Air Pollution Control Technology
In
Steel Industry

March 2005

Overseas Environmental Cooperation Center, Japan
Air Pollution Control Technology in Steel Industry

Committee Members

Chairman:
Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University) (Retired)

Member:
Mr. S. Iwasaki, Director, Metocean Environment Inc.
Dr. S. Fujii (P.E.), Takuma Co., Ltd.
Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

Prepared by
Dr. A. Hogetsu (P.E.), Research Commissioner, OECC
Steel mill lives close together with neighboring people

(Kobe Steel Kakogawa Plant)
1. Iron & Steel Making Process and Air Pollutants

- Iron ore & coking coal
- Sintering machine
- Coke oven
- Hot stove
- Blast furnace
- Converter
- Continuous casting
- Pre-heating furnace
- Continuous annealing furnace
- Hot rolling
- Cold rolling

Air Pollutants:
- Dust
- SOx
- NOx

Other Outputs:
- BFG
- Slag
- COG
- Boiler
2. Process of Electric Furnace Plant and Air Pollutants

EBT: Electric Bottom Tapping

- Scrap preheater
- EBT
- Ladle refining furnace
- Ladle
- Tandish mold
- Continuous casting
- Dust

Pollutants:
- Soot
- Dust
- Odor
- White smoke
3. Coarse Particle Scattering Prevention

3-1 Coal Handling Process

- Water sprinkling
- Chemical spraying
- Wind shelter fence
- Coal cargo
- Hopper
- Chemical dosing
- Chemical spraying
- Coke oven
- Quenching tower
- Screening
- Dust collector
- Dust collection
- Storage bin
- Coke production facility
3. Coarse Particle Scattering Prevention

3-2-1 Coke Production × Coal Charging Process

- Centrifugal decanter mounted on ground
- Tar decanter mounted on charging car
- Venturi scrubber mounted on ground
- Pre-duster
- Connection valve
- Water tank
- Venturi scrubber to stack
- COG dust collector
- Combustion chamber
- Bump ejector
- Spray nozzle
- COG
- Tar decanter
- Thickener
- Leveling bar
- Coking chamber
- Connection valve
- COG
- Centrifugal decanter
3. Coarse Particle Scattering Prevention

3-2-2 Coke Production ▪ Coke Discharging Process

- Coke guide car
- Ground facilities
- Pre-duster
- Bag filter
- Stack
- Coke oven
- Suction hood
- Quenching car
- Connection valve
- Coke guide car
- Ground facilities
3. Coarse Particle Scattering Prevention

3-3 Sintering Process

ESCS: Electrostatic Space Clear Super
3. Coarse Particle Scattering Prevention

3-4 Blast Furnace Process

- **Coke Bin**
 - Bag f.
 - $Q = 4,800 \text{ m}^3/\text{m}^3$
 - $3 \, \text{mg}/\text{Nm}^3$

- **Ore Bin**
 - Bag f.
 - $Q = 1,400 \text{ m}^3/\text{m}^3$
 - $15 \, \text{mg}/\text{Nm}^3$

- **Surge Hopper**
 - Wet s.
 - Bag f.
 - $Q = 460 \text{ m}^3/\text{m}^3$
 - $5-10 \, \text{mg}/\text{Nm}^3$

- **Hot Stove**
 - Torpedo car
 - Slag ladle
 - Casting bed
 - Bag f.
 - $Q = 13,000 \times 2 \text{ m}^3/\text{m}^3$
 - $4 \, \text{mg}/\text{Nm}^3$
3. Coarse Particle Scattering Prevention

3-5 Steel Manufacturing Process (Converter)

- Bag filter
- EP

- **hot metal**
- **Treatment center**
 - $7,700 \text{ m}^3/\text{m}^3$
 - 5 $\geq 0.01 \text{mg/Nm}^3$

- **desulphur slag scraper**
 - $4,000 \text{ m}^3/\text{m}^3$
 - 2 $\geq 0.03 \text{mg/Nm}^3$

- **tundish yard**
 - $1,800 \text{ m}^3/\text{m}^3$
 - 20 $\geq 0.10 \text{mg/Nm}^3$

- **hot metal pit**
 - $7,500 \text{ m}^3/\text{m}^3$
 - 15 $\geq 0.01 \text{mg/Nm}^3$

- **desulphurization center**
 - $7,500 \text{ m}^3/\text{m}^3$
 - 2 $\geq 0.03 \text{mg/Nm}^3$

- **ladle repair**
 - **alloy**

- **ladle converter**
 - $14,200 \times 2 \text{ m}^3/\text{m}^3$
 - 0.4 $\geq 0.03 \text{mg/Nm}^3$

- **building exhaust**
 - $7,500 \text{ m}^3/\text{m}^3$
 - 5 $\geq 0.01 \text{mg/Nm}^3$

 - $7,700 \text{ m}^3/\text{m}^3$
 - 15 $\geq 0.01 \text{mg/Nm}^3$

 - $4,000 \text{ m}^3/\text{m}^3$
 - 2 $\geq 0.03 \text{mg/Nm}^3$

 - $1,800 \text{ m}^3/\text{m}^3$
 - 20 $\geq 0.10 \text{mg/Nm}^3$
3. Coarse Particle Scattering Prevention

3-6 Electric Furnace

- Roof exhausting system
- Bag filter
- Direct exhausting system
- Conventional System
- Doghouse System

- 1st charge
 - Melting
- 2nd charge
 - Melting
- Oxidation
- Reduction
- Tapping

- Roof evacuation
- Direct evacuation
4. Dust Collection System

4-1 Gravitational, Inertial & Centrifugal Dust Collector

Stokes’ Law

\[V = \frac{g}{18 \mu}(\rho_1 - \rho) D^2 \text{ (cm/s)} \]

- \(V \): settling velocity (cm/sec)
- \(\mu \): gas viscosity (kg/ms)
- \(g \): gravitational acceleration (cm/s^2)
- \(\rho_1 \): particle density (g/cm^3)
- \(\rho \): gas density (g/cm^3)
- \(D \): particle diameter (cm)

Principle of dust collection:

Centrifugal force \((F) = \frac{mv^2}{R} \text{ (N)} \)

- \(m \): particle mass (kg)
- \(V \): particle velocity (m/s)
- \(R \): cyclone radius (m)
4. Dust Collection System
4-2 Scrubbing Dust collector

Principle of Scrubber Dust Collector:

Scrubbers:

- Reservoir type
- Pressurized water type
- Packed bed type
- Rotary type
4. Dust Collection System

4-3 Filter Type Dust Collector

Filtration Mechanism

\[
P_{i} = P + P_{th} + P_{d}
\]

Type:
(1) bag filter
(2) cartridge filter

Filter cloth:
(1) woven fabric
(2) non-woven fabric

Dust shake-off:
(1) intermittent
(2) continuous

Apparent filtration rate:
0.3~10 cm/s
4. Dust Collection System
4-4 Electrostatic Precipitator

Principle of dust collection:

- **Discharge electrode**
- **Dust collecting electrode**
- **Gas distribution plate**
- **Hammering device**
- **Collecting electrode**
- **Manhole**
- **Hammering drive**
- **High voltage DC generator**
- **Hopper**

Structure of EP
4. Dust Collection System

4-5 Selection of Dust Collector

- particle distribution
- dust concentration
- specific gravity
- electric resistance rate
- flow rate
- due point
- gas temp.

<table>
<thead>
<tr>
<th>Collector</th>
<th>Applicable Particle (μm)</th>
<th>Δp (mmH₂O)</th>
<th>Removal rate (%)</th>
<th>Equipment Cost (¥/yNm³/h)</th>
<th>Operating Cost (¥/yNm³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>1,000~50</td>
<td>10~15</td>
<td>40~60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial</td>
<td>100~10</td>
<td>30~70</td>
<td>50~70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifugal</td>
<td>100~3</td>
<td>50~150</td>
<td>85~95</td>
<td>300~2,200</td>
<td>100~1,000</td>
</tr>
<tr>
<td>Scrubbing</td>
<td>100~0.1</td>
<td>300~900</td>
<td>80~95</td>
<td>400~2,200</td>
<td>100~1,300</td>
</tr>
<tr>
<td>Filter</td>
<td>20~0.1</td>
<td>100~200</td>
<td>90~99</td>
<td>300~2,100</td>
<td>300~1,100</td>
</tr>
<tr>
<td>EP</td>
<td>20~0.05</td>
<td>10~20</td>
<td>90~99.9</td>
<td>400~4,400</td>
<td>100~1,000</td>
</tr>
</tbody>
</table>
5. Desulphurization Technology
5-1 Flue Gas Desulphurization in Steel Mill

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction</th>
<th>Byproduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated carbon</td>
<td>$\text{SO}_2 + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{SO}_4$</td>
<td>H_2SO_4</td>
</tr>
</tbody>
</table>
| Caustic soda | $2\text{NaOH} + \text{SO}_2 \rightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{O}$
$\text{Na}_2\text{SO}_3 + \text{H}_2\text{O} + \text{SO}_2 \rightarrow 2\text{NaHSO}_3$ | Na_2SO_4 |
| Ammonia | $2\text{NH}_4\text{OH} + \text{SO}_2 \rightarrow (\text{NH}_4)_2\text{SO}_3 + \text{H}_2\text{O}$
$(\text{NH}_4)_2\text{SO}_3 + \text{SO}_3 + \text{SO}_2 + \text{H}_2\text{O} \rightarrow 2\text{NH}_4\text{HSO}_3 + \text{H}_2$ | $(\text{NH}_4)_2\text{SO}_4$ |
| Slaked lime | $\text{CaO} + \text{SO}_2 \rightarrow \text{CaSO}_3$
$\text{CaSO}_3 + \text{O}_2 \rightarrow 2\text{CaSO}_4$ | CaSO_4 |

Limestone - Gypsum Process
- SOx Rem. > 90%
- Most popularly used method in Japan
- Limestone is cheap
- Initial & operating cost is economical
- Systems stability is stable & safe
- Gypsum is marketable
5. Desulphurization Technology

5-2 Limestone-Gypsum Process

\[\text{Reaction} \]

\[
\begin{align*}
\text{SO}_2 + \text{CaO} & \rightarrow \text{CaSO}_3 \\
2\text{CaSO}_3 + \text{O}_2 & \rightarrow 2\text{CaSO}_4 \\
\text{CaCO}_3 + \text{SO}_2 & \rightarrow \text{CaSO}_3 + \text{CO}_2
\end{align*}
\]
5. Desulphurization Technology

5-3 Coke Oven Gas Desulphurization Process

<table>
<thead>
<tr>
<th>System</th>
<th>DeSOx-chemical</th>
<th>Catalyst</th>
<th>Byproduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takahax-Hirohax</td>
<td>NH$_3$</td>
<td>naphtoquinone salfonic acid soda</td>
<td>(NH$_4$)$_2$SO$_4$ + H$_2$SO$_4$</td>
</tr>
<tr>
<td>Takahax-Reduction Decomposition</td>
<td>Na$_2$CO$_3$</td>
<td>naphtoquinone salfonic acid soda</td>
<td>crude S</td>
</tr>
<tr>
<td>Fumax-Hemibau</td>
<td>NH$_3$</td>
<td>picric acid</td>
<td>H$_2$SO$_4$</td>
</tr>
<tr>
<td>Stred Ford-Combax flue gas De-Sox</td>
<td>Na$_2$CO$_3$</td>
<td>anthoroquinone sulfonic acid soda metavanadate soda Tartaric acid soda</td>
<td>gypsum</td>
</tr>
<tr>
<td>Diamox-claus</td>
<td>NH$_3$</td>
<td>none</td>
<td>pure S</td>
</tr>
<tr>
<td>Salfiban-claus</td>
<td>alkanol amine</td>
<td>none</td>
<td>pure S</td>
</tr>
</tbody>
</table>

COG refining process

- coke oven
- primary cooler
- booster
- De-SOx
- naphthalene scrubber
- benzene scrubber
- refined COG
- (NH$_4$)$_2$SO$_4$ saturator
- final cooler
- EP
5. Desulphurization Technology

5-4 Takahax-Hirohax Process

Reaction

\[\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4\text{OH} \]
\[\text{NH}_4\text{OH} + \text{H}_2\text{S} \rightarrow \text{NH}_4\text{HS} + \text{H}_2\text{O} \]
\[\text{NH}_4\text{OH} + \text{HCN} \rightarrow \text{NH}_4\text{CN} + \text{H}_2\text{O} \]
\[\text{NH}_4\text{HS} + \frac{1}{2}\text{O}_2 \rightarrow \text{NH}_4\text{OH} + \text{S} \]
\[\text{NH}_4\text{CN} + \text{S} \rightarrow \text{NH}_4\text{NCS} \]

Removal rate

S, CN > 90~99%
5. Desulphurization Technology

5-5 Fumax Process

Absorption

\[
\begin{align*}
\text{NH}_3 + \text{H}_2\text{O} & \rightarrow \text{NH}_4\text{OH} \\
\text{NH}_4\text{OH} + \text{H}_2\text{S} & \rightarrow \text{NH}_4\text{HS} + \text{H}_2\text{O}
\end{align*}
\]

Regeneration

\[
\begin{align*}
\text{NH}_4\text{HS} + \frac{1}{2}\text{O}_2 & \rightarrow \text{NH}_4\text{OH} + \text{S}
\end{align*}
\]

\[
\begin{align*}
\text{S} + \text{O}_2 & \rightarrow \text{SO}_2 \\
\text{SO}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{SO}_3 \\
\text{SO}_3 + \text{H}_2\text{O} & \rightarrow \text{H}_2\text{SO}_4
\end{align*}
\]

Picric acid

COG

Absorber

Alkaline sol.

Regenerator

Mist catcher

H$_2$S scrubber

NH$_3$ scrubber

Evaporator

CF

Mixing t.

to H$_2$SO$_4$ plant

Absorber

AIR

H$_2$SO$_4$ recovery

H$_2$SO$_4$ plant
6. NOx Control Technology

6-1-1 NOx Generation

Thermal NOx Generation

![Graph showing Thermal NOx generation](image)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coal</td>
<td>0.7~2.2</td>
<td>0.3~2.6</td>
</tr>
<tr>
<td>coke</td>
<td>0.6~1.4</td>
<td>0.2~1.0</td>
</tr>
<tr>
<td>crude oil</td>
<td>0.03~0.34</td>
<td>0.1~3.0</td>
</tr>
<tr>
<td>C-oil</td>
<td>0.2~0.4</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>B-oil</td>
<td>0.08~0.35</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>A-oil</td>
<td>0.005~0.08</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>light oil</td>
<td>0.004~0.006</td>
<td>0.03~0.5</td>
</tr>
<tr>
<td>kerosene</td>
<td>0.0005~0.01</td>
<td>0.001~0.2</td>
</tr>
<tr>
<td>Gas g/Nm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG-crude</td>
<td>0~9</td>
<td>1.5~7</td>
</tr>
<tr>
<td>COG-fine</td>
<td>0.02~0.5</td>
<td>0.05~0.7</td>
</tr>
<tr>
<td>BFG</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>LDG</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>LPG, LNG</td>
<td>tr</td>
<td>tr</td>
</tr>
</tbody>
</table>

- JIS K2205 kinematic viscosity (cSt, mm²/s)
- C-heavy oil: 50 ~1,000, B-heavy oil: 20~50, A-heavy oil: □ 20
6. NOx Control Technology

6-1-2 Factors in NOx Generation & Reduction

Causes of generation

- **N in fuel**
 - low N fuel
- **O₂ con.**
 - lower O₂
- **Flame temp.**
 - lower temp.
- **Retention time**
 - shorter retention

Reduction methods

- **Fuel alternation**
 - Change of fuel
 - heavy oil → light oil → gas
- **Fuel denitrification**
 - Denitrification of COG
- **Changing operating conditions**
 - Low air ratio combustion
 - Lowering dry hot air temperature
 - Changing thermal load
- **Remodeling combustion system**
 - Multistage combustion
 - Recirculation of exhaust gas
 - Addition of steam or water
 - Low NOx burner

Improvement by Fuel

Improvement by combustion
6. NOx Control Technology

6-2-1 Fuel Improvement
1. Use of low N and low S fuel \(S \leq N \)
2. Denitrification of COG \(N = 1 \sim 9 \text{ g/m}^3 \) 800~1,000 \(\square \), 4~6 sec.

6-2-2 Combustion Improvement
1. Low air ratio operation \(O_2 \ 1\% \) \(\square \) \(\text{NOx} \ 10\% \) \(\square \)
2. Multistage combustion \(1^{st} \) stage air ratio; 80~90\%
 rest air \(\square \) \(2^{nd} \) stage combustion \(\square \) \(\square \) \(20\% \)
3. Steam or Water injection flame temp. \(\square \) \(\text{Nox} \) \(\square \)
 no-change in generated calorie

4. Exhaust gas circulation

![Graph showing NOx ppm and Flame temp. vs Gas circulation %]
6. NOx Control Technology

Continued from previous slide

5. Low-NOx burner

Wide-angle burner tile

Double-stage combustion burner

Self-circulate combustion burner

- primary air
- secondary air
- gas
- oil
- fuel
- ring nozzle
- circulating gas

NOx ppm

<table>
<thead>
<tr>
<th>tile angle (degree)</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total air ratio : 1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COG

<table>
<thead>
<tr>
<th>primary air ratio</th>
<th>1.0</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O2 in exhaust gas %

<table>
<thead>
<tr>
<th>O2 in exhaust gas %</th>
<th>1.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. NOx Control Technology

6-3 Denitrification of Exhaust Gas

De-NOx: Dry Type Selective Contact Reduction using NH₃

\[
\begin{align*}
6\text{NO} + 4\text{NH}_3 &\rightarrow 5\text{N}_2 + 6\text{H}_2\text{O} \\
6\text{NO}_2 + 8\text{NH}_3 &\rightarrow 7\text{N}_2 + 12\text{H}_2\text{O}
\end{align*}
\]
7. Environmental Management System (1/2)

Items to be considered at factory construction & operation

1. **Environmental impact assessment**
2. **Environmental standards & emission standards**
3. **Planning of plant & air pollution control equipment**
4. **Operation control & worker training**
5. **Environmental monitoring**
6. **Environmental management system**

Diagram:
- EMS
- ISO14001
- Plan
- Do
- Action
 - Reviewing by plant manager
- Environmental principles
- Plan
- Check
 - Confirmation & collective measures
- Enforcement & application
- to next step

Internal inspection

Graphical representation:
- EMS
- ISO14001
- Plan
- Do
- Action
 - Reviewing by plant manager
- Environmental principles
- Plan
- Check
 - Confirmation & collective measures
- Enforcement & application
- to next step
Measurement Items

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Emission Standard</th>
<th>EQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dust</td>
<td></td>
<td>Suspended particle matter</td>
</tr>
<tr>
<td>sulfur oxide</td>
<td></td>
<td>SO₂ (sulfur oxide)</td>
</tr>
<tr>
<td>nitrogen oxide</td>
<td></td>
<td>NO₂ (nitrogen oxide)</td>
</tr>
<tr>
<td>Cd, its compounds</td>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Cl, HCl</td>
<td></td>
<td>Photochemical oxidant</td>
</tr>
<tr>
<td>F, HF, SiₙF₂n+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb, its compounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Telemeter System

- Q SO₅ NOₓ (automatic measurements)
- Q SO₅ NOₓ
- Site center
- Administration center
8. Resources Saving

Dust Generation & Utilization

Dust Generation at 3 million-ton Crude Steel Production (t / y)

<table>
<thead>
<tr>
<th>Process</th>
<th>Dry Dust Collector</th>
<th>Wet Dust Collector</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material / Pig Iron</td>
<td>111,000</td>
<td>38,000</td>
<td>149,000 (61%)</td>
</tr>
<tr>
<td>Steel</td>
<td>33,000</td>
<td>60,000</td>
<td>93,000 (38%)</td>
</tr>
<tr>
<td>Rolling</td>
<td>2,700</td>
<td>300</td>
<td>3,000 (1%)</td>
</tr>
<tr>
<td>Total</td>
<td>146,700 (60%)</td>
<td>98,300 (40%)</td>
<td>245,000 (100%)</td>
</tr>
</tbody>
</table>

- Dust generation in Integrated Iron Works: 4.9% of crude steel
- Ingredient of Dust: Iron Oxide, Limestone, etc.
- Utilization: Raw Material for Sintering, Zn, ZnCO3, Neutralizing wastewater, BF
9. Energy Saving

Energy source ratio (％)

- **Electricity**: 41.1
- **Coal**: 25.3
- **Heavy oil**: 22.0
- **Coke**: 14.5
- **Others**: 11.5

Integrated Steel Production

Non-Integrated Steel Production

Energy saving Method

- High efficient equipment & improving operation
- Reducing the number of unit operations & changing to continuous process
- Waste heat recovery