9.3 大気汚染監視システムの計画と管理

9.3.1 はじめに

大気汚染監視には、苦情処理や環境アセスメント等で使う移動監視と地域を代表した一般環境大気を測定する一般環境大気測定局や沿道での自動車排出ガスを測定する自動車排出ガス測定局などの常時監視とある。

大気汚染監視システムは、大気汚染の変化状況を的確に把握し、評価・活用するためのものであり、大気汚染物質別個分析計・データ処理機・データ伝送システム・中央データ処理機・受信端末などから構成されている。

大気汚染常時監視システムの活用は、①測定値が短時間に中央監視局でオンライン処理され、汚染状況をリアルタイムで把握し緊急時に対応する、②隣接自治体と連携し、広域汚染状況を短時間に把握できる、③発生源に汚染物質排出量削減を指示する根拠を作り、④街頭表示装置により住民に周知できる、⑤システムの異常・故障箇所を迅速に見つけ出せる、などの機能を持っていることが求められる。

9.3.2 監視システムの計画的配置

環境庁から監視システムの適正な配置のため通知が出されている。表9.3.1にこれを要約した。

| 表 9.3.1 大気環境測定局配置に関する環境庁通知の要約 |
|-----------------|-----------------|
| 件 名 | 内 容 |
| 「大気汚染防止法の一部を改正する法律の施行について」（昭和46年8月25日環境庁第5号） | 大気汚染の監視測定場所等について。大気汚染物質の特性を考慮し、大気汚染を配慮すべき地域における有効な場所に測定点を配備することが必要である。
7. 硫酸塩化物 | 25 km²あたり1ケ所を標準として設置する。大気汚染が著しい地区には必要に応じて増加する。
8. 一酸化炭素 | 火災、生活用ガス等の事故又は交通量の過多な交差点の周辺等で、併設して調査する。
9. 漂浮粒子状物質 | 硫酸塩化物及び一酸化炭素の測定点に併設する。
10. 二酸化塩素 | 同 上
11. オキシダント | 従来いわゆる硫黄酸化物等による汚染が著しくなかった郊外地域でも汚染が及んでいることを配慮して配置する。

「一般環境大気測定局における測定値の地域代表性について」（環境庁・測定局の地域代表性に関する検討会。昭和61年3月報告送付） | 「測定値の地域代表性に関する検討会報告」を地方自治体に検討の参考資料として送付

（要約）NO₂、SO₂の代表性について
ある時間平均値の場所的な差異がある。これに加えられた許容範囲（5 ppt）以下の値を中心に測定値を一つの測定値で代表させて表現し、この値を“地域代表性”と呼ぶ。対象とする全地域が最も適切に領域分けされる場合、測定局は地域代表性を有するといい、このように測定局を配置することを“測定局の適正配置”といえ。
この通知を参考にしつつ、それぞれの地方自治体における地域に合った地域代表性を把握することが必要となる。

そこで、自治体では、市町村単位で地域を等面積のメッシュに分割し、その交点で移動測定車等を活用して大気汚染状況を実測し、その測定結果等から測定局の適正配置を検討し、地域代表地点を決める方法がある。

また、実測値が豊富で、SO2やNO2の総量削減計画（大気拡散シュミレーションを活用）がたてられている地域などでは、その結果を活用することも必要である。表9.3.2に環境大気常時監視マニュアルに記載された留意点を示した。

<table>
<thead>
<tr>
<th>件名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>「環境大気常時監視マニュアル」（改定版）
（環境庁大気保全局編集、平2.12発行）</td>
<td>各自治体の常時監視業務の手引きとして発行（昭和61年版の改定版）
（測定局関連要点抜粋）
一般局配置の留意事項
1. 汚染物質の発生源特性、発生源分布と風向特性を考慮して配置する。
2. 人口密集地域には、他の地域に比べて、きめ細かく配置する。
3. 隣接自治体の発生源分布と気象状況を考慮して、境界領域にも配置する。
4. 将来の土地利用計画を考慮して配置する。
5. 特定地域に偏った配置をしない。
試料採取口の位置
1. 乱気流の影響を受けないよう付近の建物や障害物からできるだけ離す。
2. 煙突、排気塔など特定の発生源の影響を受けない場所にする。
3. 測定対象物質による汚染状況を的確に把握できるような高さにする。（「地上1.5～10 mの高さが望ましい。」（通知を引用））
自衛局配置の留意事項（今回の改定で登載）
自動車排出ガスによる大気汚染の状況が効率的に監視できるよう、道路、交通量等の状況等を勘案する。
1. 交通量、交通渋滞の状況、道路構造、地形及び周辺建物の状況、局地及び地域の気象条件等を勘案して、大気汚染の状況が効率的に把握できるよう配置を決定する。
2. 配置場所には、交通頻繁な道路または交差点の周辺であって、人が常時生活し、活動している場所またはこれに近接した場所を選ぶ。また自動車排出ガスの距離減衰を考慮して、できるかぎり道路に近い地点に設置することが望まれる。</td>
</tr>
</tbody>
</table>

9.3.3 測定場所と測定局の面積

大気環境測定局の設置場所と試料採取口の高さ等に関して環境庁よりの環境基準設定時に通達や通知は、大気汚染物質毎に表9.3.3の様に示されている。

225
表9.3.3 大気汚染常時測定局の「測定場所」及び「採取口」の高さ

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定場所</th>
<th>採取口高さ</th>
<th>例外等</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>交通頻繁な道路又は交差点周辺であって、人が常時生活し活動している場所又はその近接場所</td>
<td>おおむね1.5 m</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>測定点は25 km²あたり1ケ所を標準として設定し、大気汚染が著しい地域は、必要に応じて増設</td>
<td>原則として1.5 m以上10 m以下</td>
<td>高層集合住宅等10 m以上の高さにおいて、多数生活している場合は適宜その実態に応じて設置</td>
</tr>
<tr>
<td>SPM</td>
<td>測定点は、いわゆる酸化物及び一酸化炭素測定点に併設</td>
<td>原則として地上3 m～10 m</td>
<td>地上からの土砂巻き上げ等による影響を除するため、原則として地上3 m～10 mの高さに置く</td>
</tr>
<tr>
<td>NO₂</td>
<td>測定点は、いわゆる酸化物及び一酸化炭素測定点に併設</td>
<td>原則として地上1.5 m～10 m</td>
<td>SO₂と同様</td>
</tr>
<tr>
<td>Ox</td>
<td>従来いわゆる酸化物等による汚染が著しくなかった郊外地域に汚染が及んでいるので測定点は、この点を考慮して設置</td>
<td>原則として地上1.5 m～10 m</td>
<td>SO₂と同様</td>
</tr>
</tbody>
</table>

また、測定局の面積としては大気汚染物質別測定機器と気象要素（風向、風速、温度、湿度、日照等）の観測機器が収納できるとともに、データ整理用の事務機、洗浄等に使用するための流し台、保守部品類の収納ロッカー等の設置スペースが必要である。測定局の床面積としては20～30 m²程度が必要となる。

9.3.4 測定機器の設置条件

測定機器の設置場所は次の様々な条件を伴えることがあるよう望ましい。

1. 振動を防止する：吸引ポンプ等の出力振動を他機器に伝わらないように、防震対策を施す。
2. 腐食性ガスや粉末の侵入を回避または防止する。
3. 高湿度を避け、また、室温が40℃以下で、直射日光があたらない部分のある室温10〜30℃の範囲内で温度変化は±5℃になるようにコントロールすることが望ましい。
4. 電源電圧及び周波数の変動が少ないこと、また、遮断接続を講ずること。
5. 測定機器が傾かないように水平に設置できること。
6. 保守作業が容易に安全に行えること。
7. 試料大気導入管が短くてすむこと、また、雨水、排ガスなどを直接吸引しないこと。
8. 温度の分析計からの廃棄物の一部は、特定産業廃棄物となることから「特定管理産業廃棄物管理責任者」の資格を有する者が管理する必要がある。

9.3.5 測定機器の保守管理

時々、刻々と変動する測定データが正確に取得され、それを蓄積・処理し転送するテレメーターシステムの維持にあたっては、その測定機器の保守点検・管理を確実に実行し、データの欠落が生じない
い様、細心の注意をはらう必要がある。そこで、測定機器類の保守管理の種類と内容を表9.3.4に示す。

<table>
<thead>
<tr>
<th>管理区分</th>
<th>目的</th>
<th>実施頻度</th>
<th>内容</th>
</tr>
</thead>
</table>
| 日常点検 | 自動測定器を正常に運転させる。 | 1回/週以上 | 1. 検査機関状況の確認
 | (データの獲得) | | 2. 消耗品の交換、補給
 | | | 3. 簡易な校正、チェック
 | | | 4. 簡易な部分の清掃、交換 |
| 定期点検 | 機器性能の維持と故障の予防を図る。 | 1回/年以上 | 1. 流路の検査
 | (精度を基準値の内に保全) | | 2. 検出部の検査
 | | | 3. 制御、伝送系の検査
 | | | 4. 増幅、記録部の検査 |
| 緊急点検 | 異常或いは故障発生時の迅速かつ正確点検を図る。 | 異常発生時 | 1. 故障の発見と精査、修正
 | (正確な状態に復帰) | | 2. 原因究明と修理 (メーカーによる) |
| 性能試験 | 保守又はデータ評定上の継続性の保持、トラブル防止 | 機器購入時 | 1. 機器性能テスト (基準ガスメーター等)
 | (機器特性の把握) | | 2. 機器安定性テスト (流量変動、ゼロ、スパンドラフト等)
 | | | 3. 測定データの評価 (旧計測機との整合性等) |
| 動的校正 | 精度幅の中身を決める。 | 随時 | 1. 標準ガスによるチェック
 | | | 2. 検量線の作成 |

表9.3.4 保守管理の種類と内容