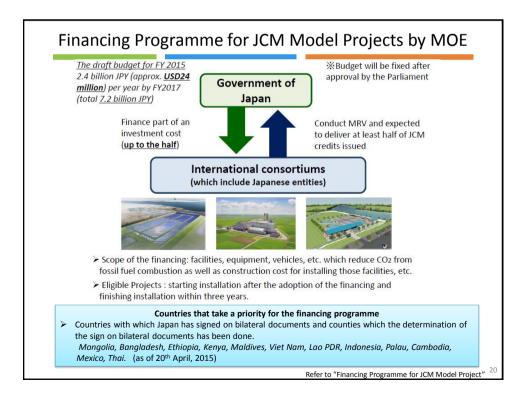


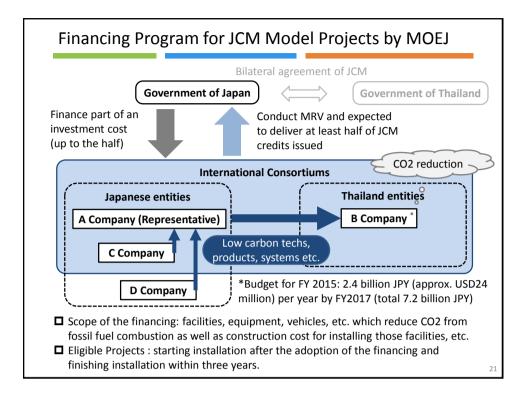


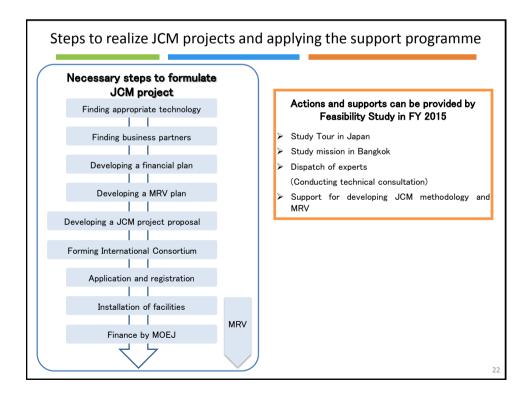


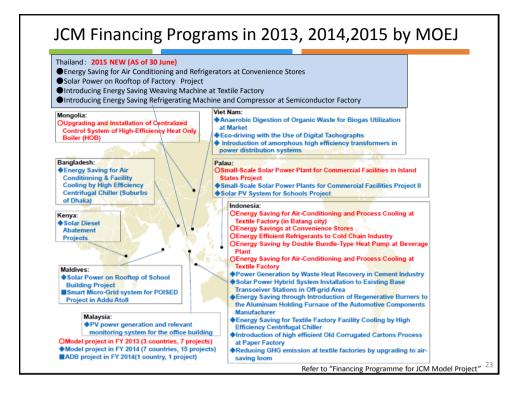


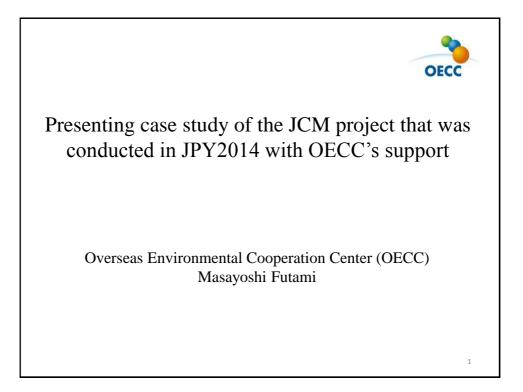


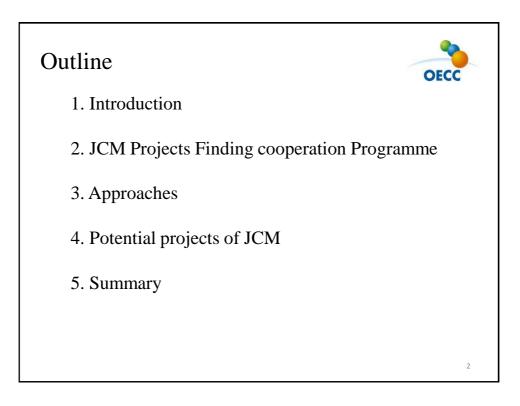


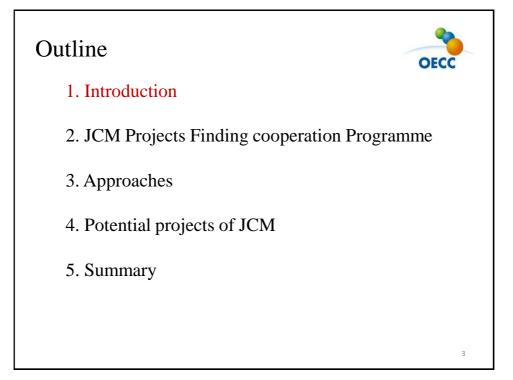


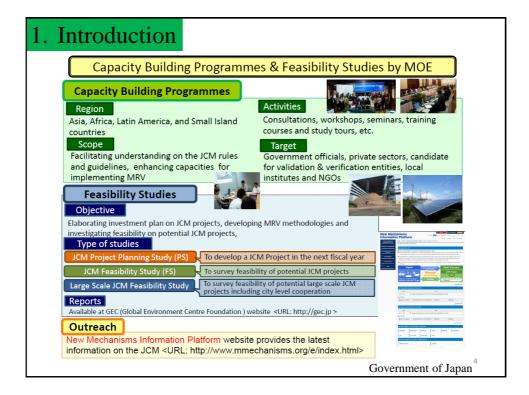


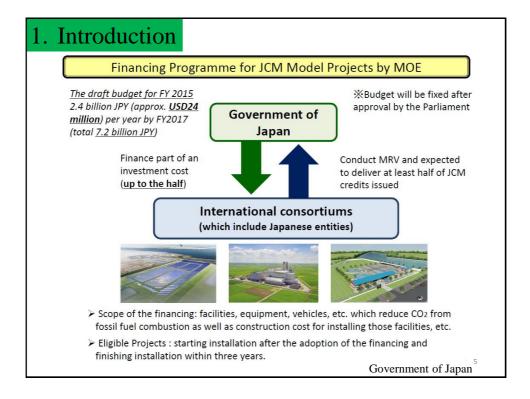


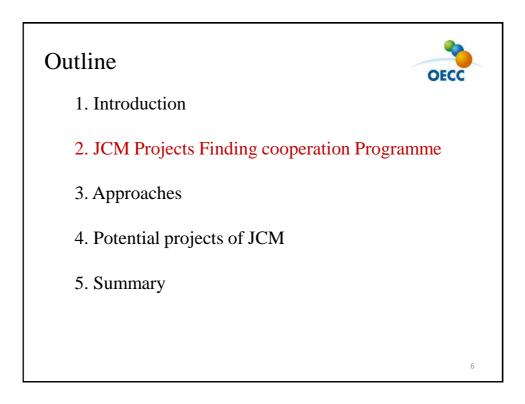


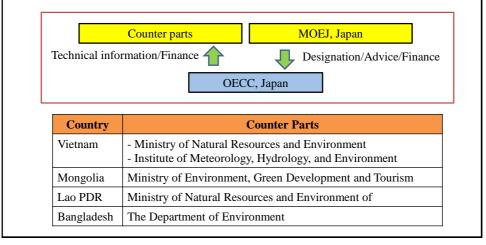


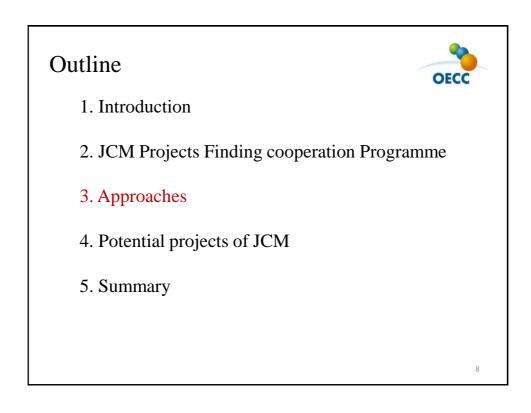


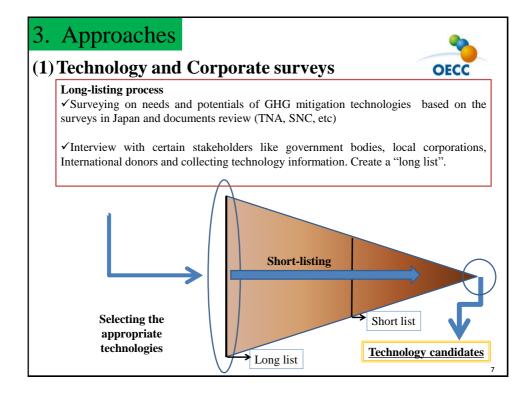

Japanese entities		
Companies	Contents	
AMCON INC	Sludge Treatment / Sludge handling / Wastewater Treatment / Energy Saving	
Mansei Recycle Systems Co., Ltd.	Industrial Waste Processing / Fluff fuels producing from waste plastics/Producing wooden chips for boiler fuels/Sales of Solar power system	
FINETECH Co., Ltd.	Green Energy & Resource Recovery Technology	
JFE Engineering Corporation	Environmental Solution Services and Others	
Takasago Thermal Engineering Co., Ltd	Air Conditioning; Electrical Engineering; Eco-Friendly Solutions; Mechanical & Electrical Engineering Contractor	
Mitsubishi Heavy Industries, Ltd	Air Conditioning	
Eight-Japan Engineering Consultants Inc	Consulting(Waste-to-Energy, MSW, biomass, biogas project, JCM, CDM)	
Elmo Tech Co., Ltd.	Engineering and Construction	
Azbil (Thailand) Co.,Ltd.	Energy Saving Solution/Building Energy Management System(BEMS)(ESCO)	
ТАКИМА	Waste to Energy Plant	
JUSTEC Corporation	Environment/Water Treatment	
ORIX Corporation	financial services group	
Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd.	Waste to Energy	
NIPPON THERMOENER (THAILAND) CO.,LTD.	Boiler and Hot water heater	











2. JCM Projects Finding cooperation Programme

The JCM Projects Finding cooperation Programme is conducted between Counter parts of 5 countries and the Ministry of the Environment, Japan (MOEJ) through an implementing organization, Overseas Environmental Cooperation Center, Japan (OECC). The aim is finding candidates of high performance low carbon technologies and JCM projects in accordance with local needs.

3. Approaches

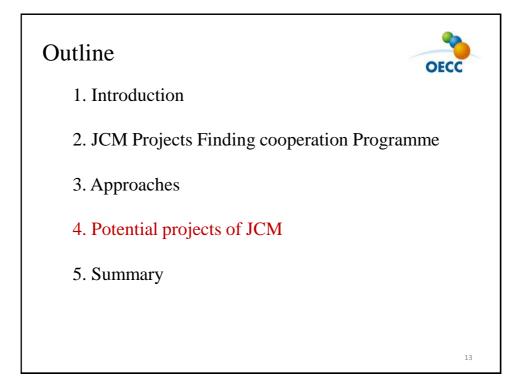
(2) Promoting formation of JCM projects

Based on those studies, we selected promising Japanese and host-country companies, technologies and products. Then we screened each of the individual conditions to select appropriate financial options, data collection to develop JCM project.

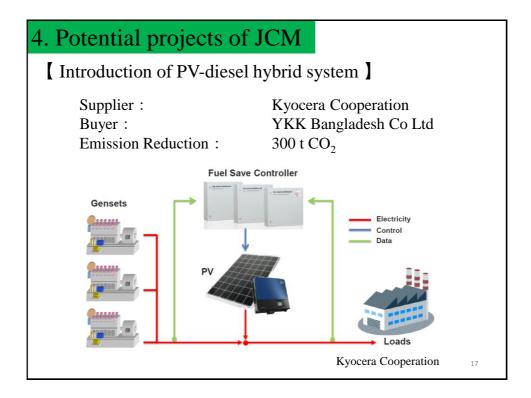
- Technical categories
- Targeted technologies and products
- Candidate business operators in Japan and host countries
- Estimated cost of introduction
- Investment process and finance options
- Emissions reduction potential of GHG
- Schedule
- MRV

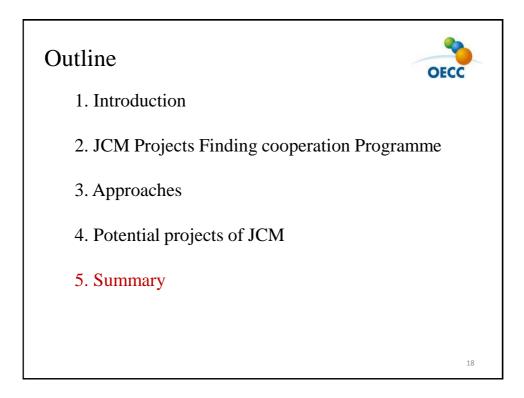
3. Approaches

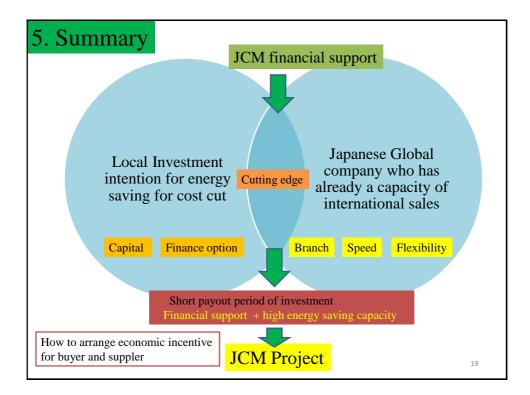
(3)Workshop and Japan study tour

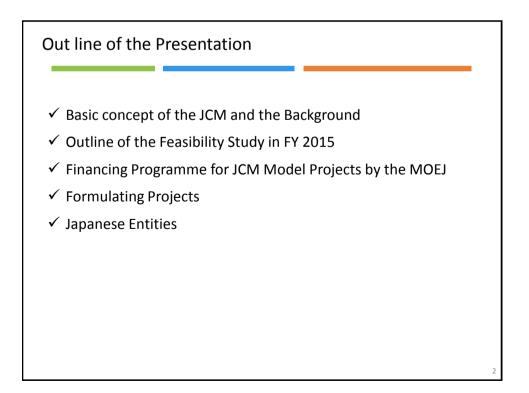

We held workshops participating private companies of Japan and the local JCM potential project owners in hosting countries in order to promote dissemination of low-carbon technologies and JCM

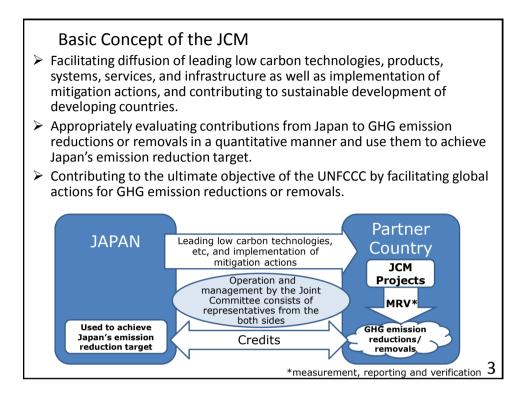
Workshop in Lao PDR

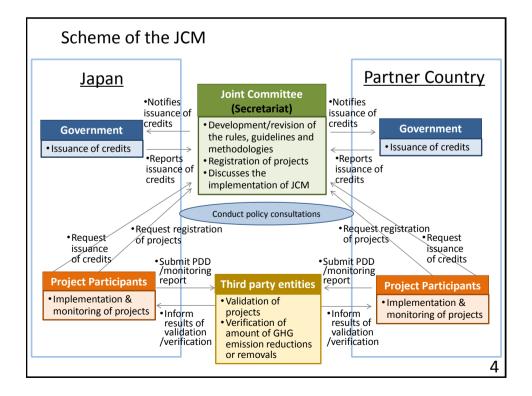

Japan tour with Bangladesh colleagues

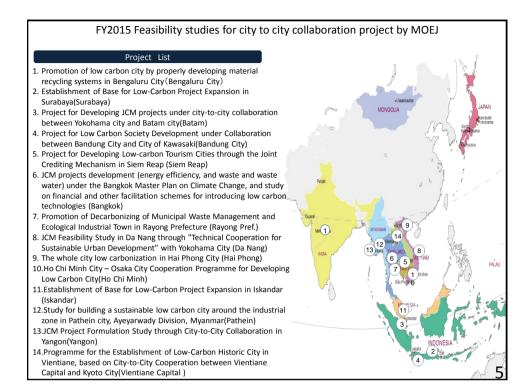


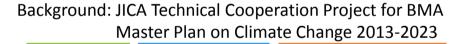


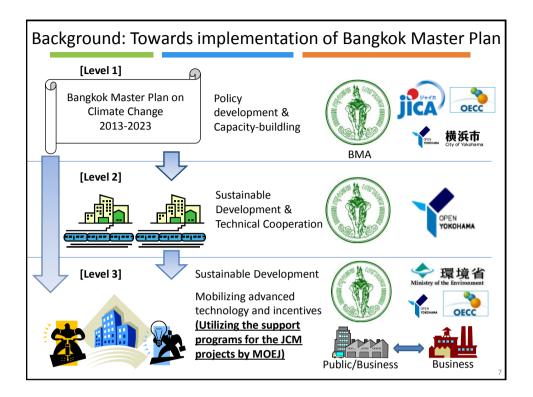

Appndex 6

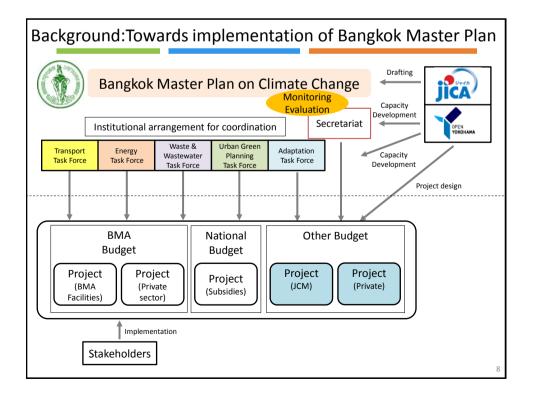

Presentation Documents of International Conferences and Workshops


➢ A presentation document of COP21:


JCM Project Opportunities under the Bangkok Master Plan on Climate Change

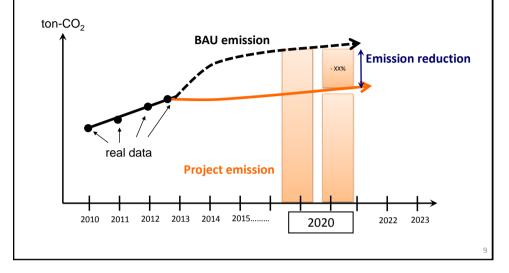


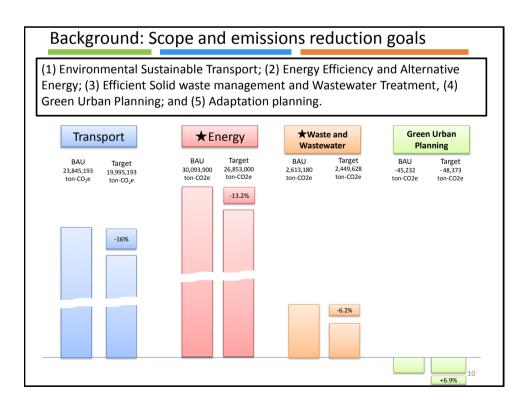


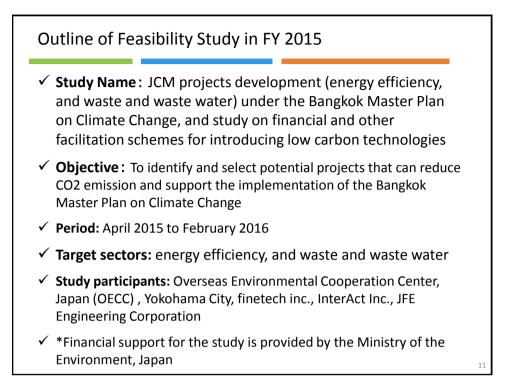


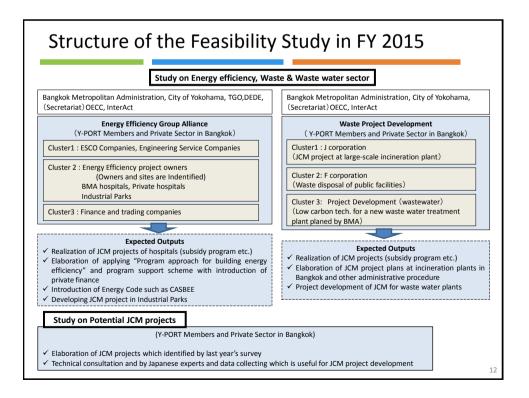
Objectives

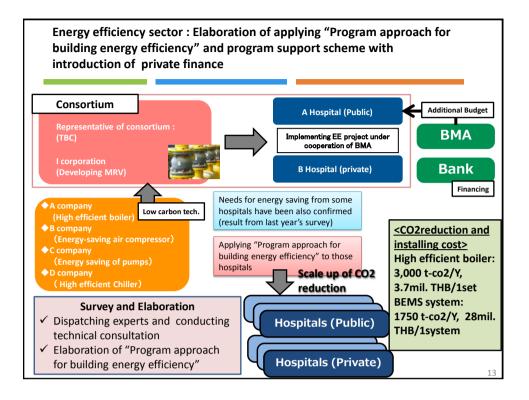
- (1) Drafting a Bangkok Master Plan on Climate Change 2013-2023
- (2) Capacity development for the implementation of the Master Plan

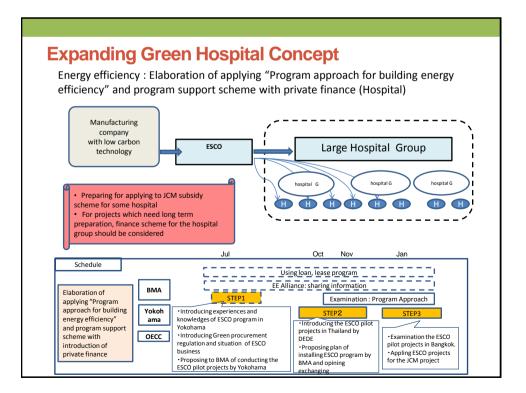


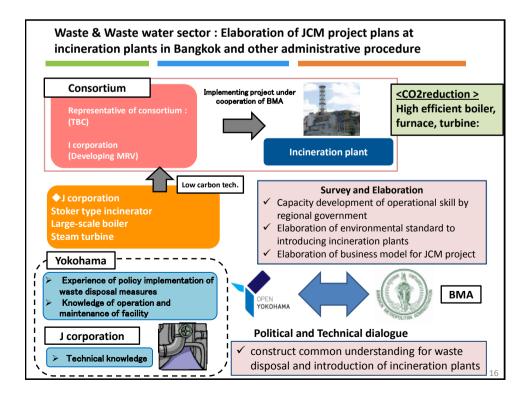


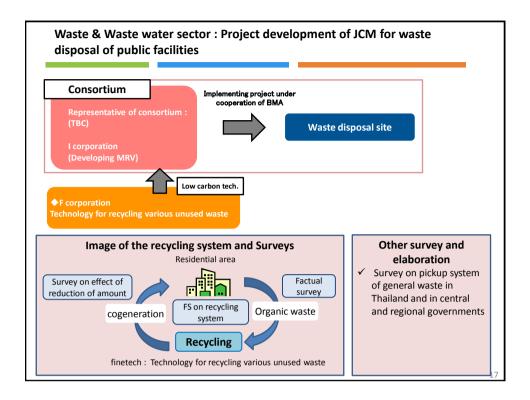


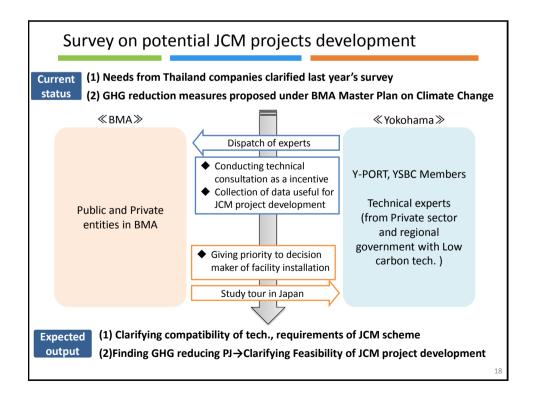

Background: Bangkok Master Plan

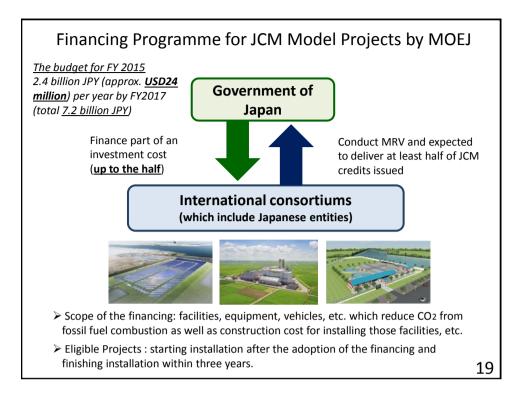

BMA, representing a leading City of Southeast Asia and the world, in partnership with national government ministries and agencies, the City of Yokohama, and OECC, takes proactive measures to mitigate and adapt to climate change in the short, mid, and long term.











Support Program Enabling "Leapfrog" Development (Finance/ADB) by MOE			
Collaborative Financing Programme	ADB Trust Fund (JF JCM)		
Budget for FY 2015[Budget for FY2014]	Budget for FY 2015[Budget for FY2014]		
1.8 billion JPY (approx. USD18 million) per year by FY2018 (total 7.2 billion JPY) [4.2 billion JPY] Scheme To finance the projects which have the better efficiency of reducing GHG emission in collaboration with other projects supported by JICA and other governmental- affiliated financial institute. Purpose To expand superior and advanced low-carbon technologies for building the low carbon society as the whole city wise and area wise in the wider fields, and to acquire credits by the JCM.	1.8 billion JPY (approx. USD18 million)[1.8 billion JPY] Scheme To provide the financial incentives for the adoption of the advanced low-carbon technologies which are superior in GHG emission reduction but expensive in ADB- financed projects. Purpose To develop ADB projects as the "Leapfrog" developments by the advanced technologies and to show the effectiveness of the JCM scheme by the acquisition of credits of the JCM.		
Financial assistance/Financial investments for overseas investment and lending Supported Project by JICA, etc. Collaboration JCM Project Finance			
Contribution ADB	Superior Advanced Low Carbon Technologies		

リサイクル適性の表示:印刷用の紙にリサイクルできます この印刷物は、グリーン購入法に基づく基本方針における「印刷」に係る判 断の基準にしたがい、印刷用の紙へのリサイクルに適した材料 [Aランク]の みを用いて作製しています。